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Abstract— In order to control the orientation of a satellite, it is important to estimate the attitude accurately. Time series estimation 

is especially important in micro and nanosatellites, whose sensors are usually low-cost and have higher noise levels than high end sensors. 

Also, the algorithms should be able to run on systems with very restricted computer power. In this work, we evaluate five Kalman-type 

filtering algorithms for attitude estimation with 3-axis magnetometer and sun sensor measurements. The Kalman-type filters are selected 

so that each of them is designed to mitigate one error source for the unscented Kalman filter that is used as baseline. We investigate the 

distribution of the magnetometer noises and show that the Student's t-distribution is a better model for them than the Gaussian 

distribution. We consider filter responses in four operation modes: steady state, recovery from incorrect initial state, short-term sensor 

noise increment, and long-term increment. We find that a Kalman-type filter designed for Student’s t sensor noises has the best 

combination of accuracy and computational speed for these problems, which leads to a conclusion that one can achieve more 

improvements in estimation accuracy by using a filter that can work with heavy tailed noise than by using a nonlinearity minimizing 

filter that assumes Gaussian noise.  

 

Index Terms— attitude estimation; fault, nonlinear filter; nanosatellite; non-Gaussian noise.  

 

1. INTRODUCTION 

Satellites need to be oriented in space and there may be very strict requirements for the attitude estimation accuracy depending 

on the mission. Nanosatellites are required to maintain the attitude with attitude sensors that are typically cheap, simple, and light, 
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and having poor accuracy. To mitigate the limitations of cheap and inaccurate sensors, better attitude estimation algorithms need 

to be used, and because of limited computational resources, the algorithms should have low computational complexity. 

The conventional approach to attitude estimation of a satellite is to use the extended Kalman filter (EKF) [1] or its derivative-

free version, the unscented Kalman filter (UKF) [2]. These algorithms are approximate solutions of the Bayesian filtering problem 

based on the nonlinear models of satellite motion and measurements, with Gaussian noises. 

Another approach to attitude estimation, the single-frame method, was introduced in [3]–[6]. In this method, measurements at 

each time step are preprocessed to produce a set of linear measurements and associated covariances that are fed to the Kalman 

filter.  The preprocessing involves the minimization of Wahba's loss function [7]. In [8], a comparison of minimization methods 

concludes that the singular value decomposition (SVD) and q methods are the most robust for single-frame attitude estimation 

methods.  

Several algorithms have been proposed to improve the ability of Kalman type filters to cope with highly nonlinear situations. 

The filter introduced in [9] can automatically process multiple measurements in an optimized order so that the errors caused by 

nonlinearities are minimized.  

Normal distribution based statistical estimation is vulnerable to outliers. In [10], the authors compare different geomagnetic 

orbit determination filters under different measurement noise distributions: normal, Student’s t, and uniform in the simulations. 

They concluded that an unscented particle filter, which can make use of non-Gaussian noise models, is more accurate than EKF 

and UKF, which use Gaussian models. However, the computational complexity for particle filters is typically much greater than 

for Kalman-type filters. 

In [11], a generalization and extension of a linear Student’s t filter is proposed. In the paper, simulation results show that the 

proposed methods provide better accuracy than the existing methods in an application with heavy tailed process and measurement 

noises. In [12], an outlier-robust Kalman-type filter for nonlinear dynamical models is proposed based on Student’s t-distribution 

in the measurement model. In the paper, the filter is compared to alternative filters in a computer simulation and is found to provide 

a good trade-off between accuracy and computational efficiency. 

A nonlinear Kalman-type filter called maximum correntropy unscented Kalman filter (MCUKF) is proposed in [13] for 

spacecraft relative state estimation. Heavy-tailed non-Gaussian measurement noises are considered in the paper. The proposed 

MCUKF uses a non-linear regression model combined with maximum correntropy to update the measurement information. A 

practical test of relative motion of two spacecrafts is performed and it is found that the proposed filter gives better performance 

than the other filters such as EKF and UKF. 

A noise-covariance adapting EKF algorithm is proposed in [14] to cope with sensor faults in the attitude estimation of a small 

satellite equipped with only a three-axis magnetometer. Similarly, a covariance adapting UKF with multiple measurement noise 
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scaling factor is presented in [15] for nanosatellite attitude estimation, and is found to be more accurate than EKF, UKF, and the 

covariance-adapting UKF with single scaling factor. In [16], it is shown that the covariance-adapting filters are much more accurate 

than UKF and EKF in the faulty period and have faster recovery after the end of a fault. Furthermore, according to that study, the 

covariance-adapting UKF outperforms all other considered filters. 

