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Background: Accurate detection of clinically significant prostate cancer (csPCa), Gleason Grade Group ≥ 2, remains a chal-
lenge. Prostate MRI radiomics and blood kallikreins have been proposed as tools to improve the performance of
biparametric MRI (bpMRI).
Purpose: To develop and validate radiomics and kallikrein models for the detection of csPCa.
Study Type: Retrospective.
Population: A total of 543 men with a clinical suspicion of csPCa, 411 (76%, 411/543) had kallikreins available and
360 (88%, 360/411) did not take 5-alpha-reductase inhibitors. Two data splits into training, validation (split 1: single center,
n = 72; split 2: random 50% of pooled datasets from all four centers), and testing (split 1: 4 centers, n = 288; split 2:
remaining 50%) were evaluated.
Field strength/Sequence: A 3 T/1.5 T, TSE T2-weighted imaging, 3x SE DWI.
Assessment: In total, 20,363 radiomic features calculated from manually delineated whole gland (WG) and bpMRI suspi-
cion lesion masks were evaluated in addition to clinical parameters, prostate-specific antigen, four kallikreins, MRI-based
qualitative (PI-RADSv2.1/IMPROD bpMRI Likert) scores.
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Statistical Tests: For the detection of csPCa, area under receiver operating curve (AUC) was calculated using the DeLong’s
method. A multivariate analysis was conducted to determine the predictive power of combining variables. The values of
P-value < 0.05 were considered significant.
Results: The highest prediction performance was achieved by IMPROD bpMRI Likert and PI-RADSv2.1 score with
AUC = 0.85 and 0.85 in split 1, 0.85 and 0.83 in split 2, respectively. bpMRI WG and/or kallikreins demonstrated AUCs
ranging from 0.62 to 0.73 in split 1 and from 0.68 to 0.76 in split 2. AUC of bpMRI lesion-derived radiomics model was not
statistically different to IMPROD bpMRI Likert score (split 1: AUC = 0.83, P-value = 0.306; split 2: AUC = 0.83, P-
value = 0.488).
Data Conclusion: The use of radiomics and kallikreins failed to outperform PI-RADSv2.1/IMPROD bpMRI Likert and their
combination did not lead to further performance gains.
Level of Evidence: 1
Technical Efficacy: Stage 2

J. MAGN. RESON. IMAGING 2021.

The use of prostate MRI in men with a clinical suspicion
of prostate cancer (PCa) is currently recommended by

major professional societies such as European Urologist Asso-
ciation and American Urologic Association. The use of pros-
tate MRI and MRI-targeted biopsy can result in a decreased
number of men undergoing biopsy procedures while
maintaining or improving the detection of clinically signifi-
cant PCa (csPCa), commonly defined as Gleason Grade
Group (GGG) ≥ 2 or > 2, meaning Gleason score ≥ 3 + 4
or > 3 + 4, respectively.

Qualitative and quantitative parameters derived from
prostate MRI are not typically used in routine clinical practice
beyond the prostate lesion size.1 Multiple research groups
have been working on developing different machine learning
methods for prostate MRI aiming to improve the diagnostic
performance relative to qualitative report provided by radiolo-
gists in a supervised or unsupervised fashion.2 The use of
prostate MRI-derived variables combined with clinical and
laboratory findings has attracted substantial interest. A large
number of models have been proposed to improve risk strati-
fication of PCa, which use PI-RADS,3 Likert,1 IMPROD
bpMRI Likert4–6 score, and/or radiomics analysis and deep
learning of prostate MRI images.7

In previous retrospective studies, a statistical model
based on four kallikrein panel (total-prostate-specific antigen
[PSA], free-PSA, intact-PSA, and kallikrein-related peptidase
2 [hK2]) have shown to be useful in predicting biopsy out-
come and reducing unnecessary biopsies.8–10 Furthermore,
retrospective studies have shown that the 4Kscore, a test based
on the four kallikreins, together with the PI-RADS score lead
to improved risk stratification of PCa compared to PI-RADS
score alone.11,12 However, the role of prostate MRI radiomics
either from the whole prostate gland (WG) and/or from
MRI-based suspicious lesions together with the kallikreins has
not been evaluated.

