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ABSTRACT

Alpi Tolvanen: Diamagnetic susceptibility with path integral Monte Carlo method
Master of Science
Tampere University
Computational Physics
May 2021

The diamagnetic susceptibility is an essential magnetic property, as it describes magnetization
response of material to an external magnetic field. However, accurate computational data is not
available for systems at finite temperatures, because nuclear motion and finite temperature are
not well-supported by common ab initio simulation methods.

We utilize path integral Monte Carlo method (PIMC), which combines non-relativistic quantum
mechanics with statistical mechanics at finite temperatures. PIMC takes exact many-body effects
into account, which brings precise simulation of electronic correlation and non-adiabatic nuclei.
The accuracy of results is limited by statistical error, which can be controlled with the extent of
computation.

In this work, we formulate path integrals and derive an estimator for diamagnetic susceptibility
in the limit of zero magnetic field. The estimator is applied in PIMC simulations, and the diamag-
netic susceptibility is calculated for 4He, H, H2, H+

2 , D2, HD, Ps and Ps2, where D is a deuterium
and Ps is a positronium. The systems are simulated both with nonadiabatic nuclei and with fixed
Born–Oppenheimer nuclei. Temperature is varied on range from 300K to 3000K.

The hydrogen atom and the hydrogen molecule express significant nonadiabatic effects in
diamagnetic susceptibility, but the helium atom does not. The susceptibility of monatomic systems
do not correlate with the temperature, which is expected. The susceptibility of diatomic molecules
increases at higher temperatures, which can be explained by a nuclear separation caused by
centrifugal forces. The susceptibility of positronium decreases at higher temperatures, which is
unexpected.

Obtained PIMC results are compared to 0K reference values, because there are nearly no
published calculations available at finite temperatures. If the PIMC results are extrapolated at 0K,
they are fairly well in line with the reference values. Overall, PIMC appears to be a good method
for calculating exact diamagnetic properties of small molecules.

Keywords: magnetizability, non-Born–Oppenheimer, first principles, imaginary time

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.
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TIIVISTELMÄ

Alpi Tolvanen: Diamagneettinen suskeptibiliteetti polkuintegraali–Monte Carlo-menetelmällä
Diplomityö
Tampereen yliopisto
Laskennallinen fysiikka
Toukokuu 2021

Diamagneettinen suskeptibiliteetti on keskeinen magneettinen ominaisuus, sillä se määritte-
lee materiaalin magneettisen vasteen ulkoisessa magneettikentässä. Kuitenkin, äärellisistä läm-
pötiloista ei ole tarkkaa laskennallista dataa saatavilla, sillä ytimien liike ja äärellinen lämpötila
jätetään huomioimatta useimmissa simulaatiomenetelmissä.

Tässä työssä hyödynnetään polkuintegraali-Monte Carlo-menetelmää (PIMC), joka yhdistää
epärelativistisen kvanttimekaniikan ja äärellisen lämpötilan statistisen mekaniikan. PIMC kykenee
ottamaan monen kappaleen vuorovaikutukset huomioon eksaktisti, mikä mahdollistaa tarkan si-
muloinnin sekä elektronikorrelaatiolle että ydinten ei-adibaattisuudelle. PIMC tulosten tarkkuuden
määrittää statistinen virheraja, jota voi pienentää laskennallisten resurssien määrällä.

Työssä formuloidaan polkuintegraalit ja johdetaan diamagneettisen suskeptibiliteetin estimaat-
tori nollakenttärajalla. Johdettua estimaattoria sovelletaan PIMC-simulaatioihin, ja diamagneetti-
nen suskeptibiliteetti lasketaan systeemeille 4He, H, H2, H+

2 , D2, HD, Ps ja Ps2, missä D on deu-
terium ja Ps on positronium. Systeemejä simuloidaan sekä ei-adiabaattisilla ytimillä että kiinteillä
Born–Oppenheimer -ytimillä. Lämpötilaa varioidaan välillä 300–3000K.

Vetyatomin ja vetymolekyylin diamagneettisissa suskeptibiliteeteissä esiintyy selviä ei-adiabaattista
muutoksia, kun taas heliumilla niitä ei esiinny. Monoatomisten systeemien suskeptibiliteetit eivät
korreloi lämpötilan kanssa, mikä on odotettua. Diatomisten molekyylien suskeptibiliteetit kohoavat
lämpötilan mukaan, minkä voi selittää pyörimisliikkeen kasvattamalla ydinetäisyydellä. Positroniu-
min suskeptibiliteetti heikkenee korkeammissa lämpötiloissa, mikä on odottamatonta.

Saatuja PIMC tuloksia verrataan 0K referenssiarvoihin, sillä äärellisistä lämpötiloista ei ole
monia julkaistuja tuloksia saatavilla. Jos PIMC tuloksia ekstrapoloidaan 0K lämpötilaan, ovat ne
hyvin linjassa referenssiarvojen kanssa. Kaiken kaikkiaan, PIMC vaikuttaa olevan hyvä menetel-
mä eksaktien diamagneettisten ominaisuuksien laskemisessa pienille molekyyleille.

Avainsanat: magnetoituvuus, ab initio -menetelmä, imaginääriaika

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.



iii

CONTENTS

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Feynman path integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Double-slit experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Kernel for a single particle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Kernel for multiple particles . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Discretization at the limit of short timestep . . . . . . . . . . . . . . . . . . . 7

2.5 The kernel of free particles . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.6 External magnetic field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6.1 Magnetic Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6.2 Many-body Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.6.3 Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.6.4 Free particle in a magnetic field . . . . . . . . . . . . . . . . . . . . . 11

2.7 Wave function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.7.1 Propagator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.7.2 Transition amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Quantum statistical mechanics and imaginary time . . . . . . . . . . . . . . . . . 15

3.1 Partition function and density matrix . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Imaginary time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Illustration of an imaginary time path . . . . . . . . . . . . . . . . . . . . . . 18

3.4 Calculation of properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Static susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1 Classical thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3 Susceptibility estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Magnetic susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.1 Representation with general susceptibility . . . . . . . . . . . . . . . . . . . 26

5.2 Susceptibility estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6 Path integral Monte Carlo method . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.1 Monte Carlo method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.2 Markov chain Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.3 Estimation of statistical error . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.4 Metropolis–Hastings algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.5 Path sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.6 Symmetry considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.7 PIMC path sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34



iv

7 Diamagnetic susceptibilities of light atoms and molecules . . . . . . . . . . . . . 35

7.1 Unit conversions of the susceptibility . . . . . . . . . . . . . . . . . . . . . . 36

7.2 Time step length extrapolation . . . . . . . . . . . . . . . . . . . . . . . . . 36

7.3 Total energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7.4 Diamagnetic susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.4.1 Monatomic systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.4.2 Diatomic systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.4.3 Systems with low nuclear mass . . . . . . . . . . . . . . . . . . . . . 41

7.5 Correlation considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Appendix A Dynamic susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

A.1 Linear response theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

A.2 Dynamic susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Appendix B Diamagnetism of atomic hydrogen . . . . . . . . . . . . . . . . . . . . 55

Appendix C Supplementary information . . . . . . . . . . . . . . . . . . . . . . . . 57



1

1 INTRODUCTION

Magnetic susceptibility determines how a material is magnetized in response to an ex-
ternal magnetic field. That is, it determines how much magnetization of material either
weakens or strengthens the external magnetic field. In practical terms, if the material
weakens the external magnetic field, it repels magnets, and if the material strengthens
the external magnetic field, it attracts the magnets. There are two opposing contributions
of magnetism, diamagnetism and paramagnetism, and they correspond to the weaken-
ing and strengthening effects respectively. The diamagnetism is formed by response of
electron motion, and it is present in every material. The paramagnetism is mainly formed
by the electron spins, and it is present in materials that have an unpaired number of elec-
trons. Many materials have paired number of electrons, and magnetic moments of the
electron spins cancel out rendering the material to be mainly diamagnetic. In this work
we focus solely on the diamagnetic contribution, and so diamagnetic susceptibility is also
referred with a general term ”susceptibility”.

Magnetic properties of molecules are needed with increasing accuracy. This requires
simulation of thermal coupling, nuclear motion and exact many-body effects, which are
approximated out in many common simulation methods. The nuclear motion is essential
for understanding the effects of temperature, because thermal energy induces vibrations
and rotations to molecular bonds. Commonly used simulation methods can only take
into account temperature with the approximation that the electron has insignificant mass
compared to the nucleus. This approximation is not accurate for light nuclei such as the
hydrogen nuclei.

Path Integral Monte Carlo method (PIMC) [1–3] is a lesser-known approach to describe
quantum mechanics. PIMC simulates thermal systems by propagating on Feynman path
integrals in imaginary-time. PIMC evaluates the path integrals with Monte Carlo sampling,
and so the accuracy of results is determined by a statistical error. Within this statistical
error, PIMC simulates temperature, nuclear motion and electronic correlation exactly. On
the contrary, many quantum simulation methods apply approximations to these effects,
which may create a bias that is difficult to estimate [3, 4].

There are not many existing calculations of the diamagnetic susceptibility at the finite
temperatures, even though some studies exist [5][6]. There is also no full consensus
on nonadiabatic calculations at zero temperature, as varying methods apply different ap-
proximations, which produce slightly different results. If PIMC can squeeze the statistical
error to small enough, it can help bring settlement with its exact nature.
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Temperature-dependent magnetic properties are needed in technologies such as Nuclear
Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI) [4]. These tech-
nologies are commonly calibrated with data from first-principles calculations, because
experimental data is not well available [7].

The remainder of this work is organized as follows. In section 2 of this study we intro-
duce theory of real-time path integrals at zero temperature. In section 3 we show how
imaginary-time propagation leads to finite temperature properties. In section 4 we derive
a general equation for susceptibility, and in section 5 we apply it to derive the diamagnetic
susceptibility. In section 6 we give a brief overview of some numerical tools that are used
to evaluate imaginary-time path integrals in PIMC. In section 7 we present results for light
molecules. Section 8 contains a summary and conclusions. In appendix A we present a
brief theory of time-dependent susceptibility, and in appendix B we derive the suscepti-
bility of the hydrogen atom with an infinitely heavy nucleus. In appendix C we provide a
link to supplementary information of the simulations.
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2 FEYNMAN PATH INTEGRALS

The quantum mechanics cannot be derived from the classical mechanics, and thus, dif-
ferent postulates are required to describe it. A conventional formulation of the quantum
mechanics is tightly linked to the Schrödinger equation, but in this work we take a dif-
ferent approach by focusing on an alternative formulation known as Feynman’s path in-
tegrals [8]. Where the Schrödinger equation takes so-called Hamiltonian as a starting
point, the path integrals take so-called Lagrangian. The path integrals can be derived
from the Schrödinger equation, and vice versa.

A general idea behind the path integral formulation is that it affiliates a complex number
with any arbitrary trajectory that corresponds to a particle moving from one point to an-
other. This complex number is then summed over all possible trajectories between the
two points, no matter how arbitrary they are. The squared norm of the sum represents
the probability that such movement is observed.

In this chapter we follow Feynman’s approach [8], which intuitively introduces the path
integrals from the double-slit experiment. We present two postulates of the path integral
formalism, and then we loosely build the quantum mechanical equations on top them.
Also, we establish a connection between the path integrals and the wave function.

2.1 Double-slit experiment

The double-slit experiment is a well-known demonstration that brings up wave-like nature
of particles. Figure 2.1 shows a basic configuration of the double-slit experiment. A
particle source at point A shoots particles towards a barrier with two slits. The particles
pass the slits and form an interference pattern on a detector screen D.

The interference pattern can be explained with the use of probability amplitudes. The
probability amplitude is a complex-valued function which represents information of the
phase and amplitude. Let the probability amplitude φa,b ∈ C correspond to the move-
ment of a particle from point a to point b. Squaring the norm of the amplitude gives the
probability of observing such movement, that is,

Pa,b = |φa,b|2. (2.1)

Consider first that only the slit B is open in figure 2.1. Then, the particle trajectory passes
through points A → B → D, and the corresponding probability amplitude is φA,B,D. This
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Figure 2.1. Double-slit experiment containing a particle source A, a barrier screen with
two slits B and C, and a point D on a detector screen. The particle passes through the
slits and forms an interference pattern. Image from [9].

probability amplitude can be split in two parts

φA,B,D = φA,BφB,D. (2.2)

This may be a familiar property from wave mechanics: phases are summed and ampli-
tudes multiplied. That is, if A is a scalar amplitude and θ is the phase, then the multipli-
cation can be expressed as

(︁
A1e

iθ1
)︁ (︁
A2e

iθ2
)︁
= A1A2e

i(θ1+θ2).