In this work, we present a computer simulation study of the performance of state-of-the-art filters for attitude estimation, taking 

into consideration both accuracy and computational complexity. We show in section 3 that the magnetometer errors can be 

modelled with Student's t-distribution better than with a normal distribution. We consider four attitude estimation operational 

modes:  

 attitude recovery after de-tumbling phase: this mode is simulated by initializing the filter with an incorrect initial state 

 steady state, after the attitude recovery phase error has settled 

 short-term noise increment in one magnetometer channel, which simulates a sensor fault due to transient disturbance 

 long-term noise increment, simulating the onset of a persistent disturbance 

The main purpose in this paper is to give attention on the fact that measurement noise of the magnetometers is not normal 

distributed as it is assumed in the most of the studies and the filtering methods should be designed considering this fact. To the 

best of our knowledge, there are only a few studies taking the magnetometer distributions as non-Gaussian for attitude estimation 

purposes and they did not use onboard magnetometer measurements to examine the data but only simulated the distributions. 

The rest of the paper is organized as follows. In section 2, the filters used in this study are presented. The mathematical models 

of the satellite’s rotational motion and of the measurements are given in section 3. In section 4, the results of the simulations 

performed are presented and discussed. Finally, in section 5, we summarize our conclusions and discuss possible further work. 

2. FILTERING ALGORITHMS 

In this section, five filtering algorithms considered for nanosatellite attitude estimation are presented. For all filters, the attitude 

estimation problem is formulated using the standard discrete-time nonlinear state space model 

 1 ,k k kx f x w                                                                                    (1a) 

  ,k k k ky h x                                                                                      (1b) 

where  f   and  h  are nonlinear dynamic and measurement functions respectively, which will be explained in detail in section 

3, kx  is a n -vector of states at time kt , kw  is a zero-mean noise with covariance Q , ky  is a d -vector of measurements, and k  

is a zero-mean noise with covariance kR . The initial state 0x  is assumed to be multivariate normal with mean 0  and covariance 

0P ; its probability density function (PDF) is denoted    0 0 0 0p N , .x x P  The random vectors  0 ,  ,    1,2,k kx w k    are 
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assumed to be independent. The estimation problem is to determine, at each time kt , the conditional distribution of the state kx  

given the values of the measurements obtained so far, 1 2, , , .ky y y  Because this problem does not have a closed form solution, 

approximations are used. 

We have chosen 5 different Kalman type filtering algorithms to be tested in the nanosatellite attitude estimation problem: 

o UKF is the baseline solution. 

o Outlier-Robust Kalman Filter (ORKF) takes the non-Gaussianity into account and updates the measurement noise 

covariance. 

o Kullback-Leibler Partitioned Update Kalman Filter (KLPUKF) minimizes the nonlinearity. 

o Single-Frame Methods based Kalman Filter (SFMKF) updates measurement noise covariance using the SFM. 

o R-Adaptive Kalman Filter (RUKF) updates measurement noise covariance using the innovation sequence. 

There are also other algorithms that have the same strengths e.g. Posterior Linearization Filter [17], [18] also copes well with 

the nonlinear problems and MCUKF [13] works well with the heavy tailed noise. We have chosen different types of filter to our 

tests to see what kind of filter provides the largest improvements in the estimation accuracy. 

2.1. Gaussian Filter (GF) and Unscented Kalman Filter (UKF) 

Many Kalman type approximations can be represented using the Gaussian filter (GF) formulation [19]. In this formulation, the 

filtering distribution is approximated by    1:p | N ,k k k k kx y x P , where the parameters , k kP  are computed recursively in two 

stages (see Fig.1a): 

Prediction Stage: 

Predicted mean:    1 1 1 1 1N ,k k k k k kf x x P dx 
       (2) 

Predicted covariance:        1 1 1 1 1 1 1 1N ,
T

k k k k k k k k kP f x f x x P dx Q  
            (3) 

Update Stage: 

   ˆ N ,k k k k k k ky h x x P dx                                                                      (4) 

      ˆ N ,
T

k k k k k k k k k kx h x y x P dx                                                                    (5) 

       ˆ ˆ N ,
T

k k k k k k k k k k kh x y h x y x P dx                                                              (6) 

Innovation: ˆk k ke y y   (7) 

Innovation covariance: k k kS R    (8) 
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Kalman gain: 1
k k kK S    (9) 

Posterior mean: k k k kK e    (10) 

Posterior covariance: T
k k k k kP P K S K   (11) 

Different Kalman-type filters correspond to different ways of approximating the integrals in (2-6). The extended Kalman filter 

(EKF) uses derivatives of the system and measurement functions,  f   and  h  . The unscented  Kalman filter (UKF) uses values 

of  f   and  h   evaluated on a set of points in state space ([20], [21]). In this work, we use UKF. 