In this study, we aimed to develop and validate radiomics
and kallikrein models for the detection of csPCa (GGG ≥ 2)
using multi-institutional datasets and compare those with rou-
tinely used clinical parameters, PSA, and qualitative MRI param-
eters (IMPROD bpMRI Likert, PI-RADSv2.1).

Materials and Methods
Study Design and Study Population
All trials involved in this study were approved by the local ethics com-
mittee. All enrolled men had given written informed consent before
enrolment into the study. Between April 01, 2011 and March 31,
2017, 543 men with a clinical suspicion of PCa underwent prostate
MRI followed by biopsy as a part of a single-center trial (cohort A
and cohort B) or multicenter trial (cohort C) (Fig. 1). All prostate
MRI examinations were performed based on elevated PSA
(PSA > 2.5 ng/mL) and/or abnormal digital rectal examination
(DRE), and men with a history of PCa were not eligible for enrol-
ment. Criteria described by the standards of reporting for MRI-
targeted biopsy studies (START) and the reporting of diagnostic accu-
racy (STARD) consortium were followed in reporting the results of
these trials.13,14 All anonymized datasets, including bpMRI data and
reports, scanned prostatectomy images and biopsy reports, follow-up
information, in cohort B and C are available at the following address:
http://petiv.utu.fi/improd, http://petiv.utu.fi/multiimprod/.

Study End Points
The primary end point of this retrospective analysis was the diagnostic
accuracy of different individual features and models for the detection of
csPCa, defined as GGG ≥ 2.15 The models were based on clinical, lab-
oratory, and bpMRI-derived variables aiming to predict csPCa in men
who underwent prostate bpMRI before biopsy due to clinical suspicion
of PCa. The “ground truth” for predicting csPCa was based on biopsy
or prostatectomy findings (men who underwent prostatectomy follow-
ing biopsy procedure—cohort A: 18, cohort B: 64, cohort C: 96).

MRI Protocol and MRI Reporting
All prostate MRI examinations were performed either at 3 T or 1.5 T
magnetic field using the same T2-weighted imaging (T2W) and diffu-
sion weighted imaging (DWI) acquisitions throughout the duration
(2011–2017) of all three trials, no changes occurred in the acquisition
protocols during duration of the trials. Prostate MRI examination was
performed using body array coils (no endorectal coil) at 3 T MRI scan-
ners in Turku, Finland (Verio, Siemens), Helsinki, Finland (Skyra, Sie-
mens) and Tampere, Finland (Skyra, Siemens) while 1.5 T (Aera,
Siemens) MRI scanner was used in Pori, Finland. The same MRI acqui-
sition protocol was used throughout the duration of each trial and no
changes in the MRI acquisition protocol were made. Imaging consisted
of Turbo Spin Echo T2W acquisitions in axial and sagittal planes. Three
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separate Spin Echo DWI acquisitions were utilized: 1) b values 0, 100,
200, 300, 500 s/mm216; 2) b values 0, 1500 s/mm2; and 3) b values
0, 2000 s/mm2. The overall imaging time using 3 T scanners was 13–
17 minutes including shimming and calibration while the corresponding
time on 1.5 T was about 3 minutes longer. Basic MRI acquisition
parameters are presented in the Supporting Material Table S1. DWI
datasets were postprocessed using vendor-specific software with mono-
exponential fit to generate apparent diffusion coefficient (ADC) maps.
Radiomics calculated from monoexponential fit of DWI done using 5 b-
values in the range of 0–500 s/mm2. Detailed MRI protocol and
importable MRI protocols are publicly available at http://mrc.utu.fi/pro-
tocols/prostate and http://petiv.utu.fi/multiimprod/.

