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A thermodynamically consistent formulation to model anisotropic damage for quasi-brittle materials is
proposed. The model is based on proper expressions for the specific Gibbs free energy and the comple-
mentary form of the dissipation potential. Damaging of the material is described by a symmetric positive
definite second order damage tensor. Especially, the failure surface is formulated in such a way that it will
mimic the behaviour of the well known Ottosen’s four parameter failure surface. While testing the model
against the experimental results found in literature, the results were in good agreement in uniaxial ten-
sile and compressive loadings as well as in biaxial compression. Besides the correct failure stress states,
the model predicts the correct failure modes of concrete: axial splitting along the direction of uniaxial
compression and tensile damaging normal to the direction of tension.
� 2021 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://
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1. Introduction

Cementitious materials, like concrete, rocks and some ceramics
can show considerable ductility under certain stress states, while
being extremely brittle under purely tensile loadings. Being one
of the most commonly used construction materials, concrete has
been subjected to a significant amount of research including failure
behaviour in consideration of different loading conditions and
micro-structural defects such as voids, inhomogeneities and
micro-cracks. Particular characteristics of the failure behaviour
include gradual loss of the elasticity, volume dilatancy and strain
softening, which are consequences of the propagation and coales-
cence of micro-cracks leading ultimately to the material failure
(van Mier, 1986; Dragon et al., 2000). It is well-known that brittle
materials like concrete and rock fail by axial-splitting along the
direction of uniaxial compression. Although the micromechanics
of axial-splitting have been studied quite extensively e.g. Adams
and Sines (1978), Brace and Bombolakis (1963), Horii and
Nemat-Nasser (1982), Kendall (1978), very little attention has been
paid on the correct failure modes in the development of continuum
models. As discussed by Schreyer (2007) the classical stress criteria
do not have the flexibility to reflect the failure modes for various of
stress states and ‘‘none predicts axial splitting”. In the authors’
knowledge only few continuum models can predict the compres-
sive axial-splitting, e.g. Basista (2003), Halm et al. (2003), Kolari
(2007), Murakami and Kamiya (1997), Schreyer (2007), Yazdani
and Schreyer (1988), Yaghoubi et al. (2014). Furthermore, the
stress–strain behaviour of concrete is highly anisotropic because
of the substantial difference between its tensile and compressive
strengths.

Several constitutive models based on plasticity theory have
been presented to describe the inelastic behaviour of concrete,
see e.g. Mikkola and Schnobrich (1970), Willam and Warnke
(1975), Dragon and Mróz (1979), Menétrey and Willam (1995),
Grassl et al. (2002), Papanikolaou and Kappos (2007). The main
drawback of these models is that they fail to represent the gradual
loss of elasticity due to damage and micro-cracking.

Damage has been modelled by means of scalar, vectorial or ten-
sorial damage variables. Scalar damage variables that were first
introduced by Kachanov (1958) are easy to implement, and hence
widely applied, e.g. Lee and Fenves (1998),Grassl and Jirásek
(2006), Jason et al. (2006),Nguyen and Korsunsky (2008), and
Voyiadjis and Taqieddin (2009). Mazars and Pijaudier-Cabot
(1996), considered isotropic damage and presented relationships
between damage and fracture mechanics theories. The damage of
rock-like materials, however, is definitely anisotropic due to the
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orientation of micro-cracks depending on the stress state. This fea-
ture can be described only by vectorial or tensorial damage vari-
ables. Vectorial damage variables have been used by Davison and
Stevens (1973) and Mikkola and Piila (1984). Second-order damage
tensors have been utilized by authors such as Murakami and Ohno
(1981), Simo and Ju (1987), Yazdani and Schreyer (1990), Lubarda
et al. (1994), Murakami and Kamiya (1997), Dragon et al. (2000),
Badel et al. (2007) and Murakami (2012). In addition, Ortiz
(1985) has used a fourth-order compliance tensor in a two-phase
continuum damage model to represent the damage process of con-
crete. Higher-order tensor description for damage has also been
discussed in Ju (1990), Chaboche (1993), Cauvin and Testa
(1999), Olsen-Kettle (2018), Olsen-Kettle (2018).

Several authors have combined plasticity and damage to model
the failure of concrete. For example, Grassl and Jirásek (2006),
Cicekli et al. (2007), Jefferson (2003), Jefferson et al. (2016), and
Voyiadjis et al. (2008) have proposed a mixed plasticity anisotropic
damage model for concrete using scalar and tensorial damage vari-
ables. The combination of plasticity and anisotropic damage can
easily lead to complex models, see e.g. Yazdani and Schreyer
(1990) and Ibrahimbegović et al. (2003). On the other hand, since
the inelastic behaviour of concrete is rather due to damage and
micro-cracking than plastic deformations, as presented by
Mazars and Pijaudier-Cabot (1989) and Mazars and Pijaudier-
Cabot (1996), models based merely on damage and micro-
cracking have been formulated regularly. Although these models
are not capable of capturing features of rock-like materials such
as irreversible deformations during loading like inelastic volume
expansion in compression (Mazars (1984)), they are less compli-
cated to implement and thereby more popular than the coupled
plastic-damage models.

The special feature of brittle materials is that they behave sig-
nificantly differently in tension and compression which requires
a proper description of a failure criterion. Among several failure
criteria for concrete, the three parameter Mohr-Couloumb criterion
with a tension cut-off is widely used. As for antecedent failure cri-
teria, those by Willam and Warnke (1975) and Bresler and Pister
(1958), as well as the four parameter criteria by Ottosen (1977)
and Hsieh et al. (1979) can be mentioned. The microplane
approach, originally proposed by Baant and Oh (1985), has recently
got much attention, see e.g. Bažant et al. (2000), Valentini and
Hofstetter (2013).

