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Abstract—The 5th generation mobile networks introduce large
bandwidths with extended beamforming capabilities, which re-
sults in increased spatial selectivity of received channel state
information. A channel chart is a map of the radio geometry
that surrounds the base station and it can be generated in an
unsupervised manner from the received channel state information
without any knowledge of actual measurement locations. In this
work, we generate channel charts for multiple base stations using
multidimensional scaling and combine them for a better shape
of the radio geometry. The combined chart cannot be directly
applied for absolute positioning, but it can be extended. Extension
is performed with affine and conformal mappings to the charts.
The method for generating and combining the charts as well
the method of extension to absolute positioning is explained.
Evaluations are performed for two different scenarios, one of
which is an open space scenario, and the other utilizes ray-tracing
data. Finally, the charts are presented and analyzed together with
positioning estimation results for the considered scenarios.

I. INTRODUCTION

The 5th generation (5G) wireless networks continuously
process vast amounts of information in order to meet the
demanding communication requirements in terms of the data
rate and capacity [1]. Along with a normal data transmission,
user equipment (UE) devices are transmitting uplink pilot
signals which facilitate uplink channel state information (CSI)
estimation and subsequent data demodulation at the network-
side. In addition to the general communications, the CSI
observations can also be used to create a radio geometry map
of the environment which in turn can be utilized for enhancing
network functionalities by leveraging the available device
position information [2]. Hence, channel charts (CC), which
represent the positions of the UE devices through preserving
the radio geometry of the environment [3], can be beneficial
especially in the cases where the absolute device position is
not readily available. In this work, we propose an unsupervised
method for generating a CC which maintains the shape and
size of the original map.

In the absence of measurement location information, the
CCs should be generated by using only the obtained CSI
measurements in an unsupervised manner. This way, functions
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can be automated and the use of laborious and sometimes
expensive fingerprinting campaigns and the use of global nav-
igation satellite systems (GNSS), can be avoided. In practice,
the CCs can be generated for each base station (BS) separately,
but if carried out this way, the shape of the charts can be
distorted [3], [4]. Thus, measurements from multiple BSs can
improve the charts significantly [5], if a proper measurement
fusion method is considered in the distance matrix determina-
tion phase of the charting. Stemming from the aforementioned
work, we propose a distance matrix combination method that
relies on a weighted average based on the visibility condition
of the UE devices. This method can be performed in an
unsupervised manner and maintains the shape of the radio
geometry relative to the BSs.

Even though the unsupervised positioning setting is attrac-
tive, it can also be challenging due to the dynamic nature
of the channel, as the moving vehicles and people, weather
conditions and multipath for buildings affect the channel. Due
to this, the unsupervised model might need to be updated
regularly. In addition, without certainty of UE positions related
to the received CSI measurements, only using the data within
an examined area can be challenging.

Even though the multipoint CCs presented in [5] have better
shape, the charts are not in the correct scale and orientation,
in comparison with the real coordinates. Additionally in [6],
Siamese Neural Network is used for unsupervised as well as
supervised and semisupervised CC, but absolute positioning
is not accomplished for unsupervised CC. Therefore, the
unsupervised charts in [5] and [6] are not suitable for
absolute device positioning as such. In this work, we introduce
an unsupervised method for extending the multipoint CC to
absolute device positioning. This can be achieved with dif-
ferent transformations such as affine and conformal mapping.
These mappings can be applied to the points of the CC in
order to acquire a chart with better orientation and shape for
absolute positioning. However, these transformations require
knowledge of the BS positions in the CC to function. There-
fore, we introduce a method for estimating the corresponding
BS positions by utilizing the power of the CSI measurements.

This article is structured as follows. In Section II, the CC
and a chart combination method are presented. In Section III,



the method for extension to absolute positioning is described.
In Section IV, the simulations and performance of the pro-
posed methods are presented. In Section V, we conclude the
article.