All image datasets were reported by a local radiologist (1–
2 years of prostate MRI experience at the beginning of the trials in
2011) and re-reported or confirmed centrally by one designated cen-
tral reader (IJ, 3 years of prostate MRI experience at the beginning
of trial A in 2011) to guarantee reporting integrity prior to per-
forming prostate biopsy. Studies in trials A, B, and C were prospec-
tively reported using a dedicated IMPROD bpMRI Likert scoring
system developed before initiation of the trials (see details at http://
petiv.utu.fi/multiimprod/). The central reader was blind to all clini-
cal data such as PSA, age, and patient past medical history. Follow-
ing completion of the each trial, all bpMRI datasets were reported
using PI-RADSv2.1 scoring system by the same central reader.3

Since dynamic contrast-enhanced MRI was not performed, the
peripheral zone lesions were scored solely by DWI.17,18

Inter-reader variability in reporting IMPROD bpMRI Likert
and PI-RADsv2.1 in this dataset has been reported previous using a
random selection of 81 patients.4

Biopsy Procedure and Histopathological Analysis
Cognitive targeting without MRI-TransRectal UltraSonography
(TRUS) fusion was performed in cohort A and B. In cohort C, one
of the centers (17%, 58/338) used MRI-TRUS fusion (UroNav
Fusion Biopsy, Invivo Corporation) while others used cognitive
targeting. In the case of a suspicious lesion on MRI (IMPROD
bpMRI Likert score 3–5), systematic + targeted biopsy was per-
formed, while men with no MRI-based suspicious lesions (IMPROD

bpMRI Likert score 1–2), underwent systematic biopsy (12 cores). All
prostate biopsies were performed by experienced urologists (n = 7)
transrectally without enema and with periprostatic block.

All biopsy and prostatectomy specimens were reported locally
at each center by a dedicated pathologist, each with at least 5 years
of experience in genitourinary pathology at the beginning of the
trial A, using the 2014 International Society of Urological Pathology
Modified Gleason Grading System.19

Prostate Lesion and Whole Gland Segmentation
The central reader delineated the prostate capsule and bpMRI suspi-
cious lesions (PI-RADSv2.1/IMPROD bpMRI Likert score > 2) on
axial T2W imaging and individually on ADC maps (DWI done
using 5 b-values in the range of 0–500 s/mm2) using Carimas (ver-
sion 2.9, Turku PET center, Turku, Finland) software. Suspicious
lesions on bpMRI were delineated manually without knowledge of
clinical or laboratory parameters such as PSA level. The lesion extent
was determined by the largest signal abnormality of the lesion rela-
tive to the normal appearing surrounding tissue seen on T2W imag-
ing and/or the separate three DWI acquisitions.

Data Analyses and Modeling
The study postprocessing pipeline is presented in Fig. 2. In the initial
phase of the study, radiomic features of the manually delineated whole
prostate gland (WG) and lesion masks were extracted from ADC maps
and T2W images. These features included statistical descriptors
(Moments), corners edge detector (EdgesCorner2D3D), Fourier trans-
form filter (FFT2D), three-dimensional laws (Laws3D), features
describing shape (Shapes), and texture features (Pyradiomics). The size
and shape of the lesion were used to capture size properties of the
lesion. In addition, the applied features aim to capture voxel level pat-
terns and inhomogeneities in the lesion, corresponding to inhomogenei-
ties in T2W and DWI signal in tumorous tissue in relation to healthy
prostate tissue. Further, WG radiomics were included to evaluate useful-
ness of information outside delineated lesions, and for the purpose of
methods which do not require manual delineation of bpMRI suspicious
lesions. Details about the features utilized have been described

FIGURE 1: Patients included in cohorts by center.
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previously,20,21 and the extraction algorithms are available at https://
github.com/haanme/ProstateFeatures.

In the next phase, a pruning and feature selection strategy was
applied to obtain a set of radiomic features that would accurately
predict csPCa. The strategy consisted of first removing features with
missing values. Then applying a low variance filter to drop features
with zero or near-zero variance. Next Pearson’s r was used as a corre-
lation filter to avoid highly redundant features, and Kolmogorov–
Smirnov to test robustness of features between cohorts. In the fea-
ture selection process, the five features with the highest area under
the received operating curve (ROC) curve (AUC) from each radio-
mic group were selected. Pearson’s r correlation filter was again used
to finally choose the top AUC feature per radiomic group taking
into account the correlation with other selected features. The same
feature pruning and selection strategy were applied to WG and
lesion radiomic features separately.