When both of the slits B and C are open, the wave passes simultaneously through both
of them, forming an interference pattern on the detection screen. The observation prob-
ability is not a sum of two separately observed probabilities

PA,D ̸= PA,B,D + PA,C,D = |φA,B,D|2 + |φA,C,D|2. (2.3)

Instead, the probability amplitudes must be summed first, and the square must be taken
after [8]

PA,D = |φA,B,D + φA,C,D|2 = |φA,D|2. (2.4)

However, if the location of the particle was observed at either slit, then the interference
would not take place. This is a fundamental aspect in Feynman’s original formulation [10]:
The total observation probability depends on whether intermediate probabilities have
well-defined values or not. Observing the particle at the slit has a well-defined proba-
bility, but not observing the particle has an undefined probability.

The double-slit experiment can be generalized to include more than two slits. If the barrier
screen has I slits, then the total probability amplitude is just a sum over all trajectories

φA,D =
I∑︂
i

φA,i,D. (2.5)
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Continuing with generalizations, there can be more barrier screens than just one. The
total probability amplitude is a sum over all different combinations in which the particle
can pass through all the slits. For example, if there were two screens with I and J slits
each, then the total probability amplitude would be

φA,D =

I∑︂
i

J∑︂
j

φA,i,j,D. (2.6)

The situation with I = 3 and J = 2 is illustrated in figure 2.2.

The number of barrier screens and the number of slits can be increased arbitrarily. The
limit at infinity exists [8, p. 33], and it corresponds to a free particle with no slits at all. The
summation of amplitudes over all possible trajectories can be compared to Huygens–
Fresnel principle in the classical wave mechanics[10, p. 19], which states that every point
of a wavefront is itself a source of spherical wavelets.

I = 3 J = 2

A
D

Figure 2.2. Generalized slit experiment with two barrier screen. The total probability
amplitude is a sum over all different combinations of trajectories.
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2.2 Kernel for a single particle

Let there be two events a = (ra, ta) and b = (rb, tb), so that ta < tb. So far, explicit
information of time has been left out from the total probability amplitude notation φra,rb .
When the information of time is included in φra,rb , it is called a kernel. This work assumes
time-independent systems, and so the time difference tb − ta is enough to describe the
time-dependence of the kernel. Let r(t) be an arbitrary trajectory of a particle such that
r(ta) = ra and r(tb) = rb. Let φ[r(t)] be a partial probability amplitude associated with
the trajectory. The notation φ[·] denotes a functional, meaning that it reduces the function
r(t) into a scalar number. The kernel is

K(ra, rb, tb − ta) =
∑︂

all trajectories

φ[r(t)] (2.7)

≡
∫︂ r(tb)=rb

r(ta)=ra

Dr(t) φ[r(t)], (2.8)

where Dr(t) denotes a functional integral. Because the kernel is the probability ampli-
tude, the probability of the particle moving from event a to event b is given by equation 2.1

Pa,b = |K(ra, rb, tb − ta)|2. (2.9)

The equations 2.8 and 2.9 form Feynman’s first postulate of the quantum mechanics [10].
The second postulate is that the probability amplitude of the trajectory is

φ[r(t)] = A e
i
ℏS[r(t)], (2.10)

where A is a normalization constant, i is an imaginary unit, ℏ is a reduced Planks con-
stant, and S is a classical action. The classical action is

S[r(t)] =

∫︂ tb

ta

dt L (ṙ(t), r(t)) , (2.11)

where L is the classical Lagrangian and ṙ(t) = dr(t)
dt is velocity. The classical Lagrangian

is

L (ṙ, r) =
m

2
ṙ2⏞ ⏟⏟ ⏞

K(ṙ)

−V (r) , (2.12)

where m is the mass of the particle, K is the kinetic energy and V is the potential energy.

Equations 2.2 and 2.5 make it possible to combine two kernels into one kernel with a
longer time difference. If the first kernel propagates time ta → tb and the second propa-
gates tb → tc, then the combined kernel propagates ta → tc. This is

K(ra, rc, tc − ta) =

∫︂ ∞

−∞
drbK(ra, rb, tb − ta)K(rb, rc, tc − tb), (2.13)
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where ta < tb < tc, and drb denotes a multidimensional integration over the coordinate
space.

2.3 Kernel for multiple particles

Generalization for multiple particles is straightforward. Let there be N distinguishable
particles whose coordinates are denoted with

R = [r1, r2, . . . rN ]T (2.14)

= [r11, . . . r1d, r21 . . . rNd]
T , (2.15)

where d is the number of dimensions. In this work d = 3.

The kernel, the action, and the Lagrangian are respectively

K(Ra, Rb, tb − ta) =

∫︂ R(tb)=Rb

R(ta)=Ra

DR(t) Ae
i
ℏS[R(t)] (2.16)

S[R(t)] =

∫︂ tb

ta

dt L
(︂
Ṙ(t), R(t)

)︂
(2.17)

L
(︂
Ṙ, R

)︂
=

N∑︂
n

mn

2
ṙn

2 − V (R). (2.18)

The potential term V depends on the particular system, and in this work it is the Coulomb
potential of charged particles

V (R) =

N∑︂
n′>n

1

4πε0

qnqn′

|rn − rn′ |
, (2.19)

where ε0 is a vacuum permittivity and q is a charge. Slight inconveniences will later
emerge from the fact that the Coulomb potential is not bounded from below.

The case of indistinguishable particles is briefly mentioned in the section 6.6.

2.4 Discretization at the limit of short timestep

The functional integral 2.16 can be transformed into an alternative representation by di-
viding it into short time steps. The time range tb − ta can be divided into M time steps
such that M∆t = tb − ta. If a time step ∆t is differentially short, then the kernel K(∆t)

has an analytical expression. The equation 2.13 can be applied M times, which in the
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limit of M → ∞ and ∆t→ 0 yields

K(Ra, Rb, tb − ta)

= lim
M→∞

(︃∫︂
· · ·
∫︂

dR1dR2 · · · dRM−1 K(R0, R1,∆t) · · ·K(RM−1, RM ,∆t)

)︃
(2.20)

= lim
M→∞

(︄∫︂
· · ·
∫︂ M−1∏︂

m=1

dRm

M−1∏︂
m=0

K(Rm, Rm+1,∆t)

)︄
, (2.21)

where labels R0, RM correspond to points Ra, Rb.

The next task is to find an analytical formula for the kernel K(Rm, Rm+1,∆t). If the time
difference ∆t is differentially short, then all trajectories cancel each other out except for
the classical trajectory Rcl(t). The kernel can be then calculated with

K(Ra, Rb,∆t) = Ae
i
ℏS[Rcl(t)], (2.22)

whereA is a normalization constant. Here we give a brief reasoning why the non-classical
trajectories are cancelled in the functional integration. The classical path Rcl(t) minimizes
the action S, and the paths nearRcl(t) evaluate almost the same values of S. This creates
a constructive interference in the summation of the terms e

i
ℏS . However, if the paths are

far away from Rcl(t), then small path deviations vary S rapidly, and the phase of e
i
ℏS also

varies rapidly, which makes the paths mostly cancel each other out in the summation. See
Feynman’s work [8, p. 30] for a more detailed explanation. As a brief side note, scaling
ℏ → 0 would also increase the variance of i

ℏS resulting cancellation of the non-classical
paths. That is, scaling ℏ → 0 yields the classical mechanics.

It is worth noting that equations 2.21 and 2.22 do not directly apply for potentials that
are unbounded from below, no matter how short ∆t is. A workaround for the Coulomb
potentials is presented in references [2][11, p. 918][12, p. 81].

In the limit of differentially short time step, the classical trajectory corresponds to particles
moving in straight lines with constant velocities [8, p. 33]. The Lagrangian is constant on
a short trajectory, and the action integral 2.17 can be written to depend only on its end
points with

S[Rcl(t)] = S (Ra, Rb,∆t) . (2.23)

The discretized kernel 2.21 is valid with either of the following two actions [10, p. 15]

S (Ra, Rb,∆t) = ∆t L

(︃
Rb −Ra

∆t
,
Ra +Rb

2

)︃
(2.24)

S (Ra, Rb,∆t) = ∆t
1

2

(︃
L

(︃
Rb −Ra

∆t
, Ra

)︃
+ L

(︃
Rb −Ra

∆t
, Rb

)︃)︃
. (2.25)

If the Lagrangian does not depend linearly on velocity, that is, there is no magnetic field,
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then following action is also valid

S (Ra, Rb,∆t) = ∆t L

(︃
Rb −Ra

∆t
, Ra

)︃
. (2.26)

There is some freedom in evaluating the potential term V (R) in the Lagrangian, so that
the kernel 2.21 still remains effectively unchanged. The potential term can be evaluated
anywhere between endpointsRa andRb, or it can be calculated as any linear combination
of V (Ra) and V (Rb) [13].

The normalization constant in equation 2.22 is [10, p. 18]

A =

N∏︂
n

(︂ mn

2πiℏ∆t

)︂ d
2
. (2.27)

Now the kernel is fully described. It is

K(Ra, Rb, tb − ta) = lim
M→∞

(︄∫︂
· · ·
∫︂ M−1∏︂

m=1

dRm

M−1∏︂
m=0

Ae
i
ℏS(Rm,Rm+1,∆t)

)︄
, (2.28)

where R0 = Ra and RM = Rb.

2.5 The kernel of free particles

If there is no potential, the kernel corresponds to free particles, which has an analytical
solution [8, pp. 42, 66]

K(Ra, Rb, tb − ta) = A exp

{︄
i

ℏ
∑︂
n

mn (rb − ra)
2

2 (tb − ta)

}︄
. (2.29)

This solution holds for any time range tb − ta.

2.6 External magnetic field

This section shows how magnetic field is included into the Lagrangian of classical parti-
cles. Equations of magnetism are presented with the SI convention, which does contain
some differences to equations utilizing Gaussian convention.

2.6.1 Magnetic Lagrangian

Let there be a spinless charged particle affected by a magnetic field. It has a classical
Lagrangian [11, p. 179] [8, p. 189]

L(ṙ, r) =
m

2
ṙ2 − V (r)⏞ ⏟⏟ ⏞
L0(ṙ,r)

+ qA(r) · ṙ⏞ ⏟⏟ ⏞
LM (ṙ,r)

, (2.30)
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where A is a magnetic vector potential, L0 is a Lagrangian without magnetic interaction,
and LM is a magnetic interaction term. Assuming a homogeneous magnetic field B, the
vector potential can be chosen to be

A(r) =
1

2
B × r, (2.31)

with which the magnetic interaction becomes

LM (ṙ, r) =
q

2
(B × r) · ṙ. (2.32)

Using a vector identity

(a× b) · c = (b× c) · a, (2.33)

it becomes

LM (ṙ, r) =
q

2
(r × ṙ) ·B (2.34)

=
q

2m
(r × p) ·B (2.35)

= m ·B, (2.36)

where p = mṙ is the momentum, and m = q
2mr × p is the magnetic dipole moment.

2.6.2 Many-body Lagrangian

Let there be multiple spinless charged particles in a magnetic field, for which the La-
grangian is [11, p. 179][14]

L
(︂
Ṙ, R

)︂
=

N∑︂
n

mn

2
ṙ2n − V (R)⏞ ⏟⏟ ⏞

L0

(︂
Ṙ,R

)︂
+

N∑︂
n

qnA(rn) · ṙn⏞ ⏟⏟ ⏞
LM

(︂
Ṙ,R

)︂
. (2.37)

Assuming no magnetic interaction between the particles, the vector potential is given by
equation 2.31. The equation 2.37 can be written

L
(︂
Ṙ, R

)︂
= L0

(︂
Ṙ, R

)︂
+

(︄
N∑︂
n

qn
2

(rn × ṙn)

)︄
·B (2.38)

= L0

(︂
Ṙ, R

)︂
+m

(︂
Ṙ, R

)︂
·B, (2.39)

where m is the total magnetic dipole moment.

The magnetic interaction between the particles is neglected because it is fundamentally a
relativistic effect. Fortunately, the relativistic effects are marginal on light molecules. For
example, relativistic energy of the hydrogen molecule shows up only in fifth decimal [15].
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If some basic magnetic interactions were required to be taken into account, they can be
included as a relativistic correction, from which the Darwin Lagrangian [14] is a good
example.

2.6.3 Action

Combining equation 2.30 with 2.25 gives short time step action for the particle in the
magnetic field [10, p. 15][13]

S(ra, rb,∆t) = ∆t
1

2

(︃
L

(︃
rb − ra
∆t

, ra

)︃
+ L

(︃
rb − ra
∆t

, rb

)︃)︃
(2.40)

= ∆t

(︄
m

2

(︃
rb − ra
∆t

)︃2

− V (ra) + V (rb)

2
+ q

A(ra) +A(rb)

2
· rb − ra

∆t

)︄
.

(2.41)

This results in a kernel, whose error is known to scale with ∆t
3
2 , that is

K(ra, rb,∆t) = Ae
i
ℏS(ra,rb,∆t) +O(∆t

3
2 ). (2.42)

In contrast, if there is no magnetic field, the action 2.26 poses an error that scales to
∆t2 [13]. The normalization constant A does not depend on the magnetic field, and it is
the same as in equation 2.27.

