
Juhani Takalo

A BUILD ENVIRONMENT FOR CREATING A
CUSTOM LINUX DISTRIBUTION FOR

TRAIN INFORMATION SYSTEM DEVICES

Creating a Linux distribution with the Yocto Project

Master’s thesis
Faculty of Information Technology and Communication Sciences

Examiners: Prof. Karri Palovuori
Prof. Jukka Vanhala

March 2021

i

ABSTRACT

Juhani Takalo: A build environment for creating a custom Linux distribution for train information
system devices
Master’s thesis
Tampere University
Master’s Programme in Electrical Engineering
March 2021

The objective of this work was to investigate the possibility of using the open source tools provided
by The Yocto Project, especially the task and build engine BitBake, to replace the old device image
toolchain called Imagetools, which is created by Teleste for its train information system devices.
While Imagetools mainly use Debian Linux distribution as the base for device images, the build
environment created in this work is capable of building a fully working custom Linux distribution
named Teleste Sky Blue for Teleste’s embedded device DCU40, which is the main controller unit
for Teleste’s train passenger information systems.

The work begun by inspecting the Yocto recipes and instructions for DCU40’s processor card by
Seco, which is the manufacturer of the card. These recipes covered the GPIO expanders, SPI and
I2C. First of all, these few recipes were updated to support the newest stable Yocto Project version
3.1, codenamed Dunfell. Builds were tested by installing them on DCU40’s internal eMMC memory
with the live USB flash drive image, which was generated with the BitBake, with network boot and
in virtual environments. An automation script was written for pushing the cache items generated by
the BitBake builds to Teleste’s company network file share which made subsequent builds faster.

In the next phase, more features were added to the build to produce an image which would
have the same base functionalities than the "base image" produced by Imagetools. These include
kernel and software configurations, and Teleste’s platform packages which enabled a full support
for DCU40’s features. The base software of a "base image" includes a Python interpreter with
necessary packages, Java Runtime Environment with public and Teleste’s libraries, PostgreSQL
with default database, and Lighttpd HTTP-server with Teleste’s Update Manager Web interface.
New BitBake recipes were written for Teleste’s platform components and existing recipes from
Yocto’s reference distribution named Poky and OpenEmbedded Layer Index were modified to
match the existing Imagetools "base image".

After the base features of DCU40 were added to the build, recipes were written for the rest of
Teleste’s platform components, which are used in customer projects. Customer device images are
also created with Imagetools, together with update packages uploaded from the Update Manager.
However, with BitBake it is possible to automate the whole customer image creation process so that
no other extra steps are needed to be taken in production for the customer project images. Also,
the rest of the Imagetools features were added to the build environment, such as fully automated
live USB flash drive image creation and VirtualBox image creation. In addition, more features
were implemented to the build environment including Qemu virtualisation on command line for
automated software tests, network booting of DCU40 with iPXE, and virtual machine images with
nested virtualization support for virtual machine development and usage on DCU40.

During the work, the environment was used in investigation of DCU40’s processor card’s
Intel microcode update performance degradation related to Meltdown and Spectre vulnerability
mitigations. Eventually more and more thought and planning was put in to the build environment
itself so that it would be scalable and useful on developers PCs to CI servers. The build environment
created in this work is a clean and portable Git repository, with documented features which could
eventually supersede Imagetools and overcome the challenges and problems it has.

Keywords: Yocto Project, Linux distribution, BitBake, build environment, embedded system

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

ii

TIIVISTELMÄ

Juhani Takalo: Käännösympäristö mukautetun Linux-jakelun luomiseksi junainformaatiojärjestel-
mälaitteille
Diplomityö
Tampereen yliopisto
Sähkötekniikan DI-tutkinto-ohjelma
Maaliskuu 2021

Tämän työn tavoitteena oli tutkia mahdollisuutta käyttää Yocto projektin tarjoamia työkaluja, kuten
tehtävä- ja käännöshallintaohjelma BitBakea, korvaamaan Telesten vanha junainformaatiolaitteiden
levykuvien luontijärjestelmä, jonka nimi on Imagetools. Imagetools käyttää pääosin Debian Linux-
jakelua levykuvien pohjana mutta tässä työssä luotu käännösympäristö pystyy tuottamaan täysin
toimivan mukautetun Linux-jakelun nimeltään Teleste Sky Blue Telesten sulautetulle laitteelle
DCU40:lle, joka toimii pääkeskustietokoneena Telesten junien matkustajainformaatiojärjestelmissä.

Työ alkoi DCU40:n prosessorikortille tehtyjen Yocto reseptien ja ohjeiden tutkimisella, jotka
kortin valmistaja Seco oli kirjoittanut. Nämä reseptit kattoivat ainoastaan GPIO-laajennuspiirit, SPI:n
ja I2C:n. Ensiksi nämä reseptit päivitettiin tukemaan uusinta vakaata Yocto:n versiota 3.1, jonka
koodinimi on Dunfell. Käännöksiä testattiin asentamalla niitä DCU40:n eMMC-muistille BitBakella
tehdyllä live USB levykuvalla, verkkokäynnistyksen avulla ja virtuaalisissa ympäristöissä. BitBaken
välimuistin hallintaa varten luotiin automaatioskripti, jolla pystyy kopioimaan BitBaken tuottamia ja
käyttämiä välimuistiobjekteja Telesten tiedostopalvelimelle, mikä nopeuttaa seuraavia käännöksiä.

Seuraavassa vaiheessa käännöksiin lisättiin lisää ominaisuuksia, jotta tuotettu levykuva vastaisi
toiminallisuudeltaan Imagetoolssin tuottamaa "pohjalevykuvaa". Näihin ominaisuuksiin kuuluu
kernelin ja ohjelmistojen asetuksia ja Telesten sovellusalustan ohjelmia, jotka mahdollistavat
täyden tuen DCU40:n ominaisuuksille. Pohjalevykuvan kantaohjelmistoja ovat muun muassa
Python tulkki tarvittavilla paketeilla, Java Runtime Environment julkisten ja Telesten kirjastojen
kanssa, PostgreSQL vakiotietokannalla ja Lighttpd HTTP-palvelin Telesten Update Manager Web
käyttöliittymällä. Uusia BitBake reseptejä kirjoitettiin Telesten ohjelmistokomponenteille ja olemassa
olevia reseptejä Yocton referenssi linux-jakelulusta Poky:sta ja OpenEmbedded:n Layer Index:stä
muokattiin, jotta toiminnallisuus olisi identtinen Imagetoolssin pohjalevykuvan kanssa.

DCU40:n perusominaisuuksien lisäämisen jälkeen reseptit kirjoitettiin myös muille Telesten
ohjelmistoalustan komponenteille, jotka ovat käytössä asiakasprojekteissa. Asiakkaiden levykuvat
tehdään myös Imagetoolssilla, joihin lisäksi asennetaan tarvittavat päivityspaketit Update Manage-
rin kautta. BitBaken avulla on kuitenkin mahdollista automatisoida asiakaalle menevien levykuvien
luonti, jolloin tuotannossa ei tarvita lisävaiheita niiden asennuksessa. Imagetoolssin muutkin
ominaisuudet kuten automaattinen live USB levykuvien ja VirtualBox virtuaalikoneiden luonti lisät-
tiin käännösympäristöön. Tämän lisäksi käännösympäristöön lisättiin uusia ominaisuuksia, joita
ovat esimerkiksi Qemu:lla virtualisointi komentorivillä automaattisille ohjelmistotesteille, DCU40:n
verkkokäynnistys iPXE:n avulla ja tuki sisäkkäisille virtuaalikoneille virtuaalisten ympäristöjen
kehittämiseen DCU40:lle.

Työn aikana käännösympäristöä käytettiin DCU40:n prosessorikortin Intelin mikrokoodipäivitys-
ten aiheuttaman tehoaleneman selvitykseen, joka liittyy Meltdown ja Spectre haavoittuvuuksien
korjauksiin. Lopulta yhä enemmän aikaa käytettiin itse käännösympäristön kehittämiseen, jotta se
olisi skaalautuva ja käyttökelpoinen kehittäjien tietokoneilla ja jatkuvan iteraation käännöspalve-
limilla. Tässä työssä luotu käännösympäristö on siisti ja siirrettävä Git projekti dokumentoiduilla
ominaisuuksilla, joka voisi tulevaisuudessa korvata Imagetoolssin ratkaisten sen haasteet sekä
ongelmat.

Avainsanat: Yocto Project, Linux-jakelu, BitBake, käännösympäristö, sulautettu järjestelmä

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.

iii

PREFACE

This work was carried out at Teleste, Tampere from spring 2020 to spring 2021.

When I started at Teleste as a summer trainee 2017, I hardly knew anything about Linux
and couldn’t have imagined that I would be creating a custom Linux distribution build
system for Teleste as a Master’s thesis. While repairing devices at the service, I came
across a device image building toolchain called Imagetools, towards with I have created a
love–hate relationship: it and its quirks got me interested to the internal Unix tools it uses,
and with the help of my colleagues, I started to improve the features and functionalities of
Imagetools. Eventually I was in a team with my student colleague friends, and together we
did some actual developing for Imagetools. Eventually, this team shrunk when my friends
moved forward seeking new challenges. However, as the author of this thesis, and current
developer of Imagetools, I can confidently say that I managed to create something which
could replace Imagetools in the future.

I wish to thank all of my friends and colleagues who I have been seeing and working with
during this COVID-19 pandemic, which has given me energy to push through with this
work. I also look forward seeing my colleagues again on daily basis, which is a thing
I have missed a lot. Also, I want to thank my examiners: Prof. Jukka Vanhala, whose
course about microcontrollers was one the most educational courses I had, and Prof.
Karri Palovuori, whose courses were the most interesting at the university. I still have a
fully working thermal camera smartphone which was designed by Karri. Lastly, I want to
thank my boss Jukka Saari, who always listened my ideas and raised Teleste’s software
development to the next level.

Tampere, 26th March 2021

Juhani Takalo

iv

CONTENTS

1 Introduction . 1

2 Linux and The Yocto Project . 3

2.1 Linux in general . 3

2.2 Debian . 3

2.3 The Yocto Project . 4

2.4 BitBake . 4

2.5 Poky and The OpenEmbedded Project . 6

2.6 The Yocto Project Layer Model . 6

2.7 BitBake recipes . 7

2.8 BitBake build configuration files . 7

2.9 Recipe classes . 8

2.10 Recipe append files . 9

2.11 BitBake tasks . 9

2.12 The Yocto Project Extensible SDK . 10

2.13 OpenEmbedded Image Creator Wic . 10

2.14 Toaster web interface . 11

3 Using the build environment . 12

3.1 Setting up the project as a Git repository . 12

3.2 Building for DCU40 . 12

3.3 Cache management . 13

3.4 Directory structure of the project environment 15

3.5 Git management guidelines . 16

3.6 Bash and Shell scrips . 17

4 Configurations for the DCU40 . 19

4.1 Target hardware device . 19

4.2 Introduction to dcu40-image . 20

4.3 Target machine configuration . 20

4.4 Distribution configuration . 21

4.5 Systemd as init manager . 22

4.6 Seco packages and kernel modules . 22

4.7 Package manager and Debian package format 23

4.8 Keyboard layout . 23

4.9 Systemd-boot or GNU GRUB as bootloader 24

4.10 BusyBox and GNU Core Utilities . 24

4.11 Kernel configurations . 24

v

4.11.1 Analyzing the build size of individual kernel features 26

4.12 Disabling serial-getty . 26

4.13 Enabling magic SysRq key . 27

4.14 Java 8 . 27

4.15 Python 2 . 28

4.16 PostgreSQL 12 . 28

4.17 Live USB image . 29

4.18 Uninative settings . 30

4.19 Audio and graphics . 30

5 Deploying the build on the DCU40 and virtual environments 31

5.1 Build artifacts . 31

5.2 Running the build with runqemu command 32

5.3 Running the build in VirtualBox . 33

5.4 Using the live image . 35

5.5 Network boot of DCU40 . 36
5.5.1 Setting up a TFTP server . 36
5.5.2 Setting up a DHCP server . 37
5.5.3 Chainloading iPXE . 38
5.5.4 NFS root filesystem . 39

6 A comparison of BitBake and Teleste’s Imagetools 40

6.1 History of build automation at Teleste . 40
6.1.1 Rocket Tools . 40
6.1.2 Maven . 41
6.1.3 Jenkins . 41
6.1.4 Imagetools . 42

6.2 BitBake compared to Imagetools . 46

6.3 BitBake workflow . 48
6.3.1 Local meta-layers . 48
6.3.2 Remote meta-layers and Poky reference distribution 48
6.3.3 Build configuration for DCU40 . 49

7 Testing . 51

7.1 Boot-up times . 51
7.1.1 USB flash drive flashing speed . 51

7.2 Meltdown and Spectre mitigations performance impact 52
7.2.1 Meltdown and Spectre vulnerabilities 53
7.2.2 Mitigating Meltdown and Spectre in DCU40 54
7.2.3 Analyzing test results . 55

8 Conclusions and outlook . 58

References . 60

vi

LIST OF SYMBOLS AND ABBREVIATIONS

ACPI Advanced Configuration and Power Interface

API Application Programming Interface

APT Advanced Package Tool

ARM Advanced RISC Machines

AVR Atmel AVR Microcontroller

Bash Bourne again shell

BIOS Basic Input/Output System

BitBake Yocto Project’s build and task execution engine

BSP Board Support Package

CI Continuous Integration

CPU Central Processing Unit

CSM Compatibility Support Module

DCU40 Diagnostic and Controller plug-in Unit, series-40

DHCP Dynamic Host Configuration Protocol

EFI Extensible Firmware Interface

ELF Executable and Linkable Format

eMMC Embedded Multimedia Card

FPGA Field Programmable Gate Array

GNSS Global Navigation Satellite System

GPG GNU Privacy Guard

GPIO General Purpose Input/Output

GPS Global Positioning System

GRUB GRand Unified Bootloader

GUI Graphical User Interface

HDD Hard Disc Drive

HTTP Hypertext Transfer Protocol

I2C Inter-Integrated Circuit

IC Integrated Circuit

IP Internet Protocol

vii

KVM Kernel-based Virtual Machine

LED Light-Emitting Diode

LTE Long-Term Evolution

LTS Long-Term Support

MAC Media Access Control

make GNU Make build automation tool

MBR Master Boot Record

NFS Network File System

OS Operating System

PC Personal Computer

PCI Peripheral Component Interconnect

PCM Pulse-Code Modulation

pip Python package manager

PIS Passenger Information System

pITX Pico Information Technology eXtended

Poky Reference distribution of the Yocto Project

PXE Preboot Execution Environment

RAM Random-Access Memory

RPC Remote Procedure Call

RTC Real-Time Clock

SoC System on a Chip

SPI Serial Peripheral Interface

SSD Solid-State Drive

SSH Secure Shell

TFT Thin-Film Transistor

TFTP Trivial File Transfer Protocol

Toaster Web interface for BitBake

UART Universal asynchronous receiver-transmitter

UEFI Unified Extensible Firmware Interface

USB Universal Serial Bus

VCS Version Control System

VLAN Virtual Local Area Network

WWAN Wireless Wide Area Network

XML Extensible Markup Language

1

1 INTRODUCTION

The initial objective of this work was to create a proof-of-concept custom Linux distribution
with the Yocto Project for Teleste’s Diagnostic and Controller plug-in Unit, DCU40, which is
one of the main components in Teleste’s train passenger information systems. Before this,
device images have been created with Teleste’s image creation tool called Imagetools,
which uses Linux Debian distribution as a base image on top of which the full image is built
on. There has been attempts to use the open source tools provided by the Yocto Project to
create a new build toolchain to replace Imagetools, which have mainly been unsuccessful
because of problems introduced by the new and more complex environment the Yocto
Project provides compared to Imagetools. According to the interviews conducted during
this work, there were a few main reasons for these unsuccessful attempts:

• The initial complexity and steep learning curve of the The Yocto Project

• Long rebuild times without proper cache handling

• A lack of an example build toolchain

• Complexity of Teleste’s embedded devices which have multiple features built into
them

• Completely different working principle of the Yocto Project compared to Imagetools

After the initial objective was reached, the image was developed further to match the
base image created with Imagetools. After this, more features were added to the image
and to the build environment. Also, more build target devices were added to the build
environment, which eventually changed the core objective of this work from just a single
device image made for DCU40, to a build environment capable of building a custom Linux
distribution for Teleste’s devices with different architectures.