2.2. R-Adaptive Kalman Filter (RUKF)  

Various algorithms have been proposed for adapting the Kalman filter starting with the earlier publications by Mehra [22]. One 

of these ideas is to scale the covariance of the filter. The parameters that are used for scaling can be calculated using different 

means [23], [24]. This idea is also applicable for the UKF adaptation. In [25], the state estimation performance of the UKF was 

improved by proper tuning of both the unscented transform parameters and the process and measurement noise covariance matrices 

of the dynamic system model. The R-adaptive Kalman filter was introduced with the goal of making the estimate insensitive to 

measurement faults [16]. The filter makes use of the empirical covariance of the windowed innovation sequence 

1

1
,

k
T

k j j
j k M

S e e
M   

                                                                               (12) 

where M is the width of the moving window. RUKF uses the UKF recursion (2-11) except that the measurement covariance matrix 

kR  in (8) is replaced by a scaling matrix *
k kV R  where the scaling matrix is  * * * *

1 2diag , , , ,k dV v v v   

  * max 1,  ,   1, ,iv V i i i d   , and   1
k k kV S R  . When a fault occurs in the ith measurement the corresponding term of 

 ,kS i i  will become larger and the faulty measurement influence will decrease because of having a lower gain. 

2.3. Kullback-Leibler Partitioned Update Kalman Filter (KLPUKF) 

In general, the partitioned update Kalman filter performs the update stage of a multivariate measurement in several steps [9]: 

1. Evaluate the nonlinearity of the measurements. 

2. Minimize the nonlinearity of part of the measurement by applying a linear transformation. 

3. Update the state using part of the measurement whose nonlinearity is small. 

4. If the whole measurement has not yet been applied, use the partially updated state as the prior and the unused part of the 

measurements as a new measurement, and return to step 1. 

In KLPUKF, the Kullback-Leibler divergence (KLD) of the error of approximation is used as the measure of nonlinearity. 
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Denoting the approximated joint density of the state kx  and the measurement ky  in GF as  ,k kq x y  and the exact joint density 

as  ,k kp x y , the KLD of the error of the approximation is [26]  

        
 

,
KLD , , , log ,

,
k k

k k k k k k k k k
k k

p x y
p x y q x y p x y dx dy

q x y


 
    

 
                                    (13) 

which can be shown [27] to be 

11
log

2k k kI R    ,                                                                            (14) 

where 

  1T
k k k k kP

     .                                                                        (15) 

Here, it should be noted that some of the KF extensions such as EKF make linearization such that k  always become zero; 

therefore, KLD cannot be found by using those extensions. 

In [9] it is shown that the linear transformation in step 2 is the matrix 

1T
k k kD U R


 ,                                                                                (16) 

where kR  is the lower-triangular Cholesky factor of kR ,  T

k k kR R R , and kU  is the orthogonal matrix in the eigenvalue 

decomposition 

1
,

TT
k k k k k kU U R R

 
                                                                        (17) 

where diagonal matrix k  has the eigenvalues in the diagonal in ascending order. The transformed measurement noise covariance 

is 

1
.

TT
k k k k k kR U R R R U I

 
                                                                     (18) 

Here, the nonlinearity of the first measurement element is minimized by this transformation. In our implementation, we update one 

measurement at a time, i.e. steps 1-4 are carried out d  times at each update. The algorithm scheme for KLPUKF can be seen in 

Fig.1b. 

2.4. Outlier-Robust Kalman Filter (ORKF) 

The variational Bayes based Student's t Kalman filter, ORKF [12] assumes that the measurement noises are distributed according 

to Student’s t-distribution, which has "longer tails" than a Gaussian distribution. The Student’s t distribution can be expressed 

using the auxiliary random variable k  as 
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     , ,k k k k k k kp y x p y x p d                                                                  (19) 

where   1
, ~ N ,k k k k k

k

y x h x R


 
 
 

 and ~ Gamma ,
2 2k

v v  
 
 

. Here, 1v   is the degrees of freedom parameter which determines 

the distribution’s kurtosis. If v  the distribution converges to the normal distribution   N ,k kh x R . 

