
Toni Olán

AUDIO-VISUAL SCENE CLASSIFICATION WITH

DIFFERENT LATE FUSION COMBINERS

Bachelor’s Thesis

Faculty of Information Technology and Communication Sciences

Examiner: Prof. Tuomas Virtanen

June 2021



i

ABSTRACT

Toni Olán: Audio-Visual Scene Classification with Different Late Fusion Combiners
Bachelor’s Thesis
Tampere University
Information Technology
June 2021

Humans use multiple senses when performing a task. Senses are analogous to modalities,
which represent a way in which something is experienced or perceived. With the increasing avail-
ability of multimodal data, modeling the human behavior with multimodality has gained more pop-
ularity on various machine learning tasks. However, in scene classification, the most popular
classifiers still rely either only on audio or images.

Fusing correlated modalities right after feature extraction has been shown to achieve higher
accuracy than fusing the predictions of unimodal classifiers. However, this later fusion is more
flexible, as a system can still output decent results even if a modality is lost. The predictions of the
classifiers based on different modalities can be combined in various ways, and the selection of a
combination method is still an open issue.

This thesis studies the accuracies of scene classifiers that are based on audio and visual
modalities. The performance of a multimodal ensemble classifier is also compared to the unimodal
classifiers. The ensemble model consists of all the studied unimodal classifiers and a combiner,
which can combine the predictions of the base classifiers in different ways.

Two classifiers are built for both audio and visual modalities. These unimodal classifiers rely
on pre-trained models for feature extractions and small trainable neural networks for the classifi-
cations. The pre-trained models utilize transfer learning, as they have been trained for recognizing
objects instead of scenes. The selected audio models consist of VGGish and L3, whereas the
visual ones consist of ResNet and L3.

The experiments show that the classifiers using the same modality perform similarly, obtaining
their highest and lowest scores on the same scenes, with some exceptions. Both audio classifiers
perform better on certain scenes than the visual classifiers and vice versa, while a classifier based
on the visual modality works better on average. However, the chosen pre-trained model has a
clear impact on a classifier, as the other classifier reaches lower accuracies in both modalities.
The best performing combiners in the experiments are a simple mean combiner and its class-
weighted variant. Compared to the base classifiers, the best ensemble classifier obtains a higher
average accuracy and only a single scene out of ten obtains a lower classification score.

Keywords: Multimodality, Scene classification, Late fusion, Transfer learning

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.



ii

TIIVISTELMÄ

Toni Olán: Audio-Visuaalinen Ympäristön Tunnistus Eri Myöhäisyhdistämismenetelmillä
Kandidaatin työ
Tampereen yliopisto
Tietotekniikka
Kesäkuu 2021

Ihmiset hyödyntävät useita aistejaan suorittaessaan tehtäviä. Aistit ovat analogisia modaliteet-
tien kanssa, joilla kuvataan tapaa, miten jokin asia koetaan. Ihmismäisen käyttäytymisen mallinta-
minen multimodaalisuuden avulla on saavuttanut enemmän suosiota eri koneoppimistehtävissä,
sillä useammasta modaliteetista koostuva data on nykään helpommin saatavilla. Ympäristön tun-
nistuksessa suosituimmat luokittimet hyödyntävät kuitenkin edelleen vain joko audiota tai kuvia.

Korreloivien modaliteettien yhdistäminen heti datan tiivistämisen jälkeen on todettu tuottavan
parempia tuloksia kuin erillisten yhteen modaliteettiin perustuvien luokittimien tuloksien yhdistä-
minen. Tämä myöhempi yhdistäminen on kuitenkin joustavampi ratkaisu, sillä sitä hyödyntävä
luokitin tuottaa kohtuullisia tuloksia, vaikka jokin modaliteetti ei olisi käytössä. Eri modaliteettei-
hin perustuvien luokittimien tulokset voidaan yhdistää useammalla eri tavalla, ja yhdistelmätavan
valinta on edelleen avoin ongelma.

Tässä työssä tutkitaan eri modaliteetteihin perustuvien luokittimien tarkkuutta ympäristön tun-
nistamisessa. Luokittimien avulla kootaan myös useampaa modaliteettia hyödyntävä luokitinko-
konaisuus, jonka tarkkuutta verrataan yksittäisiin luokittimiin. Yksi luokitin hyödyntää joko audio-
tai kuvamodaliteettia. Luokitinkokonaisuus koostuu kaikkien luokittimien lisäksi myös yhdistäjästä,
joka voi yhdistää luokittimien tuloksia eri tavoin.

Sekä audion että kuvan luokitteluun rakennetaan kaksi luokitinta. Nämä luokittimet käyttävät
esiopetettuja malleja datan tiivistämiseen ja pieniä opetettavia neuroverkkoja itse luokitteluun.
Esiopetetut mallit hyödyntävät siirto-oppimista, sillä ne ovat opetettu tunnistamaan esineitä ei-
kä ympäristöjä. Valitut mallit ovat audioluokittimille VGGish ja L3 sekä vastaavasti kuvaluokittimille
ResNet ja L3.

Tuloksista huomataan, että samaa modaliteettia hyödyntävät luokittimet käyttäytyvät saman-
lailla saavuttamalla niiden parhaimmat ja huonoimmat tuloksensa samoissa ympäristöissä muu-
tamalla poikkeuksella. Molemmilla modaliteeteilla luokittimet suoriutuvat paremmin useammas-
sa ympäristössä kuin toisen modaliteetin luokittimet, ja kuvamodaliteettiin perustuva luokitin toi-
mii keskimäärin paremmin. Valitulla esiopetetulla mallilla on kuitenkin selkeä vaikutus luokittimen
tarkkuuteen, sillä samaa modaliteettia hyödyntävissä luokittimissa toisen tulokset ovat matalam-
pia. Yhdistäjistä korkeimman tarkkuuden saavuttaa sekä yksinkertainen keskiarvoyhdistäjä että
sen luokkapainoarvoinen variaatio. Paras luokitinkokonaisuus saavuttaa suuremman keskiarvo-
tarkkuuden kuin mikään yksittäinen luokitin, ja vain yhden ympäristön tarkkuus kymmenestä on
huonompi verrattuna kaikkien luokittimien ympäristötarkkuuksiin.

Avainsanat: Multimodaalisuus, Ympäristön tunnistus, Myöhäisyhdistäminen, Siirto-oppiminen

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.



iii

CONTENTS

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. Background. . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Fusion methods . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Transfer learning . . . . . . . . . . . . . . . . . . . . . . . . 4

3. Base model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1 VGGish . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 ResNet50. . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.3 OpenL3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.4 Combiners . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.4.1 Trivial combiners . . . . . . . . . . . . . . . . . . . . . 10

3.4.2 Case-specific combiners . . . . . . . . . . . . . . . . . . 10

4. Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.2 Training and testing . . . . . . . . . . . . . . . . . . . . . . . 14

4.3 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.3.1 Unimodal classifiers . . . . . . . . . . . . . . . . . . . . 16

4.3.2 Multimodal ensemble classifier. . . . . . . . . . . . . . . . 18

5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Appendix A: Confusion matrices . . . . . . . . . . . . . . . . . . . . . 25



iv

LIST OF SYMBOLS AND ABBREVIATIONS

OpenL3 a Python library with L3-based pre-trained models

PyTorch a Python library for machine learning

ResNet50 a pre-trained residual neural network with 50 layers

TAU Tampere University

TensorFlow a Python library for machine learning

TUNI Tampere Universities

VGGish a pre-trained audio neural network



1

1. INTRODUCTION

For us humans, identifying a real-world environment is a trivial task. The decision of which

environment was detected is reached within a tenth of a second using our visual senses

only [1]. This makes our sight a powerful sense for collecting data from our surroundings.