Lubliner et al. (1989) proposed a continuum damage model, the
well-known Barcelona model, using a scalar damage variable for
the degradation of both the volumetric and distortional elasticity,
separately. Lee (1996) and Lee and Fenves (1998) revised the Bar-
celona model by using two independent scalar damage variables to
represent properly the cyclic behaviour of concrete. Their model
has been implemented in the commercial finite element software
Abaqus by Dassault Systémes (2020). A similar approach is carried
out by Grassl et al. (2013), and a selection of 3D concrete models is
reviewed by Valentini and Hofstetter (2013).

Fracture energy based approach to model inelastic behaviour of
concrete is proposed by Etse and Willam (1994) and a similar frac-
ture mechanics approach utilizing the Menétrey-Willam failure
surface is given by Červenka and Papanikolaou (2008). Further-
more, a discrete crack approach is formulated by Gálvez et al.
(2002).

Classical elasto-plastic theory for tri-axial modelling of plain
concrete and numerical implementations are presented in Lu
et al. (2016), Lu et al. (2019), Lu et al. (2020).

A recent review of concrete model and numerical implementa-
tions is presented by Oliveira et al. (2020). The smeared crack
approach, which is one of the most used in numerical analysis of
concrete structures is analysed by Rimkus et al. (2020).
2

One of the most successful failure criteria is the Ottosen model
(Ottosen, 1977). It captures the relevant features of concrete failure
under various multiaxial stress states. A combined elastic–plastic
damaging approach based on Ottosen’s criterion, with two scalar
damage variables, is given by Contrafatto and Cuomo (2003). It is
based on their general formulation presented in Contrafatto and
Cuomo (2002), see also Contrafatto and Cuomo (2006),
Contrafatto and Cuomo (2007). In a recent study by Zhang et al.
(2020), the Ottosen model is formulated as an elasto-plastic model
with a non-associated flow rule. It is also amended by a cap model
to describe the yielding behaviour under high hydrostatic pressure.

In the present study, a model for quasi-brittle materials, like
concrete is proposed with the following main objectives:

1. To be able to capture the basic brittle failure modes: a) axial
splitting along the direction of unconfined uniaxial compres-
sion, b) damaging perpendicular to the direction of uniaxial
unconfined tension.

2. To predict correct failure stresses as described by the failure
surface of Ottosen.

3. To obtain a formulation which is thermodynamically
consistent.

4. To have parameters which are easily obtained from experi-
ments without using any least-squares or even more sophisti-
cated data fitting procedures.

The structure of the paper is as follows: Section 2 describes the
main features and parameters of the Ottosen’s four parameter fail-
ure criterion.

In Section 3.1, the general thermodynamically consistent for-
mulation in terms of free energy and dissipation potential is
described.

Section 3.2 describes the particular choices for the specific
Gibbs free energy and dissipation potential. The isotropic potential
functions are written in terms of invariants forming a functional,
i.e. irreducible basis having two symmetric second-order tensor
variables, namely the stress tensor r and the damage tensor D,
which resembles the crack density tensor of Kachanov (1992).
Thus, the eigenvalues of D are not limited to the value of 1. The
evolution of damage is described in terms of the strain tensor e,
stress and the thermodynamic conjugate force Y for damage rate.
The eigenvalues of the strain tensor are applied in the evolution
equation to describe the physically correct failure modes both in
compression and tension.

In Section 3.3, the determination of material parameters is
described in detail.

Section 4 is devoted into numerical verification of the model.
Besides the unconfined uniaxial compression and tension, the
biaxial and equibiaxial compression are considered. The results
are compared with the well-known experimental results of
Kupfer et al. (1969).
2. Ottosen’s four parameter criterion

In 1977, Ottosen proposed a failure surface in terms of three
stress invariants for short-term loading of concrete capturing the
relevant failure stress states of brittle materials (Ottosen, 1977;
Ottosen, 1980; Ottosen and Ristinmaa, 2005). The failure surface
has a curved shape on the meridian plane. On the deviatoric plane,
the shape evolves from triangular to more circular form along with
increasing hydrostatic pressure. In addition, the failure surface
deals with the feature that concrete behaves significantly differ-
ently in tension and compression. The criterion agrees well with
the experimental results for different stress states such as triaxial
stresses.
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The Ottosen’s 4-parameter failure criterion has the form

f ðI1; J2; cos 3hÞ ¼ A
J2
rc

þKðhÞ
ffiffiffiffi
J2

p
þ BI1 � rc ¼ 0; ð1Þ

where I1 ¼ trris the first invariant of the stress tensor r, and
J2 ¼ 1

2 trs
2 the second invariant of the deviatoric stress tensor

s ¼ r� rmI. Furthermore, A and B are non-negative dimensionless
material parameters, rc stands for the uniaxial compressive
strength of the material, and rm is the mean normal stress rm ¼ 1

3 I1.
The function K ¼ KðhÞ in defined as

KðhÞ ¼ k1 cos½13 arccosðk2 cos 3hÞ� if cos 3h P 0
k1 cos½13p� 1

3 arccosð�k2 cos 3hÞ� if cos 3h � 0

(
; ð2Þ

where h is the Lode angle. The size factor k1 and the shape factor k2
are dimensionless material parameters such that

k1 P 0; 0 6 k2 � 1: ð3Þ
The Lode angle is defined on the deviatoric plane in terms of the

deviatoric invariants as

h ¼ 1
3
arccos

3
ffiffiffi
3

p

2
J3
J3=22

 !
; ð4Þ

where J3 ¼ det s is the third invariant of the deviatoric stress tensor.
The four dimensionless non-negative parameters A;B; k1 and k2

can be determined from experiments by using e.g. the following
four failure stress states (Ottosen and Ristinmaa, 2005):

(i) uniaxial compressive strength rc,
(ii) uniaxial tensile strength rt,
(iii) equibiaxial compressive strength rbc,
(iv) and an arbitrary failure state on the compressive meridian:
ðI1;

ffiffiffiffi
J2

p Þ ¼ ðn1rc; n2rcÞ.