Chapter 2, Linux and Yocto Project, explains what are Linux, Debian and the Yocto Project
including the tools it uses such as BitBake together with terms and features related to it.
Chapter 3, Using the build environment, describes how the build environment is set up as
a Git superproject with other Git repositories as submodules, and how to start using the
environment for running builds. Final sections of the chapter are dedicated for guidelines
about Git management and Shell scripting in the build environment.
Chapter 4, Configurations for DCU40, introduces the device hardware and the build
configurations for the device divided to sub sections. These configurations include features
which are usually found in the base image created with Imagetools, like the support for all

2

hardware features, a set of Linux utilities and programs, system tweaks and configurations.
Chapter 5, Deploying the build on the DCU40 and virtual environments, explains how to
deploy the build on the actual hardware in different ways by installing it on the internal
eMMC memory of DCU40 or by using network booting with iPXE. Instructions are also
given on how to run the build virtualized with Qemu and VirtualBox.
Chapter 6, Comparison of BitBake and Teleste’s Imagetools, dives into the history of build
automation at Teleste, how the used tools have evolved and how the current build tool
Imagetools compares to Yocto Project’s BitBake. Visual illustrations about both tools are
provided.
Chapter 7, Testing, includes tests related to the environment and since the newest BIOS
versions for DCU40’s processor card introduces Meltdown and Spectre vulnerability
mitigations as Intel microcode updates, the possible performance degradation caused by
them was investigated.
Finally, Chapter 8, Conclusions and outlook, finishes this thesis and gives an outlook on
the future of this build environment.

3

2 LINUX AND THE YOCTO PROJECT

2.1 Linux in general

Linux is an open source operating system which is based on the Linux kernel. The
kernel is a computer program which acts as a bridge between applications and hardware.
Linux is usually used as a distribution, which is a ready made operating system with
Linux kernel, system software and libraries. Popular Linux distributions include Debian,
Ubuntu, Fedora, Red Hat and CentOS which can have different use cases, but can still be
interchangeable. Even though they might share the same major Linux kernel version, the
set of system software, libraries and general working principles are usually different. These
distributions can be installed on different kinds of target devices with different architectures
and hardware. For example, Ubuntu is a popular desktop distribution but there is also
a version of it which is suitable for servers, and another one for ARM based devices.
However, Ubuntu is actually based on Debian, and it differs from Debian by having a newer
kernel and software compared to it.

In this work a custom Linux distribution named Teleste Sky Blue was built by using the
Yocto Project version 3.1, codenamed Dunfell, which includes Yocto’s reference distribution
Poky version 23.0 with Linux kernel version 5.4.

2.2 Debian

Debian is a free and open-source Linux distribution and it is commonly used in different
types of machines, from desktop PCs to embedded system devices and servers. This
popular distribution is tested before releases, and Debian has at least three releases in
active maintenance: stable, testing and unstable. The stable distribution of Debian is
the latest official production release, which is recommended to be used in normal use
cases. At the time of writing the current stable release version of Debian is 10, codenamed
"buster".

The testing distribution of Debian has a newer kernel version and it contains newer versions
of packages which have not been yet accepted to the stable release. The current testing
distribution is codenamed "bullseye". The unstable Debian distribution is meant for active
development, and it is codenamed always as "sid". During the past decade, there has
been a stable Debian distribution release roughly every two years.

4

Every stable Debian release has 3 years of full support and 2 years of extra Long Term
Support. This means that during those 3 years, the Debian security team will actively
handle the security updates of that stable release. Debian LTS is a project to extend the
lifetime of all stable Debian releases to at least 5 years and it is handled by volunteering
individuals and companies.

Since Debian is the most used distribution in Teleste’s embedded devices, Debian features
were added to the Sky Blue to make future transition to it easier. These features include:

• Debian packages and dpkg package manager

• SystemD init system with SysVinit script compatibility

Debian package format is the most used archive format for software on Teleste’s devices
and many software components rely on SystemD units or SysVinit type init scripts.

2.3 The Yocto Project

The Yocto Project is not a Linux distribution, but an umbrella project including Poky
reference distribution, task execution and build engine BitBake, OpenEmbedded-Core with
package recipes, and several other components and tools for developing custom Linux
distributions. With this collection of tools it is possible to customize every aspect of the
build, from Linux kernel to included system software and libraries. It is very suitable for
embedded system devices since the user has a total control on everything that is installed
on the device. Compared to a full desktop distribution, a Yocto build can be configured
to include just the things that are needed for the target embedded device. One of the
important aspects of the Yocto Project is, that it builds a custom Linux distribution and its
packages from source code rather than using prebuilt packages and binary files. Because
of this, the source code of every component can be modified and patched in a modular
way, so that the the source code can be always reverted to its original state.

Teleste has already used Yocto Linux in TFT and LED display devices, because it can
be a lightweight Linux distribution for small form factor embedded devices. Normally in
these applications, the display devices do not need to run many applications but just a
few related to displaying the information and reporting diagnostics. Also, having a Linux
environment compared to a bare metal implementation offers better code re-usability,
wider feature base, and a familiar environment to develop for.

2.4 BitBake

The Yocto Project uses a parallel task execution and build engine written with Python 3
called BitBake, which automates the process of creating customized Linux distributions.
BitBake is sometimes compared to GNU make, however, during building BitBake actually
calls GNU make when the source code compilation is handled with Makefiles. According
to the Yocto Project Mega-Manual[1], some key points for BitBake are:

5

• BitBake uses metadata from recipes denoted by filename extension .bb, configura-
tions from .conf files and inheritable .bbclass files which provide instructions for
BitBake on what tasks to run and dependencies between them. On GNU make, the
counterpart for these files would be Makefiles

• BitBake can run Shell and Python functions within a single recipe file, and they can
use the same variables

• BitBake has a built-in fetcher library for obtaining source code from various places
like source control systems such as Git (with submodule support) and Subversion

• BitBake includes a client-server abstraction, and it can be used from a command
line or used as a service over XML-RPC. It also has multiple user interfaces like the
Toaster web interface

• BitBake does automatic syntax check for files it uses, and it detects changes in them
between the builds

• BitBake runs a set of default tasks for recipes which can be modified or overwritten
and more tasks can be added

Originally BitBake was part of the OpenEmbedded project, and it was inspired by the
Portage package management system from Gentoo Linux distribution, which also builds
packages from source code rather than using prebuilt packages. In 2004 OpenEmbedded
was split into two parts:

• BitBake task execution engine

• OpenEmbebbed metadata set used by the BitBake

Now BitBake is used as the primary basis for OpenEmbedded project and Yocto Project.
According to the history section of Yocto Project’s BitBake User Manual, before BitBake
there wasn’t any adequate system for building embedded Linux distributions with a feature
set as comprehensive as BitBake’s. Some of the important features and original goals for
BitBake, according to the BitBake User Manual, were [2]:

• Cross-compilation support

• Dependencies management during build and runtime

• Support for running wide variety of tasks including fetching upstream sources, un-
packing them, patching them, configuring them, building and installing them

• New tasks can be written for it

• It is Linux distribution agnostic for both build and target systems

• It is architecture agnostic

• It has support for multiple build and target operating systems

• It is self-contained and not tightly integrated into the build host’s filesystem

6

• It can handle conditional metadata depending on target architecture, operating
system, distribution and machine

• It includes tools to handle, modify and create source code

• It calculates a checksums for tasks, which allows the use of a shared state cache
which accelerates subsequent builds

2.5 Poky and The OpenEmbedded Project

Poky is Yocto Project’s reference distribution, which can be used to build a working
Linux distribution without any extra configuration [3]. As a Git repository it consists of
BitBake task execution engine, OpenEmbedded-Core with over 700 recipes and metadata
such as configuration files, patches, and shared classes. Poky is not a production level
Linux distribution but it is a good starting point for building one. It began as an open-
source project initially developed by OpenedHand, and after Intel Corporation acquired
OpenedHand, the Poky project became the reference distribution for the Yocto Project’s
build system.

Poky uses a six-month release cycle, and major releases occur at the same time major
releases occur for the Yocto Project. The Yocto Project Version used for this work is 3.1,
codenamed Dunfell, and the Poky version is 23.0. Dunfell was released in April 2020, and
it will have long term support provided by Yocto Project at least for 3 years after which it will
move to be community managed. The Linux kernel used for Dunfell is Yocto’s linux-yocto
kernel version 5.4.

The OpenEmbedded Project is a build automation framework consisting of BitBake build
engine and other tools, which are used to create Linux distributions which Yocto Project
adopted as a default build system in March 2011. The project also hosts a layer index with
a searchable database of layers, recipes and machines [4].

2.6 The Yocto Project Layer Model

The Yocto Project uses a "Layer Model" type of development model which distinguishes it
from other simple build systems [3]. These layers provide possibility to logically separate
different parts of the system as reusable components such as Board Support Package
(BSP), Graphical User Interface (GUI), Operating System (OS) configuration, middleware
and application layers. Use of the Yocto is also made easier by silicon vendors such as
Seco, Intel, Karo and Congatec by providing BSP layers for their products. This layer
model makes it possible to do development in any layer regardless of the other layers
which means that for example GUI development can be done at the same time as kernel
development.

For example, at Teleste DCU40 has normally been equipped with a Debian "base image"
with required hardware packages before Java developers can write applications for it,

7

and after the "base image" has been selected, modifying it can be difficult afterwards.
Normally the only option has been to overwrite files of the "base image". The Layer Model
introduces a solution to this by enabling the modifiability of the full software stack, from
kernel configurations to individual software packages. Distinct layers also make it faster to
transition from older hardware to newer hardware or port already implemented application
layers for completely new hardware since layers such as the BSP layer and Teleste’s
platform component layer are separated and reusable.

2.7 BitBake recipes

BitBake recipes, which are denoted by the filename extension .bb, are the basic metadata
files used by the BitBake. They provide following information and instructions:

• Descriptive information about the recipe such as version, author, homepage and
license

• Build and runtime dependencies

• Location of source code and how to fetch it

• Possible patches to the source code and how to apply them

• How to configure and compile the source code

• How and where to install the generated build products

BitBake recipes support sophisticated variable syntax with hard, default and weak assign-
ments and also appending, prepending and removal of values within variables. Variables
can also be assigned with flags. Even more recipe features are provided with Python vari-
able and function support, together with basic Shell functions. Python and Shell functions
can access the same variables.

During BitBake runs, the recipes are parsed and syntax checked, which reduces the
possibility of errors in the recipes. Poky reference distribution and OpenEmbedded layers
provide good examples of complex recipes which often use more supported features
such as the inheritance of class files (.bbclass), which are shared amongst multiple
recipes, splitting of recipes to smaller parts as include files (.inc) and modifying existing
recipes with .bbappend files. During this work, 70 new recipes were written for DCU40
and Teleste’s platform components.

2.8 BitBake build configuration files

Most of the configuration files are denoted by the .conf filename extension, which define
various types of configurations such as:

• local.conf, which resides in the build directory’s conf folder. It is the most important
configuration file for each build, and it describes packets, features, Yocto’s built-in
variables and many other features. The same local.conf can be used for different

8

machine targets such as DCU40 or Qemu build. Commenting the configurations
in this file with a proper table of contents section makes it clear to read and edit
afterwards. local.conf for DCU40 has 4 sections:

- Device related configurations, which define features and software highly related
to DCU40 and its hardware

- Core features, which are essential but not mandatory for DCU40, such as package
management, SSH server, Java Runtime Environment, PostgreSQL and Lighttpd

- Software such as Teleste’s platform components, useful utilities, demos and
testing software

- Other settings related to the BitBake environment, cache locations, debugging
tweaks and Qemu settings

• site.conf, which defines the locations of cache, downloads and uninative tarball

• layer.conf, which has all the included meta layers for the build

• <machine>.conf, like "intel-corei7-64.conf" is machine configuration file with archi-
tectural configuration, preferred library packages, preferred kernel provider and
version.

2.9 Recipe classes

Class files, denoted by the .bbclass filename extension, contain inheritable instructions
shareable among recipes. Poky reference distribution directory contains over 200 classes
and some examples of them are:

• base.bbclass, which is always included for all recipes and classes and it has
definitions for basic tasks such as fetching, unpacking, compiling and so on

• image_types.bbclass, which has all the image types BitBake can build and also
descriptions for other build artifacts such as checksum files

• qemuboot.bblass, which generates qemuboot.conf for runqemu Qemu wrapper

• pypi.bbclass, which automates installation of Python packages

• package_deb.bbclass, which automates Debian package creation, other package
formats such as RPM and IPK are also supported with corresponding class files

• useradd.bbclass, which makes adding users easy

• update-rc.d.bbclass, for enabling init scripts

• autotools.bbclass, which automates Makefile creation, compiling and installation
of supported source code collections

Usage of classes in recipes is not forced in any way, but with them complex yet clean
recipes can be written. Recipes found within Poky reference distribution provide good
examples of class inheritance within recipes.

9

2.10 Recipe append files

Append files with filename extension .bbappend modify or override existing recipe files.
An append file must have a corresponding recipe file, and they must share the same
base filename. The filenames can differ from the used suffix, which usually is the version
number of the recipe. For example, the file linux_yocto_%.bbappend can have kernel
configuration fragment information for all linux_yocto kernels. This way, the kernel version
can be updated without losing the previous kernel configurations. Replacing the "_%"
wildcard with a version number such as "_5.4" would apply this append file for only kernel
version 5.4.

Append files are the recommended way of editing existing recipes. In this work, some of
the use cases for them are:

• Overwriting default php.ini configuration file for PHP

• Patching a known bitmask bug in a Python serial port package

• Initializing Teleste’s default database for PostgreSQL

• Enabling full support for system requests in the procps package

• Enabling Serial Getty only in virtualized environments, so that it does not block the
hardware serial port of physical DCU40

• Modifying the installation script of live bootable USB image so that it does not require
user interaction

Append files can also be disabled easily by adding a BBMASK configuration to local.conf.

2.11 BitBake tasks

While BitBake is a task execution and build engine, it does not actually build the source
code, but it generates a do_compile task by using the recipe for that specific source
code. In the recipe there is a do_compile function declaration, which uses BitBake’s
environmental variables to run e.g. make for the source code. However, many existing
recipes, such as the recipe for Bash from OpenEmbedded-Core, are written in a way that
just inheriting autotools.bbclass provides the do_compile function declaration, so that it
is not declared in the recipe file itself. BitBake gathers and writes a task file, which is a
Shell executable, under <build_directory>/tmp/work/temp which has all the variables
expanded and which will be run by BitBake. The do_compile task and other tasks can
also be run manually (without running dependent tasks) with BitBake’s devshell task:

$ bitbake <recipe > -c devshell
$../ temp/run.do_compile

This will show the output of the commands run in the task in stdout, which makes it easy
to debug make errors, for example. It is to be noted that normally the compilation task

10

for Bash is nearly never run since its source code is not edited between the builds so it
is just fetched automatically from the shared state cache. BitBake also creates logs for
each individual task and the log file log.task_order shows all the executed tasks for the
recipe. If the task devshell is replaced with the do_compile task in the bitbake command,
then BitBake will also execute the dependent pretasks for compiling, such as source code
fetching, patching and configuring.

2.12 The Yocto Project Extensible SDK

The Yocto Project Extensible SDK, or eSDK in short, is a collection of development tools
which are part of the Openembedded Core. The eSDK can be used to add applications
and libraries to the build, modify the source code of existing components, test changes
on the target hardware, and also develop and test code that is designed to be run on the
target system. One of the most used tools of the eSDK in this work is devtool, which can
assist in adding new software to the build and editing existing sources. For example the
source code of any recipe can be initialized in development environment with a command:

$ devtool modify <recipe >

This copies the source code from the tmp directory, which is inside of the build target
directory to a workspace directory. The source code is set up as a Git repository, so any
changes to the source files will be tracked by Git. If the source code is edited and BitBake
build is called, then the edited source code will be used. To save the modified source
code it must be committed in the Git repository and then devtool can be used to create a
.bbappend file, with a patch to store the changes to some meta-layer with the devtool:

$ devtool update -recipe -a <layerpath > <recipename >

After this, the build source can be switched back to the original tmp directory by resetting
the workspace target with a devtool command:

$ devtool reset <recipename >

2.13 OpenEmbedded Image Creator Wic

Partitioning in this environment can be done in two different ways: by OpenEmbedded
Image Creator Wic, which is based on Kickstart partitioning commands from Fedora [5],
or with live USB image’s installation script as in Section 4.17. Wic is suitable for creating
multiple partitions in a single image file which has a .wic filename extension, and it can
be directly flashed to the target device or to a storage medium.

A live USB image was created with Wic, which has all the hardware dependencies of
DCU40 so it can test the device and for example update the AVR or the BIOS. The partition
file is located at:
yocto/meta-layers/local/meta-dcu40/wic/dcu40-tool.wks

and it has the following content:

11

part /boot --source bootimg-biosplusefi --sourceparams="loader=systemd-boot"

--label boot --active --align 1024 --use-uuid

part / --source rootfs --fstype=ext4

--label rootfs --align 1024 --use-uuid

part /mnt/usb-storage --fstype=vfat --size 128

--label usb-storage --align 1024 --use-uuid

bootloader --ptable gpt --timeout=5

--append="rootwait rootfstype=ext4 console=ttyS0,115200n8"

where the first bootloader partition for legacy and UEFI is created with a source plugin:
yocto/poky/scripts/lib/wic/plugins/source/bootimg-biosplusefi.py

This automates the partition creation, and the same is done for the root filesystem partition.
The usb storage partition is a FAT32 partition, which is accessible on a Windows host so it
can be used for logging purposes or even scripts and updates, which could be run when
the live USB flash drive would be plugged into the device. The last bootloader line defines
the configuration for the bootloader and appends to the kernel command line.

