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A B S T R A C T   

This paper deals with the continuum approach to the high-cycle fatigue model introduced by Ottosen et al. 
equipped with the damage rule of Lemaitre and Chaboche. The main result is that model parameters K and γ are 
not identifiable based on lifetime data. However, with observations from a fatigue development profile, it is 
possible to estimate also the γ-parameter. Moreover, the model gives the same lifetime for all γ⩾0. These results 
are elucidated with examples.   

1. Introduction 

Fatigue of materials under variable loading histories is caused by a 
complicated physical process, which is characterized among other 
things by initiation, coalescence and the growth of cracks. Lemaitre and 
Chaboche [8] as well as Suresh [26] provide a comprehensive discussion 
on this topic. 

Since the days of Wöhler, problems related to the development of 
material fatigue damage have been studied. In the past decades, the 
effects of various mechanical, micro structural and environmental fac-
tors on cyclic deformation as well as on crack initiation and growth in a 
vast spectrum of engineering materials have been the topics of consid-
erable research. In addition, it is experimentally observed that some 
physical processes causing fatigue failure behave differently in the high- 
cycle fatigue domain and very-high-cycle fatigue domain [11,15,21]. 

Fatigue studies are important, since frequently a failure of mechan-
ical components is caused by fatigue. A design engineer needs infor-
mation on the fatigue durability of a material. In addition to the lifetime, 
it is important to know for example how much is, say 80%, of the life-
time. For an answer, an understanding of the damage development is 
necessary. In this paper, we use a fatigue model as introduced by Ottosen 
et al. [14], the OSR model for short. Recent developments in this model 
are discussed for instance in [10,13,27]. 

Over the years, several fatigue damage models have been proposed. 
The earliest assumption was the linear accumulation of failure by Miner 

[12]. Modern measurement techniques show that the linear model is too 
rudimentary. Damage usually develops slowly at first and only later on 
starts to accelerate. Hence, it is natural to look for nonlinear damage 
models. Many of these models get their motivation and inspiration from 
the works of Lemaitre and Chaboche [8]. A nice survey of the existing 
and most used models and historical remarks can be found for example 
in the works of Aeran et al. [1,2]. The main reason for the interest in new 
models is due to the development of measurement techniques. These are 
based, to the best of the authors’ knowledge, on the yield stress [16,17], 
the ductility [4,23], the dissipated energy [24], the modulus of elasticity 
[19] and the hardness change during fatigue [18]. In this paper we 
consider a damage rule (7), as defined in Section 3. It is the damage rule 
of Lemaitre–Chaboche type, and it is used with the evolution equation- 
based continuum model, see e.g. [7]. The adoption of this damage rule 
introduces an extra parameter to the model. This parameter, denoted as 
γ, makes the damage evolution profile explicit. It is well known, cf. [14], 
that parameters of the OSR model can be estimated from lifetime mea-
surements of a material. This, however, does not hold true for the 
γ-parameter. For the estimation of γ, additional measurements from the 
damage accumulation profile are needed. Detailed algorithms and 
methods for estimation, as well as some illustrative examples, are given. 

2. Damage evolution-based continuum model 

In this section, we briefly recall the basic ideas of evolution equation- 
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based fatigue as introduced in [14]. The fundamental idea is to define 
the so-called endurance surface 

β(σ,α) = 0 (1)  

in stress space. A symmetric tensor α is called a backstress, in the spirit of 
plasticity theory, and intuitively it presents the centre of the endurance 
surface. A tensor σ is a stress history. The fundamental postulate of the 
model is that the endurance surface and the damage develops simulta-
neously when the deviatoric part of σ is located outside the endurance 
surface and moves away from it. More precisely, the surface moves when 
the conditions β(σ,α)⩾0 and β̇(σ,α)⩾0 are fulfilled. 

As in [14], the function of the form 

β
(

σ,α
)

=
1

σ− 1

(

σ +AI1 − σ− 1

)

, (2)  

is used, where σ− 1 and A are positive material parameters and I1 = tr(σ)
is the first stress invariant of σ. The so-called effective stress is defined by 

σ =

̅̅̅
3
2

√

‖σ −
tr(σ)

3
I − α‖F, (3)  

where I is the identity matrix and the norm is just the Frobenius norm. 
Recall that for symmetric matrices, the Frobenius norm can be written as 
⃦
⃦A‖2

F = tr(A2). The variable α denotes the centre of the endurance sur-
face, and it is governed by the evolution equation 

α̇ =

⎧
⎨

⎩

C
(

σ −
tr(σ)

3
I − α

)
β̇, if β⩾0, β̇⩾0,

0, otherwise,
(4)  

where C is a positive material parameter. Observe that the centre α 
moves only when the stress state moves away from the endurance sur-
face outside of it. 