States (i) and (iv) lie on the compressive meridian (h ¼ p=3) and
states (ii) and (iii) on the tensile meridian (h ¼ 0). Substituting the
four failure stress states points into criterion (1) and solving the
resulting equations for A;B; k1 and k2 leads to the expressions

A ¼ � 1
n2

fBþ
ffiffiffi
3

p� �
; ð5Þ

B ¼
3r2

c
rbcrt

n2 �
ffiffiffi
3

p

fþ 9 rc
rbc�rt

n2
; ð6Þ

k1 ¼ 2ffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

t þK2
c �KtKc

q
; ð7Þ

k2 ¼ 4
Kt

k1

� �3

� 3
Kt

k1
; ð8Þ

where

f ¼
ffiffiffi
3

p
n1 þ 3n2ffiffiffi
3

p
n2 � 1

; ð9Þ

Kt ¼ Kð0Þ ¼
ffiffiffi
3

p rc

rbc
þ 2B� rbc

3rc
A

� �
; ð10Þ

Kc ¼ Kðp=3Þ ¼
ffiffiffi
3

p
1þ B� 1

3
A

� �
: ð11Þ

Figs. 1 and 2 illustrate the Ottosen failure criterion. For compar-
ison, figures also show graphs of the tension cut-off Mohr–Cou-
lomb failure criterion for the friction angle of / � 37� being in
accordance with the experimental results (Dahl, 1992), and graphs
of the Barcelona failure criterion (Lubliner et al., 1989) which is
represented for the equal characteristics of the failure states (i)–
(iii) next. The parameters are taken from Ottosen (1977) which
3

are based on the experimental results by Kupfer et al. (1969),
Balmer (1949) and Richart et al. (1928):
rt=rc ¼ 0:1;rbc=rc ¼ 1:16 and n1 ¼ �5

ffiffiffi
3

p
; n2 ¼ 4=

ffiffiffi
2

p
, resulting in

values

A ¼ 1:276; B ¼ 3:196; k1 ¼ 11:74; k2 ¼ 0:9801: ð12Þ
In the pdf the equation (12) is splitted in a strange way. Here it
looks fine in a one line form.

3. Present constitutive model

The objective of the present study is to propose a model that
predicts both the correct failure stress states and the correct prin-
cipal failure modes of elastic-brittle materials. Special attention is
paid on the compressive axial splitting and tensile failure modes.
The formulation is based on finding proper expressions for the
specific Gibbs free energy and dissipation potential, and on the
exploitation of the general constitutive relations.

3.1. Thermodynamic formulation

Assuming constant density, i.e. q ¼ q0, and linear kinematics,
the dissipation inequality is presented in terms of the specific
Helmholtz free energy w, the specific entropy g, the absolute tem-
perature #, the stress tensor, the strain tensor e and the heat flow
vector q as

c ¼ �q0
_w� q0g _#þ trðrT _eÞ � grad#

#
q P 0; ð13Þ

where c is the power of dissipation and the dot signifies the mate-
rial time derivative. Introducing the specific Gibbs free energy
wc ¼ wcð#;r;D;jÞ, where D is the second order damage tensor and
jdenotes a set of internal variables, and using the Legendre
transformation

q0wð#; e;D;jÞ þ q0w
cð#;r;D;jÞ ¼ trðrTeÞ; ð14Þ

the dissipation inequality (13) can be represented in the form

c ¼ q0
_wc � q0g _#� trðr_ TeÞ � ðgrad#ÞT

#
q P 0: ð15Þ

Developing the material time derivative of wc and introducing
the notations

Y ¼ q0
@wc

@D
; K ¼ �q0

@wc

@j
; ð16Þ

yields

c ¼ _# q0
@wc

@#
� q0g

� �
þ tr r

_ T q0
@wc

@r
� e

� �� �
þ trðYT _DÞ

� trðKT j
_ Þ � qT grad#

#
P 0: ð17Þ

The specific Gibbs free energy describes the reversible part of
the material behaviour in terms of the state variables
S ¼ ð#;r;D;jÞ, whereas the irreversible part of the material beha-
viour is dealt with the dissipation potential u ¼ uðW;SÞ in terms
of the variables of dissipationW ¼ ð _#;q;Y ;KÞ. By (Frémond, 2002),
the dissipation potential has the following properties.

(i) It is a convex function from a linear space into
�R ¼ R [ fþ1g.
(ii) It is subdifferentiable function such that B 2 @ujW, i.e. the
subdifferential @ujW is a set of all subgradients
B ¼ ðB#;Bq;BY ;BKÞ. If u is smooth, B ¼ @u=@W.
(iii) The components of B are members of the dual space of W.



Fig. 1. Graph of three failure criteria in the p-plane (a) and in the deviatoric plane as rm ¼ rc (b). The Ottosen criterion is shown in blue, the Mohr–Coulomb criterion with
tension cut-off in green and the Barcelona criterion in red (rm ¼ 1

3 I1). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 2. Graph of three failure criteria in the meridian plane (a) and in plane stress (b). The Ottosen criterion is shown in blue, the Mohr–Coulomb criterion with tension cut-off
in green and the Barcelona criterion in red. Black dots indicate the experimental results by Kupfer et al. (1969), (rm ¼ 1

3 I1;re ¼
ffiffiffiffiffiffiffi
3J2

p
).
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(iv) Based on the properties (i)–(iii), the product of W and B

defines the power of dissipation such that
c � _#B# þ qTBq þ trðYTBY Þ þ trðKTBKÞ: ð18Þ
Properties (i) and (ii) provide information to formulate the dis-
sipation potential for dealing with constraints such as failure crite-
ria due to non-smooth material behaviour, and based on property
(i), WB P 0 for all W and B.
4

Equating the definition (18) with the dissipation power in (17)
results in equation

_# q0
@wc

@#
� q0g� B#

� �
þ tr _rT q0

@wc

@r
� e

� �� �

þ qT � grad#
#

� Bq

� �
þ tr YTð _D� BYÞ

h i
þ tr KTð� _j� BKÞ

h i
¼ 0:

ð19Þ
Eq. (19) holds for arbitraryW only, if the coefficients in brackets

ðÞ tend to zero, i.e.
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q0
@wc

@#
� q0g� B# ¼ 0; ð20Þ

q0
@wc

@r
� e ¼ 0; ð21Þ

� grad#
#

� Bq ¼ 0; ð22Þ
_D� BY ¼ 0; ð23Þ

�j
_ �BK ¼ 0: ð24Þ

If these equations hold for any physical process that satisfy the
balance equations of momentum and energy, the dissipation
inequality (15) is satisfied. Then Eqs. (20)–(24) are, by definition,
thermodynamically admissible.