2.14 Toaster web interface

Toaster is a web interface for OpenEmdedded and BitBake. It allows configuring and
running builds, and it provides information and statistics about the build process. Some of
its features are [6]:

• Inspect builds, what packages they have and what tasks were run

• Browse the root filesystem of the image

• See the values of all build variables and which files set them

• Debug errors, warnings and trace messages

• See dependency relationships between recipes, packages and tasks

• See performance statistics of the build

• Start builds

• Modify build variables and layers

• Browse and build any layers in the OpenEmbedded Metadata Index

While many of these tasks can be done on the command line interface, Toaster provides
a fast and intuitive way of inspecting the builds. Toaster can also be set up as a shared
hosted service, which is suitable for multiple users developing across many build hosts. To
enable Toaster for BitBake builds, the BitBake environment has to be initialized first and
then the Toaster can be sourced with a command:

$ source toaster start

which starts a local Toaster instance on a Django server.

12

3 USING THE BUILD ENVIRONMENT

3.1 Setting up the project as a Git repository

The build environment of this work was set up as a Git superproject, which makes
managing Yocto’s Poky reference distribution and remote meta-layers easy, as they can be
added as Git submodules. Git submodules make it possible to add other Git repositories
to the superproject while keeping commits between them separated [7]. Commits of the
superproject track commits in the submodules so that if the superproject is pulled from a
remote Git repository, it will checkout correct commits for the submodules. This causes
submodules Git status to be "detached HEAD", which means that the submodule is not
anymore attached to any branch but only to a single commit. This ensures that the cloned
superproject with submodules is exactly same across all clients. The command to pull a
Git repository with submodules is:

$ git clone -b <branch > --recurse -submodules <repository_url >

This does not mean, that the submodules would be locked in that specific branchless
commit though. A command can be used to run a Git command for all submodules, for
example to checkout a specific branch for all:

$ git submodule foreach ’git checkout -b <branch >’

Checking out branch dunfell for Poky and submodule layers conveniently updates them to
the newest Dunfell releases. Having the Poky and others as Git submodules under the
superproject makes it convenient to debug them by editing their files and after no more
debugging is needed, the changes in the submodules can be reverted back to the original
by checking out the modified files thus reverting the made changes.

3.2 Building for DCU40

The build host requires some dependency packages to be installed, which are listed in
Chapter 1.2 of the Yocto’s reference manual [5]. This chapter also lists the tested build
host Linux distributions and it is mentioned that the Yocto Project could be also set up on
version 2 of Windows Subsystem for Linux. Instructions are also given on how to deploy
the Yocto Project on a Docker container.

After the dependencies have been installed, the build environment for DCU40 can be

13

initialized by going to a directory:
yocto/build/dcu40-image/

and running the OpenEmbedded’s build environment initialization script:

$ source ../../poky/oe-init-build-environment .

If some other directory is given as an argument for the initialization script, a new build
directory will be generated with default configuration files, which can be used to set up
new build targets. No other initialization steps should be needed if the build is run in
Teleste’s network, since site.conf should be pointing to the right network share, where
the downloads and shared state cache are located for fast rebuilds.

After the build environment has been initialized the build process for DCU40 can be started
with a command:

$ bitbake dcu40-image

After starting the BitBake it starts to go through the recipes and variables defined in:
dcu40-image/conf/local.conf

and finds the recipes from the layers defined in:
dcu40-image/conf/layers.conf

finally generating build artifacts to a directory:
dcu40-image/tmp/deploy/images/intel-corei7-64/

The initial build time should be around 10 minutes on Teleste’s company laptop (tested on
Lenovo T490 running Debian 10), when using the download and sstate cache network
share.

3.3 Cache management

Yocto’s recipes have version dependent checksums for every source archive which are
downloaded from the internet, and if the BitBake build system notices a mismatch between
a checksum in a versioned recipe file and cached source archive, the source archive is
marked as corrupted by adding suffix _bad-checksum to the filename of the archive after
which BitBake tries to download it again from the original source address. By default
BitBake stores the downloaded source code archives to the build configuration directory
under a sub directory downloads. This cache is useful if the source code repository would
be unreachable in the future, or the connection to it would have a low bandwidth.

Moreover, BitBake detects tasks that do not need to be rerun which can be saved to a
"Shared State Cache" [1]. By default, this cache is stored in the build directory under
sstate-cache subdirectory. This cache stores checksums equipped intermediate build
artifacts produced by recipe tasks such as compiling, packaging, patching and generating
root filesystem. Using this cache is essential for fast rebuilds since rerunning tasks for

14

recipes that have not been "touched" can be fetched from the cache instead. This cache
decreases the build times of DCU40 images from tens of hours, to just around 10 minutes.

An automation script was written for copying the cache items from a local build host to
the Teleste’s network share so that they would be usable by other build hosts. The script
uses the rsync file transfer program to compare the network share directory with the local
cache directories so that it copies only the new files. BitBake can also create symbolic
links inside of the downloads and sstate-cache directories to the cache items located in
the Teleste’s file share, if the file share is mounted as a directory to the build host. For
BitBake to be able to do this, Teleste’s file share mount directory it must be defined in the
sources configuration file as a source address:
yocto/build/dcu40-image/conf/site.conf

If Teleste’s file share is not found as a mounted directory, then the cache items are
downloaded over HTTP protocol from the same Teleste’s file share. The drawback of this
is, that then the local build cache will be bigger in size, compared to if it would just have
symbolic links to the needed cache files. In the end of this work, downloads cache was 40
GB and sstate-cache 80 GB in size on Teleste’s network share.

It was noted during this work, that a single "worker" partition on a hard drive started to
have corrupted files more and more after many build iterations. This was when the cache
was stored under the build configuration directory, which also has the tmp directory for the
actual build process. Moving the local downloads and sstate cache to a software RAID
cache set up with mdadm utility on two SSDs solved the file corruption problems and also
made subsequent builds faster because of increased read and write speeds. Majority
of the actual work done during rebuilding is just comparing checksums to intermediate
build artifacts, which are in the sstate cache and if the checksum matches those artifact
archives are unpacked to the tmp directory.

15

3.4 Directory structure of the project environment

A simplified directory structure of the project Git environment can be seen in Figure 3.1,
where the root folder is named yocto:

yocto

build
dcu40-image

conf
bblayers.conf

local.conf
site.conf

scripts

tmp

downloads
sstate-cache

utilities
ipxe

meta-layers

local
meta-common
meta-dcu40
meta-debian
meta-seco
meta-teleste

remote
meta-intel
meta-java

meta-openembedded

meta-networking

meta-python

meta-python2

meta-virtualization
poky

bitbake
scripts

oe-init-build-env
scripts

common_functions.sh

update_cache.sh

utilities
ipxe

GIT

GIT

GIT

GIT

GIT

GIT

GIT

GIT

GIT

GIT

GIT

Build directory for DCU40
Build configuration files
Used meta-layers
Build configuration file
Cache locations and uninative tarball
Helper scripts for build deployment
Build artifacts, rootfs and packages are in here
Network expanded source cache
Network expanded sstate-cache
Other than Yocto build targets
Build scripts for iPXE

Meta-layers are collection of recipes
Local meta-layers stored in this Git repository
PostgreSQL, Lighttpd, locales, Python 2 packages
DCU40 specific configurations and recipes
Recipe sources managed by Debian
Seco’s recipes for the processor card
Teleste’s platform component recipes
Git submodules of layers provided by others
Intel platform recipes
Java recipes

OpenEmbedded’s layer with more sub-layers
Networking recipes

Python 3 layer
Python 2 layer
Virtualization layer
Poky reference distro and BitBake tools
BitBake engine scripts
Various scripts such as runqemu
Script for initializing the build environment
Helper scripts for managing the project

Source for common task functions
Script for managing caches
Other useful Git repositories
For setting up iPXE NFS network boot

Figure 3.1. Directory structure of the Git project

16

Directory build has subdirectories for different build targets such as dcu40-image. Names
for the build target directories are same as the build targets BitBake is called with, so it
is easy to know what build target can be called in different directories. This arrangement
is not forced in any way by the Yocto environment, and many build targets can be called
from the same directory. The build directory also includes a subdirectory for other useful
utilities such as iPXE.

Directory meta-layers has sub directories for local and remote meta-layers. Local meta
layers are versioned by the Git superproject, and remote meta layers are fetched from
other Git repositories and added as submodules. In the Figure 3.1 they are marked with
the text "GIT" over the folders. Directory poky contains the reference distribution of the
Yocto Project and the BitBake build tool. It could be considered as a remote meta layer,
but having it separate does not cause any problems since the only place its location is
referenced is in the builds configuration file site.conf.

3.5 Git management guidelines

Using Git in a company environment to manage source code of a product requires a set of
guidelines on how to use the feature set of Git, in a manner which keeps the repository
clean and uniform. Also, similarity between the Git repositories of company’s products
makes it easier to work with repositories maintained by other teams. Since Subversion has
been Teleste’s main VCS for many years, and Git has mainly been used for the newest
projects and products, the best practises for using Git in versioning this build environment
should follow some example. Because of this, a set of guidelines is proposed which are
following Atlassian’s Git tutorials [8] for Bitbucket, which is the Git software used at Teleste.

In the future, for this build environment Git branches should be created for five different
purposes:

• Master branch for tagged releases of the environment. Merges to master branch
should mostly be done from develop branch but changes from hotfix branches would
also be accepted. Any tagged release of the master branch should be able to run all
the build targets it consists of which could be automatically verified by a CI server
such as Jenkins, which would be also handling the automatic tagging of the master
branch.

• Develop branch for gathering the changes made in feature and hotfix branches. Any
new feature should branch off from the develop branch and back to it. Also, a release
should be branched off from the develop branch, merged in to the master branch
and then back to the develop branch.

• Feature branches for actual feature development for the environment, which would
eventually be merged to the develop branch. A nice practise at Teleste has been to
create feature branches named like "feature/<Jira task ID><Jira task title>" where
Jira by Atlassian is the task and project management software used by Teleste.

17

Specifying the tasks needed to be done to the environment before creating feature
branches keeps the environment development process documented.

• Release branch for major releases of the environment, which are branched off from
the develop branch and merged to the master branch preferably tagged with a major
release number without a minor number (e.g. version 2.0). These major releases
should definitely be able to run all the build targets they consist of, and the metadata
and configurations in them should be written in a clean manner.

• Hotfix branches are branched off and to the master branch. A ready hotfix should be
merged into both master and develop branches.

The Figure 3.2 by Atlassian illustrates these five different branches and how they interact
with each other. During the initial development of this environment, these branches were
not used since, for the first official release of the environment, Git rebase can be used to
merge individual commits to a single one for clean initial release.

Figure 3.2. Git workflow illustrated by Atlassian

3.6 Bash and Shell scrips

Bash is an Unix shell and command language, which can used for simple automation
scripts, but also for writing more complex software-like programs. It does not offer proper
features for writing advanced code such as inheritable classes found in higher level
languages, but many complex and elegant structures can still be written with it. One of the
main problems of complex Bash scripts is, that the declared variables are global by default
and usable in every subsequent script called and sourced by the main script. It does have
support for functions but for example these functions’ only return value is the status of the
last statement executed in the function. To return any arbitrary value, the function must

18

declare a global variable or modify one which can be inspected in another statement.

Bash script collections can easily become hard to maintain when many people have written
them, because similar functionality can be archived in multiple of ways. Without proper
documentation and guidelines, scripts written in Bash by different people tend to differ from
each other, and the elegance of implementations is highly proportional to the previous skill
about Bash and overall Unix shells. Also, skills with other languages such as C and Java
can affect the nature of code implementations when written in Bash.

In this work, Bash scripts were written for various automation tasks such as USB drive
flashing, updating the cache, and some of Imagetools’ Bash implementations were mim-
icked to make it easier for getting started with this build environment. New features were
implemented, such as automated logging of calls to external programs with an execution
wrapper, and a clean structure of scripts, where the main function calls subfunctions for
initialization, argument parsing and sequential statement execution. Eventually these au-
tomation tasks could be integrated as task recipes for the BitBake so that the environment
would stay as consistent as possible. Since BitBake supports Shell and Python function
inside same tasks, and it has advanced debugging capabilities, the re-implementations of
Imagetools’ features could be done in elegant and robust way.

19

4 CONFIGURATIONS FOR THE DCU40

4.1 Target hardware device

In this work, the target hardware device is Teleste’s embedded device DCU-40 Diagnostic
and Controller plug-in Unit, series-40 which is referred as DCU40. This rack unit is the
main server in Teleste’s Passenger Information Systems (PIS) in railway vehicles. DCU40
is equipped with Seco’s pITX processor card, which is based on Intel Atom Q7 Bay Trail
SoC. It has following technical specifications:

• Processor: Intel R⃝ AtomTM E3845 Quad Core 1.91 GHz

• Memory: 4 GB DDR3L

• Storage: 16 GB eMMC mass memory, SD card socket

• Interfaces: Gigabit Ethernet, I/O port, GNSS and 2 WWAN antenna ports, 2 SIM-card
sockets, USB port, DisplayPort

• Features: LTE modem, AVR microcontroller, FPGA IC

The motherboard of the DCU40 is designed at Teleste and it has developed a lot since its
first release in 2011. This device is responsible in controlling PIS devices such as LED
screens, TFT screens, announcements, emergency phones, video surveillance system,
route tracking, and many other other systems. DCU40 supports running Windows and
Linux operating systems. Normally, if a Linux OS is chosen for the DCU40, the distribution
is Debian. The process of creating a Debian image with Teleste’s Imagetools for the
DCU40 is explained in Chapter 6.1. DCU40 and its front interfaces can be seen in the
Figure 4.1.

20

Figure 4.1. DCU-40 Diagnostic and Controller plug-in Unit.

4.2 Introduction to dcu40-image

dcu40-image is the main BitBake build target of this build environment, with hardware
support for DCU40 together with virtual image creation. It is based on Seco’s BSP
guide’s [9] few instructions from which it is expanded with additional layers, recipes, and
configuration settings. The directory for DCU40 builds is located at:
yocto/build/dcu40-image/

In this directory, there is a subdirectory conf/ with the main configuration file local.conf,
which defines settings, package recipes and BitBake variables for the build. Other configu-
ration files in conf/ directory are bblayers.conf, which defines meta-layers used in this
specific build and site.conf for downloads and shared state cache mirror addresses. In
the build directory there is also a scripts subdirectory which has automation scripts for
network boot artifact deployment and live USB flash drive creation.

4.3 Target machine configuration

Even though DCU40 uses Seco’s processor card with Intel Atom E3800 family processor,
the machine configurations for it come from Intel’s general configuration set named
intel-corei7-64. This is because Seco’s BSP guide [9] also uses this configuration for

21

BitBake’s MACHINE variable which specifies the target machine the image is built for. The
intel-corei7-64 configuration comes from a meta-intel layer, which "supports moderately
wide range of drivers that should boot and be usable on "typical" hardware." according to
its description. It is located at:
yocto/meta-layers/remote/meta-intel/conf/machine/intel-corei7-64.conf

This target machine is configured in the main configuration file local.conf with a line:
MACHINE = "intel-corei7-64"

This configuration includes other configurations from Intel’s meta-layer, but also from
Poky’s machine configurations. Some of the configurations are:

• Basic machine features such as x86 architecture, PCI bus, ACPI, USB and EFI

• Preferred kernel provider, version and packaging type

• Graphics and X server

• Binary file tuning options

• Intel’s microcode updates

4.4 Distribution configuration

While Poky is Yocto Project’s reference distribution, and the default selection for the builds,
a new distribution called Sky Blue was created for the DCU40 to emphasize this custom
build environment tailored for Teleste’s use cases. The distribution configuration is selected
in the local.conf with:
DISTRO = "sky_blue"

and the actual configuration file is located at:
yocto/meta-layers/meta-teleste/conf/distro/sky_blue.conf

It defines at least the following settings and features for the distribution:

• Name, version and maintainer

• Default distribution features

• Include of packagegroup-core-boot for a minimal set of packages to boot the system

• Yocto Project Software Development Kit settings

• Mirror addresses of source code repositories hosted by The Yocto Project

• List of tested build host distributions

• Build error management

• Security related build options

In the future, more configurations can be added to the distribution such as Teleste’s
platform components. Figure 4.2 is Sky Blue’s logo.

22

Sky Blue
Figure 4.2. Teleste Sky Blue logo

4.5 Systemd as init manager

By default Yocto uses SysVinit as init manager but this can be changed to SystemD by
adding following configurations to the local.conf:

DISTRO_FEATURES += "systemd"

VIRTUAL-RUNTIME_init_manager = "systemd"

VIRTUAL-RUNTIME_initscripts = "systemd-compat-units"

VIRTUAL-RUNTIME_syslog = "rsyslog"

VIRTUAL-RUNTIME_login_manager = "shadow-base"

DISTRO_FEATURES_BACKFILL_CONSIDERED = "sysvinit"

Even though there has been a debate between SysVinit and SystemD as init system for
distributions such as Debian, Fedora and OpenSuSE, SystemD has replaced SysVinit in
these distributions [10]. SystemD has also been the default init system for Debian since
Jessie, which was initially released in 2015.

To achieve backwards compatibility to Debian based DCU40 image, SystemD was chosen
as the init system for this Yocto build. However SystemD has support for SysVinit type init
scripts, which were also enabled.