2.6.4 Free particle in a magnetic field

There exists an analytical solution for the kernel of a free particle in a constant magnetic
field B in the z-direction. The kernel is [8, p. 64] [16]

K(ra, rb,tb − ta) =

(︃
m

2πiℏ(tb − ta)

)︃ 3
2

⎛⎝ ω(tb−ta)
2

sin
(︂
ω(tb−ta)

2

)︂
⎞⎠ exp

{︄
im

2ℏ

[︄
(zb − za)

2

tb − ta
(2.43)

+

⎛⎝ ω
2

tan
(︂
ω(tb−ta)

2

)︂
⎞⎠(︂(xb − xa)

2 + (yb − ya)
2
)︂
+ ω (xayb − xbya)

]︄}︄
(2.44)

where ω = eB
m is cyclotron frequency. This kernel is valid for any time difference tb − ta.

2.7 Wave function

Because the path integral formulation is less well known than Schrödinger wave mechan-
ics, their connection is important to clarify. In this section we show how these formulations
can be represented with each other.

In previous sections we have shown how the kernel determines the probability amplitude
from event (Ra, ta) to event (Rb, tb). However, the point of interest is not always (Ra, ta),
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but rather the evolution of the probability amplitude. If the starting point is dropped out of
the kernel, it is known better as the wave function [8, p. 57]

ψ(Rb, tb) = K( · , Rb, tb − · ). (2.45)

Equation 2.9 gives a probability density of finding the system in a configuration R, which
is

P (R) = |ψ(R)|2 = ψ∗(R)ψ(R), (2.46)

where ∗ denotes the complex conjugate. Here the time argument has been dropped out of
the wave function, because the system is assumed to be time-independent, which results
trivial time-dependence of ψ. The wave function describes a state of the system, which
defines a probability distribution for physical quantities. Let us consider an observable
O, which is a physical quantity associated with a Hermitian operator Ô. The expectation
value of Ô is ⟨︂

Ô
⟩︂
=

∫︂
dR ψ∗(R)Ôψ(R) ≡ ⟨ψ|Ô|ψ⟩ , (2.47)

where ⟨·|·|·⟩ is braket notation.

The evolution of the state is described by the Schrödinger equation

iℏ
∂ψ(R, t)

∂t
=

(︄
N∑︂
n

1

2mn
p̂2
n + V (R)

)︄
ψ(R, t) (2.48)

= Ĥψ(R, t) (2.49)

where p̂n = −iℏ∇n is the momentum operator and Ĥ is the Hamiltonian operator. If
the system is time-independent, then the time-dependence of the solution ψ(R, t) can be
separated, and the resulting time-independent wave function ψ(R) can be decomposed
into an orthonormal set of energy eigenstates with ψ =

∑︁
i ciφi, where ci ∈ C, and the

eigenstates φi fulfill Ĥφi = Eiφi. The terms |ci|2 correspond to a probability that the
system is measured with an energy Ei. It is said that Ĥ is diagonal to φi.

2.7.1 Propagator

Equation 2.13 shows that a kernel moves another kernel in time. This is why the kernel
is called the propagator of the wave function, that is

ψ(Rb, tb) =

∫︂
dRaK(Ra, Rb, tb − ta)ψ(Ra, ta). (2.50)
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The propagation can be also expressed as a time evolution operator U [10]

ψ(Rb, tb) = e−
i
ℏ (tb−ta)Ĥ⏞ ⏟⏟ ⏞
U(tb−ta)

ψ(Ra, ta). (2.51)

The propagated wave function can be written as

ψ(Rb, tb) = ⟨Rb|ψ(tb)⟩ (2.52)

= ⟨Rb|e−
i
ℏ (tb−ta)Ĥ |ψ(ta)⟩ (2.53)

=

⟨︃
Rb

⃓⃓⃓⃓
e−

i
ℏ (tb−ta)Ĥ

(︃∫︂
dRa |Ra⟩⟨Ra|

)︃
ψ(ta)

⟩︃
(2.54)

=

∫︂
dRa ⟨Rb|e−

i
ℏ (tb−ta)Ĥ |Ra⟩⏞ ⏟⏟ ⏞

K

ψ(Ra, ta), (2.55)

which gives an alternative expression for the kernel as

K(Ra, Rb, tb − ta) = ⟨Rb|e−
i
ℏ (tb−ta)Ĥ |Ra⟩ . (2.56)

In the position basis, the representation of the state |R⟩ is a Dirac delta function, that is,
⟨Ra|Rb⟩ = δ(Ra, Rb) and ⟨R|ψ(t)⟩ = ψ(R, t).

2.7.2 Transition amplitude

As is previously stated, the kernel determines the probability amplitude from one point to
another. A transition amplitude is a generalization that determines the probability ampli-
tude from one state to another. The transition amplitude from state ψ(ta) to state φ(tb)

is [8, p.165]

⟨︁
φ
⃓⃓
e−

i
ℏ (tb−ta)Ĥ

⃓⃓
ψ
⟩︁

(2.57)

=

∫︂ ∫︂
dRadRb φ

∗(Rb, tb)K(Ra, Rb, tb − ta)ψ(Ra, ta) (2.58)

=

∫︂ ∫︂
dRadRb φ

∗(Rb, tb)

(︄∫︂ R(tb)=Rb

R(ta)=Ra

DR(t) Ae
i
ℏS[R(t)]

)︄
ψ(Ra, ta) (2.59)

≡
⟨︁
φ(tb)

⃓⃓
1
⃓⃓
ψ(ta)

⟩︁
S
, (2.60)

where equation 2.16 is inserted on the line 2.59, and the braket-like notation 2.60 follows
the reference [8, p.165]. Note that 2.60 is not a conventional braket notation, because the
”1” is a placeholder for a functional, which multiplies each individual path in the functional
integration. Placing a functional O [R(t)] in the transition amplitude reads

⟨︁
φ(tb)

⃓⃓
O
⃓⃓
ψ(ta)

⟩︁
=

∫︂ ∫︂
dRadRb

∫︂ R(tb)=Rb

R(ta)=Ra

DR(t) O [R(t)]Ae
i
ℏS[R(t)]φ∗(Rb, tb)ψ(Ra, ta).

(2.61)



14

It is clear that a kernel expressed as the transition amplitude is

K(Ra, Rb, tb − ta) = ⟨Rb(tb)|1|Ra(ta)⟩ . (2.62)



15

3 QUANTUM STATISTICAL MECHANICS AND
IMAGINARY TIME

Quantum statistical mechanics studies quantum systems in the thermal equilibrium. The
effects of finite temperature appear most prominently with the multiatomic molecules,
because the thermal energy induces motion to the nuclear bonds by activating rotational
and vibrational states. At the room temperature this affects the total energy on the order
of percent, and therefore the ground state calculation at zero temperature may not be
accurate enough in many realistic situations.

In previous chapter we considered cases where the system is described by a pure quan-
tum state, such as the ground state at zero temperature. However, at finite temperatures
there are multiple possible states, where the exact state of the system is not known, but
the probability distribution of the states is known. In quantum statistical mechanics the
distributions of the states is studied rather than the particular states.

In this section we describe the thermal distribution of the quantum states, and then we
express it with the imaginary time path integrals. Last, we use the path integrals to derive
the thermal expectation value of an observable.

3.1 Partition function and density matrix

Given unlimited time, practically all systems settle to the thermal equilibrium, which is
associated with some temperature T . A single state in the equilibrium has a probability

Pi =
1

Z
e−βEi , (3.1)

where Z is a partition function, Ei is an energy of state and β = 1
kBT is an inverse temper-

ature. Here kB is the Boltzmann’s constant. The partition function acts as a normalization
constant, and it is

Z =
∑︂
i

e−βEi . (3.2)
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If O is some measurable quantity of the system, equation 3.1 gives the expectation value
as

⟨O⟩ = 1

Z

∑︂
i

Oie
−βEi . (3.3)

Because the partition function Z depends on the properties of the system, all quantities of
the classical thermodynamics can be derived from it [8, p. 272]. These quantities include
internal energy, entropy, and susceptibility, for example. There are other quantities that
cannot be determined directly from the partition function, such as the probability density
P (R). However, the probability density can be expressed by combining equation 3.3 with
equation 2.46 as [8, p. 272]

P (R) =
1

Z

∑︂
i

(φ∗i (R)φi(R)) e
−βEi (3.4)

=
1

Z
ρ (R,R, β) , (3.5)

where φi is an energy eigenstate and

ρ (Ra, Rb, β) =
∑︂
i

φi(Ra)φ
∗
i (Rb)e

−βEi (3.6)

is the thermal density matrix. The density matrix is a quantum mechanical generalization
of the partition function, and it is capable of defining all physical quantities of the system.
The relation between the two is

Z =

∫︂
dR ρ (R,R, β) . (3.7)

The density matrix ρ (Ra, Rb, β) determines the probability that a system moves from
state Ra to state Rb in inverse temperature β. Even though this work takes the probability
distribution from the thermal equilibrium, it is not required in the general definition of the
density matrix.

Important distinction must be made between the density matrix and an entangled quan-
tum state. The density matrix is a set of pure quantum states, where each state is as-
sociated with a classical probability. On the other hand, the entangled state is itself a
pure quantum state, and while it is a linear combination of other pure states, the state
coefficients are complex-valued.

The density matrix is usually defined more conveniently as

ρ (Ra, Rb, β) = ⟨Rb|e−βĤ |Ra⟩ (3.8)

= ⟨Rb|ρ̂β |Ra⟩ , (3.9)
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where ρ̂β is the density operator. The equation 3.6 can be constructed with

⟨Rb|e−βĤ |Ra⟩ =
∑︂
i,j

⟨Rb|φi⟩ ⟨φi|e−βĤ |φj⟩ ⟨φj |Ra⟩ (3.10)

=
∑︂
i,j

φi(Rb) ⟨φi|e−βEj |φj⟩φ∗j (Ra) (3.11)

=
∑︂
i

φi(Rb)φ
∗
i (Ra)e

−βEi , (3.12)

where equation 3.11 applies an operator exponential series, and equation 3.12 utilizes
orthonormality of eigenstates.

The density function 3.7 can be presented with a trace of ρ̂β

Z =

∫︂
dR ⟨R|ρ̂β |R⟩ (3.13)

≡ Tr
[︁
ρ̂β
]︁
. (3.14)

An expectation value of the observable Ô in the thermal equilibrium is⟨︂
Ô
⟩︂
=

1

Z

∫︂
dR ⟨R|e−βĤÔ|R⟩ (3.15)

=
1

Z
Tr
[︂
ρ̂βÔ

]︂
. (3.16)

This expectation value is clearly apparent for diagonal operators if equations 3.10–3.12
are utilized.

3.2 Imaginary time

One of the main benefits of the path integral formalism arises in the quantum statistical
mechanics. Notice how similar the kernel 2.56 is to the density matrix 3.8. If the term
i
ℏ (tb − ta) is replaced with β, then the kernel becomes the density matrix. Luckily, such
replacement can be performed, because the kernel has convenient analytic properties in
the complex plane. This is known as the Wick rotation. The kernel that propagates in ”the
imaginary time” tb − ta = −iℏβ is equal to the density matrix in the inverse temperature
β. That is,

ρ (Ra, Rb, β) = K(Ra, Rb,−iℏβ). (3.17)

The imaginary time is denoted with τ ∈ R+ so that t = −iℏτ , and an imaginary time
trajectory is denoted with R′(τ) = R(−iℏτ). Direct substitution of the imaginary time to
kernel 2.16 gives [17]

ρ (Ra, Rb, β) =

∫︂ R′(β)=Rb

R′(0)=Ra

DR′(τ) Ae−S′[R′(τ)], (3.18)
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where S′ = iℏS is the imaginary time action

S′[R′(τ)] = −
∫︂ β

0
dτ L

(︃
1

−iℏ
dR′(τ)

dτ
,R′(τ)

)︃
(3.19)

=

∫︂ β

0
dτ

(︄
N∑︂
n

mn

2ℏ2

(︃
drn
dτ

)︃2

+

N∑︂
n′>n

V (rn, rn′)

)︄
. (3.20)

The symbols ρ, R′ and S′ are introduced to conceal the imaginary time constant −iℏ in
terms K, R and i

ℏS respectively. Similarly, plugging the imaginary time in the discretized
kernel 2.28 enables writing the density matrix as

ρ (Ra, Rb, β) = lim
M→∞

(︄∫︂
· · ·
∫︂ M−1∏︂

m=1

dRm

M−1∏︂
m=0

ρ (Rm, Rm+1,∆τ)

)︄
, (3.21)

where ∆τ = β
M , R0 = Ra, RM = Rb, and the high temperature density matrix is

ρ (Ra, Rb,∆τ) = Ae−S′(Ra,Rb,∆τ). (3.22)

Using the normalization constant 2.27, the action 2.22, and the zero-field Lagrangian 2.26,
the high temperature density matrix is

ρ (Ra, Rb,∆τ) =(︄
N∏︂
n

(︂ mn

2πℏ2∆τ

)︂ d
2

)︄
exp

{︄
−∆τ

(︄
N∑︂
n

mn

2ℏ2
(rn,b − rn,a)

2

∆τ2
+

N∑︂
n′>n

V
(︁
rn,a, rn′,a

)︁)︄}︄
. (3.23)

The integral 3.21 is an important part of the path integral Monte Carlo method, and in
chapter 6 we address some aspects of its numerical evaluation. As was the case with
the real time kernel, equation 3.21 does not directly hold for actions with the Coulomb
potential.