3.2. Specific model

In this work, it is assumed that an undamaged body behaves
like a linear elastic solid, deformations are fully elastic, and the
material failure results from anisotropic damage with an isotropic
hardening–softening feature.

Assuming that the mechanical and thermal behaviour are
uncoupled and that the hardening–softening property is indepen-
dent of the damage and stresses, the specific Gibbs free energy
function can be decomposed into three parts as

wcð#;r;D;jÞ ¼ wc
1ð#Þ þ wc

2ðr;DÞ þ wc
3ðjÞ: ð25Þ

Since thermal effects have no role in the mechanical behaviour
that is the main concern of this work, wc

1ð#Þ is left unspecified.
Assuming that wc

2 is a scalar-valued isotropic function such that

wc
2ðr;DÞ ¼ wc

2ðQrQ T;QDQTÞ, where Q is a proper orthogonal sec-
ond order tensor, it can be formulated by applying the integrity
basis for r and D

trr; trðr2Þ; trðr3Þ; trD; trðD2Þ; trðD3Þ; trðrDÞ; trðrD2Þ; trðr2DÞ; trðr2D2Þ
n o

:

ð26Þ
Using the terms of (26) that are linear in D for damage and

quadratic in r for linear elasticity, the specific Gibbs free energy
sub-function representing the damage-degrading elastic behaviour
is defined as

wc
2ðr;DÞ ¼

1
q0

1
4G

½trðs2Þ þ trðs2DÞ� þ 1
18Kb

ð1þ vtrDÞðtrrÞ2
	 


ð27Þ
where G and Kb stand for the shear and bulk modulus, v is a dimen-
sionless positive material parameter. It can be noticed that for iso-
tropic damage, i.e. when D ¼ DI, where D is the scalar damage
variable, and selecting v ¼ 1

3, the free energy (27) reduces to the
standard scalar isotropic damage format

wc
2 ¼ 1

q0
ð1þ DÞ½ 1

4G
trðs2Þ þ 1

18Kb
ðtrrÞ2�: ð28Þ

The damage tensor D is closely related to the crack density ten-
sor by Kachanov (1992).

The third part of the specific Gibbs free energy describes the
energy stored within the body due to hardening and softening of
the material. It is defined by the integral

wc
3ðjÞ ¼

1
q0

Z j

0

Z j0

0
gðj00Þdj00dj0; ð29Þ

where the integrand gðjÞ is a four-parameter rational function for-
mulated as

gðjÞ ¼ H0

j0

h2 j=j0ð Þ2 � 2h1 j=j0ð Þ � 1

h2 j=j0ð Þ2 þ 1
h i2 : ð30Þ
5

It characterises the non-linear response of the material to the
internal variable j as illustrated in Fig. 3a. The initial hardening
modulus H0 and dimensionless parameters j0;h1 and h2 are deter-
mined in the following section.

To formulate the irreversible behaviour of the body the dissipa-
tion potential is defined by the thermodynamic forces Y and K
describing the damage and hardening, respectively. Furthermore,
thermal coupling is omitted by restriction to isothermal cases.
The dissipation potential is now given as

uðY ;K;r; eÞ ¼ IðY ;K;r; eÞ; ð31Þ
where I denotes the indicator function that handles the given con-
straint. By Frémond (2002), it is defined as

IðY ;K;r; eÞ ¼ 0; if ðY ;KÞ 2 R

þ1; if ðY ;KÞ R R;

	
ð32Þ

where R is a convex set determining the admissible domains for Y
and K. This set is defined by means of the damage criterion
f ðY ;K;r; eÞ 6 0 such that

R ¼ ðY ;KÞ 2 R
6 � R j f ðY ;K;r; eÞ 6 0

� �
: ð33Þ

Furthermore, the subdifferential of I is defined as

@I ¼
ðBY ;BKÞ 2 R

6 � RjðBY ;BKÞ ¼ ð0;0Þ; if f < 0;
�

ðBY ;BKÞ ¼ ð _k @f
@Y ;

_k @f
@KÞ; _k P 0; if f ¼ 0

o
; if ðY ;KÞ 2 R

£; if ðY ;KÞ R R:

8>><
>>:

ð34Þ
Since the failure modes of deformation are essential, the dam-

age surface is now formulated as

f ðY ;K;r; eÞ ¼ AJ2
rc

þK
ffiffiffiffi
J2

p
þ BI1 � ðrc0 þ KÞ

þ tr AT Y � YðrÞð Þ
h i

; ð35Þ

where A ¼ Aðr; eÞ is a symmetric positive definite second-order
tensor defined as

Aðr; eÞ ¼ 1
1þ b1htrri=rt

eþ
keþk þ b2I
� �

ð36Þ

and eþ is the positive part of the elastic strain tensor, i.e.

eþ ¼
X3
i¼1

heii/i 	 /i; ð37Þ

where ei; i ¼ 1; . . . ;3 are the eigenvalues of the elastic strain tensor,
/i stands for the corresponding eigenvectors and b1; b2 are positive
parameters. The norm of a second order tensor tensor is defined in a
standard way, i.e. keþk ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

trðe2þÞ
p

, and h
i denotes the Macaulay
brackets. If all eigenvalues ei are negative, the term eþ=keþk is
neglected in the expression of A.