In the data integration and modeling phase, the following four
variable groups were considered individually and combined: basic
variables (age, PSA, PSA-density, prostate volume), Kallikreins
(total-PSA, free-PSA, intact-PSA, hK2), MRI qualitative features
(IMPROD bpMRI Likert, PI-RADSv2.1), and top selected MRI
radiomic features (10 WG and 12 lesion features). PSA-density was
defined as PSA divided by prostate volume (volume of WG masks).
Lastly, external evaluation of individual variables and multivariate
models was performed on an independent test set unseen during the
development and validation phase.

To evaluate and compare the kallikreins performance against
other features, in the modeling phase and final external testing, we
only considered cases with kallikrein data available. However, in the

radiomic feature selection phase, cases without kallikreins were
included to improve sample size. Subsequently, to avoid bias
brought by the effect that 5-alpha-reductase inhibitor (5-ARI) medi-
cation has on PSA and PSA-based kallikreins,22–24 we identified
cases that were not taking 5-ARI medication within 6 months of
bpMRI examination and only included those in the modeling, vali-
dation and external testing phases. Inclusion of cases in each of the
study phases is shown in Fig. 3.

In addition, we considered the effect of multicenter data on
modelling, validation, and external testing by performing our ana-
lyses in two different data splitting approaches. In the first approach
(Data Split 1), models were trained using data from a single-center
(i.e., cohort B, n = 72) and externally evaluated on multicenter data
(i.e., cohort C, n = 288). In the second approach (Data Split 2),
multicenter data were pooled (i.e., cohort B and C, n = 360) and
randomly split into 50% training and 50% testing (Fig. 3). In both
approaches, the data used for external testing were never used in the
other study phases (i.e., radiomic feature pruning/selection, integra-
tion, and modeling). Datasets for radiomic feature selection and
model training are available at http://mrc.utu.fi/data.

Statistical Methods
To evaluate the ability of each variable/feature in detecting csPCa in
men with a clinical suspicion of PCa, a univariate analysis based on
AUC with 95% confidence intervals (CI) was performed using the
DeLong’s method.25,26 A multivariate analysis, using regularized least-
squares (RLS)27 with regularization parameter 1, was conducted to
determine the predictive power of combining variables. Each RLS
model was externally validated using an independent test set.

FIGURE 2: The study postprocessing pipeline.
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DeLong’s test was used to compare RLS model test set AUC against
qualitative IMPROD bpMRI Likert score AUC. Additionally, ROC
curves obtained using 10-fold cross-validation28 on cohort C
(n = 288) were plotted to present the diagnostic ability of the models
when trained and tested on multicenter data. Radiomic features were
scaled between zero and one using min–max normalization. Analyses
in modeling and external evaluation phases were performed on patient
level, where only the dominant lesion was included. The dominant
lesion was defined as the lesion with the highest PI-RADSv2.1/
IMPROD bpMRI Likert score followed by lesion size.

RLS models were implemented in Python v. 3.6 using publicly
available RLScore software version 0.8.129 (https://github.com/aatapa/
RLScore). Stratified 10-fold cross-validation was implemented using
scikit-learn v. 0.20.0.30 Statistical analyses were conducted using R
v. 3.4.3 software (R Foundation for Statistical Computing, Vienna,
Austria). For multiple comparisons, Bonferroni-adjustment was carried
out. A total of 14 models were compared to IMPROD bpMRI Likert
using DeLong’s test and Bonferroni-adjusted alpha level of .004
(0.05/14). Results with P-value < 0.05 were considered significant.

Results
Patient characteristics of each clinical trial are presented in
Table 1.

