
 information

Article

Reinforcement Learning Page Prediction for Hierarchically
Ordered Municipal Websites

Petri Puustinen 1,* , Kostas Stefanidis 1,2, , Jaana Kekäläinen 1,2 and Marko Junkkari 1,2,

����������
�������

Citation: Puustinen, P.; Stefanidis, K.;

Kekäläinen, J.; Junkkari, M.

Reinforcement Learning Page

Prediction for Hierarchically Ordered

Municipal Websites. Information 2021,

12, 231. https://doi.org/10.3390/

info12060231

Academic Editor: Symeon

Papadopoulos

Received: 21 April 2021

Accepted: 26 May 2021

Published: 28 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Information Technology and Communication Sciences (ITC), Tampere University, Kalevantie 4,
33100 Tampere, Finland; konstantinos.stefanidis@tuni.fi (K.S.); jaana.kekalainen@tuni.fi (J.K.);
marko.junkkari@tuni.fi (M.J.)

2 Faculty of Information Technology and Communication Sciences (ITC), Tampere University, Kalevantie 4,
33100 Tampere, Finland

* Correspondence: petri.puustinen@tuni.fi

Abstract: Public websites offer information on a variety of topics and services and are accessed
by users with varying skills to browse the kind of electronic document repositories. However, the
complex website structure and diversity of web browsing behavior create a challenging task for click
prediction. This paper presents the results of a novel reinforcement learning approach to model user
browsing patterns in a hierarchically ordered municipal website. We study how accurate predictor
the browsing history is, when the target pages are not immediate next pages pointed by hyperlinks,
but appear a number of levels down the hierarchy. We compare traditional type of baseline classifiers’
performance against our reinforcement learning-based training algorithm.

Keywords: clickstream analysis; markov model; deep learning; reinforcement learning; Q-learning;
hierarchically ordered website

1. Introduction

Public domain web portals, for example, municipal websites, education, or healthcare
services, are often organized into a hierarchy. The hierarchy represents a tree with a single
root node (the main home page) with several branches representing different topic pages,
i.e., each topic has its own branch starting from the root. When the content of a web page
grows large, the information organization of the portals may not be intuitive for all users.
They may find it laborious to reach the information they need or, in the worst case, do not
find it at all. The user experience is poor if users are engaged in browsing activities where
finding the relevant information is compromised. Recommendation of pages is a solution
to minimize the user effort to find relevant information in a large information space. It is
widely used in commercial websites but more sparsely in public domain portals.

Table 1 shows the simple URL paths of four target page examples. We see the page
structure that is encoded in the path segments, where each topic and level of information
are seen separated by a forward slash character. Each segment corresponds to a web page
connected via a hyperlink to each following segment or a target page. The whole topology
appears as a directed graph, where the main page is the root node following each main
topic in their own child branch spanning in their own branches in every subtopic. There
is usually a generic-specific type of relation between any given parent-child node, where
traversal to the lower levels of the hierarchy accesses the more specific and desired content
in that branch of a topic.

Users’ information seeking activity involves traversal via intermediate pages that serve
as a guide towards the most specific information in the leaf pages in the hierarchy until
relevant information is found. The complexities’ contributing to a perceived user experience
may include the layout of the portal, wording and conceptualization intermediate subtopics,
and the number of levels at the intermediates.

Information 2021, 12, 231. https://doi.org/10.3390/info12060231 https://www.mdpi.com/journal/information

https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0002-7354-9606
https://orcid.org/0000-0003-1317-8062
https://www.mdpi.com/article/10.3390/info12060231?type=check_update&version=1
https://doi.org/10.3390/info12060231
https://doi.org/10.3390/info12060231
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/info12060231
https://www.mdpi.com/journal/information

Information 2021, 12, 231 2 of 18

Item recommendation is commonly used as an aid for users to find a candidate items
of interest. The methods by large extend are based on users’ past interactions to model
similarities as weights between adjacent items on a website. A shortcoming for the item
similarity approach is a short-term consideration for the importance of items. Inevitably,
if we seek to recommend target pages, it is not feasible to recommend intermediate pages
which are used mostly for navigation purposes. Thus, single step user-to-item or item-to-
item matching is not seen as a useful option, but to provide means for recommendation
that extends multiple levels down the branch structure.

Table 1. Path examples from an example municipal website.

Example Path

1 <root>/philharmonic/concerts/first-of-may.html
2 <root>/health-services/dental-treatment/dental-clinics.html
3 <root>/sports-and-leisure/recreation/outdoor-activities/summer-camps.html
4 <root>/sports-and-leisure/recreation/outdoor-activities/ski-tracks.html

Additionally, it is not uncommon that the explicit preference of user is not known. In
other words, they are treated as anonymous for usability reasons and for privacy concerns.
In that case, when longer-term user history or profile is not present, there may be limitations
how the probability of related items can be calculated. However, the recommendations
can adapt the short-term interest of an anonymous user in session-based recommendation
setting. The adaptation is the bound to the current situation or short-term interests. This
is known as contextual awareness, including representational and interactional factors,
where the former may use features, like geographical information or time, and the latter,
user behavioral patterns [1].

Traditional recommendation techniques, such as collaborative filtering (CF), are based
on users’ expressions on similar items [2–4]. In broad terms, the CF method may use a
matrix completion setup where similarity is expressed as ratings of items for user-item
similarity. Analyzing the content of textual information to find regularities is the core of
content-based filtering techniques for item-item setup [3]. In sequence-aware recommender
systems, the assumption is that the underlying data is a sequence dataset consisting of user
actions in a user community, where the actions may have additional attributes, such as
item view, a click event, or timestamp [1].

We focus on the users’ click event history and model their behavior using the events
as a single feature to study the applicability of traditional item-based classifier algorithms
and our own target-based approach to a hierarchical content domain. The past click events
record the paths from the upper levels of the hierarchy to the final content pages. Based on
the recorded history of click events on a website, the task is to map the previous events x
to a related event y. A common model of the mapping is to calculate the probability p(y|x)
and p(y1, ..., yk|x1, ..., xk) of all clicks in a k length session [5].

Our intention is to observe how the properties of the document hierarchy affect
the performance in a sequence-aware recommender system scenario of a baseline, deep
learning (DL) and reinforcement learning (RL) type of classifiers. We choose traditional
supervised learning approaches to compare their applicability for future step prediction. A
Markov Model (MM) is used to provide a naïve model baseline for the specific used data.
It has been used traditionally for WNP, although it is known to fail to predict more than
one step ahead [6]. MM is also used to compare the results of the DL implementations used
in this study for the scale of the performance. Long short-term memory (LSTM) models are
designed to model the temporal dependencies of random variables. It is a natural choice
for the path prediction. In addition, a multi-layer perceptron (MLP) is chosen as an option
for its simplicity to compare the generic performance of the models.