However, we also use other senses in determining our whereabouts. Hearing, smelling,

and feeling the temperature all help with the identification. Often the decision is made with

multiple senses, but sometimes just with a single one. Hearing becomes crucial when vis-

ibility is low, whether it is due to environmental (fog, dark) or medical (blindness) reasons.

Separating environments with similar visual styles but with different soundscapes relies

heavily on hearing. Public transportation vehicles, such as an airplane and a train, can

have similar looking interiors, especially when crowded, but the sound is often different.

We rely solely on visual senses when others cannot be used, for example, when looking

outside a window. Even when a sense is temporarily unusable, we can still identify the

environment.

Scene classification (recognition, identification) is a process in which a target area or

environment consisting of multiple objects and events is categorized into a meaningful

class or word, such as a kitchen or a beach. In machine learning, the number of scenes

is limited by the number of annotated distinct classes used in the training dataset. By

classifying a scene, an object or event in the scene gets context [2]. For example, a

person screaming in an amusement park is less worrisome than in an alley.

Many machine learning tasks have started to use multimodal data. Even some scene

classification systems have used RGB-D images which have color and depth images as

their modalities. [3][4]. Regardless, the state-of-the-art scene recognition systems still

rely on a single modality, either image [2] or audio [5]. A small study has been conducted

on the performance difference of audio and visual modalities and the different methods of

fusing them. [6]. However, the topic still requires more research for more general models.



2

When using multiple modalities, they have to be fused before the multimodal model’s final

output. Combining the different modalities early, rather than at the decision level, has

been shown to give higher accuracy with correlated modalities [6][7]. However, combining

the modalities late is more flexible, as then the model is not dependent on every modality.

The model can still output decent results, even when a unimodal sensor breaks and no

data is received for the corresponding modality.

The purpose of this thesis is to compare the accuracies of scene classifiers, which are

based on either audio or visual modality, and of different combination methods in late

fusion. Transfer learning is used to help create the unimodal neural network classifiers.

The remainder of this thesis is structured as follows: Chapter 2 presents the required

background information on multimodality and transfer learning. The experiments’ base

model, which includes the unimodal classifiers and combiners, is introduced in 3. Chapter

4 contains the experiments, including the dataset, training methods and results. Finally,

Chapter 5 presents the thesis’ conclusions.



3

2. BACKGROUND

A modality is a way in which something is experienced or perceived. For humans, these

modalities are analogous to senses, such as smell and hearing. A modality can be any-

thing perceivable by a sensor or obtainable from a database [8], for example, visual,

textual, or aural. Visual refers to sight, and therefore visual data includes different im-

age types. Some modalities give better information than others, and selecting the correct

modalities for a task is crucial [8].

Multimodality has been used in various tasks such as speech and emotion recognition,

medical image analysis, multimedia event detection [9], biometric identification [10], and

object detection [11]. One of the reasons for the increased use of multimodality is intu-

itiveness. For example, in medical image analysis, combining different image modalities,

such as magnetic resonance imaging and photon emission tomography, improves feature

visibility and can reveal information a human eye could not see [12]. Another reason is

accessibility to multimodal data. Especially multimedia videos have become more ac-

cessible due to the possibility to record video and audio simultaneously with the current

technology at any time. This accessibility also creates the need of handling multimodal

data in different ways [9].

The rest of this chapter gives background information for methods that are often used

in multimodal classification tasks. Section 2.1 shortly introduces various methods for

fusing different modalities. Section 2.2 provides an overview of transfer learning and the

idea behind pre-trained models. Although utilizing transfer learning is not necessary in a

classification task, it reduces the training time and complexity of the used neural networks.

2.1 Fusion methods

In multimodal classification, a fusion method is needed to get a single result from an

ensemble classifier. In this thesis, the result is handled as a prediction vector. The vector

consists of prediction values for every class. A prediction value resembles a probability

for a class, but the value is not limited to be a number between 0 and 1. The final output

is obtained with the maximum membership rule, where the class with the highest value is

chosen. Fusion methods mainly divide into two categories: early and late fusion [8].



4

Early fusion, also known as feature fusion, joins different modalities together during fea-

ture representation [7]. Here, features are defined as properties linked to the data, repre-

sented as numbers. In a classification network, the fusion usually takes places between

unimodal feature extraction and classification. The combined features are represented by

a single, multimodal feature vector. This vector can be used as an input to a sub-network,

which makes the final classification decision. Early fusion can benefit from multimodal

cross-correlations, in which an event’s unimodal features are combined [7]. A semantic

example of such a correlation is a video feed of a dog in one modality and barking sounds

in the other modality. However, to utilize the correlation, the system requires that the fea-

tures are correctly aligned in the feature vector [7]. Therefore, there has to be a same

extraction interval for each modality. For example, 1 second of audio expects to have an

image from that same second. Adding more modalities makes it difficult for the system to

learn correlations [8].

Late (decision, semantic) fusion keeps the unimodal features apart and combines the

results of the classifiers [7], creating an ensemble classifier. Late fusion is more flexible

than early fusion as it can give decent results even if a modality is missing because

the modalities do not depend on each other [9]. Late fusion also allows adding more

base classifiers or even new modalities to the ensemble without having to train the other

classifiers again. The downsides of such an ensemble classifier are the multiple training

phases and its incapability to learn multimodal cross-correlations [7].

In late fusion, the results of the base classifiers are combined with a combiner. A combiner

is often based on a combination rule, such as mean or median. The combiners used in

the experiments are introduced later, in Chapter 3.

Other fusion methods also exist. These include data and hybrid fusion. Data fusion is

sometimes considered to be early fusion, as it fuses the raw data. However, the data is

rarely aligned, and pre-processing is needed [7]. Hybrid fusion is a mix of early and late

fusion, utilizing both of them in a larger network [8]. It can benefit from the strengths of

both methods, but requires extensive training. It also faces the same combiner selection

problem as late fusion.

2.2 Transfer learning

In transfer learning, knowledge collected during a source task is utilized in solving a simi-

lar target task [13]. This reduces the need to re-collect knowledge during the target task.

Machine learning benefits from transfer learning by using a neural network model trained

for a generic source task to also perform on a target task without training the model from

scratch [14]. These trained source models, referred to as pre-trained models, are deep

neural network models, which have been trained on large datasets. Their architectures

and parameters are publicly available, meant to be utilized with other projects. Some of



5

the benefits of using pre-trained models are the reductions in overfitting, required compu-

tational resources, and training time [15].

A pre-trained model is often an early part of a large network where the pre-trained model

handles the more complicated computations. This reduces the required training time, as

a large part of the network is already trained. A pre-trained model can work either as a

feature extractor or as a fine-tuned model.

As a feature extractor, the layer weights are frozen, so the model no longer trains. One

or more of the final layers are removed to generalize the model from its source task.