As mentioned above, due to the fundamental postulate, the damage 
increases when the centre α moves. The damage development D is 
modelled by the initial value problem 

Ḋ =

{
g(β,D)β̇, if β⩾0, β̇⩾0,

0, otherwise,
(5)  

with D(0) = 0, where g is a damage rule function. The function t ↦ 
g(β(t),D(t)) is assumed to be increasing when the fundamental postulate 
holds. Usually D is normalized such that the failure happens at the time 
moment Tf where D(Tf ) = 1. The original choice of Ottosen et al. [14] is 
the damage rule of the exponential form 

g(β,D) = Kexp(Lβ), (6)  

where K and L are positive material parameters. This damage rule does 
not depend on D, and hence it does not depend on damage evolution 
history. We call it the OSR damage rule. 

The first natural problem is to estimate the parameters of the model 
θ = (A, σ− 1,C,K, L) from the measured Wöhler curves of a material. The 
complete algorithm is given by Ottosen et al. [14], and it is tested with 
the experimentally measured data. 

3. Accumulated damage rule of Lemaitre and Chaboche 

In this paper, we study the damage rule given by Lemaitre and 
Chaboche, cf. [8,7], of the form 

g
(

β,D
)

=
K

(1 − D)
γ exp

(

Lβ
)

, (7)  

where γ is a new positive parameter of the model. This damage rule is 
called accumulated, since the damage history depends on the state of the 
damage i.e. the function g depends on D. It is called the LC damage rule 
and the corresponding model is the LC model. 

Remark 3.1. If the damage rule is separable, i.e. g(β,D) = g− 1
1 (D)g2(β), 

then a change of the damage variable yields the OSR model, cf. [8,9,27]. 
In fact, let G(D) be a primitive of g1(D), i.e. G

′

(D) = g1(D), and denote 
D1 = G(D). Substituting these equations into the damage evolution Eq. 
(5) gives us the OSR damage evolution equation Ḋ1 = g2(β)β̇. 

Note that in our case, the new damage variable D1 contains the 
parameter γ. If we know its value, then we may compute parameter 
estimates C,K and L by Procedure 1 below. Otherwise, we have to es-
timate γ from experimental data, as explained in Section 5. Finally D =

G− 1(D1). 

Since we do not change the form of β, the estimation of σ− 1 and A is 
the same as the original case in [14]. They are obtained from the linear 
part of the Haigh diagram given by the equation 

σa +Aσm − σ− 1 = 0. (8)  

Hence σ− 1 is the fatigue limit for σm = 0 and A is the negative of the 
slope of the line. 

With C,K, L and γ, we proceed as follows. Assume that we have an 
experimental dataset (σ(i)

a ,σ(i)
m ,N(i)

exp),i = 1,…,n, where the fatigue failure 
takes place at the N(i)

expth cycle. Assume further that the uniaxial stress 
loading σ(t) = σm +σasin(t) is applied. It follows that the stress varies 
periodically between σ2 = σm +σa and σ4 = σm − σa. 

At stress state σ1, the load path crosses the endurance surface. When 
the load increases from state σ1 to state σ2, then β > 0 and β̇ > 0. Hence, 
the damage increases. When the stress decreases from state σ2, the 
damage remains constant until at state σ3 it reaches the endurance 
surface and β > 0 and β̇ > 0, when state σ3 decreases to state σ4. Let αi be 
the backstress at the state σi for i = 1,2,3,4. Now α1 = α4,α2 = α3 and 
Ottosen et al. [14] show that the positions of endurance surface α2 and 
α4 are given by the equations  

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3
2
α2 −

⎛

⎜
⎜
⎝A + 1

⎞

⎟
⎟
⎠σ2 + σ− 1 −

σ− 1

CA

⎛

⎜
⎜
⎝A + 1

⎞

⎟
⎟
⎠ln

⎛

⎜
⎜
⎝

1 −
CA
σ− 1

(

σ2 −
3
2

α2

)

1 −
CA

σ− 1(A + 1)

(

σ− 1 −
3
2

Aα4

)

⎞

⎟
⎟
⎠ = 0

−
3
2
α4 −

⎛

⎜
⎜
⎝A − 1

⎞

⎟
⎟
⎠σ4 + σ− 1 −

σ− 1

CA

⎛

⎜
⎜
⎝A − 1

⎞

⎟
⎟
⎠ln

⎛

⎜
⎜
⎝

1 −
CA
σ− 1

(

σ4 −
3
2

α4

)

1 −
CA

σ− 1(A − 1)

(

σ− 1 −
3
2

Aα2

)

⎞

⎟
⎟
⎠ = 0.