RL differs from supervised learning by its characteristics of mapping situations into
actions. An agent learns by taking actions on trial and error search which yields reward
depending on the goodness of given action. The agent’s ability to learn complex scenar-

Information 2021, 12, 231 3 of 18

ios depends not only on immediate (labeled) rewards but the ability to evaluate which
subsequent rewards lead to a desired goal. The maximization of a total reward may then
be delayed due to the collected set of subsequent rewards [7]. It is, therefore, suitable for
multi-step goals and if the targets are set as a leaf pages in the page hierarchy.

We present RL-based Q-learning approach for modeling page recommendations for
a hierarchical website using clickstreams as our training data. We present the modeling
results of a supervised DL approach for page recommendations. We train three types of
classifiers to predict the probability of the next click event based on users’ browsing history.
We will use accuracy to evaluate the classifiers given a random click and a subsequent
event from the historical events in relation to the classifiers’ output. We use the municipal
website from the Finnish city of Tampere (www.tampere.fi (accessed on 21 April 2021)) as
our case study.

The contributions of this paper are:

• We evaluate the accuracy of the classifiers given a single random page.
• We introduce session-trajectory learning; a novel Q-learning algorithm designed for

training in hierarchical web domain to predict final content pages.
• We observe the effect of history of click events in relation to the subsequent event to

the classifiers’ performance.
• We experiment the effect on the performance of different deep learning architectures

and compare then with our algorithm.
• We evaluate the applicability of the sequential models for the domain and data.

The rest of this paper is organized as follows: Section 2 presents the related work
by describing the aspects of recommender systems. Section 3 introduces the modeling,
the baseline methods, and the designed algorithm used in this work. Section 4 describes
the municipal website data and the evaluation criteria used for comparing the models.
Section 5 provides the results of the model comparison. Section 6 discusses the result
analysis of the experiments. Finally, Section 7 includes the conclusions and future work of
the study.

2. Related Work

The evaluation of item popularity is the key element for CF, where explicit users’
ratings may be used identify similar items or the use of the amount of clicks for further
ranking [3,4], where popularity bias [8–10] can introduce unfairness to it. User browsing
patterns are usually extracted from web logs for WNP [11], which are commonly used
in other areas, such as Information Systems research for user engagement studies [12].
Whereas WNP addressed the problem with predicting subsequent click events and is by
nature a multi-class problem, it shares similar popularity-based heuristics as CF. Technically,
the assessment of the output may use probability threshold or top-N of most probable
outcomes heuristics [11]. In sequence-aware recommender systems, the input is a sequence
of user actions in a user community and the output, a sequence of ordered list of items.
Sequence-aware recommender systems can be categorized in application scenarios, such as
context adaptation, trend detection, repeated recommendation, or order constraints and
sequential patterns [1].

MM have been traditionally used for WNP [6] as for contemporary designs [11], even
though its limitations to predict more than one step ahead [6]. Only 1st order MM is com-
monly used due to the growing state space complexity [6]. A DL-based recommendation is
a popular research topic [13] and have been found to be an alternative for matrix factoriza-
tion as they are able to generalize functions well [14]. Typical e-commerce environment
use cases using LSTM, for example, includes predicting a buy event [5] and ad clicks [15].

DL methods are also popular for their ability to extend the method feature space. The
categorical value embedding has been found to help DL to generalize better for sparse data
with unknown statistics [16]. The feature interactions have also been learned through a
factorization machine-based DL architectures [17,18]. Wide & Deep learning integrates
continuous and categorical features in app recommendation for the Google Play app

www.tampere.fi

Information 2021, 12, 231 4 of 18

store [19]. The solution uses wide linear models with the deep neural networks to combine
the memorization (learning frequent item co-occurrences) and generalization (correlation
transitivity and different feature combinations) to also overcome the sparsity and over
specialization problems.

In recent years, RL-based models have been applied to graph generation solutions.
Moreover, Graph representation learning (GRL) is a solution to learn low-dimension latent
representations of graph topology. Methods include random walk and matrix factorization-
based methods, as well as graph neural networks (GNNs) [20]. Use cases, such as link
prediction in a social network, recommendation in e-commerce, multi-label classification,
or language modeling, have been successfully used methods, such as DeepWalk [21],
Node2Vec [22], or APP [23]. The methods can be broadly described as methods learning
latent representations of graphs using a random walk procedure, where the walks are input
to neural models, such as word2vec.

A generic Q-learning model approaches directed acyclic graph (DAG) generation as
actions corresponding to the addition of nodes and edges. A directed graph G = (V, E) is
represented as a binary adjacency matrix A with an additional feature matrix F representing
a type for each node. A positive reward is given if agent produces a DAG isomorphic
to a ground truth graph. Ref [24] uses a Graph Convolutional Policy Network (GCPN)
for molecular structure generation leverages convolutional network-based RL model [25].
It learns molecular structures modeled as adjacency matrix A, feature matrix F and E
edge-connected adjacency tensor in a graph G = (A, E, F). Its goal is to form a structure,
that resembles realistic molecules. Hierarchical Reinforcement Learning is used to learn
chains of reasoning paths over a Knowledge Graph (KG) [26]. It shows the ability to
learn the relation between the head and the target entities of the given query against KG
relationships, as well as predicting the target entity given head and a relation.

Reinforcement Learning has been applied to e-commerce recommendation as Q-
learning problem using a common setting of log data of users’ past visits to probable other
pages of interest [27]. Relating buyers’ impression to a potential seller via buyer used search
words [28]. Similar use cases of relating customer feedback to items through Q-learning and
self-attention mechanism [29]. Graph scenarios have been approached using a knowledge
graph to discover high-quality negative signals from implicit feedback to interpret user
intent [30]. Graph Convolutional Q-network (GCQN) learns recommendation policies
based on the inputs of the graph-structured representations [31]. A sequence type of
scenarios have been investigated with previous enrolled course relation to most relevant
next courses [32]. The closest domain of a use is the use of hierarchical clustering built over
items, where a path to a certain target item is formulated [33].

A sequence-based recommender is a known solution domain [1]. However, the type
of municipal website and the hierarchical taxonomy, to the best of our knowledge, has
not been addressed in research community [1,3,4,13,34–37], where we wish to predict
the target pages of a chain [38] type of browsing behavior following a link structure via
intermediate pages. There are similar use cases in both graph generating solution and
recent recommender research using RL and Q-learning that be drawn inspiration from for
path prediction over usage graphs.

3. Modeling and Methods

In this section, we formulate the problem and a model for the history of users’ click
events to be used for page prediction. We then explain how the baseline classifiers use the
history to model the probability of subsequent click events. The last part describes our
approach to modeling a hierarchical web page usage graph through Q-learning and how
the target pages are treated in comparison with the intermediate pages. The main notations
used in this paper are summarized at Table 2.

Information 2021, 12, 231 5 of 18

Table 2. Main notations.