Note that many conventional properties of real-time dynamics do not apply in the imagi-
nary time. For example, dr

dτ is not a velocity, and the center of mass is not conserved.

3.3 Illustration of an imaginary time path

To illustrate what one imaginary time path may look like, an example path of a hydrogen
molecule is plotted in figure 3.1, where the path is discretized with a low number of sec-
tions M = 32. We are interested in the expectation values of equation 3.15, which utilizes
the diagonal term of the density matrix ρ (R,R, β), and so, the path starts and ends in the
same position. The path of each particle is a loop, and the path of a full system is a set of
loops. Note that electrons are more spread out than protons, because lower mass allows
higher ”velocities” in the imaginary time.
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electron
electron
proton
proton

= 0 or =

Figure 3.1. A schematic illustration of imaginary time path for hydrogen molecule H2

near the thermal equilibrium. The path is discretized with a low number of segments. The
dots present points, where the particle interactions are evaluated, whereas the solid lines
indicate kinetic leaps based on the short time step kernel. The black squares indicate the
position R0 = RM in equation 3.21.

3.4 Calculation of properties

In this section we derive formulas for the expectation values of observable properties
based on the imaginary-time path integrals. The expectation value of equation 3.16 can
be discretized similarly to equation 3.21 with

Tr
[︂
ρ̂βÔ

]︂
=

∫︂
dR0 ⟨R0|ρ̂βÔ|R0⟩ (3.24)

= lim
M→∞

(︃∫︂
dR0 ⟨R0|(ρ̂∆τ )

M Ô|R0⟩
)︃

(3.25)

= lim
M→∞

(︃∫︂ ∫︂
dR0dRM ⟨R0|(ρ̂∆τ )

M |RM ⟩ ⟨RM |Ô|R0⟩
)︃

(3.26)

= lim
M→∞

(︄∫︂
· · ·
∫︂

dRM

M−1∏︂
m=0

dRm ρ (Rm, Rm+1,∆τ) ⟨RM |Ô|R0⟩

)︄
. (3.27)

Let us assume that an observable Ô is diagonal in the position basis, which means that
it can be evaluated from the sole knowledge of the particle coordinates. For example,
potential energy V (R) is a diagonal quantity, but magnetic moment m(Ṙ, R) =

∑︁
i
qi
2 (ri×

ṙi) is not, as it requires knowledge of the velocity. Because Ô is diagonal, the matrix
element ⟨RM |Ô|R0⟩ can be written with the Dirac’s delta function as O(R0)δ (RM , R0).
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Equation 3.27 becomes

Tr
[︂
ρ̂βÔ

]︂
= lim

M→∞

(︄∫︂
· · ·
∫︂ M−1∏︂

m=0

dRm ρ (Rm, Rm+1,∆τ)O(R0)

)︄
, (3.28)

where RM = R0.

The observation at a single time slice O(R0) can be averaged over all the time slices as

Tr
[︂
ρ̂βÔ

]︂
= lim

M→∞

(︄∫︂
· · ·
∫︂ M−1∏︂

m=0

dRm ρ (Rm, Rm+1,∆τ)
1

M

M∑︂
m=0

O(Rm)

)︄
, (3.29)

because the time slices are equivalent in imaginary time [1, p. 335]. This is equivalent to

Tr
[︂
ρ̂βÔ

]︂
=

∫︂
dR0

∫︂ R′(β)=R0

R′(0)=R0

DR′(τ) Ae−S′[R′(τ)] ˜︁O [︁R′(τ)
]︁
, (3.30)

where

˜︁O [︁R′(τ)
]︁
=

1

β

∫︂ β

0
dτO

(︁
R′(τ)

)︁
(3.31)

is a time-averaged functional corresponding to operator Ô. The equation 3.30 appears
now in same format as 2.61, so it can be expressed with using the transition element
notation

Tr
[︂
ρ̂βÔ

]︂
=

∫︂
dR
⟨︂
R(β)

⃓⃓⃓ ˜︁O [︁R′(τ)
]︁⃓⃓⃓
R(0)

⟩︂
. (3.32)

Similar to the transition element notation, a new notation is defined for the trace of the
transition element, which is

Tr
[︂
ρ̂βÔ

]︂
≡ Trβ

[︂ ˜︁O [︁R′(τ)
]︁]︂

S′
. (3.33)

Note that Trβ notation on the right-hand side takes a functional as the input parameter,
and it is not a trace operation in a common sense.

To summarize, if an observable depends solely on the positional coordinates, that is
Ô |R⟩ = O(R) |R⟩, then its thermal expectation value can be calculated with imaginary
time path integral

⟨O⟩ = 1

Z
Trβ

[︂ ˜︁O [︁R′(τ)
]︁]︂

S′
. (3.34)

However, this equation is also valid for some observables O(Ṙ, R) that involve the ve-
locity. In this case, the function O(Ṙ, R) needs to be derived from the partition function,
and it may not be exactly the same as in the classical system. A well-behaved exam-
ple of a velocity-dependent observable is the magnetic dipole moment, which happens
to be a direct imaginary time transformation from the corresponding classical quantity.
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The expectation value of the squared magnetic dipole moment is derived in this work.
An ill-behaved example of a velocity-dependent observable is the kinetic energy, whose
classical correspondent 1

2mṙ2 does not apply [1, p. 336], as the square velocity of the
path is unbounded in the limit ∆τ → 0 [8, p. 177].
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4 STATIC SUSCEPTIBILITY

The susceptibility of a system is a measure of how strongly the system responds to an
external perturbation, such as an external field. For example, an electric susceptibility
measures how much an electric field polarizes the system. Similarly, the magnetic sus-
ceptibility describes how much an external magnetic field magnetizes the system.

When discussing the theory of susceptibility, it is common to cover both a static and a
dynamic susceptibility, which correspond to time-independent and time-dependent cases,
respectively. The main focus of this work is in static susceptibility, but a derivation of
dynamic susceptibility is also discussed in appendix A.

Here we derive a general representation of the static susceptibility by utilizing imaginary-
time path integrals. In section 4.1 we derive the susceptibility in terms of a partition func-
tion Z. In section 4.3 we further derive how these terms can be calculated as functionals
of a path integral.

4.1 Classical thermodynamics

Thermodynamical systems at constant temperature and volume minimize a quantity called
the Helmholtz free energy. The Helmholtz free energy F links to the partition function with

Z = e−βF (4.1)

⇔ F = − 1

β
lnZ. (4.2)

Let a quantity Q be coupled to an external field F such that the difference in Helmholtz
free energy is [18, p. 60]

∆F = −⟨Q⟩F F, (4.3)

where ⟨·⟩F denotes thermal expectation value at F ̸= 0. This work is focused on the case
where F corresponds to the magnitude of a magnetic field along some coordinate axis,
and Q corresponds to the magnetic dipole moment along that same axis.

The expectation value of Q can be evaluated with [18, p. 60]

⟨Q⟩F = −
(︃
∂F
∂F

)︃
. (4.4)
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Static susceptibility χ determines linear coupling between ⟨Q⟩F and F with

⟨Q⟩F = χF. (4.5)

The susceptibility is a function of F , but usually only the limit F → 0 is considered. The
zero-field susceptibility is [3, p. 41][18, p. 66]

χ = lim
F→0

(︃
∂ ⟨Q⟩F
∂F

)︃
. (4.6)

This can be written with equations 4.4 and 4.2 as

⟨Q⟩F = − ∂

∂F

(︃
− 1

β
lnZ

)︃
(4.7)

=
1

βZ

∂Z

∂F
. (4.8)

Plugging 4.8 to 4.6 gives the susceptibility in terms of the partition function

χ =
1

β
lim
F→0

(︃
∂

∂F

(︃
1

Z

∂Z

∂F

)︃)︃
(4.9)

=
1

β
lim
F→0

(︃
−1

Z2

∂Z

∂F

∂Z

∂F
+

1

Z

∂2Z

∂F 2

)︃
(4.10)

=
1

β

(︄
−1

Z2
lim
F→0

(︃
∂Z

∂F

)︃2

+
1

Z
lim
F→0

(︃
∂2Z

∂F 2

)︃)︄
. (4.11)

Now that the susceptibility is expressed with partial derivatives of the partition function,
the next step is to find these derivatives.

4.2 Action

The system described earlier has the classical Lagrangian

L
(︂
Ṙ, R

)︂
= L0

(︂
Ṙ, R

)︂
+Q

(︂
Ṙ, R

)︂
F, (4.12)

where L0 is the Lagrangian at F = 0. The imaginary-time action from equation 3.19 is

S′[R′(τ)] = −
∫︂ β

0
dτ L

(︃
1

−iℏ
dR′(τ)

dτ
,R′(τ)

)︃
= S′

0 − β
1

β

∫︂ β

0
dτ Q

(︃
1

−iℏ
dR′(τ)

dτ
,R′(τ)

)︃
F (4.13)

= S′
0 − β ˜︁Q[R′(τ)]F (4.14)

= S′
0 + S′

F (4.15)

where S′
0 is the action of the system in the absence of the field, S′

F is a perturbed part of
the action, and ˜︁Q is a time-averaged functional.
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4.3 Susceptibility estimator

Partial derivatives in equation 4.11 can now be evaluated. Partition function 3.14 can be
written in terms of equation 3.33 as

Z = Trβ
[︁
1
]︁
S′ (4.16)

=

∫︂
dR0

∫︂ R′(β)=R0

R′(0)=R0

DR′(τ) Ae−S′[R′(τ)] (4.17)

= Trβ

[︂
e−S′

F

]︂
S′
0

, (4.18)

where the amplitude has been split into two parts e−S′
= e−S′

0e−S′
F . The equation 4.18

tells that the partition function of perturbed system can be evaluated with the functional
e−S′

F in the unperturbed system [8, p. 166]. This is possible, because the normalization
constant A is the same on both the unperturbed and the perturbed system. The amplitude
can be expanded in the exponential series

e−S′
F = 1 +

(︁
−S′

F

)︁
+

1

2

(︁
−S′

F

)︁2
+ · · · (4.19)

= 1 + β ˜︁Q [︁R′(τ)
]︁
F +

1

2

(︂
β ˜︁Q [︁R′(τ)

]︁
F
)︂2

+ · · · , (4.20)

which can be plugged into equation 4.18, giving

Z = Trβ
[︁
1
]︁
S′
0
+ β Trβ

[︂ ˜︁Q]︂
S′
0

F +
1

2

(︃
β2Trβ

[︂ ˜︁Q2
]︂
S′
0

)︃
F 2 − · · · . (4.21)

This expression is the Taylor expansion of Z(F ) around F = 0, and so the second and
the third term gives the partial derivatives required by equation 4.11

lim
F→0

(︃
∂Z

∂F

)︃
= β Trβ

[︂ ˜︁Q]︂
S′
0

(4.22)

lim
F→0

(︃
∂2Z

∂F 2

)︃
= β2Trβ

[︂ ˜︁Q2
]︂
S′
0

. (4.23)

The susceptibility 4.11 becomes

χ =
1

β

(︄
−1

Z2

(︃
β Trβ

[︂ ˜︁Q]︂
S′
0

)︃2

+
1

Z
β2Trβ

[︂ ˜︁Q2
]︂
S′
0

)︄
(4.24)

= β

(︃⟨︂ ˜︁Q2
⟩︂
−
⟨︂ ˜︁Q⟩︂2)︃ , (4.25)

where equation 3.34 is applied on the last line. This can be also written as

χ = β

⟨︃(︂ ˜︁Q2 −
⟨︂ ˜︁Q⟩︂)︂2⟩︃ , (4.26)

which states that susceptibility against F depends on the fluctuation of ˜︁Q in the equilib-
rium. Therefore, the response to external field can be calculated without direct simula-
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tions of that field. The equation 4.25 is related to the well-known fluctuation–dissipation
theorem [19, p. 23].
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5 MAGNETIC SUSCEPTIBILITY

There are many forms of magnetism. When an external magnetic field is applied to a
material, it induces magnetic dipole moments opposing the field, which is the source of
the diamagnetism. On the other hand, the imposed field also aligns permanent dipole
moments parallel to the field, which is the source of the paramagnetism. The largest
contribution of the paramagnetism originates from the magnetic dipole moment of the
electron spins. Some materials are capable of pertaining the magnetization even without
the presence of external field, which is known as ferromagnetism. With ferromagnetism,
the permanent dipole moments are collectively aligned by exchange interactions between
the dipoles. [19]

Noble gases are the only substances that have fully diamagnetic electronic structures.
That is, no paramagnetism is present in the noble gases. There are many other sub-
stances that are mainly diamagnetic. One such example is the hydrogen molecule, for
which the opposing electron spins cancel each other out, leaving the paramagnetic con-
tribution to be about 2% [6]. By assuming that the paramagnetic contribution is negligible,
the total magnetic susceptibility can be estimated by using only the diamagnetic contri-
bution.