Feature Selection and Pruning
The number of remaining radiomic features after pruning varied
between data splits. In Data Split 1, the number of features
derived from bpMRI suspicious lesions was reduced from
12,525 to 1315, while in Data Split 2, it was reduced to 1797.
Despite the difference of 482 features between splits, the fea-
tures’ AUC ranges were close (0.5–0.82) and (0.5–0.84) in
Data Split 1 and 2, respectively. WG radiomic features were
reduced from 7838 to 522 in Data Split 1 and to 692 in Data
Split 2, respectively, the remaining features’ AUC ranges were
(0.5–0.76). From the radiomic groups (Table 2), Laws3D WG
features in both ADC and T2W were pruned out completely.

The final selected features, which were included in fur-
ther analyses, are presented in Tables 3 and 4. A total of
22 radiomic features, 12 from lesion and 10 from WG were
selected in both Data Split 1 and Data Split 2. The selected
features differed between splits, except for the lesion features
for ADC Moments and T2W Moments, and the WG fea-
tures for ADC FFT2D, T2W EdgesCorner2D3D and T2W
Moments. The AUC with 95% CI for each selected feature
and Pearson correlation in both splits are presented in the
Supporting Materials (Table S2–S5 and Figure S1–S4).

FIGURE 3: Training, validation, and testing data splitting approaches.
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Univariate Analysis
Individual feature diagnostic performance using the external vali-
dation data in both data splits is shown in Fig. 4. The highest
performance was achieved by MRI qualitative score IMPROD
bpMRI Likert with AUC (95%CI) of 0.85 (0.81–0.89) in Data
Split 1 and 0.85 (0.80–0.90) in Data Split 2. PI-RADSv2.1 had
the same AUC as IMPROD bpMRI Likert in Data Split 1, and
in Data Split 2 it had AUC of 0.83 (0.77–0.89). Lesion

radiomics were the second group of features that presented high
diagnostic performance with feature AUCs ranging from 0.58 to
0.84 in Data Split 1 and from 0.75 to 0.85 in Data Split
2. From basic and kallikreins feature groups, PSA-density and
total-PSA had the highest AUC within their group, with AUCs
of 0.71 and 0.67, respectively. Selected WG radiomic features
AUCs ranged from 0.52 to 0.74 in Data Split 1 and from 0.52
to 0.71 in Data Split 2. In this set of features, the selected ADC

TABLE 1. Patients’ Characteristics by Study Cohort

Cohort A Cohort B Cohort C

n = 43 n = 162 n = 338

Trial duration April 01, 2011 to March
31, 2013

March 01, 2013 to
February 27, 2015

February 01, 2015 to
March 31, 2017

Age, years; median (IQR) 67 (63–70) 65 (61–69) 65 (59–69)

PSA, mg/L; median (IQR) 7.7 (6.2–9.1) 7.5 (5.7–9.6) 6.9 (5.1–9.0)

PSA density, %; median
(IQR)

0.16 (0.11–0.24) 0.20 (0.13–0.29) 0.16 (0.11–0.24)

Prostate volume; median
(IQR)

46.0 (33.5–58.0) 37.5 (28.0–49.0) 39.0 (30.0–53.8)

5-ARI; n (%) NA 27 (17) 34 (10)

IMPROD bpMRI Likert score; n (%)

1 8 (19) 31 (19) 32 (10)

2 9 (21) 8 (5) 44 (13)

3 10 (23) 23 (14) 63 (19)

4 3 (7) 21 (13) 62 (18)

5 13 (30) 79 (49) 137 (41)

PI-RADSv2.1 score; n (%)

1 6 (14) 29 (18) 32 (10)

2 11 (26) 8 (5) 44 (13)

3 9 (21) 21 (13) 63 (19)

4 6 (14) 50 (31) 86 (25)

5 11 (26) 54 (33) 113 (33)

Gleason Grade Group, n (%)

Benign 10 (23) 57 (35) 131 (39)

1 (Gleason score 3 + 3) 11 (26) 16 (10) 54 (16)

2 (Gleason score 3 + 4) 11 (26) 41 (25) 56 (17)