(9)   
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Since for uniaxial case, the stress tensor σ and the backstress tensor α are 
defined as 

σ =

⎡

⎣
σ 0 0
0 0 0
0 0 0

⎤

⎦ and α =

⎡

⎢
⎢
⎢
⎣

α 0 0

0 −
α
2

0

0 0 −
α
2

⎤

⎥
⎥
⎥
⎦
, (10)  

then a straightforward matrix computation shows that 

β =
1

σ− 1

(

|σ −
3
2

α| +Aσ − σ− 1

)

. (11)  

Now suppose that we are dealing with the jth cycle. Integrating the 
damage evolution equation 

(1 − D(t))γḊ
(

t
)

=

{
Kβ̇(t)exp(Lβ(t)), if β⩾0, β̇⩾0,

0, otherwise,
(12)  

from σ1 to σ2 and from σ3 to σ4 respectively we obtain 

−
1

γ + 1
(
1 − D(j)

2
)γ+1

+
1

γ + 1
(
1 − D(j)

1
)γ+1

=
K
L
(exp(Lβ2) − 1)

(13)  

and 

−
1

γ + 1
(
1 − D(j)

4
)γ+1

+
1

k + 1
(
1 − D(j)

3
)γ+1

=
K
L
(exp(Lβ4) − 1).

(14)  

Since damage does not accumulate from σ2 to σ3, then D(j)
3 = D(j)

2 . 
Adding these equations yields 

−
1

γ + 1
(
1 − D(j)

4
)γ+1

+
1

γ + 1
(
1 − D(j)

1
)γ+1

=
K
L
(exp(Lβ2) + exp(Lβ4) − 2).

(15)  

Note that a = K
L (exp(Lβ2) + exp(Lβ4) − 2) is constant over the cycles. 

Denoting uj =
1

γ+1(1 − D(j)
1 )

γ+1 
and taking into account that D(j)

4 =

D(j+1)
1 , we obtain a difference equation 

uj+1 − uj = − a, u1 =
1

γ + 1
, j = 1, 2,⋯. (16)  

It is easy to see, cf. [20], that the solution to this equation is given by 

uj =
1

γ + 1
−

(

j − 1
)

a, j = 1, 2,⋯. (17)  

Now if it takes N(γ) cycles to damage failure, then 1 = D(N(γ))
4 =

D(N(γ)+1)
1 . It follows that 0 = uN+1 = 1

γ+1 − Na and hence 

1
N(γ)

=

(

γ + 1
)

a =
(γ + 1)K

L
(exp(Lβ2) + exp(Lβ4) − 2). (18)  

Note that when γ = 0, this result is in agreement with the number of 
cycles given by Ottosen et al. [14]. 

Theorem 3.1. In the LC model, the parameters γ and K are not 
identifiable. 

Proof. Let K(γ) be the optimal parameter K in the LC model. Hence 

K(0) is the optimal parameter K in the OSR model, which does not 
contain γ at all. 

Now let us fix γ > 0. Comparing the Eq. (18) with parameters γ > 0 
and γ = 0, we see that (γ +1)K gives at the optimum point the same 
residual sum of squares as the OSR model. Hence γ and K(γ) are optimal 
parameters for the LC model. But (γ + 1)K(γ) = K(0). 

It follows that for all γ > 0 we have K(γ) = K(0)/(γ+1) and γ are 
optimal for the LC model, which completes the proof. □ 

We see that parameters γ and K are related by (γ + 1)K = w, where w 
is a constant, giving the same amount of cycles for uniaxial periodic 
stress histories with a constant amplitude. Surprisingly, this result holds 
true for any kind of stress history. 

Theorem 3.2. For any parameter γ⩾0, the OSR model with parameter 
K(0) and the LC model with parameter K(γ) = K(0)/(γ+1) give the same 
lifetime with all stress histories. 