II. CHANNEL CHARTING

The goal of channel charting is to create a mapping from a
high dimensional CSI measurement h ∈ CM to a coordinate
z ∈ R2 in such a way that the local geometry is preserved.
In this work, the considered multicarrier-multiantenna CSI
measurement h has the dimensionality M = B · W , where
B is the number of antenna elements in the antenna array and
W is the number of active subcarriers in the system. In the
conducted simulations, carried out using extensive ray-tracing
channel modeling [7], we employ an uniform circular array
(UCA) with 20 antenna elements and 16 active subcarriers
at a carrier frequency of 3.5 GHz. In the actual charting, the
obtained CSI measurements are first used to compute the raw
2nd moment of the CSI vectors. These instantaneous matrices
are then averaged over a few time-steps in order to cancel out
the effects of fast fading, and the acquired averaged matrices
are denoted as H ∈ Cm×m. In [4], the CSI vectors were
averaged over the subcarriers due to the assumed line of sight
(LoS) conditions, whereas in this work, non line of sight
(NLoS) measurements are also taken into account, and thus
the averaging over the subcarriers is not carried out.

The obtained matrices H are used to compute the distance
matrices for each BS, which are then used in multidimensional
scaling (MDS). The pairwise distance matrix D(k) of the kth
BS is computed in a similar way as in [4] such as
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, for i, j = 1, ..., N, (1)

where Hi is the CSI matrix of the ith measurement, N denotes
the number of available CSI matrices, and parameter β =

1 + 1
2σ with parameter σ that corresponds to the unknown

path-loss exponent. We chose σ = 8 Finally, ‖ · ‖F denotes
the Frobenius norm, which can be roughly interpreted as a
power of the given CSI measurement.

The received distance matrices from each BS are combined
by taking a weighted average of the matrices, where the
weighting is based on the visibility of the users to the BS.
We can assume that the distance estimates in matrices D(k)

between LoS measurements are more accurate than NLoS
measurements. Hence, the combined distance matrix will use
only LoS measurements, when possible. In a real scenario it
is not possible to directly say which measurements are LoS
and which are NLoS. Thus, an estimation of the visibility is
needed. In this work, simulations and numerical evaluations
are only performed with perfect visibility knowledge as esti-
mation of visibility is beyond the scope of this work. Some
methods for visibility estimation are presented in [8].

The visibility information is utilized to combine the distance
matrices from different BS. In the proposed solution visibility
value of a pair of users visible to the BS is set to one, whereas
if only one or neither of the users are visible, the value is zero.
Thereafter, we set each distance with a zero visibility value to
zero and sum the distances. Finally, we divide each distance by
the number of distances used. These values can be represented
in the following way.
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where D(k)
i,j is the distance value of the point-pair (i, j) in the

distance matrix of the kth BS, and v(k)i,j is the visibility value
of the measurement pair (i, j) for kth BS. This is essentially
the average of the distances of the visible measurements.

The combined distance matrix D is then used as an input to
MDS. In this work, we will use stress function [9] and Sam-
mon’s mapping (SM) [10] as cost functions for evaluations.
When the stress-based approach is utilized in MDS, the miss-
ing values, which are the off-diagonal zero valued elements,
are ignored. In SM, the missing values are replaced with the
average of the NLoS distances due to implementational issues.

To avoid computing the CC again for a new measurement,
a recursive update for MDS can be beneficial. In applications,
it would be beneficial that the rest of the CC is not changed
due to the new measurement. Thus, we propose an estimation
method for a new measurement to be located on the CC. We
derive the update step for the ”stress” cost function, but the
derivation is similar for other cost functions. MDS minimizes
the stress, which is a root of sum of squared residuals

StressD(z1, ..., zN ) =

 ∑
i6=j=1,...,N

(dij − ‖zi − zj‖)2
1/2

,

(3)
where D is the distance matrix, dij is the (i, j)-th element of
D, N is the number of points and zi is the ith coordinate in
the estimated map [9]. After minimizing this cost, we have
estimated positions zi for N points in the CC. The estimated
position of a new measurement zN+1 can be estimated by
minimizing

StressD(zN+1) =

 ∑
i=1,...,N

(di,N+1 − ‖zi − zN+1‖)2
1/2

,

(4)
where we treat positions zi solved with (3) as parameters, and
only variables to be solved are the coordinates of the new
measurement zN+1.

III. EXTENSION TO ABSOLUTE POSITIONING

The mapping obtained from the MDS is not in the real
scale, shape and translation and thus it cannot be used for



Fig. 1: A flowchart of the steps made for the CC extension to absolute scale.

absolute positioning. The resulting maps have some rotation,
compared with real coordinates, they are in the wrong scale,
and the coordinates are zero-centered. An affine transformation
can be applied to rotate, scale and mirror the map to better
represent the original map. The affine transformation needs
some reference points from real coordinates. The order of the
steps for the extension procedure can be seen in Fig. 1.