The extracted features are either low or high-level features, depending on the number

of removed layers [16]. Particularly in simple classification tasks, a feature extracting

pre-trained model is usually followed by classifying fully connected layers.

As a fine-tuned model, the final layers are either removed or changed, but the weights are

not frozen. During back-propagation, the weights of the layers near the end change more

than the earlier ones, adjusting to the high-level features. [16]

A pre-trained model should be used as a feature extractor if the target dataset is small or

the network has a large number of parameters [14]. As a fine-tuned model, the network

tends to overfit unless the dataset is large or the network is small. Fine-tuning a model is

also computationally more expensive, as it requires an extra training session compared

to a feature extractor. The experiments of this thesis utilize pre-trained models as feature

extractors.



6

3. BASE MODEL

The goal of the experiments is to compare the scene classification accuracies obtained

with unimodal and multimodal classifiers. A unimodal classifier utilizes either audio or

visual modality. A multimodal classifier is an ensemble of the unimodal classifiers, which

also contains a combiner. For analyzing the modalities, comparisons are also made on

the scene level for the classifiers.

Classifiers based on different pre-trained models are created and trained for the exper-

iments. There are two classifiers for both modalities, creating an ensemble classifier of

four base classifiers. The layout of the base model consisting of these classifiers can be

seen in Figure 3.1.

ImagesAudio

Video

ResNet50OpenL3VGGish OpenL3

Sub-network Sub-network Sub-network Sub-network

Combiner

Prediction

Pre-processing Pre-processing Pre-processing Pre-processing

Figure 3.1. Layout of the base model



7

Each base classifier utilizes a pre-trained model as a feature extractor. The models have

their own requirements due to their pre-training, and therefore the data needs to be pre-

processed for each model separately. In a base classifier, a pre-trained model is followed

by a small trainable fully connected sub-network which outputs a prediction vector. The

final part of the ensemble network is the combiner, which outputs the final classification

result.

The sections of this chapter present the base classifiers in more detail. The combiners of

the experiments are also introduced.

3.1 VGGish

VGGish is a pre-trained model designed for audio feature extraction, but it can optionally

be fine-tuned. VGGish was first introduced as a modified version of the convolutional neu-

ral network model VGG (configuration E) [17]. VGG, named after the development team’s

name (Visual Geometry Group), focuses on image processing [18], whereas VGGish on

audio processing. VGGish was trained with the YouTube-100M dataset introduced in the

same paper, and the model was shown to give good results.

The VGGish version used in one of the audio classifiers is a modified version of the VGG

configuration A model [18], which has been pre-trained on the YouTube-8M dataset’s [19]

preliminary version [20]. The model is part of the TensorFlow Model Garden, which col-

lects state-of-the-art models implemented with the TensorFlow machine learning frame-

work [21]. The model consists of 6 convolutional layers and 3 fully connected layers. The

output of the final layer is a 128-dimensional embedding [20].

VGGish expects the input to be a log mel spectrogram with 96 frames and 64 mel bands,

resulting in an input size of 96 by 64 [20]. The VGGish developers provide a pre-process-

ing code example for a single audio file. In this process, the audio is first converted to a

mono-track and re-sampled to 16 kHz. Next, a spectrogram is computed utilizing Short-

Time Fourier Transform magnitudes with a 25 ms windows size and 10 ms hop size. The

spectrogram is transformed into a log mel spectrogram with 64 mel bins ranging from 125

to 7 500 Hertz. Finally, the spectrogram is framed into non-overlapping windows, result-

ing in the desired model input size. As each frame is 10 ms wide, VGGish processes the

audio in 0.96-second segments. The model outputs a single embedding for every 960 ms

in an audio clip, disregarding any residual audio.

The trainable sub-network, which trains on these embeddings, consists of 3 linear layers

with 128, 256, and 10 nodes, respectively. The first two layers are activated with ReLU

(Rectified Linear Unit) [22]. They are both followed by a Dropout layer with a 0.5 proba-

bility. The purpose of the dropout layer is to reduce overfitting by not allowing the nodes

to rely on each other [23].



8

3.2 ResNet50

The selected pre-trained model for one of the visual classifiers is ResNet50. The 50-

layered network utilizes residual connections to reduce the degradation issue of larger

networks and allow faster convergence [24]. ResNet50 can be found on PyTorch’s Torchvi-

sion module, which provides models that have been pre-trained on the ImageNet data-

base [25] for addressing different visual tasks [26]. The model consists of an input con-

volutional layer, 4 unique blocks, or bottlenecks, and a fully connected layer. Each block

has 3 convolutional layers. A block repeats a specific number of times, after which a next

block in the sequence is used. The model totals 49 convolutional layers. As a feature ex-

tractor, the final layer is removed, and the average pooled output of the final convolutional

layer is used. This results in a 2048-dimensional embedding for every input image.

The model expects its input image to have 3 color channels, containing values between

0.0 and 1.0 [26]. The image is also expected to be normalized using the ImageNet’s

mean and standard deviation. Both the width and height of the image has to be at least

224 pixels. Since the model expects an image instead of a video as the input, frame

extraction has to be done for the original video. The pre-processing is then applied for

these extracted frames, with available PyTorch transformation functions.

The base classifier’s sub-network has two linear layers, with 64 and 10 nodes. The input

layer uses batch normalization [27], followed by a ReLU activation. No Dropout layer is

used with batch normalization, as proposed in the batch normalization paper [27].

3.3 OpenL3

OpenL3 is an open-source Python library consisting of audio and image feature extracting

pre-trained models. It is based on the Look, Listen and Learn approach, in which audio

and video clip correspondences are trained under self-supervision [28]. The approach led

to two unimodal networks, which output well-performing feature embeddings [29]. More

models were trained with similar architecture to allow the processing of different type of

data, including different sound content and input representation. The ensemble model of

this thesis utilizes OpenL3 in an audio classifier as well as in a visual classifier.

The OpenL3 models have been pre-trained on two different subsets of the AudioSet

dataset [29]. The full AudioSet originally consisted of over 1.7 million 10-second YouTube

videos with 632 different audio classes [30]. The music and environment subsets that

OpenL3 trained with had 296K and 195K videos, respectively [29]. The available models

follow the L3-Net architecture. They consist of 4 blocks, each having 2 convolutional lay-

ers, followed by a max pooling layer [28]. The differences of the unimodal sub-networks

are the sizes of the inputs and layer parameters.



9

The library offers models with combinations of the following settings. The content type

can be based either on the music or environment subset. With changes to the final max

pooling layers of the unimodal systems, the dimensions of the feature embeddings can

be either 512 or 6 144 for audio and 512 or 8 192 for images. The input audio can be rep-

resented either as a log linear spectrogram with 257 bands or as a log mel spectrogram

with 128 or 256 bands. The image system also requires the audio’s input representa-

tion, as the two systems were trained simultaneously. The library resizes the images to

244 by 244. The library handles the pre-processing automatically for the supported file

types. The audio pre-processing also includes hop size and zero padding, which affect

the number of embeddings obtained. [29]

Both audio and visual classifier use the embeddings generated by the environment sub-

set, with 256 mel bands and an output dimension of 512. The audio uses a hop size of 1

second, without padding. These result in a 512-dimensional embedding for each second

in audio and every image input.