Proof. For γ⩾0, let Dγ denote the fatigue accumulation function. Now 
the damage evolution Eq. (12) can be written compactly as 

(1 − Dγ)
γḊγ = Kβ̇exp

(
Lβ
)

H
(

β
)

H
(

β̇
)
, (19)  

where H is the Heaviside function. 
We first consider the case γ = 0, i.e. the OSR damage rule. Suppose 

that we have estimated the parameters of the model. Now run the model 
with an arbitrary stress loading σ(t) and obtain a lifetime Tf . Integrating 
the Eq. (19) over the interval [0 Tf ] and using the boundary values D0(0)
= 0 and D0(Tf ) = 1, we get 

1 = D0

(

Tf

)

− D0

(

0
)

=

∫ Tf

0
Ḋ0 dt

=

∫ Tf

0
K
(

0
)

β̇exp
(

Lβ
)

H
(

β
)

H
(

β̇
)

dt. (20)  

Next, take γ > 0 and a new parameter K(γ) = K(0)/(γ + 1). The other 
model parameters remain unchanged. As before we run the modified 
model with the same stress loading σ(t). Note that since we change only 
the parameters of the fatigue evolution equation, we get the same β(t) as 
with the OSR damage rule. Now we integrate the Eq. (19) over [0,Tf ], 
where Tf is the lifetime obtained with the OSR damage rule. The right- 
hand side of the Eq. (19), using the result of (20), yields  

and the left-hand side gives 

1
γ + 1

(
(1 − Dγ(0))γ+1

−
(
1 − Dγ

(
Tf
))γ+1)

.

Since Dγ(0) = 0, we get 1 − (1 − Dγ(Tf ))
γ+1

= 1 and consequently 
(1 − Dγ(Tf ))

γ+1
= 0. Hence Dγ(Tf ) = 1, which completes the proof.  

□ We emphasize that by Theorem 3.1 it is not possible to estimate 
both parameters K and γ based only on the measured values of a Wöhler 
curve. Similarly, Theorem 3.2 tells us, that preceding parameters are not 
estimable with any multiaxial fatigue data. In Section 5, we will discuss 
the possibility to estimate the parameter γ with some additional exper-
imental data. However we may compute the optimal parameters for the 
LC model with γ > 0 from the optimal parameters of the OSR model with 
the OSR damage rule as given in the proof in Theorem 3.1. 

Now let γ⩾0 be fixed. Hence, we may find the corresponding pa-

∫ Tf

0
K
(

γ
)

β̇exp
(

Lβ
)

H
(

β
)

H
(

β̇
)

dt =
1

γ + 1

∫ Tf

0
K
(

0
)

β̇exp
(

Lβ
)

H
(

β
)

H
(

β̇
)

dt =
1

γ + 1
(21)   
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rameters, similarly as in [14], by minimizing the sum of squares 

S

(

C,K,L

)

=
∑n

i=1

(
lnN(i)

exp − lnN(i)
(

γ
))2

, (22)  

where N(i) is the predicted number of cycles given by (18) and N(i)
exp is the 

experimentally obtained number of cycles. 
For physical reasons, the true model parameters are positive. Since 

the terms 1/N(i) are small, then some iterates may give a negative value 
for some terms, resulting in a complex value for lnN(i). It follows that the 
algorithm fails to give a correct result. 

For these reasons, we have to minimize S(C,K, L) subject to the 
constraints C⩾0, K⩾0, L⩾0, which is a classical nonlinear regression 
problem. These problems are discussed extensively by Seber and Wild 
[22]. The state-of-the-art algorithm for the bounded variable nonlinear 
least squares problem is the reflective trust region method. For more 
information on this algorithm, see Coleman and Li [5]. 

3.1. Estimation of parameters C,K and L 

By the previous results, the following procedure gives an estimate for 
C, K and L.  

• Procedure 1, which calibrates model parameters C, K and L.  
1. Fix γ⩾0, γ = 0 as default value.  
2. Initialize the parameters.  
3. Iterate the following steps:  
a. For i = 1,…, n do  

– Input (σ(i)
a ,σ(i)

m ,N(i)
exp).  

– Set σ2 = σ(i)
m +σ(i)

a and σ4 = σ(i)
m − σ(i)

a .  
– Solve (9) for (α2,α4). 

Note that there is no analytic solution of (9). Hence a nu-
merical solution of the system is computed.  

– Compute N(i)(γ) by (18).  

– Set bi =
(

lnN(i)
exp − lnN(i)

)
.  

b. Evaluate the object function S(C,K,L, γ) =
∑n

i=1b2
i .  

c. Update the parameters.  
d. Stop iteration when a termination criterion takes effect. 