In this chapter we express the diamagnetic susceptibility with imaginary-time path in-
tegrals. Section 5.1 presents magnetic susceptibility in terms of a general susceptibility,
which was derived in the previous chapter. Section 5.2 presents magnetic dipole moment
as a functional, which is used to derive the final equation for the magnetic susceptibility.
The derived equation corresponds to the one obtained from references [1, 20].

An alternative representation of the susceptibility is presented in appendix B, where op-
erator formalism is used to derive the exact diamagnetic susceptibility for the hydrogen
atom with a fixed nucleus.

5.1 Representation with general susceptibility

In this section, we write magnetic susceptibility in terms of the general susceptibility. Let
m be the magnetic moment of a system, and let the system be affected by an external
magnetic field, which has magnetic flux density B. Quantities Q and F now correspond
to mi and Bi respectively, where i ∈ {x, y, z} denote the coordinate components of a
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vector quantity. The difference in Helmholtz free energy is given by equation 4.3 as

∆F = −⟨m⟩B ·B. (5.1)

If the magnetization M = ⟨m⟩
V is small, then

B = µ0 (H +M) ≈ µ0H, (5.2)

where µ0 is the magnetic permeability of the vacuum. The magnetic moment is given
directly by equation 4.4, and it is [19, p. 21]

⟨mi⟩Bi
= − ∂F

∂Bi
. (5.3)

The general susceptibility is given by equation 4.6, but it differs from the common defini-
tion of the magnetic susceptibility, which is [19, p. 23]

χmag
i = lim

Hi→0

(︃
∂ ⟨mi⟩Hi

∂Hi

)︃
. (5.4)

Where the general susceptibility χi is defined as a derivative of Bi, the magnetic suscep-
tibility χmag is defined as a derivative of Hi instead. This slight difference brings an extra
term µ0 to the magnetic susceptibility as

χmag
i = µ0χi. (5.5)

5.2 Susceptibility estimator

This section shows how the magnetic susceptibility is calculated by using the general
susceptibility equation 4.25. Magnetic moment may seem problematic, as it depends
on particle velocities, which is not directly supported by equation 3.34. However, the
problem is avoided, because the magnetic moment functional can be expressed without
instantaneous particle velocities or time-dependence.

The Lagrangian of system is given by equation 2.39 as

L
(︂
Ṙ, R

)︂
= L0

(︂
Ṙ, R

)︂
+m

(︂
Ṙ, R

)︂
·B,

which gives imaginary-time action 4.14 as

S′[R′(τ)] = S′
0 − β˜︂m[R′(τ)]B, (5.6)

where

˜︂m [R(t)] =
1

β

∫︂ β

0
dτ

N∑︂
n

qn
2

(︃
rn ×

(︃
1

−iℏ
drn
dτ

)︃)︃
(5.7)
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is the time-averaged magnetic moment of the trajectory. Using a change of integration
variable dτ drn

dτ = drn, the functional becomes

˜︂m [︁
R′(τ)

]︁
=

i

ℏβ

N∑︂
n

qn
2

∮︂
∂Sn

rn × drn, (5.8)

where ∂Sn is a closed imaginary-time trajectory of particle n. Let Sn be some filling
surface of the trajectory. Applying the Stokes’ theorem yields

˜︂m [︁
R′(τ)

]︁
=

i

ℏβ

N∑︂
n

qnAn, (5.9)

where An is a ”vector area” of the surface Sn. A component An,i is formed by project-
ing the surface Sn along a coordinate axis i. Area An,i can be negative depending on
the choice of handedness. Note that unlike the instantaneous magnetic moment, this
functional does not depend on particle velocities.

If a practical computation of vector area is considered, it is evaluated most efficiently by
discretizing the closed integral 5.8 with

An =
1

2

M∑︂
m=1

rn,m × (rn,m − rn,m−1) (5.10)

where index m corresponds to a time slice of the path, and rn,0 = rn,M .

The magnetic susceptibility is given by equations 4.25 and 5.5 as

χmag
i = µ0β

(︂⟨︁˜︁m2
i

⟩︁
−
⟨︁ ˜︁mi

⟩︁2)︂
. (5.11)

Rotationally invariant systems have
⟨︁ ˜︁mi

⟩︁
= 0. Plugging in functional 5.9 gives the final

expression for the susceptibility [1, 20]

χmag
i = − µ0

ℏ2β

⟨︄(︄
N∑︂
n

qnAn,i

)︄2⟩︄
. (5.12)

This gives only the diamagnetic contribution, because the magnetic moment functional 5.7
takes only into account the dynamics of charged particles and not the spin.
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6 PATH INTEGRAL MONTE CARLO METHOD

In this section we show how imaginary-time path integrals are evaluated in practice with
the Path integral Monte Carlo method (PIMC). In principle, the integrals comprise an infi-
nite number of paths to evaluate. Fortunately, a finite number of random samples can be
used to estimate the integrals at a decent and controllable accuracy. A path can be ap-
proximated with discrete line segments, and sum over all possible paths can be estimated
with a finite number of Monte Carlo path samples [3, p. 55]. Also, random sampling can
be made more efficient by importance sampling, which increases the significance of the
samples by drawing them from the vicinity of the classical path.

6.1 Monte Carlo method

The path integral is essentially a high-dimensional integral. Common grid integration
methods are insufficient for the task, and so, the integral is evaluated with Monte Carlo
importance sampling. Let us write an integrand g(x) with a chosen probability distribution
P (x) as ∫︂

g(x)dx =

∫︂
P (x)

g(x)

P (x)
dx. (6.1)

This integral is then interpreted as the expectation value [21, p. 92][22]∫︂
g(x)dx =

⟨︃
g(x)

P (x)

⟩︃
P

(6.2)

≈ 1

N

N∑︂
i=1

g(xi)

P (xi)
, (6.3)

where ⟨·⟩P denotes that a variable x is distributed by P , and where samples xi are also
distributed by the P . The probability distribution P must be such a function that can
generate samples xi efficiently. The closer the fraction g

P is to a constant, the more
accurate the discrete sum is. Therefore, a good choice of P is essential for sampling
efficiency.
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6.2 Markov chain Monte Carlo

In essence, PIMC evaluates the high-dimensional integrals given in equation 3.29. One
sample of Monte Carlo is a trajectory of all particles [3, p. 62]. However, there is a slight
challenge in calculation of expectation value 3.16, because it depends on partition the
function Z, which by itself is a laborious path integral. This is where the Markov chain
Monte Carlo [21, pp. 268–271] is useful, as it brings relatively efficient sampling in high
dimensions, while it also does not require normalization of the partition function.

The markov chain Monte Carlo draws random samples xi+1 by using information from the
previously drawn sample xi, which forms a random walker. Consecutive steps are highly
correlated, and so samples can be separated with multiple steps. The sampling is made
efficient by favouring those steps that increase the probability of walker P (xi). The walker
should be given enough time to converge to the equilibrium of the probability distribution,
and the non-converged samples should be discarded. If equilibrium convergence is not
established, initial walker position may form a bias in sample mean.

Even though PIMC is an exact method in theory, the insufficient number of walker steps
may render a bias in practice. Given simulation time should be always long enough
for random walker to find the equilibrium. If the applied simulation time is short, the
true equilibrium may be hard to tell apart from a local minimum. This is larger concern
with complex systems, because they require high number of samples, which is heavy on
computational resources. Generally speaking, the relative computational cost of a PIMC
simulation increases by the following factors:

• particle count,

• low temperature,

• short time step ∆τ ,

• heavy nucleus, and

• indistinguishability of electrons.

The last factor, indistinguishability of electrons, is not a concern in this work.

6.3 Estimation of statistical error

Integrated quantities are associated with a statistical uncertainty due to the finite number
of random samples. The margin of error is usually presented with the standard error of
the mean (SEM), which for uncorrelated samples is

SEM =
σ√
N
, (6.4)

where σ is the standard deviation of the samples. However, if the subsequent samples
are correlated, this underestimates the error. The SEM can be adjusted to take sample
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correlation into account with

SEM =
σ√
Neff

, (6.5)

where Neff is the effective sample size. It can be estimated with [21, p.500]

Neff = N

(︄
1 + 2

N∑︂
n=1

Cn

)︄−1

(6.6)

where Cn is the autocorrelation of the subsequent samples. The autocorrelation is [2]

Cn =
1

(N − n)σ2

N−n∑︂
i=1

(︂(︁
fi − ⟨f⟩

)︁(︁
fi+n − ⟨f⟩

)︁)︂
, (6.7)

where fi =
g(xi)
P (xi)

are the samples. All margins of error in this work correspond to 2 SEM
confidence.

6.4 Metropolis–Hastings algorithm

The Markov chain Monte Carlo is most commonly utilized with some variation of a Metropolis–
Hastings algorithm. The Metropolis–Hastings algorithm implements a walker that sam-
ples the equilibrium by fulfilling the conditions of detailed balance. In detailed balance,
transitions rates between states are equal to both directions, and so the population of
states does not change. That is, [3]

P (xi)P (xi → xi+1) = P (xi+1) Pr(xi+1 → xi), (6.8)

where P (xi) is the probability of state xi, and P (xi → xi+1) is the probability of transition
xi → xi+1. The detailed balance is maintained by splitting the step generation into two
parts. First, a move candidate xi+1 is generated, and then it is accepted with a certain
probability. If the move is accepted, then xi+1 becomes the value of the next step. If
it is not accepted, then the old state is chosen as the value of the next step, meaning
xi+1 = xi. The transition probability can be written

P (xi → xi+1) = T (xi → xi+1)A(xi → xi+1) (6.9)

where T (xi → xi+1) is the probability of the proposal and A(xi → xi+1) is the probability
of acceptance. Plugging 6.9 to 6.8, one can find that

A(xi → xi+1) = min (1, q(xi → xi+1)) (6.10)

is a valid acceptance probability, where unconstrained acceptance probability is

q(xi → xi+1) =
T (xi+1 → xi)P (xi+1)

T (xi → xi+1)P (xi)
. (6.11)
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So, in essence, the Metropolis–Hastings algorithm generates samples from the equilib-
rium by accepting new steps with the probability 6.10. If q ≤ 1, the move is always
accepted, which favours states of high probability. Note that the probability distribution
P (xi) needs not be normalized to evaluate the fraction in q.

6.5 Path sampling

In PIMC calculations, the state xi corresponds to an imaginary-time trajectory R′(τ) ≈
[R1, . . . RM ]. The probability of state P (xi) is obtained by interpreting the probability am-
plitude e−S′[R′(τ)] as a Boltzmann’s coefficient e−βEeff [R′(τ)], where Eeff is an effective po-
tential energy of the trajectory [17]. By favouring steps that decrease the action S′[R′(τ)],
the walker is brought to the vicinity of the classical path.

The probability amplitude from equation 3.18 can be written

Ae−S′[R′(τ)] = lim
M→∞

M−1∏︂
m=0

Ae−S′(Rm,Rm+1,∆τ). (6.12)

The term S′(Rm, Rm+1,∆τ) can be expressed similarly as in equation 3.23

S′(Rm, Rm+1,∆τ) = −∆τ L

(︃
Rm+1 −Rm

−iℏ∆τ
,Rm

)︃
(6.13)

= ∆τ

(︄
N∑︂
n

mn

2ℏ2
(rn,m+1 − rn,m)2

∆τ2
+

N∑︂
n′>n

V
(︁
rn,m, rn′,m

)︁)︄
(6.14)

= ∆τ

(︄
N∑︂
n

Kn,m +

N∑︂
n′>n

Vn,n′,m.