4.6 Seco packages and kernel modules

Seco provided packages and kernel modules for SPI, I2C and for internal components
such as:

• FXL6408 and PCAL6408A, 8-bit I2C-controlled GPIO expanders

• PCA9655E, a 16-bit I2C-controlled GPIO expander

They also provided kernel module seco-spi, which is an implementation for interfacing
with SPI devices from user space via the spidev linux kernel driver. Rest of the packages
are:

• minicom, a tool used to connect serial devices

• setserial, a program for getting and setting Linux serial port information

• net-tools, a collection of base networking utilities

23

• spitools, a command line tool to help using spidev devices

These configurations are set in the local.conf with lines:

IMAGE_INSTALL_append = " seco-spi i2c-tools fxl6408 pcal6408 pca9655e \

minicom setserial net-tools spitools"

MACHINE_EXTRA_RRECOMMENDS += "kernel-module-seco-spi"

KERNEL_MODULE_AUTOLOAD += "spidev seco-spi"

4.7 Package manager and Debian package format

The Yocto Project’s default package manager is RPM, which was originally made for
Red Hat Linux. Since Debian package format is the default for Teleste’s packages, and
Imagetools created base image it, was chosen for the DCU40 image. Switching to Debian
packages requires these configuration lines in the local.conf:

EXTRA_IMAGE_FEATURES += "package-management"

PACKAGE_CLASSES = "package_deb"

This enables the dpkg package manager, but it does not necessarily provide support for
packages build especially for Debian. The OpenEmbedded Core layer also has a recipe
for apt, which is an advanced front-end for dpkg. This can be used together with Teleste’s
own Debian package repository to install packages to DCU40 when developing projects.

Internally, BitBake will package all software as individual Debian packages, which are then
installed to the filesystem. BitBake also splits the packages into smaller parts, such as
source code and documentation which can be included, if needed, on the root filesystem
with a local.conf line:
EXTRA_IMAGE_FEATURES += "src-pkgs doc-pkgs"

4.8 Keyboard layout

By default, the keyboard layout of the built image is US layout. To use Finnish keyboard
layout, the keyboard-fi package from meta-dcu40 layer is added to local.conf:
IMAGE_INSTALL_append = " keyboard-fi"

However this package does not provide keyboard support for Scandinavian letters such as
"ä" and "ö". To enable full Finnish support following configurations can be added to the
local.conf:

GLIBC_GENERATE_LOCALES = "en_US.UTF-8 fi_FI.UTF-8"

IMAGE_LINGUAS = "fi-fi"

These install the Finnish locales and set it as the default language for the image. However,
this should not be necessary for Finnish, nor other languages, since customer projects’
software does not need this kind of system wide support for multiple languages.

24

4.9 Systemd-boot or GNU GRUB as bootloader

The default bootloader for Yocto is systemd-boot, which is lighter and simpler than GNU
GRUB. Systemd-boot supports only systems with UEFI firmware, and it loads boot entry
information from the UEFI system partion which is usually mounted at /efi/. Systemd-
boot makes it possible to change boot configurations such as timeout, default boot entry
selection, kernel command line arguments, and others. It also integrates with systemd
which implements features such as rebooting into a specific boot entry. To increase the
reliability of the system, systemd implements boot counting and an automatic fallback to a
working boot entry if enough failures are encountered [11]. The kernel must be configured
with EFISTUB enabled for the systemd-boot.

GNU GRUB is more traditional bootloader for Linux systems, and now it refers to its second
version while the first version is called Grub Legacy. GRUB 2 was rewritten from scratch
since the first version could not keep up with the feature requirements and extensions
written for it [12]. GNU GRUB offers more features than systemd-boot but that also makes
it more complicated. However, it can also boot from MBR partitions which enables usage
of Legacy BIOS, but it should not be considered as a viable option anymore since Intel is
planning to remove support for CSM from client and data center platforms by 2020 which
enables Legacy booting [13].

Systemd-boot is selected as bootloader in the local.conf with:
EFI_PROVIDER="systemd-boot"

4.10 BusyBox and GNU Core Utilities

By default, Yocto uses BusyBox to provide several Unix utilities in a single executable
file. Even though BusyBox offers nearly all utilities provided in GNU coreutils, they are
normally minimalist versions of their fully-featured GNU counterparts thus having fewer
options. For embedded linux system with limited resources and size limits, BusyBox can
be an optimal solution. However, DCU40 is equipped with enough memory and processing
power to run the full versions of GNU coreutils, and early on it was noticed that even the
simplest programs such as ps for listing processes did not have all the options which the
GNU coreutils has. Because of this, BusyBox was replaced with GNU coreutils by adding
following configuration lines to the local.conf:

PREFERRED_PROVIDER_virtual/base-utils = "coreutils"

VIRTUAL-RUNTIME_base-utils = "coreutils"

VIRTUAL-RUNTIME_base-utils-hwclock = "util-linux-hwclock"

4.11 Kernel configurations

The default kernel provider in Yocto is linux-yocto, which can be found at:
yocto/poky/meta/recipes-kernel/linux/linux-yocto_5.4.bb

25

Another kernel is provided by meta-intel layer:
remote/meta-intel/recipes-kernel/linux/linux-intel_5.4.bb

To select linux-yocto kernel version 5.4.51, following configuration lines are added to the
local.conf:

PREFERRED_PROVIDER_virtual/kernel="linux-yocto"

PREFERRED_VERSION_linux-yocto="5.4.51"

To append arguments to the kernel command line, the following line is added to the
local.conf:
APPEND += "net.ifnames=0 mitigations=off"

which enables traditional network interface names and disables security mitigations dis-
cussed in Section 7.2.2.

Selected kernel can be configured with a graphical menuconfig interface with a command:

$ bitbake virtual/kernel -c menuconfig

The menuconfig interface can be seen in the Figure 4.3.

Figure 4.3. Main menu of Linux kernel configuration menu.

Instead of creating a full kernel configuration file, the kernel can be configured with
configuration fragments [14]. These are more flexible since they can be applied to other
kernel versions, also. However, by using the search option in the Kernel configuration
menu, the kernel configuration options are easy to find. Once the correct options have
been found, they can be be added to meta-dcu40 as a kernel recipe, which will get

26

appended to linux-yocto kernel. The patch directory is located at:
yocto/meta-layers/local/meta-dcu40/recipes-kernel/linux-yocto

For example, there are separate kernel configuration fragments for GNSS, I2C, NFS and
SPI.

4.11.1 Analyzing the build size of individual kernel features

When doing kernel build iterations for storage space limited devices, the size of the kernel
binary can be an important factor. To inspect the build size of individual kernel features,
the kernel has to be rebuilt without the sstate cache so that the build generates actual
build artifacts rather than using previously build sstate cache items. The command to
rebuild the kernel without sstate cache is:

$ bitbake linux-yocto -c do_build -f

The sizes of individual kernel build artifacts can be quickly checked with a command:

$ pushd ‘find ./tmp/work/ -regex ".*linux-yocto.*standard-build"‘ && \

find . -name "*.o" | xargs size | sort -n -r -k 4 | less && popd

This command finds the build directory, temporally moves into it, finds all compiled object
files, gets the sizes of them and sorts them in descending order in less, after which it
moves back to the original directory.

4.12 Disabling serial-getty

The machine configuration in:
yocto/meta-layers/remote/meta-intel/conf/machine/intel-corei7-64.conf

sets serial devices ttyS0, ttyS1 and ttyS2 as serial consoles and creates a systemd target
for the build rootfs:
/etc/systemd/system/getty.target.wants

This causes systemd to start serial-getty processes on those serial ports which floods
DCU40’s ttyS0 serial port. This port is used for the UART connection between the
ATmega 3250A AVR microcontroller and Seco’s processor card. If ttyS0 is used by
serial-getty processes, the connection between user space programs and AVR becomes
unreliable. However, serial-getty is needed when running the build with a command
runqemu (see Section 5.2), which is why the serial consoles are not completely disabled
with a local.conf line:
SERIAL_CONSOLES_intel-corei7-64 = ""

Since systemd offers many condition options for starting the services, it can be checked, if
the system is executed in a virtualized environment [15]. For the serial-getty service this is
done by adding a configuration line:
ConditionVirtualization=yes

to the unit configuration of serial-getty@.service. This configuration calls for command

27

systemd-detect-virt, which returns none/qemu depending on the virtualisation status of
the environment the build is running on. A patch was created for the systemd to enable
this modification.

4.13 Enabling magic SysRq key

The Magic System Request Key provides keyboard key combinations to directly send

commands to the kernel [16]. These can be useful in developing and debugging situations,

for example, if the target machine becomes unresponsive. To perform a safe reboot of a

linux system, the following keyboard combination can be used:

Hold down: Ctrl + Alt + SysRq

and type these keys in this order:

• r , turns off keyboard raw mode and thus recovers from X server crashes

• e , sends a SIGTERM to all processes, except for init

• i , sends a SIGKILL to all processes, except for init

• s , attempts to sync all mounted filesystems

• u , attempts to remount all mounted filesystems read-only

• b , immediately reboots the system

Magic SysRq key was enabled with bbappend file located at:
layer/meta-dcu40/recipes-extended/procps/procps_%.bbappend
It patches the file /etc/sysctl.conf which is provided by the procps package.
System requests can be disabled by adding a BBMASK configuration to the
local.conf:
BBMASK += "procps.*\.bbappend"

4.14 Java 8

Java 8 is the default Java on DCU40 and it can be added the the image with
following configuration lines to the local.conf:

PREFERRED_PROVIDER_virtual/java-initial-native = "cacao-initial-native"
PREFERRED_PROVIDER_virtual/java-initial = "cacao-initial"
PREFERRED_PROVIDER_virtual/java-native = "cacao-native"
IMAGE_INSTALL_append = " openjre-8 libslf4j-java"

The first three configuration lines enable CACAO Java Virtual Machine, and the
last line is the Java runtime library by OpenJDK. A few logging libraries, such as
SLF4J, were added by writing a recipe for getting the required Java archive files
from Maven’s central archive which corresponded with the same library version as
on Teleste’s Debian based DCU40 base image.

28

4.15 Python 2

Even though Python 2 support by the Python Software Foundation ended in
January 2020, and it is not receiving any security updates [17], it still has its
use cases in running legacy software which has not been ported to Python 3 yet.
Adding Python 2 can be done with OpenEmbedded community layer meta-python2,
which has been added to:
yocto/meta-layers/remote/meta-python2
Python 2 and required packages are installed with local.conf lines:

IMAGE_INSTALL_append = " python python-pip python-spidev \
python-cryptography python-serial \
python-gps python-paramiko python-cffi"

PREFERRED_VERSION_python-serial = "2.7"

Acquiring the correct Python 2 packages for pip requires writing recipes for them
which are in:
yocto/meta-layers/local/meta-common/recipes-python/
While a newer version of python-serial exists (3.4), version 2.7 is used which is the
same as in Teleste’s Debian based DCU40 base image. This version has a known
bug related to a certain bitmask so a .bbappend patch file was written for it.

4.16 PostgreSQL 12

DCU40 uses PostgreSQL on Debian so it was added to the image from meta-
openembedded layer with local.conf lines:

IMAGE_INSTALL_append = " postgresql postgresql-client libpam \
postgresql-dev python-pygresql"

DISTRO_FEATURES_append = " pam"

Since the DCU40’s Debian base image has a preinstalled SQL database, the same
database was also set up with this build environment. Initializing of the database
can be done during BitBake image generation by extracting a pre-generated
database archive to a directory:
/var/lib/postgresql/data/
on the target filesystem. To disable the installation of the default database a mask
for .bbappend file installing the database can be added to the local.conf:
BBMASK += "postgresql.*\.bbappend"

To re-generate the database archive file from the database dump file (sql.db),
following commands can be used on the target machine or virtual image:

29

1. Stop the PostgreSQL server:

$ systemctl stop postgresql

2. Remove old database and generate new:

$ rm -rf /var/lib/postgresql/data
$ su -l postgres -c "/usr/bin/initdb \

--pgdata=’/var/lib/postgresql/data’ --auth=’ident’"

3. Start the PostgreSQL server and restore db.sql:

$ systemctl start postgresql
$ sudo -u postgres psql -U postgres -f /var/lib/postgresql/db.sql

4. Generate a database archive

$ systemctl stop postgresql
$ tar -cf db.tar /var/lib/postgresql/data .

After this, the database can be transferred back to the build host so that BitBake
can handle its installation.

4.17 Live USB image

To build a live image, which can be used to live boot the system or automatically
install it from USB flash drive to DCU40, this configuration line is needed to be
added to the local.conf:
IMAGE_FSTYPES += "iso"
This generates an .iso artifact (see Section 5.1), which can be flashed to a USB
flash drive and the image can be booted from it or installed to DCU40’s internal
eMMC memory. See Section 5.4 for live USB flash drive usage.

The live image is actually a initramfs (initial ram filesystem) image, which means
that it is loaded to the RAM of DCU40 from where it can load the actual image
from the USB flash drive, or install it to the device’s internal eMMC memory. The
installing script can be found at:

yocto/meta-layers/local/meta-dcu40/recipes-core/initrdscripts/
initramfs-module-install-efi/init-install-efi.sh

By default, this script prompts user input for selecting the target hard drive, but
since by default DCU40 only has one, this step has been automated in the
script so that booting from USB flash drive will automatically install the image to
DCU40 if option boot is not selected during the systemd-boot prompt. It will also
automatically partition the target device by using the parted partition tool. If a

30

specific partitioning scheme is needed to be used then the OpenEmbedded Image
Creator Wic can be used, which is explained in Section 2.13.

4.18 Uninative settings

The Yocto Project’s uninative prebuild glibc is designed to remove the differences
between the host distributions, meaning that the native sstate objects can be
shared between the build hosts. This is done by isolating the build system from
the host distribution’s C library [1]. Uninative settings are in site.conf starting
with a UNINATIVE_ prefix. These settings include filenames with checksums for
different architecture tarballs, and the locations of them. The uninative tarball can
be also build with a BitBake command:

$ bitbake uninative-tarball

4.19 Audio and graphics

Even though DCU40 does not have a traditional audio output and it is not designed
to show any graphics from the DisplayPort output, the correct kernel configurations
were added as kernel fragments so that audio can be played through DCU40’s
DisplayPort output to a display supporting PCM audio playback. The needed
local.conf settings are:

DISTRO_FEATURES += "alsa"
IMAGE_INSTALL_append = " alsa-utils pulseaudio"

Enabling graphics requires installing the X Server, hardware acceleration codecs
and Open Graphics Library. Glxgears from MESA OpenGL demonstration program
can be used to verify that the graphics work. Required local.conf lines are:

DISTRO_FEATURES += "x11 x11-base hwcodecs opengl"
IMAGE_INSTALL_append = " xserver-xorg xinit xauth xterm xrandr \

xf86-video-fbdev mesa-demos"

31

5 DEPLOYING THE BUILD ON THE DCU40 AND
VIRTUAL ENVIRONMENTS

5.1 Build artifacts

After BitBake has built the target, the artifacts generated for DCU40 can be found
in directory:
yocto/build/dcu40/tmp/deploy/images/intel-corei7-64/. Important artifacts
are:

• bzImage is the kernel image.

• core-image-minimal-initramfs-intel-corei7-64.cpio.gz, is the initramfs
image which is the live boot image

• dcu40-image-intel-corei7-64.ext4, is the root filesystem of the built image

• dcu40-image-intel-corei7-64.iso, is the live image capable of live booting
the DCU40 or flashing it

• dcu40-image-intel-corei7-64.qemuboot.conf, is the configuration file for
runqemu command

• dcu40-image-intel-corei7-64.tar.bz2, is used with iPXE network boot as
root filesystem for the NFS server

• dcu40-image-intel-corei7-64.wic, is an image container of all created
partitions (boot, rootfs and swap) and it is used in VirtualBox image creation

• dcu40-image-intel-corei7-64.wic.vdi, is the VirtualBox image

Other artifacts are also generated: a microcode update file, certificate files, UEFI
files and archived kernel modules. The root filesystem produced by the build can
also be inspected by running a command:

$ bitbake dcu40-image -c do_rootfs -f

which forces the root filesystem generation without sstate cache, after which it can
be found in the build directory at:

tmp/work/intel_corei7_64-poky-linux/dcu40-image/1.0-r0/rootfs

32

A command can be used to find the recipe which produces an individual root
filesystem file:

$ oe-pkgdata-util find-path <full_file_path>

5.2 Running the build with runqemu command

Builds can be run immediately after successful build with Yocto’s Qemu wrapper
Python script with command:

$ runqemu nographic kvm

The nographic argument disables the video output and enables a serial console.
The kvm option enables the Kernel-based Virtual Machine, KVM, which is more
reliable and faster than Qemu’s emulated CPUs since it uses the host machine’s
CPU for hardware virtualization. For example, loading many Java classes seems
to be unreliable when using an emulated CPU.