Since the learning of the CC is carried out in an unsu-
pervised manner, no reference points are available. The real
coordinates of the BSs are known, which can be used to
estimate the transformations between the map and the CC.
The coordinates of the BS in the CC are not known, but
can be estimated using the power of the measurements. The
estimated BS positions can then be used to apply necessary
transformations to the CC.

Additionally, the chart can be circular, even though the
measurement area itself can be rectangular, as in our scenarios.
A conformal mapping, which is an angle-preserving transfor-
mation, from a circle to a square can be used to remove the
roundness of the chart.

A. Estimation of BS position

The positions of the BSs can be estimated based on the
power of the CSI measurements. We can assume that measure-
ments with the highest power are close to the BS. The position
of the BS in the CC can be estimated using measurements
surrounding the BS. Locate some number of measurements
with the highest power from the CC. In evaluations, we use
10 measurements with the highest powers. The BS position
estimate can then be calculated as the average of the positions
of such points on the chart.

Additionally, more sophisticated methods could be used to
estimate the BS position. In [11] access points (AP) position
was estimated using path loss models. BS position estimation
could be replaced by a few measured reference positions,
which would turn the problem into a semisupervised problem.

B. Affine and conformal transformations

The BS position estimates can be used to find the correct
rotation between the CC and the known BS positions in the
real coordinates. The rotation angle is found by calculating
the angle between the segments from the origin to the real
and estimated BS positions. First, the real map is translated

to the origin, by subtracting the mean value of the BS
positions from each BS position. Angles between each position
and estimate pair can be calculated with the two-argument
arctangent function by

θ = ^(x,y) = atan2(y1x2 − y2x1, y1x1 + y2x2), (5)

where x is the two-dimensional coordinate of the BS in real
coordinates that are translated to the origin, y is the estimated
position of the BS in the CC, and subscript i corresponds to
the ith coordinate of the position. The angles are calculated for
each BS. The angle estimate θ̄ is the circular mean of angles
θ given by

θ̄ = atan2

 1

n

n∑
j=1

sin θj ,
1

n

n∑
j=1

cos θj

 . (6)

However, the resulting chart from the MDS can be reflected
and the angle of rotation can thus be erroneous. Reflection can
be checked, for example, by computing the variance of the
rotations given by (5). If the variance is high, for example 1,
the points can be reflected on either axis by choosing zi = −zi,
where zi is the ith coordinate of point z in the CC. Each point
in the chart can then be rotated by multiplying each coordinate
with a rotation matrix.

zrotated =

[
cos θ sin θ

− sin θ cos θ

]
z, (7)

where z is the two-dimensional coordinates of a point in the
CC and zrotated is the coordinates of a point that has been
rotated.

The rotation is followed by the conformal mapping. In this
work, conformal mapping is used to map a circle to a square,
to remove some of the roundness of the charts. There are a
few ways to map the circle to a square, which are explained
in detail in [12]. We use the elliptical grid mapping, which is
carried out on points inside a unit circle centered at the origin
to a square that circumscribes the circle. Since points in the
CC are not in a unit circle, the points in CC are scaled as such
to avoid numerical problems with the square root. Scaling can
be computed in polar coordinates, but it is equivalent to scaling
by the maximum distance of a point to origin

yscaled =
y

max
i

(‖yi‖2)
, (8)



where yi is the ith point. This can be derived from the polar
coordinate expression. Elliptical grid mapping is computed in
the following way

x1 =
1

2

√
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√
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1

2

√
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√
2y1

(9)
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√
2y2,

(10)

where y1 and y2 are the coordinates of a point in the CC and
x1 and x2 are the coordinates of a point in the resulting chart.
Now, the points need to be scaled and translated to correct
positions and scale, which can be achieved by using an affine
transformation. General affine transformation between the BS
positions is of the form[

x

1

]
=

a1 a2 a3
a4 a5 a6
0 0 1

[y
1

]
, (11)

where parameters a1 to a6 represent the unknown affine
transformations between the points in the map x and the points
in the chart y. With the BS position estimates, the parameters
a1 to a6 are the only unknowns, thus we can solve (11) for
parameter vector a

x =

[
y1 y2 1 0 0 0

0 0 0 y1 y2 1

]
a. (12)

A least squares solution of (12) can be solved with at least
three BS positions x and y, but more BS positions are better
if the geometry of the points is not ideal. Each point in the
CC is transformed using (11).