Use of the ramp function h
i can produce discontinuities of the
derivatives which might result in divergence of the local iteration if
standard Newton scheme is applied. A simple way to avoid these
convergence problems is to use a smooth approximation for the

ramp function e.g. hxi � 1
2 xð1þ x=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ d2

p
Þ, where d is a small

parameter.
The damage surface (35) should be a function of the thermody-

namic force Y to obtain the evolution equations for the damage. It
is possible to express the stress invariants I1; J2 and cos3h in the
Ottosen failure criterion in terms of Y , however, such relations
are not unique. One alternative is presented in Yaghoubi et al.
(2014). In the present study, the failure criterion of Ottosen is kept
untouched and expressed in terms of stress, which acts as a param-
eter in the dissipation potential, and a zero term linear in Y is



Fig. 3. (a) Response of material to the hardening variable j. (b) Hardening variable K.
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added. The dissipation inequality is automatically satisfied if the
tensor A is symmetric positive definite.

The thermodynamic force Y dual to the damage rate is obtained
from definitions (16)1 and (27) as a function of stress

YðrÞ ¼ 1
4G

s2 þ v
18Kb

ðtrrÞ2I: ð38Þ

By definition (16)2, the hardening variable K obtains the form

K ¼ �
Z j

0
gðj0Þdj0 ¼ H0

h1 j=j0ð Þ2 þ j=j0ð Þ
h2 j=j0ð Þ2 þ 1

; ð39Þ

which is illustrated in Fig. 3b.
Positive definiteness of tensor A in (35) together with the

requirement that vP 0 in (38) guarantees that the dissipation
power (18) is non-negative.

Using Eqs. (21), (23) and (24) together with definitions (25),
(27), (32), (31) and (34), yields the following constitutive equations
representing the mechanical behaviour of an elastic-brittle body.
For the damage degrading elastic deformations it is obtained

e ¼ 1
2G

sþ 1
2

sDþ Dsð Þ � 1
3
trðsDÞI

� �
þ 1
9Kb

ð1þ vtrDÞðtrrÞI: ð40Þ

The evolution of internal variables describing damage and hard-
ening is governed by equations

_D ¼ _k
@f
@Y

¼ _kAðr; eÞ ¼
_k

1þ b1htrri=rt

eþ
keþk þ b2I
� �

; ð41Þ

_j ¼ � _k
@f
@K

¼ _k: ð42Þ

The multiplier _k in (41) and (42) can be determined by the con-
sistency condition

_f ðY ;K;r; eÞ ¼ 0: ð43Þ
It can be easily seen that the failure mode is correct in uncon-

fined uniaxial tension and compression. In the uniaxial tension in
the 11-direction, it results in the damage rate

_D �
1þ b2 0 0

0 b2 0
0 0 b2

0
B@

1
CA; ð44Þ

and in the uniaxial compression in the 11-direction, it gives

_D �
b2 0 0
0 1þ b2 0
0 0 1þ b2

0
B@

1
CA: ð45Þ
6

Since b2 is positive, axial splitting mode in compression is thus
properly modelled.

3.3. Determination of material parameters

Parameters A;B; k1 and k2 in the failure surface are adjusted to
represent the damage surface corresponding with the failure states
(i)–(iv) in Section 2. Substituting the values for rc;rt;rbc and the
stress on the compressive meridian in Eqs. (5)–(8) result
the values for A; B; k1 and k2. It can be seen that the damage crite-
rion (35) represents correctly the ultimate stress states when
K ¼ Kmax ¼ rc � rc0.

To obtain the parameters v;j0; b1 and b2, the uniaxial compres-
sion and tension as well as the biaxial test results are needed.

The isotropic part on the damage evolution is governed by the
b2-parameter. It can be found together with the v-parameter from
the secant-modulus in loading and transverse directions consider-
ing both uniaxial and biaxial compression cases. In the unconfined
uniaxial stress state r11 – 0, Eq. (40) gives the strains

e11 ¼ r11
E 1þ 4

9 ð1þmÞþ 1
3 ð1�2mÞv
 �

D11 þ 2
3

1
3 ð1þmÞþ ð1�2mÞv
 �

D22
� �

;

e22 ¼ r11
E �m� 1

3
2
3 ð1þmÞ� ð1�2mÞv
 �

D11 � 1
3

1
3 ð1þmÞ�2ð1�2mÞv
 �

D22
� �

;

(

ð46Þ
where it has been taken into account that D33 ¼ D22 according to
(41). The ratio between the damage values in the loading and trans-
verse directions in the unconfined uniaxial compression test is

D11

D22
¼

ffiffiffi
2

p
b2

1þ
ffiffiffi
2

p
b2

¼ bc: ð47Þ

Taking this into account, expressions for the strain components
(46) can be written in a more simple form

e11 ¼ r11
E 1þ a11;cD22ð Þ;

e22 ¼ � r11
E mþ a22;cD22ð Þ;

(
ð48Þ

where

a11;c ¼ 1
3

2
3 ð1þ mÞ þ 2ð1� 2mÞvþ bc

4
3 ð1þ mÞ þ ð1� 2mÞv
 �� �

;

a22;c ¼ 1
3

1
3 ð1þ mÞ � 2ð1� 2mÞvþ bc

2
3 ð1þ mÞ � ð1� 2mÞv
 �� �

:

(

ð49Þ
The secant modules in the uniaxial compression case are

Ec;1;sec ¼ rc
je11;c j ¼ E

1þa11;cD22;c
;

Ec;2;sec ¼ rc
je22;c j ¼ E

mþa22;cD22;c
:

(
ð50Þ
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Evaluating the secant modules at the peak load r11 ¼ �rc yields
equation

D22;c ¼ 1
a11;c

E j e11;c j
rc

� 1
� �

¼ 1
a22;c

E j e22c j
rc

� m
� �

ð51Þ

relating the two unknown material parameters v and b2.
In the equibiaxial compressive stress state, where

r11 ¼ r22 ¼ r, expressions for the strain components are

e11 ¼ r
E 1� mþ a11;bcD33

 �

;

e33 ¼ r
E �2m� a33;bcD33

 �

;