)︄
(6.15)

= ∆τEeff
m , (6.16)

where terms K and Eeff can be interpreted as the kinetic energy and an effective energy
of the time step. The probability amplitude 6.12 becomes

Ae−S′[R′(τ)] = lim
M→∞

M−1∏︂
m=0

Ae−∆τEeff
m (6.17)

= Ae−βEeff [R′(τ)] (6.18)

∝ P (xi),

The term Eeff [R′(τ)] is real-valued, and it can be thought of as an effective energy of
whole ”path polymer”. Because the amplitude e−βEeff

is non-negative, it can be inter-
preted as the Boltzmann coefficient. [17]

Consider a transition of path that affects only one particle n at time slice m. In the prod-
uct 6.17, most of the terms remain constant, as only the terms Eeff

m−1 and Eeff
m depend

on Rm. If 6.17 is substituted to acceptance probability 6.11, the constant terms cancel,
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giving

q(xi → xi+1) =
T (xi+1 → xi)e

−∆τ
(︂
E

′eff
m−1+E

′eff
m

)︂
T (xi → xi+1)e

−∆τ
(︂
Eeff

m−1+Eeff
m

)︂ ,

where E
′eff and Eeff notate energy in proposed position xi+1 and current position xi

respectively. Similarly, equation 6.15 shows that the terms that do not contain n, remain
constant in the transition, and so the acceptance probability 6.11 becomes

q(xi → xi+1) =
T (xi+1 → xi)e

−∆τ
(︂
K′

n,m−1+K′
n,m+

∑︁
n′ V ′

n,n′,m

)︂
T (xi → xi+1)e

−∆τ
(︂
Kn,m−1+Kn,m+

∑︁
n′ Vn,n′,m

)︂

=
T (xi+1 → xi)

T (xi → xi+1)
e−∆τ(∆K+∆V ).

This means that a full trajectory does not need to be evaluated for the calculation of q,
but only the changed interactions need to be re-evaluated.

The computation time of q can be reduced even further by cleverly choosing the transition
function. Note that a free particle kernel 2.29 is a Gaussian function in imaginary time. If
T is chosen as the 3-dimensional Gaussian distribution with variance ℏ2

2mn
∆τ , then [2]

T (xi+1 → xi)

T (xi → xi+1)
e−∆τ∆K = 1, (6.19)

which leads to the transition probability

q(xi → xi+1) = e−∆τ∆V . (6.20)

This means that the kinetic energy does not need to be sampled at all, and it is known as
bisection method.

6.6 Symmetry considerations

Indistinguishable particles pose some challenges in the sampling process. The density
matrix of indistinguishable fermions and bosons is [17]

ρF/B(Ra, Rb, β) =
1

N !

∑︂
P

(∓1)P
∫︂ R′(β)=PRb

R′(0)=Ra

DR′(τ) Ae−S′[R′(τ)]. (6.21)

where P denotes a permutation of indistinguishable particle labels, and signs − and +

correspond to fermions and bosons respectively. Effectively, the summation of permuta-
tions connects trajectories of different particles forming longer shared trajectories. The
sum over permutations can be sampled with Monte Carlo along with the sampling of
paths.

In case of fermions, the minus sign in equation 6.21 poses a problem in sampling. The
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probability amplitude of combined path may be negative, which can not be directly inter-
pret as a probability. There are methods to circumvent this [2, 17], but they are computa-
tionally complex to calculate. The problem is known as the fermion sign problem, which
is proven to be NP-hard [3, p. 72], meaning that there does not exist a computationally
efficient method for it.

The symmetry of fermions and bosons is not considered in this work, as all of the in-
spected systems contain only distinguishable particles. For example, the particles form-
ing the hydrogen molecule are distinguishable when both two protons and two electrons
are assumed to have opposing spins. If the overlap of the identical particles is negligible,
the indistinguishability need not be considered.

6.7 PIMC path sample

Even though illustrative example of PIMC path was given in figure 3.1, it does not reflect
common simulations in practice, as the number of time slices is usually much higher.
Figure 6.1 plots two actual samples from a hydrogen molecule simulation. The number
of time slices is 21052 and 2105 for temperatures 300K and 3000K respectively. At lower
temperature, the path of particle is longer, because higher inverse temperature β corre-
sponds to longer imaginary time. A thermal wave length of nucleus is clearly visible, and
it increases at lower temperatures.

(a) T = 300K (b) T = 3000K

Figure 6.1. Random path samples of the hydrogen molecule H2 from an actual simula-
tion. Green and blue lines correspond to electrons, and red and orange lines correspond
to nuclei.
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7 DIAMAGNETIC SUSCEPTIBILITIES OF LIGHT
ATOMS AND MOLECULES

Diamagnetic susceptibilities are studied with PIMC simulations, which are carried out on
systems listed in table 7.1. These systems contain light nuclei, which undergo significant
nonadiabatic effects. Diatomic molecules, such as H2, have rotational and vibrational
states that are activated by the finite temperature. The isotope effects of the diatomic
molecules are inspected by replacing the protons (mp) by variable nuclear masses in-
cluding positrons (me), deuterons (2mp), and artificially weighted nuclei (me – 8mp). The
positronic systems represent special interest, because they show the extreme limit of the
nonadiabatic effects, which is usually challenging to simulate. The positronic systems are
unstable, but they are still relevant in some spectroscopic arrangements.

The inspected systems have no more than two particles of the same kind, so by assuming
opposite spins for the identical particles, the indistinguishability does not pose a problem.
Fortunately, the ground state of two electron system does have opposite spins. Also, the
paramagnetic contribution is cancelled out if the two spins are opposite, and the total
magnetic susceptibility is given by the diamagnetic susceptibility. All inspected systems
are diamagnetic, except for H and H+

2 .

Energies are measured with the virial energy estimator [2, p. 23], and diamagnetic sus-
ceptibilities are measured with the estimator given in equation 5.12. First, the energies

Table 7.1. List of simulated systems. A positronium is an exotic one-electron system that
has a positron in place of its nucleus.

Symbol Nucleus Name Table E Table χ Figure χ

H AQ/BO hydrogen atom 7.2 7.3 7.1, 7.2a
4He AQ/BO helium atom 7.2 7.3 7.2b

H2 AQ/BO hydrogen molecule 7.2 7.4 7.3a, 7.4

HD AQ hydrogen deuteride 7.2 7.5

D2 AQ deuterium molecule 7.2 7.4 7.4

H+
2 AQ hydrogen molecule ion 7.2 7.5

Ps AQ positronium atom 7.2 7.5

Ps2 AQ positronium molecule 7.2 7.4 7.4

h2 AQ artificial homonuclear
diatomic molecules

7.4
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are compared to reference values, which shows that simulations are fairly accurate. Then,
the susceptibilities are presented. Nonadiabatic All Quantum (AQ) nuclei are compared
to fixed Born–Oppenheimer (BO) nuclei.

Appendix C links additional information of the applied simulations. It includes, e.g., used
simulation parameters and more results from other observables. The simulations were
carried out using a software developed in our research group [2, 3].

7.1 Unit conversions of the susceptibility

It should be emphasized that this work utilizes the SI convention of magnetism instead of
the widely utilized Gaussian convention. The magnetic susceptibility in SI convention is
4π times larger than in Gaussian convention. Also, it should be noted that where previous
sections considered susceptibility system-wise, this section presents susceptibilities per
mole of gas. SI molar susceptibility has unit [ m3

mol ], and it can be converted from Gaussian
cgs unit [ cm3

mol ] with

χSI
mol = 4π · 10−6 χ

cgs (Gaussian)
mol (7.1)

≈ 1.256 64 · 10−5 χ
cgs (Gaussian)
mol . (7.2)

Similarly, the conversion factors for the atomic units [a30] are

χSI
mol ≈ 8.923 89 · 10−8 χa.u. (SI) (7.3)

≈ 1.121 41 · 10−6 χa.u. (Gaussian). (7.4)

In this section the susceptibility χSI
mol is denoted with χ.

7.2 Time step length extrapolation

The accuracy of PIMC simulations depends on the time step length parameter ∆τ . The
shorter values of ∆τ pose smaller discretization error, while they make calculations com-
putationally heavier. Extrapolation to ∆τ → 0 may be required to obtain non-biased
estimates. All results presented in this work reflect the limit ∆τ = 0 estimate.

The time step length is extrapolated at ∆τ = 0 with a linear fit, which is based on calcula-
tions using ∆τ ∈ {0.01, 0.03, 0.05}, where the unit of ∆τ is an inverse of Hartree energy
Eh

−1. Systems Ps and Ps2 are exceptions, which are calculated with ∆τ ∈ {0.1, 0.3, 0.5}.
The longer time steps can be used for Ps and Ps2, because light nuclei have smaller er-
rors due to the finite time step, which allows the use of the longer time step for increased
statistical accuracy.

The susceptibility estimator 5.12 has a strong linear discretization error, which is demon-
strated in figure 7.1. The figure also shows linear extrapolation, which is applied for all
susceptibility and energy values. In most cases, the energy values are so accurate that
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Figure 7.1. Demonstration of the linear extrapolation, which is used to estimate the
observable and the error bar in the limit of ∆τ = 0. The observable in this case is the
susceptibility, which has a virtually linear error with ∆τ . The system is H (AQ) and the
temperature is T = 3000K. The extrapolation to ∆τ = 0 matches the reference value,
which is given in table 7.3.

they are not significantly affected by the extrapolation. The energy of Ps2 shows nonlin-
earity within utilized time step values, and as an exception, it is presented with ∆τ = 0.1

calculation instead of extrapolation.

The statistical uncertainty at ∆τ = 0 is estimated by resampling the linear extrapolation
based on the uncertainties of the data at each time step. First, the margins of error with
a finite ∆τ calculations are used to generate random samples. A linear regression is
applied to each sample individually, and the limit ∆τ = 0 is extrapolated. A deviation of
extrapolations is used to set margins of error for the ∆τ = 0 estimate. All margins of error
are expressed with 2 SEM, which corresponds to 95% confidence.

7.3 Total energy

Total energies of all systems are presented in table 7.2. The energy is a common bench-
mark quantity, and there is accurate reference data available that can be compared with
the PIMC results. Finite temperature PIMC energies can be extrapolated to zero kelvin,
where they can be compared to zero kelvin reference values [24–31] from other high-
accuracy methods. The PIMC results fit accurately to the reference values, which gives
an affirmation to accuracy of the simulations.

Systems H, He and H2 (BO) show no temperature dependence, as these systems have
no nucleus–nucleus interaction. Low temperatures mostly affects nuclear bonds but not
the electronic structure. The energies of the diatomic AQ systems H2, HD, D2 and H+

2

increase with the temperature, because rotational and vibrational states of the nuclei are
activated.

The dipositronium cannot be simulated at temperatures of 1000 K or higher, because its
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Table 7.2. PIMC energy and reference data. All PIMC calculations are in good agree-
ment with the reference data. Energies are in the Hartree atomic units. The footnotes
are: a – analytical result [23, p. 88], b – the system is dissociated at this temperature.

E(Eh) T H (AQ) H (BO) 4He (AQ) He (BO)

PIMC
300K −0.49975(12) −0.49996(8) −2.9027(14) −2.9030(9)

1000K −0.49979(13) −0.49995(8) −2.9020(20) −2.9040(15)

3000K −0.49976(16) −0.50008(15) −2.9019(21) −2.9023(9)

Ref. 0K −0.49973 a −0.5 a −2.9033 [24] −2.9037 [25]

E(Eh) T H2 HD D2 H2 (BOr=1.4 a0)

PIMC
300K −1.1641(6) −1.1646(12) −1.1660(6) −1.1753(24)

1000K −1.1618(8) −1.1624(13) −1.1633(8) −1.1763(25)

3000K −1.1508(8) −1.1520(16) −1.1526(9) −1.1755(28)

Ref. 0K −1.1640 [26] −1.1655 [27] −1.1672 [28, 27] −1.1745 [29]

E(Eh) T Ps Ps2 H+
2

PIMC

100 K −0.249977(21) −0.51589(15)

300 K −0.24997(4) −0.51594(15) −0.5971(10)

500 K −0.51595(16)

1000 K −0.24999(4) b −0.5943(14)

3000 K −0.24997(4) b

Ref. 0 K −0.25 a −0.51600 [30] −0.5971 [31]

ground state −0.516Eh is near the dissociated state 2EPs = −0.50Eh. Dipositronium is
calculated at additional temperatures 100 K and 500 K, so that temperature dependence
can be inspected. The energy of dipositronium is not temperature dependent, unlike other
diatomic AQ molecules.

7.4 Diamagnetic susceptibility

In this section we present the diamagnetic suspectibilities based on PIMC simulations,
and compare the results to selected 0 kelvin references values. The references values [6,
27, 28, 30, 32–44] are based on various methods and do not fully agree with each other or
the results from PIMC. Some systems do not have a reference value for the diamagnetic
suspectibility, to the best of our knowledge.

A method developed by Rebane [32] is used to calculate some reference values. This
method can be used to estimate the diamagnetic susceptibilities of AQ/BO systems that
are charge neutral and contain only two kinds of particles. The method is based on
the mean distances between pairs of particles, which are easily obtained from the liter-
ature. However, the method does not seem to be accurate for nonadiabatic many-nuclei
systems. Despite uncertainty of the accuracy, calculated values of this method are still
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included to the set of references values.

7.4.1 Monatomic systems

The susceptibilities of monatomic systems H and He are presented in table 7.3 and plot-
ted in figure 7.2. The hydrogen atom shows a clear distinction between AQ and BO
calculations, because the adiabatic coupling has a notable effect on the susceptibility.
The effect cannot be distinguished from the helium atom, because its nucleus is much
heavier, which is closer to the BO nucleus. Both the hydrogen and the helium are in-
variant to the temperature, because the single nucleus does not have any rotational or
vibrational states.