The architecture of the audio classifier’s sub-network is identical to that of the ResNet50

based classifier’s sub-network. The only exception is the different input dimensions re-

sulting from the feature extractions. The sub-network of the visual classifier consists of

two linear layers, with 128 and 10 nodes. The input layer uses ReLU activation and a

Dropout layer with a 0.5 probability.

3.4 Combiners

Different combiners are studied for the late fusion. The combiners expect one or more

prediction vectors as their input, and they output a single prediction vector. The final class

is obtained with the maximum membership rule. In the event of a tie, the first occurrence

is selected, as implemented by PyTorch. In the experiments, the prediction vectors are in

descending alphabetical order of the scene names. Therefore, the system prioritizes the

classes in alphabetical order, but a tie is rare for most combiners.

Many combiners are based on trivial rules that come from intuition [31]. As these rules

work without extra parameters, they are sometimes referred to as fixed rules [10][31]. By

adding parameters, such as weights or classifier prioritizing, combiners can be designed

for a specific ensemble model. In these case-specific combiners, adding, changing, or re-

moving classifiers requires selecting new parameters. When the parameters are weights,

they can be added to a classifier, a classifier’s class probabilities, or a meta learner such

as a neural network. These can further improve the system’s accuracy when the impact

of poor performing classifiers is reduced, and well-performing increased [31]. However,

the accuracy can also decrease if the weights adjust the predictions poorly. The weights

can either be trained or selected according to statistics.



10

3.4.1 Trivial combiners

A mean combiner takes the mean of class predictions given by the base classifiers. A

sum combiner is the same as a mean combiner in this case, as the output vector has the

values in the same descending order. In a trimmed version of the mean rule, sometimes

referred to as jury rule, the most optimistic and pessimistic class predictions are not used

when calculating the mean. A jury combiner requires at least three classifiers.

A maximum combiner selects the highest prediction value of each class to its output

vector. If the classifiers’ outputs are not normalized, the combiner selects the values

of the most over-confident classifiers. A minimum combiner selects the lowest values

instead.

A product combiner multiplies the prediction values of each class. If even a single value

is negative for a class, the class’s product will be zero or less.

A mode combiner is based on the mode rule and is often called majority voting. Unlike the

previous combiners, the combiner uses the predicted labels obtained with the maximum

membership rule. The label that occurs the most is selected. If there are multiple labels

with the same number of occurrences, PyTorch implementation selects the smallest label.

The combiner then outputs the label as a one-hot vector for the classification.

A median combiner utilizes the predicted labels similar to the mode combiner. The labels

are sorted in ascending order, and the middle label is selected. When there is an even

number of classifiers, there will be two labels in the middle. PyTorch selects the smaller

label and outputs it as a one-hot vector.

3.4.2 Case-specific combiners

A simple combiner strategy is to add weights to the trivial rules according to the perfor-

mance of the base classifiers. Each classifier gets a weight which equals to their accuracy

on a validation set [32]. The weights are normalized by dividing with the sum of all the

accuracies. Following this method, every classifier’s class probability can also be given a

performance weight. However, statistics regarding every classifiers’ class performance is

required.

As both the mode and median rules can end up with more than a single label, the de-

cision over the final label has to be made. The classifiers can be prioritized when their

validation accuracies are known. After the multiple labels are obtained, each classifier’s

predicted label is checked in the descending order of accuracy. The first predicted label

that corresponds to one of the multiple labels is selected. The prioritized median does

not differ from the original median if there is an odd number of classifiers.



11

A neural network can also work as a combiner, but it requires a separate training session.

The model used in the experiments has two linear layers, with 32 and 10 nodes. Batch

normalization is applied after the first linear layer, followed by ReLU.

There are also various other combiners that are not represented in this thesis. These

include combiners based on custom-defined rules for a specific task and other classifiers

such as support vector machine [8]. However, these are not part of the experiments due

to time restrictions.



12

4. EXPERIMENTS

The experiments were implemented using Python, with PyTorch being the main machine

learning framework. Two versions of TensorFlow were also used for extracting features

with different pre-trained models. The implementations are publicly available on GitHub 1.

Section 4.1 introduces the dataset used in the experiments. The training and testing

methods of the classifiers is explained in detail in Section 4.2. Section 4.3 gathers the

results and analysis of all the classifiers.

4.1 Dataset

The dataset used in the experiments is a development set of the publicly available TAU

Urban Audio-Visual Scenes 2021 [6]. It consists of approximately 10-second audio and

video files, which were recorded in 10 different scenes. In total, there are up to 12 291

files. These scenes were recorded in multiples locations of multiple European cities, with

10 cities in the development set.

Of the 10 scenes, 3 are interiors of moving public transportation vehicles (bus, under-

ground metro, tram), 3 indoor buildings (airport, metro station, shopping mall), and 4

outdoor urban areas (park, public square, pedestrian street, street with medium traffic).

The number of passengers changes in the vehicles with the seats sometimes being empty

and other times filled. The video is also filmed from different parts of the vehicles, some-

times only showing a small object such as a seat or a door. All the other scenes have a

varying number of people moving and talking, with the park having the least people.

Both the audio and video were recorded simultaneously on different devices [6]. The

audio has a sampling rate of 48 kHz and a bit resolution of 24 bits per sample. The video

files were recorded in 1280 by 720 resolution and 29.97 frames per second. Face and

registration plate blurring has been applied to the videos before the dataset’s release.

Any possible sound channels have been removed from the video files.

The dataset comes with a ready-made split for training and testing sets. They share the

same scene classes and most of the cities, but the locations are unique. Tables 4.1 and

4.2 demonstrate the statistics of these two sets.
1https://github.com/tunasoup/multimodal-scene-classification

https://github.com/tunasoup/multimodal-scene-classification


13

Table 4.1. Training set statistics.

scene files cities locations duration (min)

airport 697 8 21 113.2

bus 806 8 38 134.3

metro 705 8 37 117.5

metro station 893 9 32 148.8

park 1006 10 29 167.7

public square 982 10 29 163.7

shopping mall 841 8 22 140.2

street pedestrian 968 10 31 161.3

street traffic 985 10 30 164.2

tram 763 8 36 127.2

total unique 8646 10 305 1441.0

The training set has over 110 minutes worth of recordings for every scene, totaling 24

hours of training data. The scenes were not all recorded in each of the 10 cities. The

average number of cities per scene is 8.9. A single city has files from 84 to 105 for a

scene, making the distribution of cities close to equal. However, the number of recordings

per location is not equal for the scenes. On average, a scene was recorded in a location

from 19 to 38 times. On the city level, there are locations with only 6 recordings and one

with 72 recordings. The vehicle interior scenes have fewer locations relative to file count

as compared to the stationary scenes.

Table 4.2. Testing set statistics.

scene files cities locations duration (min)

airport 281 7 8 46.8

bus 327 8 15 54.5

metro 360 8 16 60.0

metro station 386 9 14 64.3

park 386 10 11 64.3

public square 387 10 12 64.5

shopping mall 387 9 9 64.5

street pedestrian 421 10 14 70.2

street traffic 402 10 12 67.0

tram 308 8 15 51.3

total unique 3645 10 126 607.5



14

The training:testing ratio is approximately 70:30. The testing data consists of 10 hours of

data, and the average number of cities per scene is the same 8.9 as it was for the training

data. On the scene level, most of the cities only have a recording from a single location,

and the number of recordings per location is between 3 to 81. Both the shopping mall and

tram scenes have one city which does not appear on the training data. Also, the airport

and tram scenes have a city in the training set that does not appear in the testing set. The

scene distribution varies due to the different number of scene recordings and the testing

split requiring unique locations. In relative to their recorded size, 33.80 % of the metro

data is in testing, and only 27.73 % of the park data, but both still have 386 files. Street

pedestrian has the most files (421), whereas airport the least (281).