By default, this command does not use any specific virtual machine file, but it
uses the kernel bzImage image together with a rootfs.ext4 image from the build
output directory. Additionally, this wrapper can pass custom parameters directly
to Qemu or kernel. The basic runqemu command syntax is described in Yocto
Project Mega-Manual section 8.9. [1]. To exit Qemu when the virtual machine is
running the following keyboard combination can used:

Ctrl + a , x

This way signals such as SIGINT can be used inside Qemu with a keyboard
combination:

Ctrl + z

Qemu also has a feature called Monitor, which can be used for various tasks such
as:

• Removing and inserting media images

• Freezing and unfreezing the VM and saving/restoring its state

• Inspecting VM state without external debugger

• Limiting block device IO operations

• Inspecting CPU registers and memory

The Qemu Monitor can be opened and closed while the VM is running with a
keyboard combination:

Ctrl + a , c

33

5.3 Running the build in VirtualBox

VirtualBox by Oracle is a powerful virtual machine manager with a command line
and a graphical user interface. It has lots of features such as:

• Ability to run multiple VMs at once

• Taking snapshots of VMs for testing and recovery purposes

• Portability, which means that VirtualBox can be run on many hosts and VMs
can be shared among them

• Nested VT-x/AMD-v which enables running another VM inside the host VM

• Guest Additions, which can be installed inside of the VM for even more
features

• Guest multiprocessing, where VirtualBox can present up to 32 virtual CPUs
to the VM, irrespective of the host CPU core count

VirtualBox’s nested VT-x feature was tested by creating a VirtualBox image for
DCU40, which was equipped with Qemu, so that it could run a Debian 10 virtual
machine. This kind of setup has its use cases when the customers want to run
their own virtual machines in the DCU40. Firstly, Qemu was used to create an
empty image with its own .qcow2 format, and then the Debian installation was
started for the image:

$ qemu-img create -f qcow2 debian.qcow2 2G
$ qemu-system-x86_64 -hda debian.qcow \

-cdrom debian-10.6.0-amd64-netinst.iso -boot d -m 1024

The installation won’t have an internet connection, thus only the Debian Base
System is installed for the minimal image size. Required packages can be installed
afterwards with APT. Only a single ext4 partition is created without a swap. After
the installation is finished, the kernel and the ramdisk are extracted from the
.qcow2 image with a command:

$ virt-get-kernel --add debian.qcow2

After this, they can be provided to Qemu as individual arguments, which enables
the possibility of setting the kernel command line arguments. This is useful since
then the console output of the Debian 10 VM can be redirected to the host’s
terminal. This way all the boot messages are shown, which normally can only be
done with the X11 window manager, which might not be installed on a headless
server host such as DCU40.

In VirtualBox following settings are used:

• Settings -> Motherboard -> Enable EFI, since the image is only UEFI bootable

34

• Settings -> Processor -> 4 CPU, Enable Nested VT-x/AMD-v

• Settings -> Network -> Bridged Adapter Name: VLAN with internet connection
on host, Promiscuous mode: Allow VMs

After the DCU40 image is booted up in VirtualBox, a network bridge is created
for eth0 which is the internet enabled VLAN interface. Finally, a tap interface is
attached to the bridge and an IP address is requested for it:

$ ip link add br0 type bridge
$ ip link set eth0 master br0
$ ip tuntap add tap0 mode tap user root
$ ip link set tap0 up
$ ip link set tap0 master br0
$ dhclient br0

After this, the Debian 10 VM can be started with Qemu:

$ qemu -system -x86_64 -kernel vmlinuz -4.19.0 -11 - amd64 \
-append "root=/dev/sda1 console=ttyS0" \
-initrd initrd.img -4.19.0 -11 - amd64 -hda debian_10.qcow2 \
-m 1024 -cpu kvm64 -enable -kvm -smp 1 -nographic \
-device virtio -net -pci ,netdev=net0 ,mac =12:34:56:78:90:00 \
-netdev tap ,id=net0 ,ifname=tap0 ,script=no ,downscript=no

where:

• -kernel takes the kernel binary as an argument

• -append provides the kernel command line arguments

• -initrd points to the initial ramdisk

• -hda points to the image with root filesystem (it also has kernel and initrd
inside)

• -m sets the RAM amount, -cpu CPU type, -enable-kvm enables KVM and
-smp processor core count

• -nographic redirects input/output to the current terminal and disables graphi-
cal output

• -device sets the virtual network adapter

• -netdev uses previously generated tap0 to connect the the br0

The MAC address can be freely generated. After shutting down the virtual machine
the bridge and tap interface can be cleared with:

$ ip link del tap0
$ ip link del br0

35

An automation script was written for this setup. Figure 5.1 is an illustration about the
network structure, which was set up for the physical DCU40, after its functionality
was verified in a virtualized environment. The setup allows the customer to write
programs for the Debian 10 virtual machine inside DCU40, which can interact with
Teleste’s LED displays, for example.

Teleste intra network

Servers Workstation

Internet

Teleste test network

DCU Network tunnelLocal connection

Debian 10 VM

NExt: Paris

LED display

VPN

Customer intra network

Figure 5.1. Customer interactable Debian 10 virtual machine running on DCU40

5.4 Using the live image

The build artifact dcu40-image-intel-corei7-64.iso can be flashed to a USB
flash drive with command-line utility Bmaptool by executing the following com-
mands:

$ bmaptool create dcu40 -image -intel -corei7 -64. iso \
dcu40 -image -intel -corei7 -64. iso.bmap

$ sudo bmaptool copy dcu40 -image -intel -corei7 -64. iso /dev/sdX

where sdX is the correct block device of the USB flash drive. The BIOS setup of
DCU40 has to have the UEFI boot option enabled for the USB drive to boot up.
After booting to the systemd-boot bootloader, there is a configurable 10 second
timeout before the default boot entry of install is executed and the device is flashed.
If boot is selected, then the image is only booted up from the USB flash drive. The
performance and boot up time are not as fast as from a eMMC memory but that
is expected behaviour from the live USB drive, since the read and write speeds
over USB bus are not as fast as eMMC’s speeds. Flashing speed performance of
different utilities was tested in Section 7.1.1.

36

5.5 Network boot of DCU40

Because creation of a live USB flash drive and flashing the DCU40 with it takes
some time, a flexible UEFI network boot environment was set up. With network
boot, the DCU40’s eMMC memory does not need to be flashed at all but it is
booted up from TFTP and NFS servers which are running on the build host.
This is achieved with iPXE, which is an open source network boot firmware
implementation following Intel’s PXE specification. This works by running a DCHP
server on the build host which provides the address of a TFTP server to DCU40
which is hosting three files:

• bzImage, the kernel image

• install.ipxe, the iPXE menu configuration file

• ipxe.efi, the iPXE boot loader executable

First, the iPXE boot loader executable is downloaded from the TFTP server
to DCU40 and executed, which then uses the iPXE menu configuration file to
download the kernel image and set the NFS share as root filesystem.

iPXE was chosen for this environment because of its flexibility and features which
include:

• Controlling the boot process with a menu script

• Support for UEFI network boot over different protocols

• Chainloading with DCU40’s network card’s PXE implementation by Intel

5.5.1 Setting up a TFTP server

tftp-hpa was chosen as the TFTP server on the build host, and the only configu-
ration which was done for it was to change the default /srv/tftp/ directory to be
writable by everyone:

$ sudo chmod 755 /srv/tftp/

This is for the automated network boot deploying script, which is located at:
yocto/build/dcu40-image/scripts/network_boot_deploy.sh
The TFTP server can host multiple different kernels which can be configured in the
install.ipxe iPXE menu configuration file. During the network boot, the wanted
boot selection can be chosen on the DCU40 and default set in the iPXE menu
configuration file.

37

5.5.2 Setting up a DHCP server

A DHCP server is needed to be configured for network boot, which tells the location
of network boot files to the client DCU40.

On Debian and Ubuntu a DHCP server is installed and configured with:

$ sudo apt isc -dhcp -server
$ echo ’INTERFACESv4 ="<interface >"’ | sudo tee -a /etc/default/

isc -dhcp -server

$ sudo tee -a /etc/dhcp/dhcpd.conf << EOF
Network for DHCP server
subnet <subnet > netmask <netmask > {

option routers <host_ip >;
option domain -name -servers <host_ip >;
option subnet -mask <netmask >;
option broadcast -address <broadcast >;

}

PXE network boot
allow booting;
next -server <host_ip >;
option client -arch code 93 = unsigned integer 16;
if option client -arch != 00:00 {

filename "ipxe.efi";
}

DCU40 static IP
host cu {

hardware ethernet <dcu40_mac >;
fixed -address <dcu40_ip >;

}
EOF

$ sudo service isc -dhcp -server restart

where:

• <subnet> is the subnet used for the connection

• <netmask> is the network mask for the subnet

• <broadcast> is the broadcast address for the connection

• <interface> is the name of the interface used for connecting to DCU40

• <host_ip> is the host’s IP address on the <interface>

• <dcu40_mac> is the MAC address of the DCU40

• <dcu40_ip> is the IP address wanted for the DCU40

38

It is assumed, that the interface does not have any other DHCP servers running and
it is configured with static IP for the host. A convenient way, is to set up a separate
VLAN for <interface>. The "PXE network boot" section of the configuration
follows DHCP specification for PXE by defining "Client System Architecture Type
Option Definition" [18]. This configuration allows booting of clients with different
architecture and both BIOS and UEFI boot. Currently, DHCP returns the filename
"ipxe.efi" if the client gives any other DHCP option 93 than 0, which is standard
PC BIOS. For example DHCP options can be defined for ARM systems also.

5.5.3 Chainloading iPXE

Because DCU40 already has a basic PXE implementation on its network card
iPXE’s chainloading is used to first boot with PXE, and then chainload to iPXE’s
boot menu. Doing this requires building an EFI file with iPXE’s source code. The
build of ipxe.efi binary requires a chain.ipxe, which has the host’s TFTP server
IP address and menu.ipxe as a chain target.

A template for chain.ipxe:

#!ipxe
dhcp
chain tftp ://% HOST_IP %/menu.ipxe

and a template for menu.ipxe, which has the boot option for dcu40-image:

#!ipxe
:start
menu Please choose boot image
item --gap DCU40
item dcu40 -image dcu40 -image
item --gap ipxe shell
item shell Drop to iPXE shell
item reboot Reboot machine

choose --default dcu40 -image --timeout 5000 target \
&& goto ${target}

:shell
echo Type ’exit’ to get the back to the menu
shell
goto start

:reboot
echo Rebooting
reboot

:failed

39

echo Booting failed , going back to start
goto start

DCU40 image in the build directory
:dcu40 -image
kernel tftp ://% HOST_IP %/ bzImage \
root=/dev/nfs nfsroot =% HOST_IP %:% YOCTO_DIR %/build/dcu40 -image/nfs -

boot ,nfsvers=3,port =3049,udp ,mountport =3048 \
ip=dhcp raid=noautodetect rootwait console=tty0

boot || goto failed

For convenience, a script yocto/scripts/make_ipxe_boot.sh was written, which
automates the file generation from templates by using sed stream editor, and
building of the ipxe.efi binary with help of the iPXE GIT repository added as a
submodule, and deploying the files to the TFTP server. As can be seen from the
goto statements in menu.ipxe, the iPXE’s command language is fairly primitive
but it provides a configurable bootloader menu like in Figure 5.2. iPXE’s command
reference has all the available commands documented which can be used in iPXE
shell or in scripts [19].

Figure 5.2. iPXE bootloader menu

5.5.4 NFS root filesystem

After the kernel has been downloaded to the DCU40 then the NFS server address
is given as a kernel command line option. To deploy the NFS server in user space
following commands can be user:

$ runqemu -extract -sdk <rootfs_tarball > <nfs_rootfs_dir >
$ runqemu -export -rootfs <nfs_rootfs_dir >

where:

• rootfs_tarball is the tar package of the root filesystem in the build output
directory

• nfs_rootfs_dir is the directory which is to be used as a NFS share

The root filesystem can be interacted with and modified when the DCU40 is running
from it.

40

6 A COMPARISON OF BITBAKE AND TELESTE’S
IMAGETOOLS

6.1 History of build automation at Teleste

Build automation and reproducibility have been important aspects since the first
DCU type devices were developed at Mitron Oy, which Teleste Oyj acquired in
2015. In 2012, a DCU type device was an acronym for Display Control plug-in
Unit, which main role was to control TFT and LED displays on a railway vehicle.
The main programming language on DCU was Java, which is still the most used
language for Teleste’s platform components.

6.1.1 Rocket Tools

One of the first build automation tools was called Rocket Tools, which is a command
line build system written for Bash. The main functionalities of Rocket tools are:

• Debian package management and building

• Dependencies management

• SVN checking out and committing

• Automatic changelog updating

• Virtualisation with VirtualBox

• Maven build system management, especially Project Object Model (.pom)
files handling

However, Rocket Tools has its drawbacks. First of all, it was mainly written by
one developer why the working principles of it were not so easy to understand for
other developers. The main script of Rocket Tools is called rt_release.sh, and it
is over 2000 lines of bash functions, inline file generation, and external program
calls. It has to be run with sudo, which is said to cause problems on the build host
since the build environment is not isolated, meaning, that the script can modify the
system files of the build host. Nowadays, it is recommended to run Rocket Tools in
a virtual machine for old legacy projects, because of possible host contamination.

41

6.1.2 Maven

Rocket Tools was eventually replaced with a pure Maven build system which can
be run in developers’ IDE, command line or on dedicated Jenkins build hosts.
Maven is a building tool mainly for Java, but with its plugin system other languages
are also supported. Its objectives are [20]:

• Making the build process easy by hiding many underlying mechanisms

• Providing a uniform build system with its Project Object Model so that every
project has same the structure

• Providing project information such as changelog updating, sources’ cross
referencing, dependencies management and unit tests

• Encouraging better development practices with test source code separation,
naming schemes and project layout guidelines

In Teleste’s projects Maven is used with a collection of plugins:

• Release plugin, which can be used from Jenkins’ web interface to create new
tagged releases and update VCS

• Execution plugin for executing any available program on the build host such
as make

• Dependency management

• Debian package building

• Update Manager compatible update package building

Maven is a modular build system where the individual components can be built
separately or a full project build can be executed and if Maven’s (.pom) files are
written correctly which means, that higher level artifacts define sub-artifacts as
modules. Artifacts also have dependencies which are downloaded from Teleste’s
Nexus repository which stores platform component build artifacts’ (.pom) files and
prebuilt (.jar) files. The platform components are versioned which makes it easy
to choose the correct versions for each project.

6.1.3 Jenkins

Jenkins, an open source automation server, is the default continuous integra-
tion server for Teleste’s projects. It can be used for all sorts of tasks, such as
building, testing, delivering and deploying of software. At Teleste, Jenkins also
creates update packages for the other PIS devices which are installed by using
the Updatemager interface hosted on the DCU40.

Jenkins can also be used to run BitBake, which would make the continuous

42

integration of new image releases fast and easy. It is not practical for every
developer to set up the Yocto build environment, but a centralized build host
can be used to automatically start new builds once new commits are pushed to
a Git repository. Other automatic tasks can also be set up such as refreshing
the network bootable images, running tests in a virtual machine or on an actual
hardware and updating the downloads and sstate-cache hosted on the Teleste’s
network share. The Yocto Project also provides guidelines for creating a team
development environment [1].

6.1.4 Imagetools

Imagetools is the current image creation tool at Teleste. It is a collection of Bash
and Python scripts and tools, and it is used to create USB installer flash drives for
the most of Teleste’s devices. Before the new line of Teleste’s PIS devices started
to use internal eMMC memory for the operating system, the devices normally used
SSDs for that purpose. Imagetools can also flash SSDs and HDDs directly after
which the flashed disks can be installed to the device. Imagetools has three main
user initialized scripts:

• imagetools_flash_image, which flashes an image to a storage medium

• imagetools_create_usb_installer, which creates a USB installer flash
drive for flashing internal storage mediums such as eMMC

• imagetools_build_virtual_image, which can build VirtualBox, VMware or
raw virtual machine images

Eventually, the main script imagetools_flash_image is called in every case which
does the actual image flashing. This script calls a sequential collection of numbered
scripts which do the following in this order:

1. 100_setup_config, reads the main configuration file imagetools.conf, which
can be used to set global variables for Imagetools

2. 200_partition_disks, creates partitions according to a predefined partition
scheme

3. 300_make_filesystem, creates file systems for partitions

4. 400_mount_filesystem, mounts the partitions to the build host

5. 500_unpack_data_to_filesystem, unpacks the pre-base image

6. 600_addons, installs Debian packages and miscellaneous configurations

7. 700_grub, installs GRUB bootloader

8. 800_unmount_filesystem, finishes the installation and cleans up the environ-
ment

43

More numbered custom scripts can be added, which are run in the number order.
However, same things are done in a different way by different developers when
writing these custom automation scripts. Normally, the extra scripts do not use
Imagetools’ logging and execution wrappers, but they just have the bare minimum
statements to archive a goal, such as copying a configuration file or installing an
extra package to the image. To change the behaviour of a predefined numbered
script is has to be added to a project build with the same number and name so
that it overwrites the predefined one. In BitBake, commands can be appended and
prepended to individual tasks which is usually only what is needed even though
tasks can be completely overwritten.