Table 7.3. Diamagnetic susceptibilities of monatomic systems from PIMC and selected
references [32–38]. The susceptibilities are in units of −10−11 m3

mol .

χ T H (AQ) H (BO) 4He (AQ) He (BO)

PIMC
300K 2.989(5) 2.9861(11) 2.376(10) 2.376(10)

1000K 2.992(4) 2.9858(11) 2.369(17) 2.373(9)

3000K 2.9915(32) 2.9846(21) 2.375(8) 2.371(4)

Ref.

0K a 2.99071 b 2.98583 b 2.37600 [32] 2.37569 [33]

0K
2.98577 [34] 2.36 c [35] 2.375 [36]

2.40 c [37]

2.54(10) c [38]
aCalculated with Rebane’s method. Pair distance data is taken from indicated source.

bPair distance for Rebane’s method is taken from analytical equation B.14.

cExperimental result, T = 298K.
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Figure 7.2. Diamagnetic susceptibility of H and He as a function of temperature. The
PIMC values at each temperature are statistically indistinguishable, and no temperature
dependence is observed nor expected for these systems. Solid lines are drawn to guide
the eye. The reference values are from table 7.3.
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7.4.2 Diatomic systems

Susceptibilities of diatomic systems H2, HD, D2 and H+
2 are presented in tables 7.4

and 7.5. The susceptibilities of these systems increase with temperature, because the
mean nuclear separation also increases due to centrifugal distortion caused by activat-
ing rotational states. The longer separation of the nuclei brings the system closer to the
limit of two isolated atoms. The susceptibilities of each molecule are lower than twice
the atomic susceptibilities, indicating that the bonding lowers the total susceptibility. Sus-
ceptibility of hydrogen molecule H2 is plotted in figure 7.3a. Note that PIMC results have
lower margin of error than discrepancy of 0 K AQ references. The difference between 0 K

Table 7.4. Diamagnetic susceptibilities of diatomic systems. The susceptibilities are in
units of −10−11 m3

mol .

χ T H2 HD D2 H2 (BOr=1.4 a0)

PIMC
300K 5.063(24) 5.05(5) 5.039(28) 4.965(27)

1000K 5.075(19) 5.084(34) 5.082(27) 4.957(15)

3000K 5.200(13) 5.174(28) 5.196(29) 4.969(12)

Ref.

0K a 5.2065 [27] 5.16429 [28] 5.0699 [39]

0K

5.1131 [42] 5.0650 [42] 5.0530 b [40]

5.08 [41] 4.952 b [42]

5.04 c [44, p. 812] 4.815 b [43]

5.01 c [44, p. 812]

300K 5.080(3) [6]
aCalculated with Rebane’s method. Pair distance data is taken from indicated source.

bIsotropic susceptibility is obtained by calculating rotational average.

cExperimental value, temperature not available.
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Figure 7.3. Diamagnetic susceptibility of H2, Ps and Ps2 at various temperatures along
with reference values [6, 27, 32, 39–41, 43, 44] from tables 7.4 and 7.5.
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AQ and BO values is caused by the zero-point vibration.

7.4.3 Systems with low nuclear mass

Susceptibilities of exotic systems Ps and Ps2 are presented in table 7.5 and plotted in fig-
ure 7.3b. The susceptibility of positronium decreases at higher temperatures, unlike the
rest of the monoatomic systems, which did not show notable thermal effects. Again, the
susceptibility of dipositronium shows no statistically meaningful decrease with the tem-
perature. Note that unlike H2, the susceptibility of Ps2 is greater than the susceptibility
of two separate positroniums. For this reason, the susceptibility of Ps2 is expected to
decrease at higher temperatures. Result of dipositronium differs considerably from Re-
bane’s reference value, which is not a large concern, as Rebane’s method has unclear
precision for systems with multiple nuclei. The susceptibilities of Ps and Ps2 have not
been studied at finite temperatures before.

Last, the effect of nuclear mass is inspected on diatomic molecules. Figure 7.4 presents
the susceptibilities of numerous artificial hydrogen-like molecules, which vary the nuclear
mass on range from positron to eight times mass of a proton. The figure shows a smooth
transition from dipositronium to the hydrogen molecule and beyond. An approximate
shape of the data is presented by fitting a curve χ = am−1 + bm− 1

2 + cm− 1
3 + χBO. This

curve is only an approximation, and it is not a model reflecting the physical phenomenon.
Concerning the temperature T = 1000K and nuclear mass m ≥ 3me, the coefficients are
a = −1.62 × 10−13 m3

molmp
, b = 1.20 × 10−12 m3

mol
√
mp

and c = −2.83 × 10−12 m3

mol 3
√
mp

. The
error of the fit is less than 1% for each data point.

Table 7.5. Diamagnetic susceptibilities. The susceptibilities are in units of −10−11 m3

mol .

χ T Ps Ps2 H+
2

PIMC

100 K 23.77(6) 49.29(25)

300 K 23.654(23) 49.28(15) 2.318(28)

500 K 49.14(14)

1000 K 23.175(16) d 2.331(23)

3000 K 21.822(14) d

Ref. 0 K 23.88663 a b 69.7449 a [30] 2.37944 c [45]
aCalculated with Rebane’s method. Pair distance data is taken from indicated source.

bUsing analytical pair distance from equation B.14.

cBO calculation. Isotropic susceptibility is obtained by calculating rotational average.

dNuclei are dissociated at this temperature.
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Figure 7.4. Diamagnetic susceptibilities of hydrogen-like diatomic molecules, whose nu-
clear masses have been varied. The horizontal axis value m = 1mp corresponds to the
hydrogen molecule, m = 2mp corresponds to the deuterium molecule, and m = 1

1836 mp

corresponds to the dipositronium. Figure (b) is a smaller section of figure (a). The refer-
ence values are the same as in table 7.4.

7.5 Correlation considerations

Susceptibilities of Ps and Ps2 are an order of magnitude higher than for other systems.
This can be explained with the imaginary-time trajectories of the particles. The trajec-
tories of each particle are spread out according to their thermal wave length, which is
proportional to 1√

mT
. In case of the hydrogen atom, the trajectory of the nucleus is al-

most point-like compared to the large trajectory of the electron. However, in case of the
positronium, the trajectory of nucleus has a size equal to the trajectory of the electron.
The longer thermal wave length leads to an increased extent of the particle trajectory,
which increases trajectory area, affecting the susceptibility.

The temperature-dependencies of Ps and Ps2 are interesting, as it shows that the tem-
peratures can couple directly with the electronic structure if the nucleus is light enough.
One possible explanation is that as the temperature rises, the imaginary-time trajecto-
ries shrink, but the mean particle distances remain constant. This causes the particle
trajectories to have less overlap between each other. The PIMC calculation of positro-
nium shows that at 3000 K the positron is spread out on a scale that is comparable to
interparticle distance (≈ 3 a0), but at 300 K the spread is an order of magnitude larger.

The susceptibility depends strongly on the correlation of the trajectories. This can be
demonstrated with a system consisting of two particles that are denoted with a and b.
The susceptibility in equation 5.12 can be decomposed as

χ ∝
⟨︂
(qaAa + qbAb)

2
⟩︂

(7.5)

= q2a
⟨︁
A2

a

⟩︁
+ q2b

⟨︁
A2

b

⟩︁
+ 2qaqb ⟨AaAb⟩ (7.6)
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where q is the charge and A is the area of the trajectory. Examples of two-electron sys-
tems are the positronium and the BO hydrogen molecule. In case of the positronium,
qaqb < 0, and so the correlation term ⟨AaAb⟩ decreases susceptibility. In case of the
BO hydrogen molecule, qaqb > 0, and so the correlation term increases susceptibility.
However, there is no easy way to reason terms

⟨︁
A2

a

⟩︁
,
⟨︁
A2

b

⟩︁
and ⟨AaAb⟩ intuitively. For

example, it may appear intuitive, that shorter bond length of H2 increases the electron
overlap, which would then increase the correlation term ⟨AaAb⟩. However, the corre-
lation term of H2 is actually not affected, and the change in susceptibility is caused by
terms

⟨︁
A2

a

⟩︁
and

⟨︁
A2

b

⟩︁
. On the other hand, positronium shows strong changes in all three

terms when the temperature is changed, which may be unexpected. So, the tempera-
ture dependency of the susceptibility depends on both the correlation and the thermal
wavelength of the particle trajectories.
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8 CONCLUSION

In this work we cover-imaginary time Feynman path integrals for distinguishable quantum
mechanical particles, and we derive an estimator of diamagnetic susceptibility for the
PIMC method. Even though the estimator has been presented before [20], the derivation
in this work is new and well detailed. The estimator is applied in simulations of molecules,
and the produced results are compared to reference values, which shows that the esti-
mator is accurate.

The PIMC method has a rare capability to simulate fully nonadiabatic systems at finite
temperatures, which is beyond reach for most methods. This makes PIMC a suitable tool
for finding exact quantum mechanical properties at finite temperatures. However, there
still exists a major challenge: If the system is larger than a few particles, the computational
demand grows steeply. To obtain the best statistical accuracy, this work considers only
small systems at relatively high temperatures.

The diamagnetic susceptibility is calculated for light atoms and molecules. The results
show clear effects due to nonadiabatic coupling between electrons and nuclei, which is
about 0.2% for the hydrogen atom and about 2% for the hydrogen molecule. This high-
lights the importance of nonadiabatic calculations with light nuclei. Diatomic molecules
show clear temperature dependencies, which creates a difference of about 3% on a
temperature range 300–3000K. This highlights that the finite temperature should be
accounted with multinuclear systems. Exotic positronium systems show unexpected
temperature dependencies, which suggests that the temperature couples with electronic
structure if the nucleus is very light.

It is worth emphasizing that the presented results bring up new information that has not
been calculated before. Namely, there is little to no previous calculations on diamagnetic
susceptibility at finite temperatures. Also, there is no precise consensus on nonadiabatic
0K reference values either, and presented results on hydrogen molecule have lower mar-
gins of error than the discrepancy between the nonadiabatic reference values.

One has to keep in mind that presented results cover only the diamagnetic susceptibil-
ity in the zero-field limit, so realistic situations should also consider effects including the
paramagnetic contribution and the finite magnetic field. For reference, the paramagnetic
contribution of hydrogen molecule is about 2% [6] of the total susceptibility. On the other
hand, the assumption of zero magnetic field does not pose an error in susceptibility for
most diamagnetic materials, even if the magnetic field strengths are as high as in appli-
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cations of NMR and MRI [7, p. 65].

The NMR and MRI applications require accuracy of susceptibility that is preferably of the
order of 0.1% or smaller [7, p. 68]. Because the presented diamagnetic susceptibilities
have accuracies varying on range 0.1–1%, they may be useful for these applications, if
the paramagnetic contribution can be accounted by other means.

Even though the PIMC is currently practical only with small molecules, larger systems will
become available in the future, as the algorithmical efficiency improves and the compu-
tational resources grow. Due to its exact nature in finite temperatures, the PIMC has a
great potential to become a more widely used quantum simulation method for the mag-
netic properties.
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A DYNAMIC SUSCEPTIBILITY

The dynamic susceptibility is derived for a time-dependent system by using the operator
formalism. The system is at zero temperature.

A.1 Linear response theory

Let H0 be a time-independent Hamiltonian of a homogenic system in equilibrium. An
external time-dependent perturbation Ĥext(t) is turned on at time t = 0 so that Ĥext(t) = 0

if t < 0. A total Hamiltonian is then

Ĥ(t) = Ĥ0 + Ĥext(t). (A.1)

The perturbation is formed by some external field F (t) interacting to an internal variable,
which has an observable Q̂. The perturbation is

Ĥext(t) = −F (t)Q̂, (A.2)

where F (t) = 0 if t < 0. For example, F (t) can be a strength of the electric field in
x-direction and Q̂ can be the electric polarization operator in the same direction. Al-
ternatively, F (t) and Q̂ can correspond to the magnetic field and the magnetic moment
operator respectively. This is similar to the section 4. Note that both F (t) and

⟨︂
Q̂
⟩︂

are
real valued quantities.

At t < 0 the system is in the equilibrium, i.e.
⟨︂
Q̂
⟩︂
(t) =

⟨︂
Q̂
⟩︂
Ĥ0

. The time dependence of⟨︂
Q̂
⟩︂
(t) can be expanded with series [46]

⟨︂
Q̂
⟩︂
(t) =

(︂
terms F (0)

)︂
+
(︂

terms F (1)
)︂
+ · · · (A.3)

=
⟨︂
Q̂
⟩︂
Ĥ0

+ δ
⟨︂
Q̂
⟩︂
(t) + · · · (A.4)

where δ
⟨︂
Q̂
⟩︂
(t) denotes a linear response term. If the perturbation is small, the linear

response is enough to describe the system. It is

δ
⟨︂
Q̂
⟩︂
(t) =

∫︂ ∞

0
dt′χ(t′)F (t− t′), (A.5)

where dt′ integrates all times backwards in history, and χ(t′) is a linear response function,
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which determines how much past values of F (t − t′) affect the current value of
⟨︂
Q̂
⟩︂
(t).