4. Comparison with experimental data 

We have three different datasets. Measurements of alloy steel SAE 
4340 were adopted from [14]. In addition, we used measurements of 
alloy steel SAE 7475 and aluminium alloy SAE 6156. Table 1 gives the 
model parameter estimates obtained with these datasets. 

Since the target function S around the optimum point is flat, the 
numerical solution of the problem is difficult. We observed that from 
different initial points, the optimizer converged to different solutions. 
Hence, we selected a grid of initial values and accepted as optimum the 
solution with the smallest sum of squares. 

It is well known that the Wöhler curve of a ferrous alloy and titanium 
shows a clear fatigue limit, i.e. the curve looks like a hockey stick. 
Instead the Wöhler curve of a nonferrous alloy, excluding titanium, 
decreases smoothly without a sharp bend. Figs. 1 and 2 demonstrate this 
fact. 

5. Estimating the parameter γ 

As we saw above, it is not possible to estimate γ from Wöhler data. 
We need additional information on the development of fatigue damage. 
Recently new measurement techniques have been introduced, as 
mentioned in the Introduction. In this paper we use the results of [23]. 

By the estimation methods described above, we can estimate model 
parameters, and as we saw, we can choose γ⩾0 such that (γ + 1)K = w. 
To obtain a value for γ, we first show how the fatigue develops. Let n 
denote the cycle index and N(γ), as before, the lifetime. As discussed 
above, N(γ) is the same for all γ. Denote by Nf the shared value and x =
n
Nf

. 

Theorem 5.1. For all γ⩾0 

Table 1 
Parameters of the OSR model for some materials.  

Material #Obs A σ− 1  C K L SSQ 

NiCrMo alloy steel SAE 4340 20 0.2250 490 0.8083 6.9668e-06 18.4562 10.4044 
Aluminium alloy SAE 6156 42 1.2000 75 0.8883 1.8557e-06 0.9140 16.4712 
CoCrNi alloy steel SAE 7475 36 0.3571 95 1.1000 3.8126e-05 0.2007 1172.6  

Fig. 1. Wöhler curve of CoCrNi alloy steel SAE 7475.  

Fig. 2. Wöhler curve of aluminium alloy SAE 6156.  
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D
(
x
)
= 1 − (1 − x)

1
γ+1, 0⩽x⩽1. (23)   

Proof. Let 

h
(
u
)
= −

1
γ + 1

(1 − u)γ+1
, 0⩽u⩽1. (24)  

Then direct computation gives 

h− 1( v
)
= 1 − ( − (γ + 1)v)

1
γ+1, −

1
γ + 1

⩽v⩽0. (25)  

Now by Eq. (15), we see that the increase of h∘D is constant over cycles. 
Hence h(D(x)) is a straight line from (0, h(D(0))) to (1, h(D(1))). Since 
D(0) = 0 and D(1) = 1, then 

h
(

D
(

x
))

= h
(

0
)

+

(

h
(

1
)

− h
(

0
))

x = −
1

γ + 1

(

1 − x
)

(26)  

and hence 

D
(
x
)
= h− 1

⎛

⎝ −
1

γ + 1

⎛

⎝1 − x

⎞

⎠

⎞

⎠ = 1 − (1 − x)
1

γ+1. (27)  

□ Some fatigue evolution functions D(x) are illustrated in Fig. 3. 

Suppose we have observations (xi, di), i = 1,…, p of the fatigue 
development. We choose such a parameter γ, which minimizes the sum 
of squares 

g
(
γ
)
=
∑p

i=1
(di − D(xi))

2
. (28)  

Since the derivatives g′

(γ) and g′′(γ) are easily calculated, then the 
Newton method gives the optimal γ in a few iterations. 

The values of damage variable D can be obtained by measuring the 

static relative ductility change of a material, see [23], or by measuring 
the electrical resistance of structural steel, see [25]. 

Shang and Yao [23] developed a model for damage accumulation 
from a different point of view. They derived a cumulative fatigue 
function, which in our notation reads 

D = 1 −
(

1 −
n
Nf

) 1
1− δ

, (29)  

where 

δ
(

σa, σm

)

= 1 −
H
(
σa − σfl

(
σm
))

aln
( ⃒
⃒σa − σfl

(
σm
)⃒
⃒
) . (30)  

Here H is the Heaviside function, a is a material parameter, which can be 

Fig. 3. Failure evolution functions D.  