Imagetools workflow is pictured in the Figure 6.1. The workflow chart does not
describe all the steps and processes involved in a full Imagetools run, but it shows
all the major phases of a build. Gray and green colors are used to separate the
automated processes from manual configurations. The workflow is split to four
different phases which are:

Phase 1: Pre-base image creation. Building an image with Imagetools begins
with creation of a Pre-base image, which is a process of installing a Linux dis-
tribution, Debian in this case, to the target device such as DCU40, for example.
After the Debian installation, the DCU40 is either connected to the internet for
Debian repository access, or needed packages are downloaded with another
machine and transferred and installed to the device. Dependencies are added for
hardware devices, Python interpreter and Java Runtime Environment are installed,
and Teleste’s basic platform components such as Update Manager are installed
together with HTTP-server and SQL database. After the installation is configured
and tested, a full disk image of the installation is taken by generating a tar archive
out of it, which is usually 1 GB in size.

Phase 2: Base image creation. After the pre-base image is created, it is stored
to the Teleste’s network share, which has a specific directory structure set up for
Imagetools. The base image directory is set up in a way that if Imagetools is run
in this directory, it can directly flash external storage mediums or create a USB
installer flash drive, which can install the pre-base image back to DCU40. Also,
extra configuration files and Debian packages can be added to the base image
directory, which is more flexible method of modifying the pre-base image than
working with the tar archive. The base image is a stable base line for the project
images thus it should not be modified later on.

Phase 3: Project image creation. As a phase, this is basically identical to phase
2, but the installation is done over the base image rather than over the pre-base
image. The purpose of this phase is to modify and expand the features of the
base image so that it fulfils the requirements of a project specific image. For

44

example, project specific GPG keys, configuration, and Debian packages are
installed. Project related platform components can be installed in this phase or in
the next one. As in the previous phase, the project image should not be modified
after creation because the specific image version is used in production, where the
devices are assembled, installed, and sent to the customers.

Phase 4: Project package installation. The iterative developing of a project is
done in the last phase. Maven and Jenkins are used to build software update
packages, which are installed to the device via Update Manager. In some projects
the deployment of update packages can be done from a centralized update server,
which sends the update packages to all vehicles and installs them automatically.
Normally during project development, this phase is used for adding new features,
fixing software bugs, and creating major software releases for the project.

As a process, the Imagetools workflow is highly sequential and the iterative devel-
oping is only done in the last phase. This means that the first 3 phases should be
executed without any errors, so that the iterative work could be done on a stable
Debian installation. However, since the build process is highly influenced by many
individual scripts, written by many developers, non fatal errors normally happen
during the build. Fixing these errors might be dangerous since the same base
image is used for many projects where the erroneous behaviour might work in
a different way because of different combination of scripts. If modifications are
needed to be done to a base image, new versions of the base and the project
images have to be created.

45

Im
a
g
e
to
o

ls
	W

o
rk
fl
o
w

D
e
b

ia
n
	i
s

in
s
ta

ll
e
d

o
n
	D
C

U

P
h
a
s
e
	1

:	
P
re

-b
a
s
e
	i
m

a
g
e
	c
re

a
ti
o
n

T
A

R
	a
rc
h
iv
e
	i
s

g
e
n
e
ra
te
d

fr
o
m

	p
re

-b
a
s
e

im
a
g
e

D
C

U
	i
s
	c
o
n
fi
g
u
re
d

	a
n
d

	r
e
q
u
ir
e
d

fe
a
tu
re

s
	a
re

	a
d
d
e
d

:

S
P

I	
a
n
d

	i
2
c
	k
e
rn
e
l	
m
o
d
u
le

s
G

P
S

,	
LT

E
,	
A

V
R

	a
n
d

	F
P

G
A

P
y
th
o
n
	a
n
d

	J
a
v
a

P
o

s
tg
re

S
Q

L
H

T
T

P
-s
e
rv
e
r	

U
p
d

a
te

	M
a
n
a
g
e
r

P
h
a
s
e
	2

:	
B

a
s
e
	i
m

a
g
e
	c
re

a
ti
o
n

P
re

-b
a
s
e
	i
m

a
g
e
	i
s
	s
to
re
d

	o
n

fi
le

s
e
rv
e
r,
	w

h
ic
h
	u

s
e
s
	s
p
e
c
ifi
c

d
ir
e
c
to
ry

	s
tr
u
c
tu
re

	f
o
r

Im
a
g
e
to
o

ls
.

A
	s
e
q
u
e
n
ti

a
l	
s
c
ri
p
t	
c
o

ll
e
c
ti
o
n
	f
o
r

Im
a
g
e
to
o

ls
	i
s
	a
d
d
e
d

	w
h
ic
h
:

1
.	
P

a
rt

it
io
n
s
	d

is
k
s

2
.	
C
re

a
te

s
	fi

le
s
y
s
te
m

3
.	
U
n
p

a
c
k
s
	p
re

-b
a
s
e
	i
m

a
g
e

4
.	
In

s
ta

ll
s
	a
d
d
o
n
s
,	
w
h
ic
h
	c

a
n

b
e
	D
e
b

ia
n
	p

a
c
k
a
g
e
s
,

c
o
n
fi
g
u
ra
ti
o
n
s
	o
r	

a
n
y
th

in
g

5
.	
In

s
ta

ll
s
	G

R
U

B

Im
a
g
e
to
o

ls
	s
e
le
c
ts

	t
h
e
	c
o
rr
e
c
t

B
a
s
e
	d

ir
e
c
to
ry

	b
y
	u

s
in
g

	a
c
o
n
fi
g
u
ra
ti
o
n
	fi

le
	f
ro
m

	t
h
e

P
ro

je
c
t	
d

ir
e
c
to
ry

.

Im
a
g
e
to
o

ls
	e

x
e
c
u
te

s
	t
h
e

s
e
q
u
e
n
ti

a
l	
s
c
ri
p
t	
c
o

ll
e
c
ti
o
n

a
ft
e
r	
w
h
ic
h
	t
h
e
	B

a
s
e
	i
m

a
g
e
	i
s

b
u
il
t.

P
h
a
s
e
	3

:	
P
ro

je
c
t	

im
a
g
e
	c
re

a
ti
o
n

A
	P
ro

je
c
t	
d

ir
e
c
to
ry

	i
s
	g
e
n
e
ra
te
d

w
it
h
	I
m

a
g
e
to
o

ls
	c
o
n
fi
g
u
ra
ti
o
n
	fi

le
a
n
d

	p
ro

je
c
t	

s
p
e
c
ifi
c
	c
o
n
fi
g
u
ra
ti
o
n
s
,

D
e
b

ia
n
	p

a
c
k
a
g
e
s
	a
n
d

	s
c
ri
p
ts

	a
re

a
d
d
e
d

.

M
o
re

	s
e
q
u
e
n
ti

a
l	
s
c
ri
p
ts

	a
re

	a
d
d
e
d

w
h
ic
h
: R
e
m
o

v
e
s
	u
n
n
e
c
e
s
s
a
ry

fe
a
tu
re

s
	f
ro
m

	B
a
s
e
	i
m

a
g
e

In
s
ta

ll
s
	P
ro

je
c
t	

s
p
e
c
ifi
c

a
d
d
o
n
s

S
e
tu
p

s
	c
o
n
fi
g
u
ra
ti
o
n
s

Im
a
g
e
to
o

ls
	b
u
il
d

	c
o
m
m

a
n
d

	i
s
	r
u
n

in
	P
ro

je
c
t	
d

ir
e
c
to
ry

	u
n
d
e
r	
d
e
v
ic
e

s
p
e
c
ifi
c
	f
o

ld
e
r.

 	
B
u
il
d

	h
o

s
t	
w

it
h
	I
m

a
g
e
to
o

ls
	c

a
n
:

F
la

s
h
	m

a
s
s
	m

e
m
o
ry

	d
e
v
ic
e
s

C
re

a
te

	a
	U

S
B

	i
n
s
ta

ll
e
r	

s
ti
c
k

C
re

a
te

	a
	V

ir
tu

a
lB
o

x
	m

a
c
h
in
e

P
h
a
s
e
	4

:	
P
ro

je
c
t	
p
a
c
k
a
g
e
	i
n
s
ta

ll
a
ti
o
n

P
ro

je
c
t'

s
	J

a
v
a
	s
o

ft
w

a
re

	i
s

s
to
re
d

	i
n
	V
C

S
	s
u
c
h
	a

s
	G

IT

w
h
ic
h
	e
n
a
b

le
s
	fl
e
x
ib

le
v
e
rs

io
n
in
g

,	
b
ra
n
c
h
in
g

	a
n
d

ta
g
g

in
g

	o
f	
th
e
	s
o

ft
w

a
re

.

P
ro

je
c
t	

s
o

ft
w

a
re

p
a
c
k
a
g
e
s
	a
re

in
s
ta

ll
e
d

	t
o

	D
C

U
v
ia

	U
p
d

a
te

M
a
n
a
g
e
r

D
C

U
	i
s
	s
h
ip
p
e
d

to
	c
u
s
to
m
e
r.

 A
u
to
m

a
te
d

	p
ro
c
e
s
s

 M
a
n
u
a
l	
p
ro
c
e
s
s

D
C

U

D
C

U

Je
n
k
in

s
	i
s
	u

s
e
d

	f
o
r

a
u
to
m

a
ti
c
	M

a
v
e
n
	b
u
il
d

s
	o

f
u
p
d

a
te

	p
a
c
k
a
g
e
s
,	
w
h
ic
h

in
c
lu
d
e
	a

ll
	n
e
c
e
s
s
a
ry

p
la
tf
o
rm

	c
o
m
p
o
n
e
n
t	

fo
r

fu
ll
y
	w

o
rk

in
g

	P
a
s
s
a
n
g
e
r

In
fo
rm

a
ti
o
n
	S
y
s
te
m

.

Fi
gu

re
6.

1.
W

or
kfl

ow
vi

su
al

iz
at

io
n

of
Im

ag
et

oo
ls

46

6.2 BitBake compared to Imagetools

Both tools can be thought as build automation and task execution engines which
are user configurable. The main difference between the build artifacts produced
by the tools is the distribution, which for Imagetools is stripped down Debian
and for BitBake Yocto Project’s reference distribution Poky. Imagetools uses
prebuilt packages while BitBake compiles them from source code. The core idea,
underlying principles, and the workflow of the tools are so different that comparing
the tools to each other is hard.

Not all compared terms, such as a task, share any similarities due to the complexity
of BitBake compared to Imagetools. As a good example, installing bootloader (see
also Section 4.9) is a task in both tools: in Imagetools it is a single script which
calls grub-install program to install the GRUB to the target device during image
flashing. In BitBake, installing bootloader is done by including a recipe either for
GRUB or systemd-boot, which BitBake parses and executes the tasks related to it.
For example, recipe for systemd-boot is located in:
yocto/poky/meta/recipes-core/systemd/systemd-boot_244.3.bb
and it is 70 lines long. During image creation for DCU40 with BitBake, 17 different
tasks are processed of which 7 tasks are cached thus not needed to be re-
executed, and 9 tasks have been covered by other tasks. So nearly all tasks have
already been previously executed and cached, thus they can just be fetched from
the cache.

Some feature differences of BitBake and Imagetools have been collected to the
Table 6.1. The compared features might not be exactly comparative, but the table
provides some insight of the features for both tools.

47

Table 6.1. BitBake and Imagetools features compared

Feature BitBake Imagetools

Architecture agnostic
builds

Yes, uses internal tools and C
library

No, uses build host’s tools

Automatic image
testing support

Yes, on virtual and actual
machine

No

Build cache Yes, shareable downloads and
intermediate build task caching

No

Build speed
bottleneck

Amount of CPU threads and
RAM

Read and write speeds

Continuous
integration support

Yes No

Custom scripts Python 3 and Shell scripts Bash scripts

Custom tasks New tasks can be added to
recipes

Numbered bash scripts

Distribution maintainer Teleste Debian

Image modifiability Everything is built from source
code

Uses prebuilt packages
and binaries

Image versioning Configurations, tools and
metadata are in GIT

Version number for base
and project image

Kernel management Version selection and full
configuration

Not implemented

Modularity Multiple layers with recipes,
inheritable classes and
package groups

Base and project layer

Parallelism support Yes, task and compiling
parallelism

No, sequential task
execution

Required privileges Normal user Root user

Syntax checking Automatic for all metadata No, runtime errors

Tool main language Python 3 Bash and Python 2

Tool debuggability Built-in solutions Script forking

Tool maintainer The Yocto Project Teleste

Variable syntax and
operators

Advanced in-built syntax and
features

Bash variables

48

6.3 BitBake workflow

BitBake is also described under Section 2.4, but the workflow is described in here
together with Imagetools’ workflow. Figure 6.2 shows a workflow visualization
of BitBake. Rather than having separate phases like in the Imagetools workflow
the functionality is wrapped around the BitBake task execution engine. The next
sections describe these functionalities in more detail.

6.3.1 Local meta-layers

As the project is structured as a Git superproject with other Git repositories as
submodules, the local meta layers in this superproject is one part, which requires
manual work. This work includes writing recipes for Teleste’s platform components
and for DCU40’s hardware components together with device specific configurations.
Also, common recipes are written for things such as SQL database initialization,
python packages, and Sky Blue distribution configurations. For Teleste’s platform
components, the recipe version numbers match the component versions they
install. However, the version is started from 1.0.0 for additional recipes such as
virtual machine only scripts and configurations, which are written specifically for
BitBake and DCU40.

Yocto’s layer concept makes it possible to have some settings in many different
places. For example, user configuration can come from a single recipe which
needs that user, from the DCU40 image recipe, or from the Sky Blue distribution
configurations. BitBake will notice if there are conflicting configurations across
layers which are included to the build.

6.3.2 Remote meta-layers and Poky reference distribution

These layers are managed by other parties such as The Yocto Project, Intel,
OpenEmbedded, or even individual people. They provide ready made recipes
which can be included into the build by just declaring the wanted recipe in:

• local.conf which is the build specific configuration

• in Sky Blue’s metadata

• as part of package group

• as feature of dcu40-image recipe

• as a dependency of some other recipe

Some of these recipes are quite simple but others make use of Yocto’s framework
in an advanced way which is why recipes by bigger organisations can be used as

49

guidelines when writing new recipes stored in local-meta layers. As the remote
meta-layers are just Git submodules, they can be updated with a single command,
see Section 3.5 for more details. To reduce the size of the build environment, some
of the local meta-layers can also be set up as separate Git repositories, which can
be added as submodules to the superproject. Even though the remote recipes are
maintained by others, every aspect of them can still be modified with .bbappend
files, which means that usually there is no need to copy a full recipe from a remote
layer to a local one. However, if the recipe needs a lot of modifications ,then it
might be useful to copy the whole existing recipe: BitBake will require a layer
selection if multiple layers provide the same recipe.

The Poky reference distribution is a special Git submodule in the project, since it
has its own meta-layers for building many different Poky distribution versions for
many architectures and it also includes all the tools, utilities and scripts such as
BitBake, Devtool, and runqemu. The Poky Git repository does not require anything
else for the build process. However, normally other layers are added for more
pre-written recipes of packages.

6.3.3 Build configuration for DCU40

The build configuration consists of three configuration files, which have around
150 effective configuration lines, while the comments take close to 300 lines.
The configuration is described in more detail in Section 4. The configuration file
local.conf can be compared to Imagetools’ imagetools.conf since they are both
tied to the build directory, and they both control the build by modifying the global
build runtime variables used by both tools.

Imagetools does have a base and a project layers while BitBake can have any
number of layers to be included in bblayers.conf. For example, a project specific
meta-layer repository can be created as a Git repository and added as a submodule
to the build environment. site.conf has the addresses for downloads and sstate
cache directories, and uninative tarbal location.