In the prediction step,  1: 1k kp x y   is approximated as having a Gaussian density  ,k k kN x P   as in (2-3). The update step 

with non-Gaussian noise is computationally intractable so the ORKF uses a Variational-Bayes approximation as follows. The KLD 

between the true posterior and the product approximation      1:,k k k k kp x y q x q   is 

              
 1: 1

1:

KLD , log .
,

k k
k k k k k k k k k

k k k

q x q
q x q p x y q x q dx d

p x y


   



 
   

 
                                 (20) 

The KLD is minimized with respect to  kq   while keeping  kq x  fixed by setting 

    1:log E log , ,   constant

1
1 log   constant,

2 2 2

k x k k k

k
k k k

q p x y

vv d

 


  

 

       
 

                                                   (21) 

where 

      
       

1

1

=E

tr E ,

T

k x k k k k k

T

x k k k k k

y h x R y h x

y h x y h x R

 



 

  
                                                                   (22) 

where  E   is the expectation operator. Similarly, the KLD is minimized with respect to  kq x  while keeping  kq   fixed by 

setting  

   
    

           
1:

11

log =E log , ,   constant

1
  constant,

2

k k k k

TT

k k k k k k k k k k k

q x p x y

y h x R y h x x P x

 

  
   



       
               (23) 

where 

   E .k k k k k
k

v d
q d

v    



  
                                                                        (24) 

Then, (22) and (24) should be iterated to convergence or a fixed number of times. In the update step of the GF (4-11) is carried out 

with 
1

k
k

R


 measurement noise covariance which is updated in every iteration and every time step (see Fig.1c). 

2.5. Single-Frame Methods based Kalman Filter (SFMKF) 

As a pre-processing step before the update stage, the linear attitude measurements are obtained from single-frame method (SFM) 
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by minimizing Wahba’s loss function [7]  

 
21

,
2 k k kk j j k j

j

L A a b A r                                                                              (25) 

where A  is the orthogonal transformation matrix from reference coordinates to body coordinates fixed on the sensor body   (Section 

3.1), ja  is the inverse variance of sensor j , jb  is the unit vector of the 3-axis sensor measurements in the body coordinates, and 

jr  is the unit vector of the measurement model in the reference coordinates (Section 3.2). Those linear attitude angle measurements 

can be used in the Gaussian filter instead of the nonlinear measurements. The loss function can be minimized using the SVD 

method, which has the best robustness compared to other minimization methods such as QUEST, q, FOAM [4], [28]–[30]. 

Therefore, SVD method is used as an SFM in this paper.  

The attitude measurement vector from SFM is, 

,k k ky Hx                                                                                          (26) 

where the measurement matrix is taken as  3 3 3 30x xH I  in this study. However, it should be noted that if another SFM is used 

with attitude representation other than Euler angles, the determined attitude should be represented as Euler angles after necessary 

transformations. The GF with update based on this linear measurement model is called SFMKF (see Fig.2 for the algorithm 

scheme). In the update stage, measurements ky  are coming from SFM with measurement covariance kR , which is updated in each 

step based on the single-frame method. In the GF, the innovation (9) is replaced by  

ˆk k ke y y                                                                                          (27) 

and Eq. (7) can be replaced by 

.T
k k kS HP H R                                                                                    (28) 

It should also be noted that the attitude measurements from SFM can be used as the initial attitude in the SFMKF. Therefore, 

this method might overcome the problem of having grossly incorrect initial values which affect the transient behavior of the filter.  