Symbols Meaning

E Sequence of click events
E∗ Set of all possible sequences of E
o Order
d Distance
I Set of items
C Set of users
L Ordered list of items of length n
L∗ Set of all possible lists L of length up to n

util(c, L) Utility function, where c ∈ C and L ∈ L∗

U Set of web page URLs
prob(x) Probability function of click events given an input sequence

G = (V, E) Constructed web graph, where V ⊂ U
Q(S, A) Estimation policy

3.1. The Problem Definition

The domain of our research is a municipal website, where the content is organized as
a tree hierarchy where the main page represents a single root node. Each topic continues
from the root node in its own branch. Each of the subsequent child node represents a page
used in navigational purpose. These intermediate pages will eventually lead to a leaf page
that contains specific content. Users’ seek information by traversing via a number of these
intermediate pages towards the most specific information in the leaf pages of the hierarchy.

The users are treated as anonymous, i.e., their preferences cannot be characterized
using an implicit profile. Therefore, we observe and adapt to the session-based features
referred as representational and interactional factors. In this study, we concentrate on the
latter which consists of behavioral patterns which includes the click event sequences of the
user community that are used to model trajectories leading to target pages.

A collection of user actions and requests in a website visit are called a server session.
Clickstream is a list of web pages visited in the session presented in the viewing order [39].
It is hereby defined as a sequence (Ei)

k
i=1 = (e1, e2, ..., ek) of k click events e initiated by a

single active user. E∗ is a domain of all clickstream sequences in the database.
The current page, a click event e at time t, of a user is defined as a context page ectx.

Order o refers to how many previous t− o pages the next page depends on adopting the
formalism from Markov modeling [40]. Distance d represents the number of subsequent
future pages t + d in relation with the ectx. The overall context of an active user is the
sequence observed in the current session, where the ectx is the main observation of the
short-term interest. A target leaf page is defined as etgt which in the tree hierarchy includes
the set pages that do not have any child pages. Our goal is to predict the leaf content given
that an active user ectx is any of the intermediate pages, including the root and for any
number ∀d of intermediate pages between ectx and the etgt.

Let I be the set of all recommendable items on the website and C a set of all users. L is
an ordered list of items of length n, where each sequence L is an element of the set of the
powerset of I, which is denoted as L∗, i.e., a set of all permutations of the power set. We
want to design a utility function util, which purpose is to find an ordered list of items L of
length n for user c ∈ C. The purpose of the sequence-aware recommendation problem is
to determine a sequence Lc for a user that maximizes the score of a given sequence. The
design of the function depends on what type of value the recommender should provide to
the user [1].

Lc = arg max
L∈L∗

util(c, L). (1)

Our purpose is to find a function that predicts the leaf content by providing a sequence
of pages having a target page as a last item. The solution aims to use the clickstream records
of past user sessions to model paths to the leaf pages. It needs to figure out a weighting
scheme that describes the paths in a such way that are agnostic to the underlying page

Information 2021, 12, 231 6 of 18

structure but generalize the sequential regularities presented in a user community to
describe a policy π : ectx → etgt from any given ectx.

Given such a kind of scenario, we can model the problem using Q-learning. It is
designed to maximize the expected value of the total reward over successive steps towards
a target. However, we need to design a training algorithm to use clickstream data to model
hierarchical page topologies and usage, which is not limited to any given topology per se,
but can be generalized any kind of structures as long as the structure is represented in the
input data. We compare the performance in a sequence-aware recommender scenario of
our RL-based implementation against the MM and DL type of baseline classifiers that are
derived from traditional recommender methods used in cases, such as a buy event [5] or
an ad click [15] prediction.

We limit each item on I to be a web page in our given page hierarchy, in which all have
a designated URL, from which leaf page information can be derived, e.g., a page having
no child nodes what was described in simple examples in Table 1. U is a set of URLs of
the web pages available on the website ui ∈ U. |U| = m is the number of available URLs
defining the state space of the classifier, i.e., the space is the equal amount of input and
output the neurons of a classifier and it relates to the space and computing requirements
for the training. A precondition for the method usage is that each event is encoded as a
unique integer value (ui ⊂ N1). Any subset of clickstreams are denoted by Ez, where z
represents a label for the selection criteria.

The modeling uses a subset Ez = {z1, z2, ..., zh} of all dataset sequences (Ez ⊂ E∗),
where the aim is to use a smaller number of training samples that are available at the
whole dataset. Each sequence zj length has an upper and lower bounds {zj|zj ∈ Ez, |zj| ≥
Lenlow, and |zj| ≤ Lenhigh}, where the lower bound is dictated by Lenlow = max(order) + 1
and the higher Lenhigh = max(z|z = len(zj) : zj ∈ Ez) by the maximum session length
found at the dataset, where len() denotes the length of a sequence.

3.2. Markov Model

MM is defined as a stochastic process Xn having a finite number of states n = 0, 1, 2,
The process satisfied the following condition p(i, j) = P(Xn+1 = j|Xn = i, Xn−1 =
in−1, ..., X0 = i0). The outgoing probabilities from a state i are defined as ∑j∈S p(i, j) = 1 [41].
MM of order o defines a process X(n) that depends on recent o states [40]. The future steps
are denoted as distance d = {1, 2, ...}. MM is used to provide a naïve model baseline and to
compare the results of the LSTM and MLP implementations used in this study for the scale
of the performance.

3.3. Deep Learning Page Predictors

The DL click event prediction is treated as a multi-class classification problem having the
state space |U| of possible outcomes. A probability function probm is fitted during a training
process to model the probability p(y|x), where x denotes a sequence of visited pages, and y
is the probability distribution of the available pages. Items on x are mapped using one-hot
encoding to the vector of length m, where the mth index indicates the presence of a page
x = [x1, ..., xm]. The output distribution y = [y1, ..., ym] represents the probabilities of the
subsequent pages having the same dimension as the input. The outcome selected as an
event with maximum probability (2) [42].

ŷ = arg max
m∈{1...|U|}

probm(x). (2)

Multilayer perceptron (MLP) is a network of perceptrons constituting at least an input
layer, a hidden layer and an output layer. The learning goal is to find the weights w and
biases b so that the output approximates the p(y|x) for all training inputs. Given inputs
x = {x1, x2, ..., xm}, bias b, and weights w = {w1, w2, ..., wm}, the output of a single layer l
having a multiple inputs is defined in (3) [43]. We use concatenation for inputting a number

Information 2021, 12, 231 7 of 18

of past events to the model designated by o. The input x may then have multiple one-hot
encoded pages depending on the number of o.

yl = σ(
m

∑
i=1

wlixi + b). (3)

Long short-term memory (LSTM) networks are based on gated memory units. They
are designed for sequential data to model the temporal dependencies of variables. The
main idea is to learn whether to keep or forget previous values in time so that the memory
would not vanish during the gradient descent [44]. LSTM network is presented in (4) to (9).

it = σ(Wi · ht−1 + Vi · xt + bi), (4)

ot = σ(Wo · ht−1 + Vo · xt + bo) (5)

ft = σ(W f · ht−1 + Vf · xt + b f), (6)

C̃t = tanh(Wc · ht−1 + Vc · xt + bc), (7)

Ct = it � C̃t + ft � Ct−1, (8)

yt = ot � tanh(Ct). (9)

Ct is the cell state and C̃t is the candidate whether the information should be persisted
or not. xt and yt are the input and output. W are the weight matrices of the input, output,
and forget gates, as well as the cell state. V is the same for inputs and b the bias vectors. i,
o, and f are the input, output, and forget gate vectors [44]. It can be seen that the LSTM is
clearly more complex in comparison with the MLP network. However, training the LSTM
model do not require similar concatenation as MLP as it natively supports a sequence of x
as an input.