50

B
it
b

a
k
e
 w

o
rk
fl
o
w

m
e
ta

-d
cu

4
0

D
e
vi
ce

 s
p
e
ci

fi
c
re
ci
p
e
s:

H
W

 c
o
m
p
o
n
e
n
t
d
ri

ve
rs

 a
n
d

sc
ri
p
ts

 f
o
r

S
P

I,
 i
2
c,

 G
P

S
,
LT

E
,

A
V

R
 a
n
d

 F
P

G
A

K
e
rn
e
l
co

n
fi
g
u
ra
ti
o
n

 f
ra
g
m
e
n
ts

U
se

rs
,
g
ro
u
p

s
a
n
d

 p
a
ss
w
o
rd

s
In

it
 s
cr

ip
ts

 a
n
d

 S
ys
te
m

D
 u
n

it
s

U
S

B
 l
iv
e
 i
n

st
a
ll

st
ic

k
G
e
n
e
ra

l
co

n
fi
g
u
ra
ti
o
n

s

m
e
ta

-s
e
co

R
e
ci
p
e
s
p
ro

vi
d
e
d

 b
y

S
e
co

 f
o
r

D
C

U
4
0
's

 p
ro
ce

ss
o
r
ca
rd

 s
u
ch

 a
s:

I2
C

-c
o
n
tr
o

lle
d

 G
P

IO
e
x
p

a
n
d
e
rs

S
P

I
k
e
rn
e
l
m
o
d
u

le
R
e
co

m
m
e
n
d
e
d

 t
o
o

ls
 a
n
d

u
ti

lit
ie

s

L
o
ca

l
m
e
ta

-l
a
ye

rs
 i
n

 G
IT

 s
u
p
e
rp
ro

je
ct

m
e
ta

-t
e
le

st
e

S
k
y

B
lu
e
 d

is
tr

ib
u
ti
o
n

 a
n
d

p
la
tf
o
rm

 c
o
m
p
o
n
e
n
ts

su
ch

 a
s: D

ia
g
n
o

st
ic

ss
e
rv
e
r

O
n

-b
o

a
rd

 A
P

I
U
p
d

a
te
m

a
n

a
g
e
r

C
o
m
m
o
n

 l
ib
ra
ri
e
s

m
e
ta

-c
o
m
m
o
n

C
o
m
m
o
n

ly
 u

se
d

 r
e
ci
p
e
s:

S
Q

L
 d

a
ta
b

a
se

 s
e
tu
p

H
T

T
P

-s
e
rv
e
r

a
n
d

 P
H

P
L
a
n
g
u

a
g
e
 a
n
d

 k
e
yb

o
a
rd

V
ir
tu

a
l
m

a
ch

in
e
 o
n

ly
sc
ri
p
ts

 a
n
d

co
n

fi
g
u
ra
ti
o
n

s
P
yt
h
o
n

 2
 p

a
ck

a
g
e
s

P
a
ra

lle
l
a
u
to
m

a
ti
c
b
u

ild
 p
ro
ce

ss
 f
o
r
e
ve

ry
 i
n
d

iv
id
u

a
l
re
ci
p
e
 w

it
h

:

R
e
ci
p
e
 s
yn

ta
x
,
fo
rm

a
lit
y,

 b
u

ild
 s
ta
tu

s
a
n
d

 c
h
e
ck

su
m

 c
h
e
ck

in
g

D
e
p
e
n
d
e
n
cy

 m
a
n

a
g
e
m
e
n
t

a
n
d

 p
a
ck

a
g
e
 c
o
n
tr
o

l
L
in

k
in
g

 e
ve

ry
 t

a
rg
e
t

fi
le

sy
st
e
m

 fi
le

 t
o

 a
 r
e
ci
p
e

A
u
to
m

a
te
d

 r
e
ci
p
e
 t

a
sk

s
su

ch
 a

s:
F
e
tc
h

in
g

 s
o
u
rc
e
 c
o
d
e
 a
n
d

 c
h
e
ck

su
m

 c
h
e
ck

in
g

P
a
tc
h

in
g

 s
o
u
rc
e
 c
o
d
e

B
u

ild
 c
o
n

fi
g
u
ra
ti
o
n

 a
n
d

 c
o
m
p

ili
n
g

In
st

a
lli
n
g

 t
o

 a
 h
o

ld
in
g

 a
re

a
P

a
ck

a
g

in
g

 f
o
r
ta
rg
e
t

fi
le

 s
ys
te
m

 i
n

st
a
lla

ti
o
n

D
C

U

B
u

ild
 c
o
n

fi
g
u
ra
ti
o
n

 f
o
r

D
C

U
4
0

A
 s
e
t
o

f
3

 c
o
n

fi
g
u
ra
ti
o
n

 fi
le

s

si
te

.c
o
n

f
L
o
ca
ti
o
n

 o
f
d
o
w
n

lo
a
d
e
d

so
u
rc
e
 fi

le
 p

a
ck

a
g
e
s

a
n
d

ss
ta
te

-c
a
ch

e
 w

it
h

 p
re
b
u

ilt
re
ci
p
e
 t

a
sk

 s
p
e
ci

fi
c

a
rt

if
a
ct

s

b
b

la
ye

rs
.c
o
n

f
In
cl
u
d
e
d

 l
o
ca

l
m
e
ta

-l
a
ye

rs
fr
o
m

 G
IT

 s
u
p
e
rp
ro

je
ct

,
re
m
o
te

 m
e
ta

-l
a
ye

rs
 f
ro
m

 G
IT

su
b
m
o
d
u

le
s

a
n
d

 P
o

k
y

re
fe
re
n
ce

 d
is
tr

ib
u
ti
o
n

 w
it
h

B
it
b

a
k
e
 a
n
d

 o
th
e
r
to
o

ls

lo
ca

l.
co

n
f

M
a
in

 c
o
n

fi
g
u
ra
ti
o
n

 fi
le

 f
o
r

in
d

iv
id
u

a
l
b
u

ild
 t

a
rg
e
t:

In
cl
u
d
e
d

 r
e
ci
p
e
s
w
h

ic
h

 a
re

 p
ro

vi
d
e
d

 b
y
m
e
ta

-l
a
ye

rs
 i
n

b
b

la
ye

rs
.c
o
n

f
D

is
tr

ib
u
ti
o
n

 s
e
le
ct

io
n

 (
S

k
y

B
lu
e
/P

o
k
y)

Im
a
g
e
 f
e
a
tu
re

s
su

ch
 a

s:
 p

a
ck

a
g
e
 m

a
n

a
g
e
m
e
n
t,

 d
e
b
u
g

 a
n
d

d
e
vt
o
o

ls
,
sp

lit
 p

a
ck

a
g
e
s

(e
.g

.
d
ro
p

 a
ll
d
o
cu

m
e
n
ta
ti
o
n

s
fo
r

p
a
ck

a
g
e
s)

,
d

is
a
b

le
 r
o
o
t
p

a
ss
w
o
rd

,
re

a
d

 o
n

ly
 r
o
o
tf

s,
 f
u

ll
S

D
K

o
n

 t
a
rg
e
t

a
n
d

 s
e
rv
e
rs

 f
o
r

S
S

H
,
N

F
S

 a
n
d

 X
B
u

ild
 a
rt

if
a
ct

 t
a
rg
e
ts

:
b
o
o
tl
o

a
d
e
r

a
n
d

 r
o
o
tf

s,
 L

iv
e
 U

S
B

 s
ti
ck

,
N

F
S

 n
e
tw

o
rk

 b
o
o
t

fi
le

s,
 V

ir
tu

a
lB
o

x
 i
m

a
g
e

K
e
rn
e
l
m
o
d
u

le
s

Q
e
m
u

 s
e
tt

in
g

s
su

ch
 a

s
C

P
U

 c
o
re

 c
o
u
n
t,

 R
A

M
 a
m
o
u
n
t

k
e
rn
e
l

co
m
m

a
n
d

 l
in
e

In
it

 s
ys
te
m

 s
e
le
ct

io
n

 (
S
ys

V
in

it
/S

ys
te
m

D
)

B
o
o
tl
o

a
d
e
r

se
le
ct

io
n

 (
sy

st
e
m
d

-b
o
o
t/

G
R

U
B
)

L
a
ye

rs
:

C
re

a
ti
n
g

 a
n
d

 a
d
d

in
g

 l
a
ye

rs
,

co
m
p

a
ti
b

ili
ty

 c
h
e
ck

s,
 l
a
ye

r
d
e
p
e
n
d
e
n
ci
e
s,

 l
is
ti
n
g

 o
f
cu

rr
e
n
t

la
ye

rs
 i
n

 t
h
e
 b
u

ild

S
it
e
s:

C
o
m
p

a
n
y

fi
le

se
rv
e
r

lo
ca
ti
o
n

s
fo
r

d
o
w
n

lo
a
d

s
a
n
d

 s
st

a
te

-c
a
ch

e
,

d
o
w
n

lo
a
d

 l
o
ca
ti
o
n

 o
f
u
n

in
a
ti

ve
ta
rb

a
ll

fo
r

a
rc
h

it
e
ct
u
re

 a
g
n
o

st
ic

b
u

ild
s

L
o
ca

l
co

n
f:

P
a
rs

in
g

 o
f
m

a
in

 c
o
n

fi
g
u
ra
ti
o
n

fi
le

,
va

ri
a
b

le
 p

a
rs

in
g

 (
e
x
p

a
n

si
o
n

,
a
ss

ig
n
m
e
n
ts

,
a
p
p
e
n
d

in
g

 a
n
d

p
re
p
e
n
d

in
g

,
o

ve
rw

ri
ti
n
g
).

R
e
ci
p
e
s:

C
re

a
ti
n
g

 o
f
n
e
w

 r
e
ci
p
e
s,

d
e
b
u
g
g

in
g

 t
o
o

ls
,
p

a
tc
h

in
g

 t
o
o

ls
,

in
d

iv
id
u

a
l
re
ci
p
e
 t

a
sk

 e
x
e
cu

ti
o
n

,
p

a
ck

a
g
e
 fi

le
s

a
n
d

 m
e
ta
d

a
ta

 l
is
ti
n
g

D
e
p

lo
ym

e
n
t:

D
e
p

lo
y

in
d

iv
id
u

a
l
b
u

ild
a
rt

if
a
ct

s
to

 t
h
e
 d
e
vi
ce

,
g
e
n
e
ra
te

 d
e
ve

lo
p
m
e
n
t

a
n
d

cu
st
o
m
e
r

im
a
g
e
s
w

it
h

d
iff
e
re
n
t

se
cu

ri
ty

 p
o

lic
ie

s

T
e
st

in
g

:
R
u
n

 a
u
to
m

a
ti
c
te

st
s
o
n

Q
e
m
u

 o
r
o
n

 t
h
e
 a
ct
u

a
l

d
e
vi
ce

 v
ia

 a
u
to
m

a
ti
c

n
e
tw

o
rk

 b
o
o
t

E
M
U

C
u

st
o
m
e
r

im
a
g
e

D
e
ve

lo
p
m
e
n
t

im
a
g
e

S
k
y

B
lu
e

L
iv
e
 b
o
o
t

st
ic

k

B
it
b

a
k
e
 t

a
sk

 e
x
e
cu

ti
o
n

e
n
g

in
e
 a
n
d

 b
u

ild
 t
o
o

l

m
e
ta

-i
n
te

l
A
rc
h

it
e
ct
u
re

 a
n
d

 p
ro
ce

ss
o
r
re

la
te
d

re
ci
p
e
s

a
n
d

 m
a
n
y

lib
ra
ri
e
s,

 d
ri

ve
rs

,
to
o

ls
 a
n
d

 e
x
a
m
p

le
 i
m

a
g
e
s

m
e
ta

-j
a
va

Ja
va

 R
u
n
ti
m
e
 E
n

vi
ro
n
m
e
n
t

a
n
d

D
e
ve

lo
p
m
e
n
t

K
it

,
lib

ra
ry

 r
e
ci
p
e
s

a
n
d

 i
n
h
e
ri
ta
b

le
 r
e
ci
p
e
 c

la
ss
e
s

m
e
ta

-o
p
e
n
e
m
b
e
d
d
e
d

O
p
e
n

E
m
b
e
d
d
e
d
's

 l
a
rg
e
 c
o

lle
ct

io
n

 o
f

su
b

-m
e
ta

la
ye

rs
 a
n
d

 r
e
ci
p
e
s
o

f
m

a
n
y

p
ro
g
ra
m

s,
 t
o
o

ls
 a
n
d

 u
ti

lit
ie

s.

m
e
ta

-p
yt
h
o
n
2

C
o
m
m
u
n

it
y
m

a
n

a
g
e
d

 P
yt
h
o
n

 2
la
ye

r
w

it
h

 i
n
te
rp
re
te
r

a
n
d

p
a
ck

a
g
e
s

R
e
m
o
te

 m
e
ta

-l
a
ye

rs
 a

s
G

IT
 s
u
b
m
o
d
u

le
s

P
ro

vi
d
e
s
co

lle
ct

io
n

 o
f
m
e
ta

-
la
ye

rs
,
re
ci
p
e
s,

 c
o
n

fi
g
u
ra
ti
o
n

s,
to
o

ls
 a
n
d

 r
e
ci
p
e
 c

la
ss
e
s

a
lo
n
g

w
it
h

 l
in
u

x
-y
o
ct
o

 k
e
rn
e
l
re
ci
p
e

w
h

ic
h

 c
a
n

 b
e
 u

se
d

 t
o

 b
u

ild
 a

 f
u

lly
w
o
rk

in
g

 L
in
u

x
 d

is
tr

ib
u
ti
o
n

 f
o
r

m
a
n
y
p

la
tf
o
rm

s.

P
o

k
y
re

fe
re
n
ce

 d
is
tr

ib
u
ti
o
n

 a
s

a
G

IT
 s
u
b
m
o
d
u

le

P
X
E

 A
u
to
m

a
te
d

 p
ro
ce

ss

 M
a
n
u

a
l
p
ro
ce

ss

Fi
gu

re
6.

2.
W

or
kfl

ow
vi

su
al

iz
at

io
n

of
Im

ag
et

oo
ls

51

7 TESTING

7.1 Boot-up times

Boot-up times of the DCU40 image were measured in different situations. A
command systemd-analyze was used to determine the exact boot-up time which
also breaks it down to the time spend in kernel and after that in user space. It
can be seen from the Figure 7.1, that the boot-up times are fairly fast and during
testing and configuring a clean reboot of the whole system was used multiple
times as a method of applying modified configurations without restarting individual
services. Especially booting up the Sky Blue image with Qemu and KVM was
fast, which made it easy to tweak the system and troubleshoot problems. The
VirtualBox image with KVM was not as fast as the Qemu image but in some use
cases using VirtualBox can be more intuitive and easier since it has a GUI with
easy to access settings.

Network booting Sky Blue on DCU40 with iPXE was slower than booting it up from
the internal eMMC memory but since no live USB flash drive has to be created nor
the eMMC memory has to be flashed, the network boot was especially suitable for
fast image development iterations on the DCU40 when the slower boot-up times
were not an issue.

7.1.1 USB flash drive flashing speed

Yocto Project recommends using a tool called bmaptool to flash images and notes,
that it’s generally 10 to 20 times faster than dd utility [1]. This was tested by
flashing a BitBake generated 4.1 GB live boot image to a 16 GB Kingston USB
3 flash drive with bmaptool, dd with different block sizes and also with cat. From
the results in Figure 7.2 it can be seen, that dd is indeed slower than cat and
bmaptool if the default block size of 512 bytes is used. However, if the block size
for dd is increased to 64 kB it will flash the USB flash drive at the same speed as
cat and bmaptool.

An automation script was written for bmaptool, which prompts user to insert the
USB flash drive thus mimicking the functionality of Imagetools. Other pros of the
bmaptool are that it constantly verifies data integrity while flashing, it can read

52

Sky Blue on
DCU40

Sky Blue with
Qemu on

Lenovo T490

Sky Blue on
Virtualbox on
Lenovo T490

Sky Blue via
network boot
on DCU40

Debian 10 VM
on DCU40

0

5

10

15

20

25

5.0
1.3

2.0

17.8

8.2

3.0 3.4

7.4 7.9
6.5

B
oo

t-u
p

tim
e

(s
)

kernel
userspace

Figure 7.1. Boot-up times on different platforms

images from remote servers (which is useful in a company network) and it has
protection mechanisms, such as the prevention of flashing mounted block devices
[21]. It also shows the flashing speed and a progress bar during flashing. One
key difference between Imagetools and BitBake is that when creating USB drives
Imagetools writes many individual files to the USB drive in a chroot environment
while BitBake generates a single file, which can then be flashed to the USB drive
even with Windows tools such as the open source software Rufus.

dd 512 B
(default)

dd 4 kB dd 64 kB dd 1 MB dd 64 MB cat bmaptool
0

5

10

15

20 18.8

7.3

3.7 3.6 3.6 3.5 3.6

Fl
as

hi
ng

tim
e

(m
in

)

Flashing time

Figure 7.2. Flashing time of 4.1 GB Sky Blue live image to a USB flash drive with different
tools

7.2 Meltdown and Spectre mitigations performance impact

Spectre and Meltdown are critical security vulnerabilities found in January 2018
which affect most modern CPUs. They are not software vulnerabilities, but the core

53

problems are found in the CPU hardware which makes them hard to fix. Meltdown
breaks the memory isolation between between user applications and the operating
system, and Spectre breaks the memory isolation between user applications.
These isolation breaches allow malicious software to access the system memory
and extract secrets, such as keys and passwords, of other applications and the
operating system. Since these exploited features are commonly used in CPUs for
better performance the fixes for these exploits, also called mitigations, can have
a performance impact to the CPU which will be investigated in the next sections.
[22]

7.2.1 Meltdown and Spectre vulnerabilities

Meltdown exploits the side effects of out-of-order execution found in modern pro-
cessors. Out-of-order execution is a performance feature which enables execution
of sequential processor instructions defined in a program in a parallel way, so that
if the next instruction in the program does not depend on the previous ones, it can
be executed before the previous instructions are completed. Meltdown enables
privileged system memory access only available to the operating system from a
user application which does not have access rights to that memory. [23]

Normally, if a program tries to access system memory addresses which are not
allocated for it, the OS will usually react to this by sending an exception signal
to the program forbidding the memory access. Languages like C provide low-
level memory access methods so that the program can normally access memory
addresses and their data, which are within the process memory space. For
example, if the following pseudocode would try to access a memory location which
is not allocated for it, the OS would forbid it and there would be an exception in the
program:

secret = read_memory_value(forbidden_memory_address);

thus the secret would not be revealed.