3. MATHEMATICAL MODELS FOR NANOSATELLITE’S ROTATIONAL MOTION 

3.1. Equations of Rotational Motion 

The state vector for the continuous-time dynamic model is composed of attitude angles and angular velocities as  

,
T

x y zx                                                                               (29)                   

where   is roll (angle of rotation about x  axis),   is pitch ( y axis),   is yaw ( z axis) with respect to the orbital frame, 

,  ,  x y z    are the angular velocities in the body axis set with respect to the inertial coordinate system. The transformation matrix 
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from reference (orbital) coordinates to body coordinates is [31, p. 764]  

 
         

                       
                       

c c c s s

c s s s c c c s s s s c ,

s s c s c s c c s s c c

x AA

    
           
           

 
     
    

                                 (30) 

where  c   and  s   are cosine and sine functions. The dynamic equations, obtained by the principle of conservation of angular 

momentum, are [31, p. 522] 

  ,x
x x y z y z

d
J N J J

dt


                                                             (31.a)                   

  ,y
y y z x z x

d
J N J J

dt


                                                             (31.b) 

                                    ,z
z z x y x y

d
J N J J

dt


                                                             (31.c)      

where  , ,x y zJ J J  are the principal moments of inertia, and  ,  ,  x y zN N N  are the external disturbances. If only ideal spherical 

body gravity of Earth is taken into consideration, the external disturbances are [32, p. 238] 

 
 
 

23 33
*

13 333
0

13 23

3 ,

y zx

y z x

z x y

J J A AN

N J J A A
r

N J J A A


                  

                                                            (32) 

where *  is the product of the universal gravitational constant and the mass of Earth, and 0r is the distance between the satellite 

and Earth’s center of mass. The angular velocity vector in the body axes, with respect to the reference (orbital) coordinate axes, is 

0

,

0

x

y o

z

p

q A

r


 


     
            
          

                                                                      (33) 

where o  is the orbital angular velocity with respect to inertial reference, 

1/2*

3
0

o r


 

  
 

 for a circular orbit. The satellite’s 

kinematics equation of motion derived using the Euler angle attitude representation is [31, p. 765], 

                                  

       
   

           

0 s / c c / c

0 c s .

1 s s c c s c

p

q

r

    
  
      

    
         
        





                                               (34)  

The system dynamics function f  in (1a) is obtained by time-discretization of the differential equations (34) and (31) using 

Euler’s method with constant time step, t : 
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 
 

 
 1

s c
,

c c
k k

k k k k
k k

t q r
 

 
 

 
     

 
                                                            (35a) 

    1 c - s ,k k k k k kt q r                                                                     (35b) 

   
     

 1

s s
s c ,

c c
k k

k k k k k k k
k k

t p q r
 

   
 

 
      

 
                                       (35c) 

  
1

,
k k k k kx x x y z y z xt N J J J   

                                                         (35d) 

  
1

,
k k k k ky y y z x z x yt N J J J   

                                                         (35e) 

  
1

.
k k k k kz z z x y x y zt N J J J   

                                                         (35f) 

3.2. Measurement Models 

In this study, a nanosatellite system is considered having as measurement sensors a sun sensor and a magnetometer. These 

sensors are commonly used for satellite missions in low Earth orbit.  

IGRF (International Geomagnetic Reference Field) is used as the geomagnetic field model; its inputs are date and position of 

the satellite [31, pp. 779–782], [33]: 

      
1

1 0

( , , colat,lon)    ( )c  lon( ) ( )s  lon( ) c colat( ) ,
nN n

m m m
o n n n

n m

a
B t r a g t m t h t m t P t

r



 

               
              (36) 

where oB  is the predicted magnetic field in nanoTesla ( nT ), r  is the distance between the mass centers of the satellite and Earth, 

colat( )t  is the co-latitude, lon( )t  is the longitude,   c colat( )m
nP t  are the Schmidt quasi-normalized associated Legendre 

polynomials of degree n  and order m , 6371.2 kma   is the geomagnetic conventional Earth’s mean reference spherical radius, 

m
ng  and m

nh  are the Gaussian coefficients given in units of nT [33]. The noiseless magnetometer measurements are obtained by 

transforming the geomagnetic field to the body frame: 

          , , , colat , lon .m ot x t r t tB A x B t                                                         (37) 

As the distance between the satellite and Earth’s centers is negligible considering the distance between the Sun and Earth’s 

centers, Sun direction with respect to the Earth-centered inertial (ECI) coordinates only depends on the Julian Day ( TDBT ) and not 

on the satellite’s position. The Julian Day can be derived from the satellite’s reference epoch and the onboard clock time, t . The 

ecliptic longitude of the Sun  ecliptic  and its linear model    can be computed as [34, pp. 181–184]. 

o
Sun 357.5277233 35999.05 3 ,0 4 TDBM T                                                       (38.a) 
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Sunecliptic Sun Sun
o1.914666471 sind( ) 0.019994643sind(2 ),M M M                                     (38.b) 

Sun

o280.4606184 36000.77005361 ,TM DBT                                                    (38.c) 

o23.439291 0.013004 ,2 TDBT                                                              (38.d) 

where the mean anomaly and the mean longitude of the Sun are given by (38a), (38c), and sind  is degree-argument sine function. 