4.2 Training and testing

To examine and avoid overfitting, 15% of the initial training data is used as validation data.

The split is done in the same way as for testing data, where the validation data does not

share locations with the training data. However, the city importance was not taken into

account in this split either. Consequently, the validation set has one city less for the metro

scene than the training set. The training set contains 7 116 files after the split.

The 10-second audio clips are pre-processed according to the requirements of the pre-

trained audio models. The pre-processed data is then input into the models. OpenL3

works on 1-second segments, generating ten 512-dimensional feature embeddings for

each file. VGGish works on 0.96-second segments, which result in ten 128-dimensional

embeddings. However, the final 400 ms of the 10-second audio clips are not used. The

feature embeddings are saved, easing the training of the trainable sub-networks as the

pre-trained models only need to be used once.

The videos were recorded with minimal humane movement [6], so the filmed backgrounds

barely move. The foreground still has some moving objects, such as humans, cars, and

breezy trees. For this reason, and to avoid long training, only 2 frames are extracted from

every 10-second video clip. The frames are saved in 244 by 244 pixels. Similarly to the

audio models, the images are pre-processed accordingly, input into the pre-trained image

models, and their embeddings are saved. The embedding dimensions are 2048 and 512

for ResNet50 and OpenL3, respectively.

After the feature embeddings are saved, the sub-networks are trained separately. Their

performances are evaluated with the mean loss of the validation data on every epoch.

The weights that result in the lowest loss on the validation data are saved. The models

initialize with the saved weights when their performance is tested on the test data.



15

Table 4.3. Hyperparameters of the trainable neural networks.

classifier learning rate batch size epoch

audio VGGish 5.5 × 10−5 32 30

audio OpenL3 8.5 × 10−6 128 47

visual ResNet50 2.5 × 10−5 32 26

visual OpenL3 2.5 × 10−5 32 86

The unimodal classifiers are all trained with the Adam optimizer and cross-entropy loss

function. The training data is shuffled on every epoch, and the training is stopped if the

model has not obtained a better loss in eight epochs. The hyperparameters of the sub-

networks are collected in Table 4.3.

The testing of the base classifiers is done on a file basis. This method differs from the

training and validation phases, where each embedding corresponded to a single output.

For example, as the VGGish based classifier outputs ten prediction vectors for each file,

a mean of the values is taken. For each test file, the base classifiers’ mean vectors are

stacked and then saved with the ground truth labels. These stacked vectors are used as

the input to the combiners.

However, the combiner inputs can also be modified. The vector values are initially logits,

also known as log odds. A logit is obtained from a probability with the equation

logit(p) = ln
p

1− p
, (4.1)

where p is the probability. Logit sets a probability to real numbers, from negative infinity

to positive infinity. A 0.5 probability equals to a logit with a value of 0. A probability can be

obtained with the inverse equation

logit−1(a) =
exp(a)

exp(a) + 1
, (4.2)

where a is a logit value. Both the logit and probability vectors can be normalized with

the softmax function so that all the vector values sum to 1. This can prevent a single

overconfident classifier from solely determining the final class with some combination

methods. The equation for softmax is

softmax(xi) =
exp(xi)∑︁K
j=1 exp(xj)

, (4.3)

where x is a vector element and K the length of the vector. For logits, the resulting vector

contains sum normalized odds. The logits, normalized odds, probabilities, and softmaxed

probabilities are all tested as prediction types for the combiners.



16

4.3 Results

Every classifier’s performance is reported as the average of the classifier’s scene accura-

cies. This method takes into account the unequal distribution of the scene files as every

scene is considered equal. If the total accuracy was used instead, a classifier with more

bias towards street pedestrians than airports would give higher results with the test data.

The F1-score is used as the metric for comparing the scene-specific performances in the

unimodal classifiers. The F1-score can be calculated with

F1 =
2tp

2tp+ fp+ fn
, (4.4)

where tp is true positive, fp false positive, and fn false negative. Unlike accuracy, the F1-

score uses false positives and does not give over-optimistic results for biased classifiers.

If a classifier always chose the same class for every sample, it would gain the perfect

accuracy for that class. However, the score for the class would be low.

4.3.1 Unimodal classifiers

The results of the unimodal classifiers can be seen in Table 4.4. The best-performing

ResNet50 based visual classifier achieves an over 20% higher average accuracy than

the worst-performing VGGish based classifier. However, the latter is still able to obtain the

best score for the street traffic scene. The OpenL3 based audio classifier also achieves

the best results for two scenes and outperforms its visual variant on average.

Table 4.4. F1 scores of the unimodal scene classifiers.

audio visual

scene VGGish OpenL3 ResNet50 OpenL3

airport 0.374 0.702 0.694 0.345

bus 0.557 0.741 0.755 0.715

metro 0.519 0.565 0.881 0.743

metro station 0.566 0.626 0.951 0.783

park 0.888 0.869 0.894 0.848

public square 0.533 0.570 0.744 0.522

shopping mall 0.599 0.673 0.846 0.582

street pedestrian 0.560 0.618 0.823 0.670

street traffic 0.838 0.821 0.809 0.740

tram 0.510 0.659 0.567 0.417

avg. F1 score 0.594 0.684 0.797 0.637

avg. accuracy (%) 59.8 68.7 79.8 64.3



17

The classifiers based on the same modality perform almost in a relatively same manner,

reaching most of their respective high and low scores on the same scenes. For example,

both visual classifiers obtain a higher score than their average on the same six scenes

and struggle particularly with the airport, public square, and tram scenes. The ResNet50

based classifier achieves a higher than average score with the shopping mall scene, but

the OpenL3 based one does not. Similar correspondence can be seen with the audio

classifiers, except for the airport and bus scenes, where the OpenL3 audio classifier is

superior. The modalities also show their strengths on different scenes. When combined,

the visual classifiers achieve a higher score for five scenes and the audio classifiers for

two scenes. For the remaining three scenes, a similar score is obtained with both modal-

ities.

The confusion matrices of the base classifiers are gathered in Appendix A. In a confusion

matrix, a scene’s false positives can be seen on the vertical axis and false negatives on

the horizontal axis when the diagonal true positives are excluded.

Both audio classifiers confuse street pedestrians with public squares, which are aurally

similar. The OpenL3 based audio classifier makes fewer mistakes overall and can dis-

tinguish the vehicle interiors rather well. However, it does confuse metros with metro

stations. The VGGish based classifier has barely learned the differences of the different

vehicle interiors and crowded scenes. However, it can distinguish the park and street

traffic scenes without bias and just a small number of misclassifications.