3 (Gleason score 4 + 3) 3 (7) 20 (12) 43 (13)

4 (Gleason score 4 + 4,
3 + 5, 5 + 3)

6 (14) 25 (15) 32 (9)

5 (Gleason score 4 + 5,
5 + 4)

2 (5) 3 (2) 22 (6)

IQR = min-max values interquartile range; PSA = prostate-specific antigen; 5-ARI = five-alfa-reductase inhibitors;
bpMRI = biparametric MRI; PI-RADSv2.1 = prostate imaging reporting and data system version 2.1.
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and T2W Pyradiomics had generally higher AUC than the
corresponding top feature from other radiomic groups.

Multivariate Analysis
AUCs from RLS models that included lesion radiomic fea-
tures were not found to be significantly different from
IMPROD bpMRI Likert AUC in either of the Data Splits
1 and 2 (Table 5). In contrast, AUCs of RLS models that did
not include lesion radiomic features were significantly lower
than IMPROD bpMRI Likert AUC.

In 10-fold cross-validation, mean ROC curve with
one standard deviation (SD) for IMPROD bpMRI Likert,
PI-RADSv2.1 and RLS models using individual or com-
bined features from Data Split 1 and test set (n = 288)
showed that IMPROD bpMRI Likert (AUC = 0.85,
SD = 0.09), PI-RADSv2.1 (AUC = 0.85, SD = 0.07)
and lesion radiomics (AUC = 0.84, SD = 0.07) models
had a higher mean AUC estimate than RLS models based
on basic (AUC = 0.74, SD = 0.14), kallikreins
(AUC = 0.73, SD = 0.10), or the selected WG radiomics
(AUC = 0.74, SD = 0.10) (Fig. 5). RLS models

combining kallikreins with WG radiomics (AUC = 0.79,
SD = 0.08) demonstrated higher mean AUC estimate and
stability than using models from individual basic, kalli-
kreins, and WG radiomic features.

Discussion
In this retrospective multicenter study, we have developed
and validated models for predicting csPCa in men with a clin-
ical suspicion of PCa using basic clinical variables, four kalli-
kreins and qualitative and quantitative features of bpMRI.
Our analyses showed that basic variables, four kallikrein
markers, and top selected WG radiomic features, alone or
combined, were not superior to PI-RADSv2.1/IMPROD
bpMRI Likert score assigned by an experienced radiologist for
predicting csPCa. However, the prediction performance of
the lesion radiomics model was similar (although slightly
lower) to PI-RADSv2.1/IMPROD bpMRI Likert score; this
is in line with other prostate MRI machine learning
studies,2,7,31,32 indicating the necessity of lesion delineation
for the successful prediction of csPCa.

TABLE 2. Lesion and Whole Gland Number of Remaining Features per Radiomic Group After Pruning for Two Data
Splits