The training for each order splits each sequence sj to a training input sequences, where
|xtrain| = order is the number of model input events and |ytrain| = 1 is the number of model
output events. Similar procedure exists for the inference, where a xtest is generated for the
model input. Corresponding ground truth event |ytest| = 1 is taken and compared with
model output ŷ. A generator pattern is used to predict the subsequent pages designated by
the d, where an output of a stage is fed as an input of the second stage.

3.4. Session-Trajectory Learning

Q-learning is off-policy TD RL algorithm. Its approximation of optimal policy Q∗

is independently estimated given behavioral policy. The policy update is done at time
t + 1 using observed reward Rt+1 and the discounted value estimation. The original value
of the state-action pair is then updated with an error (difference) between a look ahead
value estimation and the previous estimated value (11). The update is controlled using
step-size parameter α, which controls the learning rate and with discount-rate γ of the
t + 1 value estimation [7]. We found out that the TD is the most essential feature for our
session-trajectory learning not to forget previously learned state transitions.

Q(St, At) = Q(St, At) + α[Rt+1 + γ max
a

Q(St+1, At+1)−Q(St, At)]. (10)

Our target is to learn a directed web graph G = (V, E) where each node represents a
click event in our dataset and vertex a transition from event et to et+1. The graph models
the state transition probabilities by maximizing a reward function of state-action pairs
r(s, a) = E[Rt|St−1 = s, At−1 = a, St = s′] [7], where Rt is the reward and St is the state
at time t proceeding state St−1 and action At−1. We treat the reward function equal to
the sequence-aware recommender utility function and introduce a novel algorithm for
training its estimation, which draws inspiration from two different branches of research:
RL-based graph generating solutions [25,26] and RL recommender algorithms through
hierarchical clustering [33].

Information 2021, 12, 231 8 of 18

We name the algorithm as session-trajectory learning, which is a graph generation
procedure using Q-learning design, where the goal is to approximate the reward function
using an estimation policy Q(St, At). The algorithm proceeds in discrete episodes iterating
the clickstream sequences zj in order from the first event to the last. By having user guided
trajectories, i.e., the page transitions of past clickstreams towards the target leaf pages, we
model the multi-step page transitions from any given start page to popular leafs in our
final graph. The process is described with a set of states S, actions A, and consequential
rewards R(at) at time t, where S represents the events in clickstreams, A describes their
state transitions as actions, and R(at) is a reward function for a state transition.

We design an environment that fits our hierarchical page domain providing session
trajectories in each episode, i.e., sample sequences zj from our sequence database zj ∈ Ez,
where each zj is selected to contain only sequences that ends with a leaf page that has
no child pages. The annotations for each sample follow a rule, where each subsequent
click event ei<k in sequence zj is an intermediate state and the last ek as our target state etgt,
which in turn is a terminal event in an episode.

The session trajectory differs from traditional RL trajectories in a single episode [7], in a
such way, that we expect the past sessions generate trajectories that are independent of each
other and may end in different terminal states where the start state during the inference
may be any of the intermediate states along a session trajectory, which will eventually
decide the target. In an extreme case, we only see unique trajectories during the training.

State represents an event ei in the given sequence zj in an episode. The RL agent
observes the states by iterating a clickstream state transitions from the first event to the last.
Non-terminal, intermediate events are between the start and terminal state. The terminal
state indicates last event of the sequence.

Action describes a single state transition two click events in a single trajectory. We
generate the final graph by observing single trajectories, where each action is also a modifi-
cation to the final graph where an edge is created between two nodes.

Reward design constitutes a three level of different reward values. A negative value is
given whether the transition is illegal. A small positive reward is given to intermediate
actions and a large reward when the terminal state is reached.

During training, represented in Algorithm 1, actions are generated for a given state
using the ε-greedy behavioral policy, where ε represents the probability whether a random
action is selected. Otherwise, an action indicated by the estimation policy is used. A
balance between the exploration and exploitation is smoothed by using decaying ε for
each episode.

Algorithm 1 Session trajectory learning

1: Input: Training data, click sequences {z1, z2, ..., zh}
2: Initialize learning rate and discount factor α← 0.9, γ← 0.1
3: for all zi in zh do
4: Initialize St ← first event e0 of zi
5: for all ei in zi do
6: Select At at St, the state transition ei to êi+1 derived from Q using ε-greedy
7: Compare St+1 = êi+1 with ground truth ei+1 in zi
8: if êi+1 = ei+1 and terminal then
9: Rt+1 ← 1

10: else if êi+1 = ei+1 and intermediate then
11: Rt+1 ← 0.1
12: else
13: Rt+1 ← −0.1
14: end if
15: Q(St, At) = Q(St, At) + α[Rt+1 + γ maxa Q(St+1, At+1)−Q(St, At)]
16: St ← St+1
17: end for
18: end for

Information 2021, 12, 231 9 of 18

The RL agent iterates the sequences via the environment. An episode start initializes
the environment to a first state of the current sequence. Stepping the environment it
proceeds to the next state by using an action generated by the behavioral policy. If given
state transition was correct in the current sequence, the agent receives a small positive
reward for the intermediate states and large if the correct terminal is reached. If not,
the environment stays in the current state with returning a negative reward.

The goal of the algorithm is to maximize the cumulative rewards so that during the
inference the path from the context to the expected target page can be recalled. Due to the
independence aspects of each trajectory, we found out that a single random trajectory may
override a crucial path that resembles strong association between any given intermediate
and target state. Therefore, we must apply a function for the estimation policy that does
not override the past associations, but calculate smooth updates for the policy per each
episode. To achieve this, we found that the temporal-difference (TD) is the most essential
feature for the estimation policy update. Having the smoothed update present, the total
cumulative reward from any context event to the terminal will then represent an ideal state
transition sequence from a given context to a target event, i.e., a leaf content page.

3.5. Top-N Experimentation

The nature of the hierarchical information structure presents a multi-choice selection
for the following events. If a context event ectx (ectx ∈ Etest, i.e., the current page of an
active user) is selected, the predicted next event ep is sampled from a distribution of the
child pages Ec = {ep|Ec ⊂ U}. In other words, the predicted event ep, or the following
events ep+d, may have multiple labels, from which the right choice depends on a latent
information need. If events with the highest probability are only assumed to be relevant,
the outcome is optimistic by design because a popular choice may not be the right one. The
effect needs to be verified by applying a test setup to confirm, whether an event of choice
is generated by the model, but with a lower probability. An experimental top-N setting
is prepared to prove, whether we can improve the accuracy of the user selection. In that
case, an additional feature engineering would be applicable to improve the performance of
the modeling.