Fig. 4. Failure evolution functions D with one dataset.  

Fig. 5. Failure evolution function D with the combined dataset.  

Table 2 
Parameters of the LC model for 20 Mn structural steel.  

Material γ  A σ− 1  C K L 

20 Mn steel 7.3533 0.3214 740 4.3078e-4 1.0802e-6 5.1690  
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estimated, and σfl(σm) = σ− 1 − Aσm denotes the fatigue limit when the 
mean stress σm is applied. 

If we denote γ = − δ, then the LC model and Shang–Yao model 
appear to be the same. However, in the LC model, γ is a model param-
eter, which is assumed to be valid for all kinds of stress histories. In the 
Shang–Yao model, as given in the Eq. (30), δ depends on the amplitude 
and mean stress of the applied stress loading. 

As an example, we use the measurements of Shang and Yao for 16 Mn 
steel in Figs. 2(a) and 2(b) in [23]. First, we take only the data in Fig. 2 
(a). Now the least squares estimation gives γ = 3.7372. With the in-
formation given in [23], we are able to compute δ = − 4.9639. The 
resulting failure functions are given in Fig. 4. 

Next we combine the data from the figures and obtain γ = 3.6176. 
Since the datasets are measured with a different amplitude, we are not 
able to compute δ at all. Fig. 5 illustrates the situation. 

Finally, we apply the model to 20 Mn structural steel. The computed 
parameter estimates are given in Table 2. 

Parameter γ was estimated from the measured fatigue profiles pro-
vided by Sun et al. [25]. The estimated fatigue accumulation is depicted 
in Fig. 6. 

For the estimation of C,K and L, we used data on the high-cycle 

fatigue (HCF) domain given in [6]. Data for A and σ− 1 were obtained 
from [3]. Fig. 7 gives the estimated Wöhler curve. 

In Fig. 7, we also plot the HCF data used in parameter estimation. In 
addition, measurements done in the very-high-cycle fatigue (VHCF) 
domain are plotted. These data are given in [3]. We see that the model 
fits nicely with the data in the HCF domain. However, in the VHCF 
domain, the observations are mostly below the values predicted by the 
LC model. Note that the LC model was developed for the HCF domain. 
The observed gap indicates that for the VHCF domain, a new model is 
needed [15]. Recall that some physical processes causing fatigue failure 
may behave differently in the HCF and VHCF domain [11,15,21]. 

5.1. Case example 

Suppose that we have estimated all the parameters of the model. 
Now we will apply a uniaxial periodic stress loading. The problem is 
how many cycles Np it will take until the damage function D attains a 
value p ∈ (0, 1). By Theorem 5.1, we have to solve the equation 

p = D
(
x
)
= 1 − (1 − x)

1
γ+1 for x, which gives x = 1 − (1 − p)γ+1. It follows 

that Np = xNf . 
Suppose we have a specimen of 20 Mn steel and we apply a sinu-

soidal stress with σm = 0 and σa = 750 MPa. Now we are interested in 
how many cycles it will take to reach 50% of the lifetime. The Wöhler 
curve in Fig. 7 gives Nf = 3061474. Hence N = xNf = 3052113. 

6. Conclusions 

The parameter determination of the OSR model for high-cycle fa-
tigue with the Lemaitre-Chabouche type damage rule is proposed. Let 
K(0) be the optimal K-parameter for the OSR model. We proved that all 
parameters K and γ satisfying the equation (γ +1)K = K(0) give the same 
residual sum of squares as K = K(0) and γ = 0. It follows that these 
parameters are not estimable from observations of the Wöhler curve (or 
more generally, not from multiaxial fatigue data) only. Furthermore, it is 
shown that with experimental data from the fatigue development pro-
file, it is possible to estimate γ and consequently K. 

Hence, the LC model provided an explicit function for the fatigue 
development profile. Shang and Yao [23] introduced a similar function. 
However, the parameter δ of the Shang–Yao model depends on the mean 
stress and amplitude of the stress loading. If the experimental data 
contain measurements with a different mean stress or amplitude, then it 
is impossible to compute a value of δ at all. Furthermore, the application 
of the model demands, except a value for δ, information about what kind 
of data the computation of δ was based on. In the computation of the 
γ-parameter of the LC model, it is possible, and even advantageous, to 
use all the data, which gives a more reliable estimate. 

We also observed that the LC model fits well with observations in the 
HCF domain. The discrepancy in the VHCF domain suggests that a new 
model is needed in that domain. 
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