Lesion Radiomics Whole Gland Radiomics

Data Split 1
NL = 219,
csPCa = 138

Data Split 2
NL = 292,
csPCa = 177

Data Split
1 N = 255,
csPCa = 131

Data Split
2 N = 363,
csPCa = 175

Radiomic Group
No.
Features

AUC
range

No.
Features

AUC
range

No.
Features

AUC
range

No.
Features AUC range

ADC EdgesCorners2D3D 94 0.50–0.78 105 0.51–0.80 4 0.58–0.70 21 0.50–0.68

FFT2D 35 0.50–0.74 35 0.50–0.74 29 0.50–0.68 31 0.50–0.63

Laws3D 206 0.50–0.63 227 0.50–0.62 0 NA 0 NA

Moments 9 0.58–0.78 9 0.56–0.78 7 0.50–0.69 8 0.51–0.67

Pyradiomics 501 0.50–0.82 519 0.50–0.84 346 0.50–0.76 380 0.50–0.76

Shapes 27 0.50–0.79 31 0.51–0.79 12 0.51–0.67 15 0.50–0.66

T2W EdgesCorners2D3D 166 0.50–0.75 180 0.50–0.76 4 0.56–0.67 20 0.50–0.66

FFT2D 36 0.50–0.71 42 0.50–0.72 12 0.50–0.57 23 0.50–0.59

Laws3D 5 0.55–0.59 198 0.50–0.68 0 NA 0 NA

Moments 8 0.52–0.75 8 0.55–0.76 7 0.51–0.68 7 0.50–0.67

Pyradiomics 205 0.50–0.75 420 0.50–0.76 97 0.50–0.74 178 0.50–0.75

Shapes 23 0.50–0.75 23 0.51–0.76 4 0.53–0.66 9 0.50–0.66

Total 1315 0.50–0.82 1797 0.50–0.84 522 0.50–0.76 692 0.50–0.76

NL = number of lesions; csPCa = clinically significant prostate cancer; AUC = area under the ROC curve; NA = not applicable;
ADC = apparent diffusion coefficient; T2W = T2-weighted imaging; EdgesCorners2D3D = corners edges detector; FFT2D = Fourier
transform filter; Laws3D = three-dimensional laws; Shapes = features describing shape; Pyradiomics = texture features.
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In contrast to prior studies, which evaluated a relatively
small number of radiomic features, we used a very large num-
ber of radiomics (a total of 20,363) to ensure that all com-
monly used radiomic features33 were included along with
different combinations of parameters. We hypothesize that
the choice of large set of features may help in distinguishing
disease pathophysiology better and hence likely improve pre-
diction than a small set of features, which may miss certain
tissue characteristics.34–38 Furthermore, we employed open-
source software and provide access to datasets as well as
details on our feature pruning/selection process to ensure
comparability and transparency. However, direct comparison
of our results with prior studies is limited since none of prior
studies applying radiomics and machine learning methods for
prostate MRI provide access to datasets and postprocessing
code. In contrast, free public access to datasets used in the
study is provided enabling external validation of our results.

The combination of radiomic features with other rele-
vant variables, such as clinical variables, for improving csPCa
detection has been investigated.38,39 In our study, in addition
to the evaluation of clinical variables in combination with

WG and lesion radiomics, we included four kallikrein
markers that have shown to be valuable in predicting
csPCa.8–10 Although, in this study, the kallikrein model per-
formed poorly compared to PI-RADSv2.1/IMPROD bpMRI
Likert score alone, a 10-fold cross-validation on our test set of
multicenter datasets showed the potential and stability that
the four kallikreins combined with the WG radiomic features
in predicting csPCa. This result indicates adequate perfor-
mance without the need for an experienced radiologist to
assign either a PI-RADSv2.1/IMPROD bpMRI Likert score
or delineate a bpMRI suspicious lesion. However, WG delin-
eations would still be required. We argue that WG delinea-
tions are easier to be obtained by less experience readers
rather than assigning either a PI-RADSv2.1/IMPROD
bpMRI Likert score and/or performing voxel level annota-
tions of bpMRI suspicious lesions.

Limitations
First, our population consists exclusively of Caucasian men,
presenting with rising PSA and/or lower urinary tract

FIGURE 4: Diagnostic performance of features per group, using the external validation data set for Data Split 1 and Data Split 2.
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symptoms and/or family history of PCa, thus limiting exten-
sion of the findings to a wider population. Both 1.5 T (one
center) and 3 T (three enters) MRI scanners were used in the
prospective trials, which provided datasets for this retrospec-
tive analysis. Thus, variation in the performance due to differ-
ence between scanners and field strengths is unknown. All
enrolled men underwent biopsy, and prostatectomy findings
were only available for some patients; thus, true csPCa

prevalence in men who did not undergo prostatectomy was
unknown. Histopathology findings were reported locally by
adhering to international standards, however without a central
reviewing framework, systematic differences between institu-
tions could not be assessed. In the study, we have not
explored inter-reader variability in whole dataset. However, in
a prior study4 using a portion of the current dataset, we have
shown a moderate agreement in assigning IMPROD bpMRI

TABLE 5. Multivariate Analysis in Two Data Splitting Approaches for Prediction of Prostate Cancer Gleason Grade
Group ≥ 2

Data Split 1 Data Split 2

Feature Group
Num. of
Features

Test set n = 288,
csPCa = 133 AUC

(CI 95%) P-value

Test set n = 180,
csPCa = 91 AUC

(CI 95%) P-value

IMPROD bpMRI
Likert score

1 0.85 (0.81–0.89) REF. 0.85 (0.80–0.90) REF.