From these relations, Sun direction vector ( ECIS ) in ECI coordinates can be found from 

 
 

   
   

ecliptic

ecliptic

ecliptic

.cos

cosd

sind

si nnd

d

si d

ECIS t



 

 

 
 
 
 
 
 

                                                                             (39) 

The noiseless sun sensor measurements mS  are obtained by transforming the Sun direction to the body frame: 

       , ,m ECIS A x L t St x t                                                                           (40) 

where L  is the transformation matrix from ECI to orbit coordinates. We compute the satellite’s orbital elements ( L ) and position 

on the orbit  , colat, lonr  using the SGP4 orbital propagation model [35]*. For consistency, sun direction and magnetic field 

measurements are used as unit vectors, and the state space model’s (1) measurement function is then 

 
 
 
 

,

, .

,

m k

m kk

m k

B t x

B t xh x

S t x

 
 

  
 
 

                                                                                (41) 

3.3. Magnetometer Noise Distribution Analysis 

It is investigated which distribution is best fitting for the magnetometer noises. As representative magnetometer measurements 

we use 11 nonconsecutive days’ SWARM-A data from the ESA website (ftp://swarm-diss.eo.esa.int/) and we use the magnetic 

field model IGRF as a reference. The differences between the unit vectors of real magnetometer measurements of SWARM-A and 

the reference magnetic field model IGRF in 13th order having the date and position inputs from the satellite are used in order to 

construct the noise density. Three symmetric distributions are fitted to these errors using standard maximum likelihood methods: 

normal, t, and extreme value distribution. The PDF of the t-distribution shows the best agreement with the density histogram 

(Fig.3). This is also the distribution that gives the smallest Akaike information criterion (Table I), which is defined as [36] 

     2
AIC ln MSE ,i

i i
mag

k

N
                                                                           (42) 

where MSEi is mean square error of the ith candidate distribution, ik  is the number of fitting parameters, magN  is the number of 

 
* The code is available at http://www.centerforspace.com/downloads/. 
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the observations. Therefore, t-distributed noise on magnetometer measurements are used for the simulations (Section 4). In the 

analysis, the non-normalized magnetic field noises are in the order of 100-200 nT.  

4. ANALYSIS AND RESULTS 

In this section, we describe the numerical simulation tests and the results obtained. We begin by presenting the parameters 

common to all tests. We consider a nanosatellite with principal moments of inertia  

3 3 3 2diag 2.1 10 2.0 10 1.9 10  kg mJ         . The orbit is almost circular with inclination o87.4i  , eccentricity 0.0009,e   

and average altitude 500 km . Sun sensors and magnetometers have 3-axis measurements and both sensors have 1-Hz frequency; 

estimation time step is also 1 sec . The sensor noises are characterized using standard deviations 0.008B   for each measurement 

of the magnetometers and 0.002S   for sun sensors which is based on the angular deviation of sun vector with respect to the 

actual direction of the Sun. The noises for magnetometer measurements are sampled from Student’s t distribution and sun sensors 

are sampled from normal. The dynamic system’s noise covariance is selected as 
 

 

24
3 3

26
3 3

10 rad 0
.

0 10 rad/s

I
Q

I







 
 
  

 The 

non-zero Q matrix is introduced to avoid numerical issues with the approximate nonlinear covariance propagation. We consider 

attitude estimation over a single orbit  6000 s  starting at position o o
0 0 0colat 24 ,  lon 173 ,  6878 kmr    and time 00:00:00 UT 

at January 1, 2014. The true initial state is  0 0.015 0.01 0.005 0.0005 0.00075 0.0005
Ttruex   with the units of the first 

three elements in radians and the last in radians per seconds, and the initial state of filters is  

0 02 truex x                                                                                         (43) 

(except SFMKF, which uses SFM). If process noise is applied to the true states in the simulation environment, the outputs will be 

different in different simulations. We wanted to concentrate only on the effect of the measurement noise and, thus, the true track 

is generated using (35) without added noise.  

Filter algorithm parameters: 

UKF: unscented transformation parameters from [20], 310 ,  2,  0     , 

RUKF: sliding window width, 20M  , 

ORKF: number of iterations, iterN , and degrees of freedom parameter, 4v  . 