IV. SIMULATIONS AND RESULTS

In this work, we have simulated data in a part of the METIS
Madrid grid [13] using an extensive ray-tracing channel mo-
deling [7], proposed by the 3rd Generation Partnership Project
(3GPP) in [14]. We consider two different scenarios each with
4 BSs. The first scenario is an open park area and the second
scenario is a city block. We will call these scenarios LoS and
NLoS scenarios respectively. Both scenarios have roads on
the edges and the BSs are located in the intersections of these
roads. In the simulations, the BSs are set 1.5m away from the
corners of the buildings at the height of 10m and the UE are
set in a uniform grid with 2.5m spacing at the height of 1.5m.
The map of the Madrid grid and the area of the scenarios
are illustrated in Fig. 2. The cost functions for the MDS were
chosen to be SM for the LoS scenario and stress for the NLoS
scenario. Both cost functions were tested for both scenarios,
but these choices gave the best results. In Fig. 3a and Fig.
3d, the UE and BS positions are shown for the LoS and the
NLoS scenarios, respectively. The UE positions are colored
along the north-south direction. In Fig. 3b and Fig. 3e, the
multipoint CCs of four BSs can be seen for both scenarios.
The color gradients match the real maps, but the circular shape

Fig. 2: Madrid grid with LoS and NLoS scenarios colored in
yellow and red patches respectively. The green park area is
part of the LoS scenario.

of the CC is not optimal since the goal of the chart is to
represent the original topology. For the NLoS scenario, there
is an empty space inside the points, which means that the CC
is able to capture the topology of a scenario with UE around
a building. After the extensions proposed and described in
Section III, the resulting maps, shown in Fig. 3c and Fig. 3f,
have comparable scale, shape and orientation with the real
map data. The conformal mapping has removed some of the
roundness to better represent the original map, especially in
the LoS scenario.

In both scenarios, some of the BSs are located along the
edges of the map. These BSs are not surrounded by users,
and thus the BS position estimation will be biased away from
the edge. This can be seen as the estimates being among the
points in CC in Figures 3c and 3f, even though they should
be on the outer and inner edges.

The positioning error between the CC and real positions is
presented with a histogram. In Fig. 4 the histograms of 2D-
errors are presented for the both scenarios. Mean errors in the
LoS and NLoS scenarios are 19.7m and 32.0m, respectively.
In Figs. 3c and 3f, the points are grouped on the edges of the
CC, which likely causes the second peak for LoS scenario and
the long tail for NLoS scenario error distributions. A better
BS position estimation method, such as path loss models,
could improve the accuracy. The positioning accuracy of Long-
Term Evolution (LTE) networks, given in [15], is close to our
results. In [6], the mean errors for a supervised LoS and NLoS
scenario are 6.69m and 10.51m respectively. In addition, the
mean errors for a semisupervised LoS and NLoS scenarios are
10.51m and 17.59m. Their unsupervised method gives good
shape of the chart, but lacks accuracy information. Considering
the unsupervised setting, our results compare fairly well to
the supervised settings, and our method works as a proof-of-
concept method. The results could possibly be improved by
increasing the number of BSs in the area as well.
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Fig. 3: Figures on top and bottom represent LoS and NLoS scenarios respectively. In each figure red points represent BSs and
colored points are UE. On the left are maps of the UE and BSs in real coordinates. In the middle are the multipoint CCs of
four UCA antennas in logical scale and on the right is the CCs in absolute scale after tranformations.

Fig. 4: Histograms of 2D-error in Los and NLoS scenarios
colored with blue and red, respectively, and the estimated
probability density functions in black.

V. CONCLUSIONS

A method for multipoint Channel Charting was presented
for UCA antennas for two different scenarios. We proposed a
method for weighting the distance matrices for the multipoint
CC and cost functions for different visibility scenarios.

An unsupervised method for the extension of CC to absolute
positioning is proposed and tested. Our results show that
the extension works as a proof of concept, but the accuracy
can be improved. Further research is needed for BS position
estimation for better positioning accuracy.
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