For example, if the magnetic field is suddenly applied to the material, the material takes
some time to fully magnetize, and the response function determines that memory effect.
It can be easily shown that the linear response function χ(t′) is an impulse response, that
is, if F (t− t′) is replaced with the Dirac delta function δ(t− t′), then∫︂ ∞

0
dt′χ(t′)δ(t− t′) = χ(t), (A.6)

meaning that δ
⟨︂
Q̂
⟩︂
(t) = χ(t) for the impulse F (t) = δ(t). It is also evident that χ(t) is a

real function.

By defining that χ(t′) = 0 when t′ < 0, the equation A.5 can be written without the lower
integration bound

δ
⟨︂
Q̂
⟩︂
(t) =

∫︂ ∞

−∞
dt′χ(t′)F (t− t′). (A.7)

This definition of χ is useful, because the equation A.7 can be expressed with a convolu-
tion of χ and F . The convolution of two functions f(t) and g(t) is defined as

(f ∗ g) (t) ≡
∫︂ ∞

−∞
dt′f(t′)g(t− t′). (A.8)

A fourier transform of the convolution has a simple expression(︂
˜︁f ∗ g

)︂
(ω) = ˜︁f(ω)˜︁g(ω), (A.9)

where the Fourier transform is defined as

˜︁f(ω) = ∫︂ ∞

−∞
dtf(t)e−iωt (A.10)

˜︁f(t) = 1

2π

∫︂ ∞

−∞
dω ˜︁f(ω)eiωt. (A.11)

Therefore, the equation A.7 can be written as the convolution in frequency domain with⟨︂ ˜︁Qˆ⟩︂ (ω) = ˜︁χ(ω) ˜︁F (ω). (A.12)

The response function χ is also called the dynamic susceptibility.

A.2 Dynamic susceptibility

This section derives a following formula for the dynamic susceptibility

χ(t) =
i

ℏ
θ(t)

⟨︂[︂
Q̂(t), Q̂(0)

]︂⟩︂
, (A.13)
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where
[︂
Â, B̂

]︂
= ÂB̂−B̂Â is the commutator, and the expectation value ⟨·⟩ corresponds to

the unperturbed system. The derivation follows loosely sources [11, p. 1262][46, p. 8-11]

The perturbed Hamiltonian Ĥ = Ĥ0 + Ĥext from equation A.1 has the time evolution
operator

Û(t) = e−
i
ℏ
∫︁ t
0 Ĥ(t) (A.14)

= e
− i

ℏ

(︂
Ĥ0t+

∫︁ t
0 dt′Ĥext(t′)

)︂
(A.15)

= e−
i
ℏ Ĥ0tÛ ext(t). (A.16)

The expectation value of a Schrödinger observable P̂ in the perturbed state is

⟨φ(t)|P̂ |φ(t)⟩ =
⟨︂
Û(t)φ(0)

⃓⃓⃓
P̂
⃓⃓⃓
Û(t)φ(0)

⟩︂
(A.17)

= ⟨φ(0)|Û∗
(t)P̂ Û(t)|φ(0)⟩ (A.18)

= ⟨φ(0)|Û∗
ext(t) e

+ i
ℏ
∫︁ t
0 dt′Ĥ0(t′) P̂ e−

i
ℏ
∫︁ t
0 dt′Ĥ0(t′)⏞ ⏟⏟ ⏞

P̂ Ĥ0
(t)

Û ext(t)|φ(0)⟩ , (A.19)

where the operator P̂ Ĥ0
(t) measures the unperturbed system in the Heisenberg picture.

In the Heisenberg picture, the time dependence has been moved from the state φ to the
operator P̂ .

The time evolution of the perturbation can be expressed with the series [11, p. 1263]

Û ext(t) = 1− i

ℏ

∫︂ t

0
dt′Ĥext(t

′) + · · · , (A.20)

with which the equation A.19 becomes

⟨φ(0)|
(︃
1 +

i

ℏ

∫︂ t

0
dt′Ĥext(t

′) + · · ·
)︃
P̂ Ĥ0

(t)

(︃
1− i

ℏ

∫︂ t

0
dt′Ĥext(t

′) + · · ·
)︃
|φ(0)⟩ (A.21)

= ⟨φ(0)|P̂ Ĥ0
(t)|φ(0)⟩ − i

ℏ

∫︂ t

0
dt′ ⟨φ(0)|

[︂
P̂ Ĥ0

(t), Ĥext(t
′)
]︂
|φ(0)⟩ + · · · . (A.22)

This can be written in a more compact form

⟨︂
P̂
⟩︂
(t) ≈

⟨︂
P̂
⟩︂
Ĥ0

− i

ℏ

∫︂ t

0
dt′
⟨︂[︂
P̂ Ĥ0

(t), Ĥext(t
′)
]︂⟩︂

Ĥ0⏞ ⏟⏟ ⏞
δ
⟨︂
P̂
⟩︂
(t)

+ · · · , (A.23)

where the linear term is

δ
⟨︂
P̂
⟩︂
(t) = − i

ℏ

∫︂ t

0
dt′
⟨︂[︂
P̂ Ĥ0

(t), Ĥext(t
′)
]︂⟩︂

Ĥ0

. (A.24)

If the perturbation is small, higher order terms vanish, and only the linear term is left.
It is worth noting that the averages correspond to the unperturbed system, so the small
perturbation can be calculated without the simulation of the perturbed system.
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By inserting Ĥext(t) = −F (t)Q̂Ĥ0
(t) from equation A.2 to equation A.24 gives

δ
⟨︂
P̂
⟩︂
(t) = − i

ℏ

∫︂ t

0
dt′
⟨︂[︂
P̂ Ĥ0

(t),−F (t′)Q̂Ĥ0
(t′)
]︂⟩︂

Ĥ0

(A.25)

=
i

ℏ

∫︂ t

0
dt′
⟨︂[︂
P̂ Ĥ0

(t), Q̂Ĥ0
(t′)
]︂⟩︂

Ĥ0

F (t′) (A.26)

=
i

ℏ

∫︂ t

0
dt′′
⟨︂[︂
P̂ Ĥ0

(t), Q̂Ĥ0
(t− t′′)

]︂⟩︂
Ĥ0

F (t− t′′), (A.27)

where the last line applies a change of variables t′ = t − t′′. The last line also flips
the integration limits reversing the integration order, which may not be apparent at the
first glance. A reference point of the Heisenberg operators can be shifted from t = 0

to t = −∞, which changes the upper integration limit of A.27 from t to ∞. Operators
under the expectation value can be time-shifted by −(t− t′′), because the corresponding
Schrödinger operators are time-independent. These manipulations result the integral in
form

δ
⟨︂
P̂
⟩︂
(t) =

i

ℏ

∫︂ ∞

0
dt′′
⟨︂[︂
P̂ Ĥ0

(t′′), Q̂Ĥ0
(0)
]︂⟩︂

Ĥ0

F (t− t′′). (A.28)

Last, the lower integration bound can be removed by inserting a Heaviside step function
θ(t), which results

δ
⟨︂
P̂
⟩︂
(t) =

i

ℏ

∫︂ ∞

−∞
dt′′θ(t′′)

⟨︂[︂
P̂ Ĥ0

(t′′), Q̂Ĥ0
(0)
]︂⟩︂

Ĥ0

F (t− t′′). (A.29)

If this is compared to equation A.7, the dynamic susceptibility is recognized as

χP̂ Q̂(t) =
i

ℏ
θ(t)

⟨︂[︂
P̂ Ĥ0

(t), Q̂Ĥ0
(0)
]︂⟩︂

Ĥ0

. (A.30)

This equation is in more general form than equation A.13, which has assigned Q̂ in place
of the operator P̂ . That is, χ(t) = χQ̂Q̂(t). For example, if F , Q̂, and P̂ correspond to
Bx, m̂x and m̂y respectively, then χm̂ym̂x(t) describes how the magnetic moment m̂ is
induced in y-direction by having the magnetic field B in x-direction. This equation can be
also utilized in calculation of higher order responses, such as a quadrupole response [3].
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B DIAMAGNETISM OF ATOMIC HYDROGEN

An alternative representation of the static magnetic susceptibility is derived with the
operator formalism. The exact diamagnetic susceptibility is calculated for the Born–
Oppenheimer hydrogen atom at zero temperature.

Consider one electron system that has the nucleus fixed in origin. Shall the system be
affected by the external magnetic field. The magnetic interaction is included into the
Hamiltonian with a minimal substitution p̂ → p̂− qA(r), which is

Ĥ =
(p̂− qA(r))2

2m
+ V (r). (B.1)

Applying a homogeneous magnetic field B = [0, 0, B]T to equation 2.31 gives the vector
potential

A(x, y, z) =
B

2
[−y, x, 0]T . (B.2)

By utilizing properties of the Coulomb gauge, the Hamiltonian can be written [11, p. 180][19,
p. 11][47, p. 162]

Ĥ =

(︃
p̂2

2m
+ V

)︃
− q

2m
(r × p̂)z B +

q2B2

8m

(︁
x2 + y2

)︁
(B.3)

= Ĥ0 − γL̂zB +
q2B2

8m

(︁
x2 + y2

)︁
, (B.4)

where Ĥ0 is the Hamiltonian without magnetic field and L̂ = r × p̂ is the angular mo-
mentum operator. The reference point of

(︁
x2 + y2

)︁
is at the origin, where the hydrogen

nucleus also lies. The Hamiltonian can be also written in form

Ĥ = Ĥ0 − m̂zB, (B.5)

where the magnetic moment operator in z-direction is

m̂z = −∂Ĥ
∂B

(B.6)

= γL̂z −
q2

4m

(︁
x2 + y2

)︁
B. (B.7)

The first term in B.7 is the permanent magnetic moment, which does not vanish at B = 0.
The second term is the induced magnetic moment, which corresponds to diamagnetism.
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At zero temperature, the system is in the ground state, and the electron has no orbital
angular momentum. Also, the diamagnetism does not consider the spin angular momen-
tum, and so the total angular momentum is considered to be zero. The equation B.7
becomes

m̂z = − e2

4me

(︁
x2 + y2

)︁
B, (B.8)

which has substituted q = −e. Equations 4.6 and 5.5 give then the magnetic susceptibility

χmag
z = µ0 lim

B→0

(︃
∂ ⟨m̂⟩
∂B

)︃
(B.9)

= −µ0
e2

4me

⟨︁
x2 + y2

⟩︁
. (B.10)

Because the ground state is spherically symmetric,

⟨︁
x2 + y2

⟩︁
=

2

3

⟨︁
r2
⟩︁
. (B.11)

The ground state has a radial distribution function [23, p. 88]

P (r) = 4a−3r2e−
2r
a , (B.12)

where

a =
4πε0ℏ2

µe2
. (B.13)

Here µ is either the mass of the electron me or the reduced mass mpme

mp+me
, depending on

whether the Born Oppenheimer approximation is used or not. The expectation value of⟨︁
r2
⟩︁

can be integrated analytically to

⟨︁
r2
⟩︁
=

∫︂ ∞

0
P (r)r2dr = 3a2. (B.14)

Because the Born Oppenheimer approximation was assumed earlier, µ = me, and a is
Bohr radius a0. Inserting the equations B.14 and B.11 to B.10 yields an analytical form

χmag = −µ0e
2

4me
2a20 (B.15)

= −µ0e
2

2me
a20. (B.16)

The numerical value per mole is

χmag
mol = χmagNA (B.17)

≈ −2.9858 · 10−11 m3

mol
, (B.18)

where NA is the Avogardo constant ≈ 6.022× 1023 1
mol .
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C SUPPLEMENTARY INFORMATION

The simulation results and the simulation parameters are accessible in more details via
an online repository [48]. This repository contains

• more observables from the simulations, such as

– non-extrapolated data points with the finite ∆τ ,

– pair distances of the particles
⟨︂
ri,j

⟩︂
,
⟨︂
r2i,j

⟩︂
, and

⟨︂
r−1
i,j

⟩︂
,

– pair correlation distributions P (ri,j)

– the susceptibilities for each particle individually, that is, terms proportional to
the square area of the single particle

⟨︁
A2
⟩︁
,

– cross terms between the coordinate component of the area ⟨AxAy⟩, which is
statistically zero for all the systems, and

– Monte Carlo walker data from the equilibrium convergence,

• more figures from the simulations,

• parameters and templates that can be used to replicate all the results,

• scripts that apply unit conversions to calculate the reference values,

• automation and data analysis code written in Python, totaling over 7000 lines of
code, and

• LATEX source code of this thesis.

The simulations are made with Fortran-based pimc3 program, developed in our research
group. The program is not yet published, so please contact us [3, 49] for the access. We
are grateful for IT Center of Science Ltd. (CSC) for providing computation resources via
their high-performance clusters.
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