4.1. Normal Operation Mode 

Error formulation used for the evaluation of the filters’ attitude angle estimation accuracies in Fig.4 is normalized root mean 
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square of the norm of estimation errors 
22

1 1

n n true
k kk k

e X
    where true est

k k ke X X   is the absolute error vector between 

the true and the estimated data during the whole simulation time. Simulations are performed on a computer with Intel® Core™ i7 

@2.93 GHz CPU and 8 GB RAM. Fig.4 shows the work-accuracy diagram for the 5 filter algorithms with one of them having 3 

variants. The x-axis shows the average NRMSE from 100 simulations with different random number generator (RNG) seeds for 

the sensor noises. There is not much change in the results when the parameters are changed in the filters other than ORKF. 

Therefore, only ORKF is applied using  2,  5,  10iterN   and the iteration  number is shown at the filter label’s subscript. 

KLPUKF, 5ORKF  and 10ORKF  are the most accurate algorithms, with KLPUKF and ORKF  variations computationally the 

heaviest. The other three have smaller, roughly equal, computational load, but SFMKF and RUKF’s accuracy, which is roughly 

equal, is much better than UKF’s. For ORKF, 5ORKF  was selected and named without the subscript for the rest of the paper in 

order to have accurate but computationally light estimations. It should be noted that the non-Gaussianity seems to be the dominating 

factor compared to non-linearity that cause error to the UKF. 

A time series of estimation errors from a single simulation (Fig. 5) shows that all 5 filters behave similarly. Most of the error 

arises in the initial transient during which the filters recover from the incorrect initial state. Even SFMKF, which uses an initial 

state from SFM instead of (42), has a significant transient error. In order to evaluate the steady state where errors arise mainly from 

sensor errors, we consider also the errors after 1500 s. Box plots (Fig. 6) and RMSE (Table II) indicate that all filters perform 

reasonably well in the steady state regime, with ORKF having the smallest attitude RMSE. 

4.2. Operation with Noise-Increment Magnetometer Fault 

Magnetometers on satellite can easily be disturbed by other subsystems which are very close because of the small size of the 

nanosatellite. There can also be external disturbances. Those effects result in faults on the measurements. Generally, two types of 

error models have been widely adopted to describe frequently encountered faults: the continuous bias model and the noise 

increment error model. For disturbances having continuous bias on the measurements, sensors should be calibrated first. Here, 

noise increment type of magnetometer measurement fault is considered. Here, it is considered that a sensor-related fault occurred 

on the magnetometer’s y channel, making the measurements noisy on that channel. The y magnetometer component 
k

y
B  of the 

measurement noise term k  in (1b) is replaced by ,
k

y
k B   where k  is a scaling sequence. Two fault cases are considered: long-

term fault 

10    if 4000
 ,

1    otherwisek

t



 


                                                                                 (44) 

and transient (short-term) fault 
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10    if 3000 3400
 .

1    otherwise           k

t


 
 


                                                                        (45) 

Fig.7 show the time series of the y-magnetometer component of the RUKF scaling matrix derived from the windowed innovation 

sequence (12). These show that the RUKF scale factor is adapting correctly: it changes from ~1 to ~100 during the fault. The scale 

factors for normal and Student’s t distribution cases without considering any faults are presented in Fig.8 in order to see how RUKF 

copes with the heavy tails. We see that RUKF compensates the heavy tails by increasing the scale factor. It should be noted that 

the x and z axes are similar to the y axis outputs. Fig.9 and Table III summarize the estimation errors for different filters. From 

these we see 

 UKF and KLPUKF are generally the least accurate methods, especially for long-term fault. That’s because these filters assume 

Gaussian noise and are not adaptive. Also, UKF is generally very slow in recovering after the end of the short-term fault. 

 The remaining filters cope fairly well with both kinds of fault. ORKF is the most accurate, RUKF is almost as accurate, and 

SFMKF is the least accurate of the three. These three filters are adaptive in measurement noise covariance. So, the filter copes 

with faulty measurement by adapting the scaling factors and having a lower gain. 

5. CONCLUSIONS 

From this study, we find: 

1. Real magnetometer noises are better modelled by Student’s t distribution than normal distribution. 

2. SFMKF, UKF, RUKF are the computationally lightest filters, KLPUKF and ORKF are 2-4 times slower. 

3. In normal operation mode, ORKF and KLPUKF are the most accurate; SFMKF and RUKF errors are about twice as 

large. UKF has much larger errors because it does not cope well with t-distributed noises. 