The visual classifiers confuse the interiors of trams as those of buses’. The airports are

also confused with shopping malls and public squares as street pedestrians. Overall, the

ResNet50 based classifier confuses less, but due to its high bias towards the bus scene,

it misclassifies the trams more often. As already noted in the introduction, the interiors of

vehicles can be visually quite similar. Airports and shopping malls are also a bit similar,

as they both have escalators and moving crowds. The airports also have shops, as these

are airports in big European cities. Streets resemble public squares, but they are more

narrow and densely populated by objects. Surprisingly, street traffic has a low confusion

rate, considering that each extracted frame does not have a car in it.

On average, the classifiers utilizing the visual modality perform better. However, the pre-

trained model has a major role in a classifier’s performance, as the accuracies of the

classifiers utilizing the same modality vary. Just like in a previous scene classification

study using the same dataset [6], the OpenL3 library obtains a higher accuracy on the

audio side. And even though the remaining VGGish based audio classifier is noticeably

worse than the ResNet50 based one, ResNet is deeper than VGGish.

The classifiers could still be improved with various methods. These include fine-tuning

VGGish and ResNet, and optimizing the sub-network architectures and hyperparameters.

The results of the OpenL3 based classifiers could be improved by extracting increasing



18

the number of embeddings for a file on the audio side [6], and possibly by extracting bigger

embeddings. Also, the experiments used only two frames for each video, and there was

no data augmentation. All these methods would require substantially more training.

4.3.2 Multimodal ensemble classifier

The results of the trivial combiners are shown in Table 4.5. These combiners do not have

parameters, and in tie situations, the scenes are favored in alphabetical order.

Table 4.5. Average scene accuracies of trivial combiners.

prediction type mean min max product jury mode median
(%) (%) (%) (%) (%) (%) (%)

logits 87.4 83.5 79.3 2.2 85.4 81.4 78.8

normalized odds 86.0 86.4 83.7 87.4 84.4 81.4 78.8

probabilities 86.9 83.5 79.3 86.6 85.1 81.4 78.8

softmaxed probabilities 87.0 83.2 82.5 86.9 84.4 81.4 78.8

Almost all of the combiners perform better than any of the base classifiers with the mean

combiner obtaining the highest accuracy using logits. Probabilities and the softmax vari-

ant also reach their highest accuracy with the mean combiner. Only the median combiner

achieves a lower accuracy than the base classifiers with every prediction type and the

max combiner with unnormalized types.

The poor performance of the product combiner using logits is due to the negative values

given for below 0.5 probabilities. A single base classifier giving such a probability sets

the product negative, and the confident classifiers set this value to the same level as the

least likely classes. The mode and median are the same for each prediction type, as they

work with the classifiers’ predicted labels instead of the probabilities. The mean of logits

has the same results as the product of normalized odds because their prediction values

are in the same ranking order.

Table 4.6 gathers the results of case-specific combiners. Weights are added to the well-

performing mean rule, and the mode and median rules are prioritized. The neural network

combiner is trained on the same training data as the base classifiers. Training on the same

data results in over-optimistic predictions. Optimally, the training data would be split into

more training sets, and the combiner trained with the data that the base classifiers have

not yet seen. Similarly to the base classifiers, the training is stopped if the model’s loss

has not improved in 8 epochs. Using the Adam optimizer, the learning rates for logits and

normalized odds are 1.5 × 10−5 and 2.0 × 10−5. Both probability types have a learning

rate of 2.5 × 10−5. The batch size is 32 for each.



19

Table 4.6. Average scene accuracies of the case-specific combiners. The accuracy
weighted mean (AWM) combiner weighs every classifier, whereas the F1 weighted mean
(FWM) combiner weighs every class of every classifier. The mode and median combiners
prioritize well-performing base classifiers. The neural network (NN) is the only one of the
combiners that is not based on a combination rule.

prediction type AWM FWM mode median NN
(%) (%) (%) (%) (%)

logits 87.3 87.4 82.4 80.8 86.6

normalized odds 86.3 86.6 82.4 80.8 85.6

probabilities 86.9 87.2 82.4 80.8 86.4

softmaxed probabilities 86.8 87.0 82.4 80.8 86.6

Adding accuracy weights to the classifiers does not noticeably increase or decrease the

accuracy of a mean combiner in these experiments. Weighing the class probabilities

achieves the highest results of the evaluated case-specific combiners. However, this ac-

curacy increase is not noticeable either. The neural network combiner performs slightly

worse than the mean combiners. The trivial mean combiner and the class weighing vari-

ant both achieve the highest accuracy of 87.4% with logits, which is over 7% higher than

the best unimodal classifier.

Prioritizing the mode and median improves the combiners, with the median combiner now

surpassing the base classifiers. Consequently, all of the tested combiners outperformed

the base classifiers. However, some of them required case-specific parameters or nor-

malized inputs.

Excluding the combiners that require normalization, the accuracies of the combiners us-

ing different prediction types is small. The ranking of the prediction types may not be the

same for a different model or dataset. The topic would require more research to determine

if there is a notable difference when using the different prediction types.

The confusion matrix of the ensemble classifier using a trivial mean combiner can be

seen in the figure 4.1. Compared to the base classifiers, the ensemble achieves higher

F1 scores for all the scenes except for the metro station. The ResNet50 based visual

classifier obtains a score of 0.951, whereas the ensemble 0.928. The ensemble model

has more true positives on the particular scene, but it misclassifies some of the airports

as metro stations due to the intervention of the other base classifiers. The performance

of the crowded scenes has improved, as only public squares suffer from being classified

as street pedestrians.



20

airport bus
metro

metro_sta
tion park

public_s
quare

shopping_mall

stre
et_pedestria

n

stre
et_tra

ffic tram

Predicted scene

airport

bus

metro

metro_station

park

public_square

shopping_mall

street_pedestrian

street_traffic

tram

Tr
ue

 sc
en

e

217 0 0 38 0 0 24 0 2 0

0 316 0 0 0 0 0 0 0 11

0 0 348 0 0 0 0 0 0 12

3 0 0 374 0 0 2 7 0 0

0 0 0 0 358 9 0 0 19 0

3 0 0 0 15 285 2 79 3 0

26 0 6 8 0 0 344 3 0 0

0 0 0 0 0 26 1 390 4 0

0 0 0 0 0 16 0 8 378 0

0 98 11 0 0 0 0 0 0 199

Figure 4.1. Confusion matrix of the best ensemble classifier using a trivial mean combiner
with logits.

The best model still struggles with the tram scene and often classifies a tram as a bus. The

model has fewer true positives on the tram scene as the VGGish based audio classifier,

but unlike the base classifier, it does not have a bias towards it and achieves a higher

score. However, the tram scene’s score of 0.751 remains the lowest ensemble score, as

no base classifier learned to recognize the scene well.

The best multimodal model represented in these experiments could still be improved. The

combiner weights could be trained exhaustively, and the classifiers changed, removed, or

even more added. However, to better evaluate the model’s accuracy, the TAU Urban

Audio-Visual Scenes 2021 evaluation dataset can be used for testing once it is published.

Unlike the development set’s testing data, the evaluation dataset consists of unseen cities

instead of just unseen locations.



21

5. CONCLUSIONS

In this thesis, a multimodal ensemble neural network utilizing late fusion was built for

scene classification. The ensemble classifier consisted of multiple unimodal base classi-

fiers and a combiner that combines the classifier results. The unimodal classifiers were

based on audio and visual modalities, with both modalities having two classifiers. Each

base classifier used a pre-trained model as a feature extractor, with a small trainable sub-

network using the features to make the classifications. The results of all the classifiers

and different combination methods were studied.