However, in Meltdown, a probing array is constructed and the value of the secret
is used as an index to probe the array:

probe_array = {0, 1, 2, ..., 256};
probe_array[secret];

This will lead to a forbidden memory access error but because of out-of-order
execution the value of the secret was used to access the probe array which causes
the CPU to fetch that array value to the CPU cache. Even though the execution
of the probing has to be discarded and register and memory contents are not
committed, but the CPU cache is not flushed which makes it possible to use a

54

side channel timing attack to exploit the load time difference of an array value from
slower RAM compared to a fast CPU cache. So when iterating the probe array,
one value will be fetched significantly faster as seen in the Figure 7.3 than others,
thus the secret is revealed. [23]

0 50 100 150 200 250
200
300
400
500

Page

A
cc
es
s
tim

e
[c
yc
le
s]

Figure 7.3. Access time of probe array’s page fetching times in clock cycles

Spectre exploits branch prediction and speculative execution, where the CPU can
guess which branch would most likely be executed before the branch conditions
are validated. If the prediction was correct, the predicted execution is allowed to
be committed and if it was incorrect the execution will be discarded and the correct
branch will be executed instead. However, in this case the result of an incorrect
execution will be stored into the CPU cache and it can be found out in a similar
way than in Meltdown with a side channel timing attack. For example, the Spectre
exploit can be used to read data from a browser tab to another. [24]

7.2.2 Mitigating Meltdown and Spectre in DCU40

DCU40’s CPU card manufacturer Seco has provided BIOS updates for the card
which includes Intel’s CPU microcode updates, which mitigate the Meltdown and
Spectre vulnerabilities. These BIOS updates also include other stability and feature
updates, such as support for USB 3.1 and eMMC memory updates. Because
these mitigations target the CPU’s performance features they chould have a
degrading impact on overall CPU performance, which was tested by running
performance benchmarks with Phoronix Test Suite with the default mitigations,
and by disabling them with kernel command-line parameter:
mitigations=off.
This is available for kernel starting from 5.2 as a single parameter, and it disables
all mitigations fully. Table 7.1 shows the four different test scenarios.

55

Table 7.1. Test configurations for DCU40 Meltdown and Spectre mitigations performance
impact

Factor Old BIOS
without
mitigations

Old BIOS with
mitigations

New BIOS
without
mitigations

New BIOS with
mitigations

Bios version 1.15 1.15 1.26 1.26

Microcode
version

0x907 0x907 0x90A 0x90A

Kernel version 5.4.69 5.4.69 5.4.69 5.4.69

Kernel
command-line

mitigations=off mitigations=auto mitigations=off mitigations=auto

7.2.3 Analyzing test results

The initial assumption was that the BIOS version 1.26 with Intel microcode miti-
gations would have a performance impact on DCU40. The Figures 7.4 and 7.5
about disk I/O, and the Figure 7.6 about Java tests show that the newer BIOS
version 1.26 indeed has a performance impact compared to bios 1.15. However,
having mitigations enabled or disabled did not have any significant difference in
the tests compared to performance degradation caused by the updated BIOS. The
changelog for the BIOS lists many other changes other than the CPU microcode
update for mitigating the Meltdown and Spectre vulnerabilities, which can be the
reason for the performance differences since the kernel command line option to
disable the mitigations did not seem to have an effect on system performance.

The BIOS changelog specifies that the version which has the vulnerability fixes
is version 1.19, so that could be compared to the version 1.18 to better see the
performance impact caused by the microcode update. The kernel version in this
test setup is newer than in the Debian based DCU40 images, which probably gives
different kinds of results with these two BIOS versions. Setting up the Phoronix
Test Suite on the Yocto environment required manually installing the dependencies
the tests needed, but an automation script was written for it so that subsequent
tests could be run automatically in the future if more testing would be needed
before the newest BIOS could be used.

56

Random Read Random Write Sequential Read Sequential Write
0

10

20

30

40

50

3.7
5.2

45.4

16.5

3.7
5.4

47.1

17.8

4.0 4.8

45.4

17.9

3.9 5.0

45.7

15.8

D
at

a
tra

ns
fe

rr
at

e
(M

B
/s

)
BIOS 1.15 w/o mitigations
BIOS 1.15 with mitigations
BIOS 1.26 w/o mitigations
BIOS 1.26 with mitigations

Figure 7.4. Random and sequential read and write speeds of DCU40’s 16 GB eMMC
memory with different BIOS versions, with and without mitigations

Random Read Random Write Sequential Read Sequential Write
0

0.2

0.4

0.6

0.8

1

1.2

·104

923 129
1

116
40

420
8

861
135

8

115
00

480
5

809 117
8

117
67

475
5

873 114
9

117
67

360
3

In
pu

t/o
ut

pu
to

pe
ra

tio
ns

pe
rs

ec
on

d
(IO

P
S

)

BIOS 1.15 w/o mitigations
BIOS 1.15 with mitigations
BIOS 1.26 w/o mitigations
BIOS 1.26 with mitigations

Figure 7.5. Random and sequential input and output operations of DCU40’s 16 GB eMMC
memory with different BIOS versions, with and without mitigations

57

DaCapo: Jython Renaissance:
Akka Unbalanced
Cobwebbed Tree

Renaissance:
Savina

Reactors.IO

Renaissance:
Jenetics and

Futures

0

20

40

60

80

27.5

50.3

71.1

6.0

27.6

50.7

74.4

6.0

22.6

43.8

60.0

5.1

22.3

44.2

63.0

5.1

R
un

tim
e

(s
),

lo
w

er
is

be
tte

r

BIOS 1.15 w/o mitigations
BIOS 1.15 with mitigations
BIOS 1.26 w/o mitigations
BIOS 1.26 with mitigations

Figure 7.6. Java tests with different BIOS versions, with and without mitigations

58

8 CONCLUSIONS AND OUTLOOK

In this work a build environment was set up, which is capable of creating a custom
linux distribution for Teleste’s train information system devices. The target device
in this work was a single device called DCU40, however, at time of writing, work
has already begun for setting up the Yocto environment for other Teleste’s devices
such as an ARM based network audio amplifier, which is the key component in
announcement systems. The original objective of this work was a proof of concept
image for DCU40, and after that more features were added to the build environ-
ment. The build environment itself is a Git superproject with other repositories as
submodules, and it takes around 600 MB of disk space, and it consists of 14300
individual files. 70 new recipes were written for DCU40 and Teleste’s platform
components. The cache which BitBake uses to accelerate subsequent builds was
set up on Teleste’s company network share, and the disk space it takes is 40 GB for
downloads and 80 GB for the shared state cache. In Teleste’s company network, it
is possible to run a full build for DCU40 in about 10 minutes on a company laptop
when using the shared state cache. In the future, the build environment will be
integrated to a CI server such as Jenkins.

With this build environment, it is possible to do more frequent build iterations than
with Teleste’s previous image creation tool Imagetools and be able to modify the
source code of every software package. New features such as an automatic virtual
machine creation for VirtualBox and Qemu were found to be useful in fast build
iterations, which were related to non-hardware software running on DCU40. To
further improve development on virtual platforms, software components could
be written which would only load on virtualized environments so that DCU40’s
hardware component functionalities could be emulated. Network boot automation
was a feature which made build and test iterations faster and this feature could
also be developed further so that DCU40’s internal eMMC memory could be
flashed over the network. With the flexible partition scheme implementation of
OpenEmbedded’s Wic, more partitions could be set up on the internal eMMC
memory of DCU40 for full remote updates of whole partitions while having a
recovery partition, for example.

59

A comparison was done between Teleste’s Imagetools and Yocto’s BitBake even
though they differ a lot. However, if this build environment would replace Im-
agetools, the created images would be fundamentally different since the used
distribution would not anymore be Debian, but Teleste’s own custom Linux distri-
bution named Sky Blue. Testing was done related to image creation and boot-up
times, and since the BIOS of Seco’s processor card was updated, which enabled
fast USB 3 for live USB drives, it also introduced Meltdown and Spectre vulnera-
bility fixes, which can cause performance degradation. Testing was done to find
out the severity of this performance degradation, but it was concluded that more
testing would be needed to fully analyze the actual performance impact.

The conclusion for this work is that The Yocto Project can be successfully used in a
company environment as a flexible build environment for Teleste’s train information
system devices.

60

REFERENCES

[1] Yocto Project Mega-Manual. Version 3.1. 2020. URL: http://www.yoctoproject.
org/docs/3.1/mega-manual/mega-manual.html (visited on 06/13/2020).

[2] Purdie, R., Larson, C. and Blundell, P. BitBake User Manual. Version 3.1. 2020.
URL: https://www.yoctoproject.org/docs/3.1/bitbake-user-manual/bitbake-
user-manual.html (visited on 08/17/2020).

[3] Yocto Project Overview and Concepts Manual. Version 3.1. 2020. URL: https:
//www.yoctoproject.org/docs/3.1/overview-manual/overview-manual.html

(visited on 08/17/2020).

[4] Streif, R. J. Embedded Linux systems with the Yocto project. eng. Boston: Pearson
Education, Inc., 2016. ISBN: 978-0-13-344324-0.

[5] Yocto Project Reference Manual. Version 3.1. 2020. URL: https://www.yoctoproject.
org/docs/3.1/ref-manual/ref-manual.html (visited on 10/06/2020).

[6] Toaster User Manual. Version 3.1. 2020. URL: https://www.yoctoproject.org/
docs/3.1/toaster-manual/toaster-manual.html (visited on 02/18/2021).

[7] Chacon, S. and Straub, B. Pro Git. 2014. URL: https://www.git-scm.com/book/
en/v2.

[8] Atlassian. Gitflow Workflow. 2020. URL: https : / / www . atlassian . com / git /

tutorials/comparing-workflows/gitflow-workflow (visited on 01/26/2020).

[9] Seco BSP for Yocto. Version 1.3. 2018. URL: https://www.seco.com/Software/
BayTrail/Yocto/Yocto_Pyro_Seco_BSP_v1.0.zip (visited on 08/05/2020).

[10] Debate Init System To Use. 2015. URL: https://wiki.debian.org/Debate/
initsystem/ (visited on 08/05/2020).

[11] systemd-boot. URL: https://www.freedesktop.org/software/systemd/man/
systemd-boot.html (visited on 10/12/2020).

[12] GNU GRUB. URL: https://www.gnu.org/software/grub/manual/grub/grub.html
(visited on 10/12/2020).

[13] Richardson, B. "Last Mile" Barriers to Removing Legacy BIOS. 2017. URL: https:
//www.uefi.org/sites/default/files/resources/Brian_Richardson_Intel_

Final.pdf (visited on 10/12/2020).

[14] Yocto Project Linux Kernel Development Manual. Version 3.1. 2020. URL: https:
//www.yoctoproject.org/docs/3.1/kernel-dev/kernel-dev.html (visited on
08/06/2020).

[15] systemd manual - Unit configuration. 2020. URL: https://www.freedesktop.org/
software/systemd/man/systemd.unit.html (visited on 08/14/2020).

http://www.yoctoproject.org/docs/3.1/mega-manual/mega-manual.html
http://www.yoctoproject.org/docs/3.1/mega-manual/mega-manual.html
https://www.yoctoproject.org/docs/3.1/bitbake-user-manual/bitbake-user-manual.html
https://www.yoctoproject.org/docs/3.1/bitbake-user-manual/bitbake-user-manual.html
https://www.yoctoproject.org/docs/3.1/overview-manual/overview-manual.html
https://www.yoctoproject.org/docs/3.1/overview-manual/overview-manual.html
https://www.yoctoproject.org/docs/3.1/ref-manual/ref-manual.html
https://www.yoctoproject.org/docs/3.1/ref-manual/ref-manual.html
https://www.yoctoproject.org/docs/3.1/toaster-manual/toaster-manual.html
https://www.yoctoproject.org/docs/3.1/toaster-manual/toaster-manual.html
https://www.git-scm.com/book/en/v2
https://www.git-scm.com/book/en/v2
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://www.seco.com/Software/BayTrail/Yocto/Yocto_Pyro_Seco_BSP_v1.0.zip
https://www.seco.com/Software/BayTrail/Yocto/Yocto_Pyro_Seco_BSP_v1.0.zip
https://wiki.debian.org/Debate/initsystem/
https://wiki.debian.org/Debate/initsystem/
https://www.freedesktop.org/software/systemd/man/systemd-boot.html
https://www.freedesktop.org/software/systemd/man/systemd-boot.html
https://www.gnu.org/software/grub/manual/grub/grub.html
https://www.uefi.org/sites/default/files/resources/Brian_Richardson_Intel_Final.pdf
https://www.uefi.org/sites/default/files/resources/Brian_Richardson_Intel_Final.pdf
https://www.uefi.org/sites/default/files/resources/Brian_Richardson_Intel_Final.pdf
https://www.yoctoproject.org/docs/3.1/kernel-dev/kernel-dev.html
https://www.yoctoproject.org/docs/3.1/kernel-dev/kernel-dev.html
https://www.freedesktop.org/software/systemd/man/systemd.unit.html
https://www.freedesktop.org/software/systemd/man/systemd.unit.html

61

[16] Linux Magic System Request Key Hacks. 2020. URL: https://www.kernel.org/
doc/html/latest/admin-guide/sysrq.html (visited on 08/11/2020).

[17] Sunsetting Python 2. 2020. URL: https://www.python.org/doc/sunset-python-2/
(visited on 08/11/2020).

[18] Dynamic Host Configuration Protocol (DHCP) Options for the Intel Preboot eXecution
Environment (PXE). 2006. URL: https://tools.ietf.org/html/rfc4578 (visited
on 11/02/2020).

[19] iPXE Command reference. 2016. URL: https://ipxe.org/cmd (visited on 11/02/2020).

[20] What is Maven? 2017. URL: http://maven.apache.org/index.html (visited on
10/20/2020).

[21] Bityutskiy, A. BMAP Tools. 2020. URL: https://github.com/intel/bmap-tools
(visited on 01/19/2021).

[22] Meltdown and Spectre, Vulnerabilities in modern computers leak passwords and
sensitive data. 2018. URL: https://meltdownattack.com/ (visited on 01/05/2021).

[23] Lipp, M., Schwarz, M., Gruss, D., Prescher, T., Haas, W., Fogh, A., Horn, J., Mangard,
S., Kocher, P., Genkin, D., Yarom, Y. and Hamburg, M. Meltdown: Reading Kernel
Memory from User Space. 2018. URL: https://meltdownattack.com/meltdown.
pdf (visited on 01/05/2021).

[24] Kocher, P., Horn, J., Fogh, A., Genkin, D., Gruss, D., Haas, W., Hamburg, M., Lipp, M.,
Mangard, S., Prescher, T., Schwarz, M. and Yarom, Y. Spectre Attacks: Exploiting
Speculative Execution. 2019. URL: https://spectreattack.com/spectre.pdf
(visited on 01/05/2021).

https://www.kernel.org/doc/html/latest/admin-guide/sysrq.html
https://www.kernel.org/doc/html/latest/admin-guide/sysrq.html
https://www.python.org/doc/sunset-python-2/
https://tools.ietf.org/html/rfc4578
https://ipxe.org/cmd
http://maven.apache.org/index.html
https://github.com/intel/bmap-tools
https://meltdownattack.com/
https://meltdownattack.com/meltdown.pdf
https://meltdownattack.com/meltdown.pdf
https://spectreattack.com/spectre.pdf

	Introduction
	Linux and The Yocto Project
	Linux in general
	Debian
	The Yocto Project
	BitBake
	Poky and The OpenEmbedded Project
	The Yocto Project Layer Model
	BitBake recipes
	BitBake build configuration files
	Recipe classes
	Recipe append files
	BitBake tasks
	The Yocto Project Extensible SDK
	OpenEmbedded Image Creator Wic
	Toaster web interface

	Using the build environment
	Setting up the project as a Git repository
	Building for DCU40
	Cache management
	Directory structure of the project environment
	Git management guidelines
	Bash and Shell scrips

	Configurations for the DCU40
	Target hardware device
	Introduction to dcu40-image
	Target machine configuration
	Distribution configuration
	Systemd as init manager
	Seco packages and kernel modules
	Package manager and Debian package format
	Keyboard layout
	Systemd-boot or GNU GRUB as bootloader
	BusyBox and GNU Core Utilities
	Kernel configurations
	Analyzing the build size of individual kernel features

	Disabling serial-getty
	Enabling magic SysRq key
	Java 8
	Python 2
	PostgreSQL 12
	Live USB image
	Uninative settings
	Audio and graphics

	Deploying the build on the DCU40 and virtual environments
	Build artifacts
	Running the build with runqemu command
	Running the build in VirtualBox
	Using the live image
	Network boot of DCU40
	Setting up a TFTP server
	Setting up a DHCP server
	Chainloading iPXE
	NFS root filesystem

	A comparison of BitBake and Teleste's Imagetools
	History of build automation at Teleste
	Rocket Tools
	Maven
	Jenkins
	Imagetools

	BitBake compared to Imagetools
	BitBake workflow
	Local meta-layers
	Remote meta-layers and Poky reference distribution
	Build configuration for DCU40

	Testing
	Boot-up times
	USB flash drive flashing speed

	Meltdown and Spectre mitigations performance impact
	Meltdown and Spectre vulnerabilities
	Mitigating Meltdown and Spectre in DCU40
	Analyzing test results

	Conclusions and outlook
	References