Top-N experiments are run with options 1, 3, and 5 to observe whether relevant events
exist below what are suggested by the maximum probability. The multi-class classification
model provides probabilities for next events given a single event or a list of input events.
Taking into an account the top-N list of probabilities, pseudo relevance feedback can be
assessed by selecting and testing, whether the ground truth event exists in the top-N
probable events.

If the model is successful, it learns a variety of click patterns and predicts actual
users’ behavior correctly. This would suggest that the model could be further enhanced
by additional features. A selection-based algorithm is used at the inference for the top-N
experiment. It uses a ground truth event selected from the test set. If it is in the predicted
top-N events, the event is returned. If the top-N list do not include the ground truth event,
the default event with the highest probability is selected.

4. Evaluation
4.1. Data

The data in this study consist of the web pages and the session logs of the public
website from the Finnish city of Tampere. The logs are collected during two full years,
2011–2012. Each year contains 6.9 million sessions per year. The state space, i.e., the
number of unique URLs is 245,532, containing referring pages from domains outside
the site, i.e., from social network applications, newspaper web sites, etc. URLs are also
dynamically generated by the website search.

The portal contains 225,000 web pages, including 105 different topics under the root
URL domain, i.e., counted as the first child nodes of the root URL. However, the topics
include internal, duplicate, under construction, etc., type of information that is not related

Information 2021, 12, 231 10 of 18

to common usage. Commonly used topics include: civil engineering, philharmonic orchestra,
education, culture and museums, health services, etc. The page visits are not evenly distributed
across the year. Figure 1 illustrate three typical visit patterns: low and high holiday season
usage and even distribution which may include biased months.

Figure 1. Typical visit patterns.

There are time dependencies on the consumption of popular topics, as well as single
pages. The statistics of only the most popular topics will give an overview of the dependen-
cies. Figure 2 presents the top-5 most popular topics per month. Sports and leisure (orange),
and a local museum Vapriikki (blue), as well as health services (grey), illustrates the constant
consumption through the year. Culture and museums (brown) and education and studies (light
blue) appear only a limited amount of time in top-5 list.

Figure 2. Annual monthly top-5 topic consumption.

The Bouncing rate (a ratio of single and total number of page visits) is high as 85%,
i.e., the large portion of the data contains a single page sessions. The distribution of session
lengths ranges from a single click up to one hundred in a yearly basis with average of
35 clicks, the mode of the session lengths is between 1 and 15 clicks, where the single page
visits dominate.

The hierarchy of the topics structure is represented in the slash separated path seg-
ments of the URLs: root/education/primaryeducation/curriculum.html. There are 81 different
topics (unique segments as a first child) under the root domain, including non-public
system related content, as well as redundant topics that are temporary for page updates.
Sessions, including visits in 26 unique topics, are selected for the study. Counting the path
lengths from URLs used in the sessions, the pages form a hierarchy of ten levels deep.
Distribution of visited URL depths is presented in Table 3.

Information 2021, 12, 231 11 of 18

Table 3. URL depths.

Depth 1 2 3 4 5 6 7 8 9 10

count 62 153 931 12,507 4205 7528 677 126 19 5

4.2. Measures

Evaluation focuses on the prediction accuracy of the subsequent pages given a random
context page or a history of o pages. The data are divided using the common 80/20 random
split for training and testing, respectively.

The training of the models is done by sampling from the population of the year 2011.
This is done to gain an overall understanding about the applicability to support a generic
model for the data and the overall performance of the modeling. Orders (o) 1 to 3 are used
to test the performance of the model when adding more memory, i.e., the effect of previous
clicks. Distances (d) from 1 to 6 are used for each model that indicates capability to predict a
number of steps forward to define a window of future predictions based on the URL depth
statistics. The majority of the pages are at four to six deep hierarchies.

During testing, a next event is predicted as described at the modeling section. In the
evaluation of the performance, the predicted event is compared with the ground truth event.
A random page ec is selected from each test set session, which is treated as the current
context page of an active user. The ground truth page e is selected from the same session and
a number of steps are counted forward from ec indicated by the parameter d. The trained
model is used to predict the next page ê from the given ec for each d. As described in the
modeling, we run top-N experiments which are constructed to test whether there is an
event at top-N probable events corresponding the ground truth.

A list of < e, ê > pairs is constructed and used as an input to statistical evaluation
having the number of examples of the whole test set. The predictions are treated as the
multi-class classification problem, where each web-page represents its own class.

Accuracy is chosen as the main evaluation criteria with the addition of and F1 to indi-
cate the overall performance taking the precision and recall into an account. The approach
to evaluate overall multi-class performance includes the calculation of macro/micro averaged
value across all classes. The macro approach is an average of each metric over all classes.
Micro, on the other hand, includes the aggregation of all contributing values and then
calculating the metrics. Like Refs. [45,46], the evaluation in this paper is done using the
macro averaged value.

4.3. Evaluation Setup

Sequence lengths from minimum Lenlow and maximum of Lenhigh are used for training.
The Lenlow requirement is due to the order (o) of the model. The model of o requires o + 1
of minimum the sequence length, i.e., the number of click events that corresponds o and
the number of events that corresponds the number of distance (d) of forward clicks.

Three main rules for the data selection are applied: (a) sequences starting on the root
page and traversing the natural topic hierarchy of the structure, (b) random selection of
sequences of 26 selected topics from the population of the year 2011, and (c) sequences
ending on a leaf page of the page hierarchy. We choose the latter rule as an assumed
relevance assessment that user arriving at a leaf page has found the information of interest.

It was found out that the dataset contains many internal pages to the web hosting
service, in addition to topic pages that are used in publishing new content that are dupli-
cates of some topics, but are consumed in different time during the year. From the total
number of topics, there are ten the most popular top-5 that appear constantly during the
year. Additionally, there are short-lived pages that appear a limited time to promote an
event type of content.

We wish to concentrate on the most relevant content pages that may appear on the
most popular pages, but raise up beneficial pages that may appear on a larger number of
topic selection. A subset of 26 topics are then chosen because internal pages and otherwise

Information 2021, 12, 231 12 of 18

redundant page information exists at the session data. Technical reasons also play a role for
the filtering. The number of sessions, as well as the large state space pose large computing
requirements for the modeling.

We evaluate the ability of each of the model to predict the future page transitions
towards the assumed target pages at the leaf nodes of the page hierarchy. The depth of the
page topology was found to be ten pages deep having most of the pages at four to six deep
hierarchies. By knowing the depth distribution, the distance from one to ten is used in the
experiments to illustrate the model prediction performance down the hierarchy.

The MM model operations are based on an R language implementation of clickstream
package [40] executed on Intel i7 6700K CPU architecture. DL modeling is a Python-
based implementation using the Tensorflow library utilizing Nvidia GTX 1080 Ti GPU. MLP
designs are compared with LSTM architectures. Table 4 lists the used DL model parameters.
The effect of number of layers and neurons to the accuracy are used for the evaluation.

Table 4. DL model parameters.