PI-RADSv2.1 score 1 0.85 (0.81–0.89) 1.0 0.83 (0.77–0.89) 0.209

Basic 4 0.73 (0.67–0.79) <0.001** 0.73 (0.66–0.80) 0.003**

Kallikreins 4 0.62 (0.55–0.69) <0.001** 0.76 (0.69–0.83) 0.017*

Lesion Radiomics 12 0.83 (0.78–0.88) 0.306 0.83 (0.78–0.90) 0.488

WG Radiomics 10 0.65 (0.59–0.71) <0.001** 0.68 (0.60–0.76) <0.001**

Basic and Kallikreins 8 0.70 (0.64–0.76) <0.001** 0.74 (0.67–0.81) 0.005*

Basic and Lesion
Radiomics

16 0.84 (0.79–0.89) 0.604 0.84 (0.78–0.90) 0.720

Basic and WG
Radiomics

14 0.72 (0.66–0.78) <0.001** 0.75 (0.68–0.82) 0.009*

Kallikreins and Lesion
Radiomics

16 0.81 (0.76–0.86) 0.079 0.84 (0.78–0.90) 0.723

Kallikreins and WG
Radiomics

14 0.68 (0.62–0.74) <0.001** 0.73 (0.66–0.80) 0.002**

Lesion and WG
Radiomics

22 0.82 (0.77–0.87) 0.162 0.83 (0.77–0.89) 0.484

Basic, Kallikreins and
Lesion Radiomics

20 0.82 (0.77–0.87) 0.180 0.84 (0.78–0.90) 0.713

Basic, Kallikreins and
WG Radiomics

18 0.72 (0.66–0.78) <0.001** 0.76 (0.69–0.83) 0.017*

Basic, Kallikreins,
Lesion and WG
Radiomics

30 0.80 (0.75–0.85) 0.035 0.84 (0.78–0.90) 0.714

REF = IMPROD bpMRI Likert score as reference for DeLong’s test; bpMRI: biparametric MRI; PI-RADSv2.1: prostate imaging
reporting and data system version 2.1; Basic: basic clinical variables (Age, PSA, PSA density, and prostate volume); Kallikreins: four kalli-
krein markers (Free PSA, Total PSA, intact PSA, hK2); Lesion radiomics: 12 top selected lesion radiomic features; WG radiomics: 10
top selected whole gland radiomic features.
*Significant level P-value < 0.05.
**Bonferroni-adjusted significant level P-value < 0.004.
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Likert (k = 0.59 or k = 0.68 after dichotomization) and PI-
RADSv2.1 (k = 0.54 or k = 0.60 after dichotomization)
score between the central reader and an inexperienced reader
suggesting that an acceptable performance can be achieved by
an inexperienced reader. Voxel level annotations performed
by one central reader for datasets of both clinical trials used
in this retrospective analysis were used, thus, not inter-readers
variation on the voxel level was evaluated. Future studies are
needed to evaluate inter-reader variability in voxel level
masks/delineations for both whole gland as well as bpMRI
suspicious lesions.

Conclusions
We found that the models based on basic variables (age, PSA,
PSA density, and prostate volume), four kallikreins and
selected WG radiomic features, alone or combined, had infe-
rior performance in csPCa detection than the qualitative score
(PI-RADSv2.1 or IMPROD bpMRI Likert) reported by an
experienced radiologist. In contrast, a model based on selected
lesion radiomic features had comparable performance to PI-
RADSv2.1/IMPROD bpMRI Likert score, while combina-
tion with the other variables/features did not improve perfor-
mance in an external validation.
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