(
ð52Þ

where

a11;bc ¼ 1
3

2
3 ð1þ mÞ þ 2ð1� 2mÞvþ bbc

1
3 ð1þ mÞ þ 4ð1� 2mÞv
 �� �

;

a33;bc ¼ 1
3

4
3 ð1þ mÞ � 2ð1� 2mÞv� bbc

2
3 ð1þ mÞ þ ð1� 2mÞv
 �� �

;

(

ð53Þ
and

bbc ¼
D11

D33
¼ b2

1þ b2
: ð54Þ

The secant modules at the peak stress r ¼ �rbc results in the
expressions

Ebc;1;sec ¼ rbc
je11;bc j ¼

E
1�mþa11;cD33;c

;

Ebc;3;sec ¼ rbc
je22;c j ¼ E

2mþa33;cD33;c
:

(
ð55Þ

Solving the dominant damage component from Eqs. (55) gives
the second equation relating the material parameters v and b2

D33;bc ¼ 1
a11;bc

E j e11;bc j
rbc

� 1þ m
� �

¼ 1
a33;bc

E j e33;bc j
rbc

� 2m
� �

: ð56Þ

Eqs. (51) and (56) form a system

u0 þ 2u0bc � u1ð2þ bcÞv ¼ 0;
b0 � b1bc � b2ð1þ 2bbcÞv ¼ 0;

	
ð57Þ

where

u0 ¼ 1
3 ð1þ mÞð/1 � 2/2Þ;

u1 ¼ ð1� 2mÞð/1 þ /2Þ;
b0 ¼ 2

9 ð1þ mÞð2/3 � /4Þ;
b1 ¼ 1

9 ð1þ mÞð2/3 þ /4Þ;
b2 ¼ 2

3 ð1� 2mÞð/3 � /4Þ;
/1 ¼ Eec=rc � 1;
/2 ¼ Ee22;c=rc � m;
/3 ¼ Ee11;bc=rbc � 1þ m;
/4 ¼ Ee33;bc=rbc � 2m:

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð58Þ

Eliminating v from the system (57) and taking definitions (47)
and (54) into account, results in the quadratic equation for b2

a2b
2
2 þ a1b2 þ a0 ¼ 0; ð59Þ

where

a2 ¼
ffiffiffi
2

p
ð9~u� 3ð1� nÞ~bÞ;

a1 ¼ 3ð1þ
ffiffiffi
2

p
Þ~u� ½3

ffiffiffi
2

p
þ 2ð1� nÞ�~b;

a0 ¼ ~u� 2~b;
~u ¼ u0=u1;

~b ¼ b0=b2; n ¼ b1=b0:

8>>>><
>>>>:

ð60Þ

The parameters H0;j0;h1 and h2 in the hardening function (39)
are determined in terms of the maximum and limit (j ! 1) values
of K i.e. Kmax ¼ rc � rc0 and K1. On the condition that gðjÞ ¼ 0 for
j ¼ j0, Eq. (30) yields the equation
7

h2 � 2h1 � 1 ¼ 0; ð61Þ
and, by (39), K obtains its maximum value

Kmax ¼ Kðj0Þ ¼ H0
h1 þ 1
h2 þ 1

: ð62Þ

Furthermore, for j ! 1;K obtains its limit value

K1 ¼ H0
h1

h2
: ð63Þ

Combining Eqs. (61)–(63) leads to

H0 ¼ 2Kmax; ð64Þ

h1 ¼
1
2K1

Kmax � K1
; ð65Þ

h2 ¼ Kmax

Kmax � K1
: ð66Þ

The j0-parameter is defined as the value for the internal vari-
able j at the peak stress in the uniaxial compression test where
r11 ¼ �rc. From (41), (42) and utilizing (47) it is obtained

_j ¼ _k ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2b2trðeþÞ=keþk þ 3b2

2

q k _Dk: ð67Þ

Using Eqs. (51) and (67) the value for j0 can be obtained as

j0 ¼
ffiffiffi
2

p

1þ
ffiffiffi
2

p
b2

D22;c ¼ jcD22;c: ð68Þ

Using a point in the strain-softening post-peak region, K1 can
be determined by using Eq. (51) at the post-peak point on the uni-
axial compression stress–strain curve

D22;pp ¼ 1
a11;c

E j e11;pp j
j rpp j � 1

� �
: ð69Þ

The hardening variable at that point is obtained from (68) as

jpp ¼ jcD22;pp: ð70Þ
Substituting this value to the expression of the hardening

parameter and to the damage criterion (35)

f̂ ðrppÞ � ðrc0 þ KðjppÞÞ ¼ 0; ð71Þ
from which the K1 can be solved as

K1 ¼ Kmax
ððjpp=j0Þ2 þ 1Þðf̂ ðrppÞ � rc0Þ=H0 � jpp=j0

ðjpp=j0Þðjpp=ð2j0Þ � 1Þ þ ðf̂ ðrppÞ � rc0Þ=H0

ð72Þ

and where f̂ ¼ f þ ðrc0 þ KÞ.
The remaining b1 parameter is obtained from the tensile test

data. In the uniaxial tensile test the ratio between damage compo-
nents is

D22

D11
¼ b2

1þ b2
; ð73Þ

which results in the maximum value for the dominant damage
component

D11;t ¼ 1
a11;t

Eet
rt

� 1
� �

; ð74Þ

where

a11;t ¼ 1
3

4
3
ð1þ mÞ þ ð1� 2mÞvþ 2b2

1þ b2

1
3
ð1þ mÞ þ ð1� 2mÞv

� �� �
:

ð75Þ
The damage value at the tensile strength (74) can be written

also as



Table 2
Model parameters calculated from the material data in Table 1.