Parameter Value

Input Layer Neurons The state space
Hidden Layers 1 to 3
Hidden Layer Neurons 32, 256 and 1024
Output Layer Neurons The state space
Activation Function Softmax
Loss Function Categorical Crossentropy
Learning Rate 0.001 to 0.00003
Weight Initialization Xavier
Epochs 300

5. Results

This section presents the effect of the order for our dataset and the performance
comparison between the MM, LSTM, MLP, and RL models having dataset as an input
containing random samples of the population of the year 2011. In each of the figures,
accuracy and F1-scores are shown in percentages in relation to the distance prediction for
each of the models.

The experimentations are run by subsetting the full dataset of magnitude of |S| = 14M
and |U| = 245,000, from which we select 26 topics to be able to focus on content and
additionally reduce the data for computing efficiency reasons. Then, we choose the states
from o = 1 to o = 3 as the memory of the models. We also use the session length
of Lenlow = 4 to Lenhigh = 100 to ensure that the single page sessions are not used in
evaluation. Total amounts reduces then to |S26| = 22,113 and |U26| = 11,193.

Figures 3 and 4 presents the results of the first experimentations, where we investigate
the effect of the order for our dataset by using MM and DL baseline classifiers. We can see
the lower than ten percent improvement or none in accuracy for the immediate, low order
predictions. The overall prediction performance drops significantly for further distances
being close to zero at d = 4.

In the second experiment, we present the performance comparison between the
baseline and our RL-based models by using o = 1 models. In Figures 5 and 6, we can first
see the same effect of dropping accuracy, as well as overall performance, for each of three
baseline methods for further distances. Additionally, increasing the size of the DL layers
does not improve their accuracy. The RL method performance does not improve the initial
accuracy; however, it shows it is rather stable across the distances improving the multi-step
prediction capability.

Information 2021, 12, 231 13 of 18

Figure 3. Accuracy related to the order of baseline models.

Figure 4. F1 related to the order of baseline models.

Figure 5. Accuracy comparison between the baseline and the RL-based models.

Information 2021, 12, 231 14 of 18

Figure 6. F1 comparison between the baseline and the RL-based models.

Finally, we observe the experimental result of top-N lists using a simple MLP model,
whether there are matches below the suggested maximum probability. In Figures 7 and 8,
we see an initial increase in the number of first-step matches—roughly a 10% increase
between top 1, 3, and 5 lists. This still shows the effect of the d > 1 predictions with
dropping accuracy under an average range of 10%.

Figure 7. Accuracy of top-N experimentation.

Figure 8. F1 of top-N experimentation.

Information 2021, 12, 231 15 of 18

6. Result Analysis

We started the evaluation by assessing a baseline performance for our dataset using
Markov Model, LSTM, and MLP classifiers. In the first experiment, we see in Figures 3 and 4
similar performance for each of the classifiers, i.e., the DL-based classifier performance
is same order of magnitude for each distance. The accuracy in Figure 3 varies between
7% and 10% for o = 1, 7% and 11% for o = 2, and 10% and 12% for o = 3 for each of the
models. The models overall F1 performance Figure 4 range is between 7% and 19%. The
order (memory) of the model did not increase the accuracy considerably. We also see that
the distance (prediction horizon) usually decreases the accuracy 10–20% per step. We can
only consider MM as a stable baseline for its growing state space complexity issue [6].

The second experimentation, we explore the size of the DL classifiers and compare
the classifiers’ performance against our RL-based implementation. For the first experiment,
the number of neurons are varied (25, 28, and 210). Approximately 22–30% accuracy can
be achieved by the sequential model using only the pages with the highest probability.
The performance can be seen in the Figures 5 and 6, where the same accuracy 10–20% per
step decrease as in previous experiment, i.e., the size of the DL models will not increase
the performance. It will relate to a rather poor user experience if used as such. However,
with our RL-based implementation, we can see a stable 20% accuracy for each distance.
We would have the better ability to predict the target leaf pages at the lower levels of the
page hierarchy.

We concluded the evaluation using an experimental setting to validate, whether the
samples of top-N probabilities include the correct matches in comparison with the ground
truth. Figures 7 and 8 illustrate that there are samples of correct matches as we investigate
the lower probability range, even if we see the similar steep drop in accuracy for future
predictions after the first-step matches.

We saw at the start of the experiments, that the order (memory) of the model did not
increase the accuracy considerably. This may be explained that the relevance of the next
click is already a multi-choice, and the history is not an apparent hint of the future. The
same effect seems to apply for the future steps. The future prediction accuracy seems to
be stable in 20–30% range for immediate steps d = 1 but low for further d > 1 steps for
baseline classifiers. The RL-based algorithm seems to have more stable performance d > 1
steps. This would ensure that we can achieve stable leaf node predictions only using just
the sequence information as a feature. The potential additional feature engineering was
suggested by the top-N experimentations.

7. Conclusions

In this paper, we assessed the performance of Markov, deep learning and Q-learning
models in order to predict click events based on the clickstreams of a hierarchical website.
We evaluated the accuracy of the classifiers by observing a random page selection and
observed the effect of the history and the prediction horizon for future click events. It
was found out that 22–30% accuracy can be achieved by using the baseline classifiers
for the set of data. The history of a session did not have any considerable effect on the
modeling performance and the prediction horizon for subsequent steps of two to three
was approximately 2% better in comparison with the single step accuracy. Our RL-based
algorithm, however, has more stable performance for the future steps.

The modeling problem for the hierarchical website is a multi-class problem, having a
state space of pages down the hierarchy. The clickstreams contain information about the
user traversal patterns. They contain the paths to the relevant pages, but they are open
to interpretations as each following click events has a number of outcomes. Not only the
problem has the multi-class property, but also a multi-label, where each subsequent event
has multiple labels attached depending on the latent information need.

Popularity bias, as defined, for example, in References [8–10], weights the pages
that are often visited. The secondary events in a rank of probabilities contain relevant
information about the subsequent pages that eventually lead to the needed content. This

Information 2021, 12, 231 16 of 18

was observed in top-N experiments. Not only the past visited pages hint the probability of
the next, but they are a source of bias. The information need is also a latent feature, i.e.,
not observable directly in the sequential domain. The history is neither a univocal facet
describing the information need.

However, it was found out that in our domain we have usually four to six and up to
ten level deep page hierarchies, which contains the target, content pages at the leaves of the
hierarchy. It is not feasible to recommend intermediate pages which are used to navigate to
content pages. Therefore, there is a need to provide accurate recommendations to multiple
levels forward. Q-learning proved a stable performance for multi-step distances compared
with the baseline models. Further, it shows a promising result for our solution for the
specific problem domain to continue our work.

We have considered the hierarchical page topology in our design for a particular
domain scenario, but as described in the modeling chapter, our goal was to generalize
the use in training for wider use as long as the topology is presented in the training data.
Typical browsing behaviors may include a chain type in hierarchical structures and star for
social network type of topologies and mixed for more complex scenarios [38], which may
be used as a guideline to test the applicability of our algorithm in wider scope. In order
to investigate the fit for general use, a dedicated study may be appropriate for the proof
using a wider set of common datasets.