4. ORKF and RUKF cope best with transient and long-term noise-increment faults in magnetometer. SFMKF copes 

reasonably well. 

In summary ORKF is the most accurate filter both for the normal operation mode and for the operation with noise-increment 

magnetometer fault. We identified that the outliers caused the difference on the estimation accuracy. We suggest that it is important 

to check the noise distribution of the magnetometers. If they are non-Gaussian as with the tested magnetometers the non-

Gaussianity is a more significant source for estimation errors than nonlinearity and it is more important to use the limited 

computational resources in nanosatellites to compensate for non-Gaussianity than using more complex nonlinear filters. 

For further work, algorithms can be tested for sensor faults of continuous bias type. This would require a calibration in which 

the state vector has more elements to be estimated. Other disturbances such as extraterrestrial magnetic field can be included in the 

models and results using different reduced order IGRF models can be compared.  In addition to these, different Student’s t filters 
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and the filter proposed in [37], which is a Kalman-type filter for measurements having non-Gaussian noises, could be implemented 

and compared with other considered filters for further comparative studies. Another interesting possibility would be to investigate 

whether the KLPUKF and ORKF algorithms could be fused into an algorithm that minimizes the nonlinearity and can cope with 

the heavy tailed noises. 
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FIGURES AND TABLES 

 
(a) 

 
(b) 

 
(c) 

 

Fig. 1. Algorithm schemes of GF (a), KLPUKF (b), ORKF (c). 
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Fig. 2 SFMKF algorithm scheme. 

 

(a)                                                                          (b) 

 
(c) 

 
Fig. 3. Distribution fitting for magnetometer measurement noises on x, y, and z axes. 
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TABLE I AKAIKE’S INFORMATION CRITERION (AIC) ANALYSIS OF DISTRIBUTIONS FOR MAGNETOMETER NOISE. 

 

Model 
AIC  

x y z 

Normal 3.999 2.694 6.693 

t  3.998 2.690 6.531 

Extreme value 4.001 2.700 6.721 

 
 

 
Fig. 4. Work vs Accuracy for 5 filters. 

  
Fig. 5. Attitude (left) and angular velocity (right) estimation errors for normal operation mode, single simulation. 
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Fig. 6. Box plots of estimation errors during 1500 s,t  averaged over 100 simulations. 

TABLE II RMSE OF ESTIMATIONS DURING 1500 s,t  AVERAGED OVER 100 SIMULATIONS. 

 

RMSE 
Roll 

 310  rad  
Pitch 

 310  rad  
Yaw 

 310  rad  
x  

 610  rad/s  

y  

 610  rad/s  

z  

 610  rad/s  

UKF 0.659 0.664 0.065 0.2201 0.3562 0.9871 

KLPUKF 0.171 0.183 0.078 0.0863 0.0591 0.0879 

ORKF 0.075 0.133 0.041 0.0523 0.0163 0.0141 

SFMKF 0.054 0.190 0.064 0.0883 0.2100 0.0419 

RUKF 0.052 0.187 0.042 0.0801 0.2107 0.0378 

 

 

(a) 

 

(b) 

Fig. 7.  RUKF scaling factor for long-term (a) and short-term (b) magnetometer fault. 
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Fig. 8.  RUKF scaling factor for normal and t-distributions without any magnetometer faults. 

 

(a) 

 

(b) 

Fig. 9.  Attitude errors for long-term (a) and short-term (b) magnetometer faults, single simulation. 
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TABLE III FILTER RMSE DURING FAULTY PERIOD, AVERAGED OVER 100 SIMULATIONS. 

 

RMSE 

Long-term Short-term 

Roll 

 310  rad  
Pitch 

 310  rad  
Yaw 

 310  rad  
Roll 

 310  rad  
Pitch 

 310  rad  
Yaw 

 310  rad  

UKF 0.991 1.843 2.001 0.705 0.771 0.816 

KLPUKF 0.213 1.102 0.201 0.198 0.683 0.155 

ORKF 0.146 0.264 0.091 0.076 0.120 0.047 

SFMKF 0.170 0.375 0.102 0.091 0.168 0.071 

RUKF 0.159 0.275 0.114 0.084 0.141 0.059 

 