The experiments show that scene classifiers utilizing the same modality perform similarly,

obtaining most of their highest and lowest scores on the same scenes. The individual

strength of the modalities is also shown, as classifiers of both modalities perform better

on certain scenes. However, the chosen pre-trained model has a clear impact on the

classifier. In both modalities, the average accuracy of the other classifier is noticeably

lower. In the experiments, utilizing a visual modality over audio is better on average, but

this may not hold in general, as the architectures of the pre-trained models differ.

The tested combination methods were based on trivial rules and on more case-specific

methods that utilized fixed parameters. Different input types were also tested for the com-

biners, including logits, probabilities, and their normalized versions. The input type’s ef-

fect on the accuracy was only noticeable with combination rules that prefer normalization,

such as the maximum rule. All the combiners were able to outperform the unimodal clas-

sifiers. However, some of them required adding parameters or normalizing the inputs.

The best combination method was a simple mean of the base classifier outputs. The

same accuracy was also reached with its class-weighted variant, where each classifier’s

class probability was adjusted with a weight.

The best multimodal ensemble model achieved an average accuracy of 87.4%, which is

over 7% higher than the best unimodal classifier. The model also achieved better results

on nine scenes out of ten when compared to all of the unimodal classifiers. The model

could be improved further, but the study already shows that different combination methods

can increase the classification accuracy of an audio-visual scene classifier.



22

REFERENCES

[1] Intraub, H. Rethinking visual scene perception. Wiley Interdisciplinary Reviews:

Cognitive Science 3.1 (2012), pp. 117–127. ISSN: 1939-5078.

[2] Xie, L., Lee, F., Liu, L., Kotani, K. and Chen, Q. Scene recognition: A comprehensive

survey. Pattern Recognition 102 (2020), pp. 107205–. ISSN: 0031-3203.

[3] Wang, A., Cai, J., Lu, J. and Cham, T.-J. Modality and component aware feature

fusion for RGB-D scene classification. 2016 IEEE Conference on Computer Vision

and Pattern Recognition 2016- (2016), pp. 5995–6004. ISSN: 1063-6919.

[4] Zhang, H., Patel, V. M. and Chellappa, R. Hierarchical multimodal metric learning

for multimodal classification. 2017 IEEE Conference on Computer Vision and Pat-

tern Recognition 2017- (2017), pp. 2925–2933. ISSN: 1063-6919.

[5] Heittola, T., Mesaros, A. and Virtanen, T. Acoustic scene classification in DCASE

2020 Challenge: Generalization across devices and low complexity solutions. Pro-

ceedings of the Detection and Classification of Acoustic Scenes and Events 2020

Workshop (Nov. 2020), pp. 56–60.

[6] Wang, S., Mesaros, A., Heittola, T. and Virtanen, T. A curated dataset of urban

scenes for audio-visual scene analysis. 2021 IEEE International Conference on

Acoustics, Speech and Signal Processing (2021), pp. 626–630. DOI: 10.1109/

ICASSP39728.2021.9415085.

[7] Gadzicki, K., Khamsehashari, R. and Zetzsche, C. Early vs Late Fusion in Multi-

modal Convolutional Neural Networks. 2020 IEEE 23rd International Conference

on Information Fusion (2020), pp. 1–6. DOI: 10.23919/FUSION45008.2020.

9190246.

[8] Atrey, P. K., Hossain, M. A., El Saddik, A. and Kankanhalli, M. S. Multimodal fusion

for multimedia analysis: A survey. Multimedia Systems 16.6 (2010), pp. 345–379.

ISSN: 0942-4962.

[9] Baltrusaitis, T., Ahuja, C. and Morency, L.-P. Multimodal machine learning: A survey

and taxonomy. IEEE Transactions on Pattern Analysis and Machine Intelligence

41.2 (2019), pp. 423–443. ISSN: 0162-8828.

[10] Gawande, U. and Golhar, Y. Biometric security system: A rigorous review of uni-

modal and multimodal biometrics techniques. International Journal of Biometrics

10 (Jan. 2018), p. 142. DOI: 10.1504/IJBM.2018.091629.

[11] Feng, D., Haase-Schutz, C., Rosenbaum, L., Hertlein, H., Glaser, C., Timm, F.,

Wiesbeck, W. and Dietmayer, K. Deep multi-modal object detection and semantic

segmentation for autonomous driving: datasets, methods, and challenges. IEEE

https://doi.org/10.1109/ICASSP39728.2021.9415085
https://doi.org/10.1109/ICASSP39728.2021.9415085
https://doi.org/10.23919/FUSION45008.2020.9190246
https://doi.org/10.23919/FUSION45008.2020.9190246
https://doi.org/10.1504/IJBM.2018.091629


23

Transactions on Intelligent Transportation Systems 22.3 (2021), pp. 1341–1360.

ISSN: 1524-9050.

[12] James, A. P. and Dasarathy, B. V. Medical image fusion: A survey of the state of the

art. Information Fusion 19.1 (2014), pp. 4–19. ISSN: 1566-2535.

[13] Pan, S. J. and Yang, Q. A survey on transfer learning. IEEE Transactions on Knowl-

edge and Data Engineering 22.10 (2010), pp. 1345–1359. DOI: 10.1109/TKDE.

2009.191.

[14] Yosinski, J., Clune, J., Bengio, Y. and Lipson, H. How transferable are features

in deep neural networks?: Advances in Neural Information Processing Systems

4.January (2014), pp. 3320–3328. ISSN: 1049-5258.

[15] Lei, H., Han, T., Zhou, F., Yu, Z., Qin, J., Elazab, A. and Lei, B. A deeply supervised

residual network for HEp-2 cell classification via cross-modal transfer learning. Pat-

tern Recognition 79 (2018), pp. 290–302. ISSN: 0031-3203.

[16] Mehdipour Ghazi, M., Yanikoglu, B. and Aptoula, E. Plant identification using deep

neural networks via optimization of transfer learning parameters. Neurocomputing

(Amsterdam) 235 (2017), pp. 228–235. ISSN: 0925-2312.

[17] Hershey, S., Chaudhuri, S., Ellis, D. P. W., Gemmeke, J. F., Jansen, A., Moore,

R. C., Plakal, M., Platt, D., Saurous, R. A., Seybold, B., Slaney, M., Weiss, R. J. and

Wilson, K. CNN architectures for large-scale audio classification. 2017 IEEE Inter-

national Conference on Acoustics, Speech and Signal Processing (2017), pp. 131–

135. ISSN: 1520-6149.

[18] Simonyan, K. and Zisserman, A. Very deep convolutional networks for large-scale

image recognition. International Conference on Learning Representations (2015).

arXiv: 1409.1556 [cs.CV].

[19] Abu-El-Haija, S., Kothari, N., Lee, J., Natsev, P., Toderici, G., Varadarajan, B. and

Vijayanarasimhan, S. YouTube-8M: A large-scale video classification benchmark.

(2016). arXiv: 1609.08675 [cs.CV].

[20] Ellis, D., Heshey, S., Jesen, A. and Plakal, M. VGGish. GitHub Repository (Aug. 18,

2020). URL: https : / / github . com / tensorflow / models / tree / master /

research/audioset/vggish (visited on 03/21/2020).