In the future, we would like to explore the feature space of the user sessions to improve
the multi-step performance of Q-learning approach. We would consider of exploring the
session features to maintain the user anonymity. The features, such as time, the label of a
topic, content, etc., may all be candidates to enhance the prediction accuracy of multiple
subsequent clicks on the hierarchical web domain. A set of proven session features would
then be used for accurate page recommendations for an anonymous user.

Author Contributions: Conceptualization, P.P.; methodology, P.P.; software, P.P.; validation, P.P.;
formal analysis, P.P.; investigation, P.P.; resources, P.P.; data curation, P.P.; writing—original draft
preparation, P.P., K.S., J.K., M.J.; writing—review and editing, P.P., K.S., J.K., M.J.; visualization, P.P.;
supervision, K.S.; All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Quadrana, M.; Cremonesi, P.; Jannach, D. Sequence-Aware Recommender Systems. ACM Comput. Surv. 2018, 51, 1–36. [CrossRef]
2. Ntoutsi, E.; Stefanidis, K. Recommendations beyond the ratings matrix. In Proceedings of the Workshop on Data-Driven

Innovation on the Web (DDI ’16), Hannover, Germany, 22–25 May 2016; Association for Computing Machinery: New York, NY,
USA; pp. 1–5. [CrossRef]

3. Su, X.; Khoshgoftaar, T.M. A Survey of Collaborative Filtering Techniques. Adv. Artif. Intell. 2009, 2009. [CrossRef]
4. Shi, Y.; Larson, M.; Hanjalic, A. Collaborative Filtering beyond the User-Item Matrix: A Survey of the State of the Art and Future

Challenges. ACM Comput. Surv. 2014, 47, 1–45. [CrossRef]
5. Wu, Z.; Tan, B.H.; Duan, R.; Liu, Y.; Goh, R.S.M. Neural Modeling of Buying Behaviour for E-Commerce from Clicking Patterns.

In Proceedings of the 2015 International ACM Recommender Systems Challenge (RecSys ’15 Challenge), Vienna, Austria, 16–20
September 2015. [CrossRef]

6. Eirinaki, M.; Vazirgiannis, M.; Kapogiannis, D. Web path recommendations based on page ranking and Markov models. In
Proceedings of the 7th ACM International Workshop on Web Information and Data Management (WIDM 2005), Bremen, Germany,
5 November 2005; Association for Computing Machinery: New York, NY, USA; pp. 2–9. [CrossRef]

7. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; A Bradford Book; MIT Press: Cambridge, MA, USA, 2018.
8. Borges, R.; Stefanidis, K. Enhancing Long Term Fairness in Recommendations with Variational Autoencoders. In Proceedings

of the MEDES 2019: The 11th International ACM Conference on Management of Digital EcoSystems, Limassol, Cyprus, 12–14
November 2019; pp. 95–102

9. Borges, R.; Stefanidis, K. On Measuring Popularity Bias in Collaborative Filtering Data. In Proceedings of the BigVis 2020: 3rd
International Workshop on Big Data Visual Exploration and Analytics, Copenhagen, Denmark, 30 March 2020.

http://doi.org/10.1145/3190616
http://dx.doi.org/10.1145/2911187.2914580
http://dx.doi.org/10.1155/2009/421425
http://dx.doi.org/10.1145/2556270
http://dx.doi.org/10.1145/2813448.2813521
http://dx.doi.org/10.1145/1097047.1097050

Information 2021, 12, 231 17 of 18

10. Borges, R.; Stefanidis, K. On Mitigating Popularity Bias in Recommendations via Variational Autoencoders. In Proceedings of the
36th ACM/SIGAPP Symposium On Applied Computing, Gwangju, Korea, 22–26 March 2021; pp. 1383–1389

11. Jindal, H.; Sardana, N. Web navigation prediction based on dynamic threshold heuristics. Available online: https://www.
sciencedirect.com/science/article/pii/S1319157820303244 (accessed on 28 May 2021). [CrossRef]

12. Fedushko, S.; Ustyianovych, T.; Syerov, Y.; Peracek, T. User-Engagement Score and SLIs/SLOs/SLAs MeasurementsCorrelation
of E-Business Projects Through BigDataAnalysis. Appl. Sci. 2020, 10, 9112. [CrossRef]

13. Zhang, S.; Yao, L.; Sun, A.; Tay, Y. Deep Learning Based Recommender System: A survey and new perspectives. ACM Comput.
Surv. 2019, 52, 1–38. [CrossRef]

14. He, X.; Liao, L.; Zhang, H.; Nie, L.; Hu, X.; Chua, T.S. Neural Collaborative Filtering. In Proceedings of the 26th International
Conference on World Wide Web (WWW ’17), Perth, Australia, 3–7 April 2017; pp. 173–182. [CrossRef]

15. Gharibshah, Z.; Zhu, X.; Hainline, A.; Conway, M. Asia-Pacific Web (APWeb) and Web-Age Information Management (WAIM) Joint
International Conference on Web and Big Data; Springer: Berlin/Heidelberg, Germany; pp.196–204.

16. Guo, C.; Berkhahn, F. Entity embeddings of categorical variables. arXiv 2016, arXiv:1604.06737.
17. Guo, H.; Tang, R.; Ye, Y.; Li, Z.; He, X. DeepFM: A factorization-machine based neural network for CTR prediction. In

Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI’17), Melbourne, Australia, 19–25 August
2017; pp. 1725–1731.

18. Xiao, J.; Ye, H.; He, X.; Zhang, H.; Wu, F.; Chua, T.-S. Attentional factorization machines: Learning the weight of feature
interactions via attention networks. In Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI’17),
Melbourne, Australia, 19–25 August 2017; pp. 3119–3125.

19. Cheng, H.T.; Koc, L.; Harmsen, J.; Shaked, T.; Chandra, T.; Aradhye, H.; Anderson, G.; Corrado, G.; Chai, W.; Ispir, M. et al. Wide
& Deep Learning for Recommender Systems. In Proceedings of the 1st Workshop on Deep Learning for Recommender Systemsm
Boston, MA, USA, 15 September 2016; pp. 7–10. [CrossRef]

20. Waradpande, V.; Kudenko, D.; Khosla, M. Deep Reinforcement Learning with Graph-based State Representations. arXiv 2020,
arXiv:2004.13965.

21. Perozzi, B.; Al-Rfou, R.; Skiena, S. DeepWalk: Online learning of social representations. In Proceedings of the 20th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’14), New York, NY, USA, 24–27 August
2014; pp. 701–710. [CrossRef]

22. Grover, A.; Leskovec, J. Node2vec: Scalable Feature Learning for Networks. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD ’16), San Francisco, CA, USA, 13–17 August 2016;
Association for Computing Machinery: New York, NY, USA, 2016; pp. 855–864. [CrossRef]

23. Zhou, C.; Liu, Y.; Liu, X.; Liu, Z.; Gao, J. Scalable graph embedding for asymmetric proximity. In Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence (AAAI-17), San Francisco, CA, USA, 4–9 February 2017; pp.2942–2948

24. D’Arcy, L.; Corcoran, P.; Preece, A. Deep Q-Learning for Directed Acyclic Graph Generation. arXiv 2019, arXiv:abs/1906.02280.
25. You, J.; Liu, B.; Ying, R.; Pande, V.; Leskovec, J. Graph convolutional policy network for goal-directed molecular graph generation.