Quantity Value Unit Notes

A 1.512 –
B 3.597 –
k1 12.963 –
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D11;t ¼ 1
a11;t

E j et j
rt

� 1
� �

¼ j0
1þ b2

1þ b1
; ð76Þ

from which the b1 can be solved as

b1 ¼ ð1þ b2Þ
j0

D11;t
: ð77Þ
k2 0.9864 –
K1 �6.72 MPa
H0 40.2 MPa
h1 �0.1253 –
h2 0.7494 –
j0 3.5151 –
v 0.00162 –
b1 75.843 –
b2 0.21551 –
4. Results

The model has been implemented in a strain-driven code using
implicit Euler integration. A short description of the solution pro-
cedure is given in Appendix.

For assessing the quality of the proposed model, the model pre-
dictions are compared to the well documented experimental data
for concrete by Kupfer et al. (1969) and the values needed to cali-
brate the present model are shown in Table 1. Kupfer et al. (1969)
performed the biaxial tests with specimens having dimensions
20 cm � 20 cm � 5 cm and the model results are compared to
the tests having unconfined uniaxial compressive strength of
30.9 MPa, maximum aggregate size 15 mm and the water-
cement ratio 0.9. The resulted parameters for the present model
are shown in Table 2.

Four loading cases are considered: (i) unconfined uniaxial com-
pression, (ii) unconfined uniaxial tension, (iii) equibiaxial compres-
sion and (iv) biaxial compression with stress ratio
r11=r22 ¼ �1=� 0:52. Assuming that, in each loading case, the
concrete is in an uniform state, the response of the concrete to
the loading can be defined uniformly by the equations of the con-
stitutive model considering only one material point.

Materials like concrete, natural rocks and natural ice are hetero-
geneous containing pores and flaws and other weaknesses exhibit-
ing variation in compressive and tensile strengths. In the
simulations, the material heterogeneity can be considered by vary-
ing material parameters of the model; e.g. assuming that both the
compressive and tensile strength have spatial random field fluctu-
ation with specific probabilistic distribution, see also Benkemoun
et al. (2010), Mondal et al. (2019). As shown by Kolari (2017) in
uniaxial compression simulations of natural ice, the material
parameter variation induced non-simultaneous damage evolution
and variation in strength, but did not affect to the macroscopic
splitting failure mode.

For comparison, computations with the Concrete Damaged
Plasticity (CDP) model available in the commercial finite element
software Abaqus (Dassault Systémes, 2020) have been carried out
for uniaxial and equibiaxial compression cases. The CDP model is
based on the works by Lubliner et al. (1989), Lee (1996) and Lee
Table 1
Material data from Kupfer et al. (1969). Notice that the strain values e11;c etc. are
absolute values and should be used as such in equations of Section 3.3.

Quantity Value Unit Notes

E 31.9 GPa
m 0.2 –
rc 30.9 MPa
rt 2.78 MPa
rbc 35.8 MPa
I1;4 �267.6 MPa Ottosen and Ristinmaa (2005)ffiffiffiffiffiffiffi
J2;4

p
87.4 MPa Ottosen and Ristinmaa (2005)

rc0 10.8 MPa 0:35rc

e11;c 0.0022 –
e22;c 0.000806 –
e11;t 0.00009 –
e11;bc 0.0026 –
e33;bc 0.0033 –
rpp 26.282 MPa
e11;pp 0.0031887 –
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and Fenves (1998). In this model, a scalar damage parameter is
used to describe stiffness degradation while the plastic behaviour
is formulated with a non-assosiative Drucker-Prager type yield
function with tension cut-off. The adopted flow rule is based on
the Mohr–Coulomb like flow rule approach.
4.1. Unconfined uniaxial compression

The stress–strain response of concrete under unconfined uniax-
ial compression is shown in Fig. 4. The rate-independent Abaqus
CDP model is calibrated from the experimental r11; e11 data. In
addition, the dilatation angle in the plastic potential is varied using
the values 2�;8�;16� and 32�. The eccentricity parameter has been
set to zero. It is clearly seen that the stress–strain response of the
CDP mode in this uniaxial loading case is close to the experimental
values with the dilatation angle 32�, however, this is not the case
for the equibiaxial compressive loading, compare Figs. 4 and 8. In
addition, the CDP model cannot predict the correct failure mode.

The damage-strain relation for the present model is shown in
Fig. 5 and it is clearly seen that the mode of failure, i.e. the splitting
mode is properly predicted. The ratio between the transversal and
longitudinal damage is according to (47) 4.28, as it can be seen
from Fig. 5. For the present model, the post-peak fitting point is
the last experimental point shown in Fig. 4, having coordinates
ðe11=ec;�r11=rcÞ ¼ ð�1:45;0:85Þ. The lateral strain e22 is not devel-
oping as fast as in test, however, it should be remembered that the
model solution assumes uniform strain and stress fields, which in
real test cannot be obtained.
Fig. 4. Stress–strain relation in unconfined uniaxial compression. The Abaqus CDP
model responses are shown for four values of the dilatation angle. Experimental
data is from Kupfer et al. (1969).
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4.2. Unconfined uniaxial tension

In contrast to the uniaxial compression test the fracture mode
in unconfined uniaxial tension test is completely different. The
damage-strain relation is shown in 6, which shows that the dam-
age component D11 is 5.64 times the value of D22, as it should be
according to Eq. (73). This indicates that the damage grows in
the direction of the tensile stress. Fig. 7 shows the calculated
stress–strain response together with the experimental results.
The behaviour of the model is brittle which is in line of experimen-
tal evidence for concrete under unconfined uniaxial tension.
4.3. Biaxial compression

Results for the equibiaxial compression test (r11 ¼ r22) are
shown in Fig. 8. For the present model, correspondence to the
experimental results is even better than in the unconfined uniaxial
compression test. The best similarity to the experimental results
for the Abaqus CDP model is obtained when the dilatation angle
is 8�, in which case the r11; �33-curve is almost identical to the
response of the present model. However, for the CPD model the
strain in the loading direction starts to deviate from the experi-
mental results already before the peak stress.
Fig. 5. Damage-strain relation in unconfined uniaxial compression. Figure on the

Fig. 6. Damage-strain behaviour in unconfined uniaxial tensio
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The dominant damage develops perpendicularly to the plane of
loading and the ratio D33=D11 ¼ 5:64, Eq. (54), as it can be seen
from Fig. 9.