[21] Kim, J. and Li, J. Introducing the model garden for TensorFlow 2. Mar. 2020. URL:

https://blog.tensorflow.org/2020/03/introducing-model-garden-

for-tensorflow-2.html (visited on 03/21/2020).

[22] Nair, V. and Hinton, G. E. Rectified linear units improve Restricted Boltzmann ma-

chines. 27th International Conference on Machine Learning (2010), pp. 807–814.

[23] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. and Salakhutdinov, R. Dropout:

A simple way to prevent neural networks from overfitting. Journal of Machine Learn-

ing Research 15 (2014), pp. 1929–1958. ISSN: 1532-4435.

https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1109/TKDE.2009.191
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1609.08675
https://github.com/tensorflow/models/tree/master/research/audioset/vggish
https://github.com/tensorflow/models/tree/master/research/audioset/vggish
https://blog.tensorflow.org/2020/03/introducing-model-garden-for-tensorflow-2.html
https://blog.tensorflow.org/2020/03/introducing-model-garden-for-tensorflow-2.html


24

[24] He, K., Zhang, X., Ren, S. and Sun, J. Deep residual learning for image rsecogni-

tion. 2016 IEEE Conference on Computer Vision and Pattern Recognition (2016),

pp. 770–778. ISSN: 1063-6919.

[25] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K. and Fei-Fei, L. ImageNet: A large-

scale hierarchical image database. 2009 IEEE Conference on Computer Vision and

Pattern Recognition (2009), pp. 248–255. DOI: 10.1109/CVPR.2009.5206848.

[26] Torchvision models. Dec. 2020. URL: https://pytorch.org/vision/0.8/

models.html (visited on 03/21/2020).

[27] Ioffe, S. and Szegedy, C. Batch normalization: Accelerating deep network train-

ing by reducing internal covariate shift. 32nd International Conference on Machine

Learning 1 (2015), pp. 448–456.

[28] Arandjelovic, R. and Zisserman, A. Look, Listen and Learn. 2017 IEEE International

Conference on Computer Vision (ICCV) (2017), pp. 609–617. ISSN: 1550-5499.

[29] Cramer, J., Wu, H.-H., Salamon, J. and Bello, J. P. Look, Listen, and Learn more:

Design choices for deep audio embeddings. 2019 IEEE International Conference

on Acoustics, Speech and Signal Processing (2019), pp. 3852–3856. ISSN: 2379-

190X.

[30] Gemmeke, J. F., Ellis, D. P. W., Freedman, D., Jansen, A., Lawrence, W., Moore,

R. C., Plakal, M. and Ritter, M. Audio Set: An ontology and human-labeled dataset

for audio events. 2017 IEEE International Conference on Acoustics, Speech and

Signal Processing (2017).

[31] Kuncheva, L. I. Combining pattern classifiers: Methods and algorithms. 2nd ed.

Hoboken, New Jersey: Wiley, 2014, pp. 111–185. ISBN: 1-118-91456-2.

[32] Rokach, L. Pattern classification using ensemble methods. Series in Machine Per-

ception and Artificial Intelligence ; v. 75. Singapore ; World Scientific, 2010, p. 67.

ISBN: 1-282-75785-7.

https://doi.org/10.1109/CVPR.2009.5206848
https://pytorch.org/vision/0.8/models.html
https://pytorch.org/vision/0.8/models.html


25

APPENDIX A: CONFUSION MATRICES

airport bus
metro

metro_sta
tion park

public_s
quare

shopping_mall

stre
et_pedestria

n

stre
et_tra

ffic tram

Predicted scene

airport

bus

metro

metro_station

park

public_square

shopping_mall

street_pedestrian

street_traffic

tram

Tr
ue

 sc
en

e

91 0 0 7 0 1 107 70 5 0

0 184 16 8 1 0 0 1 2 115

5 41 148 57 0 2 2 2 5 98

21 17 23 212 1 1 64 23 6 18

0 3 0 3 353 16 0 3 8 0

6 5 1 14 37 198 15 70 39 2

58 0 0 29 0 0 253 46 0 1

25 11 0 10 6 93 17 250 8 1

0 3 0 1 7 45 0 3 343 0

0 70 22 22 4 0 0 3 1 186

Figure A.1. Confusion matrix of VGGish based audio classifier



26

airport bus
metro

metro_sta
tion park

public_s
quare

shopping_mall

stre
et_pedestria

n

stre
et_tra

ffic tram

Predicted scene

airport

bus

metro

metro_station

park

public_square

shopping_mall

street_pedestrian

street_traffic

tram

Tr
ue

 sc
en

e

206 1 1 19 0 3 28 20 3 0

0 239 35 2 0 0 0 0 0 51

0 25 184 62 0 3 2 2 1 81

14 4 37 250 0 1 35 10 3 32

0 7 1 2 314 34 0 1 27 0

17 3 8 8 17 221 12 60 41 0

41 0 0 45 0 0 247 54 0 0

26 0 0 9 4 86 23 259 14 0

2 1 0 4 2 40 0 11 342 0

0 38 25 12 0 1 0 0 0 232

Figure A.2. Confusion matrix of OpenL3 based audio classifier



27

airport bus
metro

metro_sta
tion park

public_s
quare

shopping_mall

stre
et_pedestria

n

stre
et_tra

ffic tram

Predicted scene

airport

bus

metro

metro_station

park

public_square

shopping_mall

street_pedestrian

street_traffic

tram

Tr
ue

 sc
en

e

177 25 0 8 0 4 60 3 1 3

0 311 2 0 0 0 0 0 0 14

0 16 312 0 0 0 0 0 0 32

13 1 2 362 0 0 0 8 0 0

0 0 0 0 321 25 0 0 31 9

2 0 0 0 6 281 2 68 26 2

36 0 10 2 0 0 336 0 2 1

1 0 0 1 1 20 9 367 22 0

0 4 0 2 4 38 0 25 329 0

0 140 22 0 0 0 0 0 0 146

Figure A.3. Confusion matrix of ResNet50 based visual classifier



28

airport bus
metro

metro_sta
tion park

public_s
quare

shopping_mall

stre
et_pedestria

n

stre
et_tra

ffic tram

Predicted scene

airport

bus

metro

metro_station

park

public_square

shopping_mall

street_pedestrian

street_traffic

tram

Tr
ue

 sc
en

e

77 12 7 44 0 8 122 10 1 0

0 264 11 0 0 0 5 0 0 47

2 13 263 0 0 0 13 0 0 69

8 0 2 316 0 0 41 14 0 5

0 0 0 0 323 21 0 4 38 0

14 0 0 0 40 169 9 126 29 0

57 3 0 27 0 0 260 40 0 0

7 0 0 0 1 25 45 326 17 0

0 1 4 24 12 37 6 32 286 0

0 118 61 10 0 0 6 0 0 113

Figure A.4. Confusion matrix of OpenL3 based visual classifier


	Introduction
	Background
	Fusion methods
	Transfer learning

	Base model
	VGGish
	ResNet50
	OpenL3
	Combiners
	Trivial combiners
	Case-specific combiners


	Experiments
	Dataset
	Training and testing
	Results
	Unimodal classifiers
	Multimodal ensemble classifier


	Conclusions
	References
	Confusion matrices