In Proceedings of the 32nd International Conference on Neural Information Processing Systems (NIPS’18), Montreal, QC, Canada,
3–8 December 2018; pp. 6412–6422.

26. Wan, G.; Pan, S.; Gong, C.; Zhou, C.; Haffari, G. Reasoning like human: Hierarchical reinforcement learning for knowledge graph
reasoning. In Proceedings of the 29th International Joint Conference on Artificial Intelligence, Yokohama, Japan, 7–15 January
2021; pp. 1926–1932.

27. Taghipour, N.; Kardan, A.; Ghidary, S.S. Usage-based web recommendations: A reinforcement learning approach. In Proceedings
of the 2007 ACM Conference on Recommender Systems (RecSys ’07), Minneapolis, MN, USA, 19–20 October 2007; pp. 113–120.
[CrossRef]

28. Cai, Q.; Filos-Ratsikas, A.; Tang, P.; Zhang, Y. Reinforcement Mechanism Design for e-commerce. In Proceedings of the 2018
World Wide Web Conference. arXiv 2018, arXiv:1708.07607.

29. Zou, L.; Xia, L.; Du, P.; Zhang, Z.; Bai, T.; Liu, W.; Nie, J.-Y.; Yin, D. Pseudo Dyna-Q: A Reinforcement Learning Framework for
Interactive Recommendation. In Proceedings of the 13th International Conference on Web Search and Data Mining (WSDM ’20),
Houston, TX, USA, 3–7 February 2020; pp. 816–824. [CrossRef]

30. Wang, X.; Xu, Y.; He, X.; Cao, Y.; Wang, M.; Chua, T.-S. Reinforced Negative Sampling over Knowledge Graph for Recommenda-
tion. In Proceedings of the Web Conference 2020 (WWW ’20), Taipei, Taiwan, 20–24 April 2020; pp. 99–109. [CrossRef]

31. Lei, Y.; Pei, H.; Yan, H.; Li, W. Reinforcement Learning based Recommendation with Graph Convolutional Q-network. In
Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’20),
Xi’an, China, 25–30 July 2020; pp. 1757–1760. [CrossRef]

32. Zhang, J.; Hao, B.; Chen, B.; Li, C.; Chen, H.; Sun, J. Hierarchical Reinforcement Learning for Course Recommendation in MOOCs.
In Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19), Honolulu, HI, USA, 27 January–1
February 2019; pp. 435–442. [CrossRef]

33. Chen, H.; Dai, X.; Cai, H.; Zhang, W.; Wang, X.; Tang, R.; Zhang, Y.; Yu, Y. Large-scale Interactive Recommendation with
Tree-structured Policy Gradient. arXiv 2018, arXiv:abs/1811.05869.

34. Nadeau, D.; Sekine, S. A Survey of Named Entity Recognition and Classification. Lingvisticae Investig. 2007, 30, 3–26. [CrossRef]

https://www.sciencedirect.com/science/article/pii/S1319157820303244
https://www.sciencedirect.com/science/article/pii/S1319157820303244
http://dx.doi.org/10.1016/j.jksuci.2020.03.004
http://dx.doi.org/10.3390/app10249112
http://dx.doi.org/10.1145/3285029
http://dx.doi.org/10.1145/3038912.3052569
http://dx.doi.org/10.1145/2988450.2988454
http://dx.doi.org/10.1145/2623330.2623732
http://dx.doi.org/10.1145/2939672.2939754
http://dx.doi.org/10.1145/1297231.1297250
http://dx.doi.org/10.1145/3336191.3371801
http://dx.doi.org/10.1145/3366423.3380098
http://dx.doi.org/10.1145/3397271.3401237
http://dx.doi.org/10.1609/aaai.v33i01.3301435
http://dx.doi.org/10.1075/li.30.1.03nad

Information 2021, 12, 231 18 of 18

35. Otter, D.W.; Medina, J.R.; Kalita, J.K. A Survey of the Usages of Deep Learning in Natural Language Processing. arXiv 2018,
arXiv:1807.10854.

36. Stratigi, M.; Nummenmaa, J.; Pitoura, E.; Stefanidis, K. Fair Sequential Group Recommendations. In Proceedings of the SAC’20:
The 35th ACM/SIGAPP Symposium on Applied Computing, Brno, Czech Republic, 30 March–3 April 2020; pp. 1443–1452

37. Bouraga, S.; Jureta, I.J. Knowledge-based recommendation systems: A survey. Int. J. Intell. Inf. Technol. 2014, 10, 1–19. [CrossRef]
38. Ramaciotti Morales, P.; Tabourier, L.; Ung, S.; Prieur, C. Role of the Website Structure in the Diversity of Browsing Behaviors. In

Proceedings of the 30th ACM Conference on Hypertext and Social Media, Bavaria, Germany, 17–20 September 2019; pp. 133–142.
[CrossRef]

39. Zheng, G.; Peltsverger, S. Web Analytics Overview. In Encyclopedia of Information Science and Technology, 3rd ed.; IGI Global:
Hershey, PA, USA, 2015.

40. Scholz, M. R Package clickstream: Analyzing Clickstream Data with Markov Chains. J. Stat. Softw. 2016, 74, 1–17. [CrossRef]
41. Jiang, J. Stochastic Processes. In Large Sample Techniques for Statistics; Springer Texts in Statistics; Springer: New York, NY,

USA, 2010.
42. Sugiyama, M. Introduction to Statistical Machine Learning; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 2015.
43. Parr, T.; Howard, J. The Matrix Calculus You Need For Deep Learning. arXiv 2018, arXiv:1802.01528.
44. Petneházi, G. Recurrent Neural Networks for Time Series Forecasting. arXiv 2018, arXiv:1901.00069.
45. Tsoumakas, G.; Katakis, I.; Vlahavas, I. Mining Multi-label Data. Data Mining and Knowledge Discovery Handbook; Springer: Boston,

MA, USA, 2010. [CrossRef]
46. Zhang, M.L.; Zhou, Z.H. A Review on Multi-Label Learning Algorithms. IEEE Trans. Knowl. Data Eng. 2014, 26, 1819–1837.

[CrossRef]

http://dx.doi.org/10.4018/ijiit.2014040101
http://dx.doi.org/10.1145/3342220.3343648
http://dx.doi.org/10.18637/jss.v074.i04
http://dx.doi.org/10.1007/978-0-387-09823-4_34
http://dx.doi.org/10.1109/TKDE.2013.39

	Introduction
	Related Work
	Modeling and Methods
	The Problem Definition
	Markov Model
	Deep Learning Page Predictors
	Session-Trajectory Learning
	Top-N Experimentation

	Evaluation
	Data
	Measures
	Evaluation Setup

	Results
	Result Analysis
	Conclusions
	References