Also biaxial compression with stress ratio r11=r22 ¼ �1=� 0:52
is analysed. Results are shown in Fig. 10. In this case the failure cri-
terion of Ottosen overestimates the peak stress about 7 %.
5. Discussion

The proposed model utilise the failure surface of Ottosen in
combination of damage description with a second order symmetric
positive definite damage tensor. Despite of its simplicity, it can
model well the behaviour of plain concrete both qualitatively
and quantitatively. It also can predict correctly the failure mode,
which many of the existing models for concrete and quasi-brittle
materials in general cannot. Parameters of the model can be
uniquely obtained in closed form from four different loading cases.

It is well-known that a strain-softening rate-independent mate-
rial model will result in an ill-posed boundary value problem in the
softening range. In the finite element analysis use of such a model
produces highly mesh-dependent solutions. A simple remedy
would be to make the softening material model dependent on
the size of the finite element. More rigorous approaches to regular-
RHS illustrates the axial splitting along the direction of uniaxial compression.

n. Figure on the RHS illustrates the tensile failure mode.



Fig. 7. Stress–strain behaviour in unconfined uniaxial tension.

Fig. 9. Damage-strain behaviour in equibiaxial compression (r11 ¼ r22). Damage is the largest in the 33-direction, i.e. the fracture mode corresponds splitting along the
compressive plane illustrated in the figure on the RHS.

Fig. 10. (a) Stress–strain behaviour in biaxial compression for stress ratio r11=r22 ¼ �1=� 0:52 with experimental results from Kupfer et al. (1969) and (b) damage-strain
behaviour.

Fig. 8. Stress–strain behaviour in equibiaxial compression with experimental
results from Kupfer et al. (1969). The Abaqus CDP model responses are shown for
four values of the dilatation angle. Notice that different dilatation angle gives the
best fit to experimental data in comparison to unconfined uniaxial compression
(see Fig. 4) for the CDP model.
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ize the problem would be to include strain-rate effects or spatial
gradients into the model. An early attempt to cope with this prob-
lem is also provided by Askes et al. (2021) where a simple scalar
damage model is regularized by adding second gradient of damage
to the dissipation potential, see also Hillerborg et al. (1976),
Markeset and Hillerborg (1995), Fremond et al. (1996), Santaoja
(2004). In the case of second order damage tensor, there are more
options how the gradient terms can be included into the model.

Further improvements would be the inclusion of irreversible
strains in the model to handle cyclic loadings. Inelasticity in
quasi-brittle materials is closely related to damage, i.e. frictional
sliding along the cracked surfaces.
6. Concluding remarks

In this paper, a thermodynamically consistent formulation to
model anisotropic damage for quasi-brittle materials is proposed.
The model is based on proper expressions for the specific Gibbs
free energy and the complementary form of the dissipation poten-
tial. Damaging of the material is described by a symmetric positive
definite second order damage tensor. In this formulation the values
of the components in the damage tensor do not have an upper
bound, thus facilitating a continuous numerical implementation.
Especially, the failure surface is formulated in such a way that it
will mimic the behaviour of the well known Ottosen’s four param-
eter failure surface. The formulation is basically non-associated,
however, the formulation follows closely the one for the standard
dissipative solid.

One salient feature of the proposed model is its ability to model
the failure modes correctly. In uniaxial compression, the mode of
failure is axial splitting, i.e. the damaged zones are aligned parallel
to the direction of the compressive stress. In tension, the failure
takes place in a plane perpendicular to the applied stress. The
obtained results compare favourably with the well-known experi-
mental results found in literature.
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Appendix A

In order to solve the constitutive equations, implicit Euler
method together with Newton–Raphson itarative technique has
been applied. The solution algorithm is summarized as follows.

1. Increase strain the incremental value Deand compute the trial
elastic stress
enþ1 ¼ en þ De; ð78Þ
rtrial

nþ1 ¼ CðDnÞðen þ DeÞ ¼ rn þ CðDnÞDe; ð79Þ

Y trial
nþ1 ¼ 1

4G
ðstrialnþ1Þ

2 þ v
18Kb

ðtrrtrial
nþ1Þ

2
I; ð80Þ
where the subscripts correspond to the step numbers and the elas-
ticity tensor CðDÞ is the inverse of the compliance tensor LðDÞ.

2. Check the damage condition
f trialnþ1 ¼ AJ2
rc0

þK
ffiffiffiffi
J2

p
þ BI1 � ðrc0 þ KðjnÞÞ; ð81Þ
where J2 ¼ 1
2 trððstrialnþ1Þ

2Þand I1 ¼ trðrtrial
nþ1Þ.

IF f trialnþ1 6 0 THEN:
Set en ¼ enþ1 & EXIT.
ENDIF.

3. Solve f ðknþ1Þ ¼ 0.
Use Newton–Raphson iterative method.


 Compute the iterative change dk
f ðkinþ1Þ þ f 0ðkinþ1Þdk ¼ 0: ð82Þ
f ðkinþ1Þ ¼ f ðY i

nþ1;K
i
nþ1;r

i
nþ1Þ: ð83Þ

dk ¼ kiþ1
nþ1 � kinþ1 ð84Þ

where the superscripts refer to iteration number.

 Update D
Diþ1
nþ1 ¼ Di

nþ1 þ dk
@f inþ1

@Y i
nþ1

: ð85Þ


 Update K

jiþ1
nþ1 ¼ ji

nþ1 þ dk; ð86Þ

Kiþ1
nþ1 ¼ H0jiþ1

nþ1

j2
0

ð1� jiþ1
nþ1

j0
Þ ð87Þ

.

 Update r
riþ1
nþ1 ¼ C iþ1

nþ1ðDiþ1
nþ1Þenþ1: ð88Þ
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