
Tampere University Dissertations 426

Communication Protocol
and Management

Considerations for
Internet of Things Gateways

BILHANAN SILVERAJAN

��������	
����
������

�������

�����

��������������������

!���"
�#����
�$����#�%��
&��
'�
�(���
��!�

�&������

��

)����
���
����)��*�
(
�+���,��
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�!���'�!�����������-��
���.�����
�
��&/�,��*��*�������

��
��)�

�*��0�#"%����)��
)�������
���#*
�%�(���
&�!���"
�#����
��#��
#�
�
�)���������	
����
���/�

)����".%�#�&�
#"

��
��
��*���"&�����"����135�
�)��������%�/�7��8��8�"%"
8��"�1/��������/�

�
��5��"
���3�1/����1���9#%�#8:� �

�!���'�!�����������-��
��������	
����
���/�0�#"%����)��
)�������
���#*
�%�(���
&�!���"
�#����
��#��
#�
�
0�
%�
&�
�
�
��������	
��
����
����
�
�����������

$��)�

���7������
�;�
��������	
����
����
0�
%�
&�

�

�
���������
�� $��)�

���<�

��
����*�
��#������	
����
�����)�<�%%�
(��
�
��,�=��%�
&�

$��)�

��������$����
�
�	��	
����
����
0�
%�
&�

��������� $��)�

�����
"����8����
	
����
�����)���%
�
8��
0�
%�
&�

�
�
�

�
�
�
�
�
�
�
�*�����(�
�%�����)��*�
��*�
�
�*�
�.��
�#*�#8�&�"
�
(��*���"�
���
�-��(�
�%���!*�#8�

����#�:�
�
�
!�����(*��>�3�1��"�*���
�
�
!�����&�
�(
?����*"��
#:�
�
�
�
�
�
�����5@CF5G�F3KF15C3F5�M���
�O�
�����5@CF5G�F3KF15C1F��M�&)O�
�������C5F5C�3�M���
�O�
�������53F33�C�M�&)O�
*���?PP"�
:)�P	��?����?5@CF5G�F3KF15C1F��
�
�
�
$"
�'"
���-��Q�W%����
�����
��
���

""��3�1�

Abstract

Today, it is inconceivable to think about modern life without the Internet. The Internet
has transformed our lives, serving as a digital backbonefor communication, media and
Web-based interaction among human users. It has, however, begun to evolve into the
Internet of Things (IoT), interconnecting constrained devices such as sensors, actuators
and miniaturised computing platforms. Aided in large part by advances in decreasing
hardware costs, better battery, radio and computational technology, these kinds of
connected IoT devices have rapidly begun to proliferate. The resulting traffic generated
and exchanged by IoT devices is expected to dwarf that produced by humans.
However IoT devices exhibit significant differences in terms of computational and storage
capacities, wireless radio networks and communication protocols. Integrating them into
the Internet is not straightforward, in terms of device addressing, reachability as well
as data representation and transfer. In many IoT domains, there are already deployed
networks, devices and sensors based on legacy technology, that the IoT is compelled
to integrate. All this has led to the emergence of IoT gateways in playing a central
role for integration and interoperability, in ensuring interconnection and end-to-end
communication with different kinds of IoT devices and networks.
IoT gateways themselves can be multi-functional; their complexity and usage depends on
exactly what kinds of IoT devices and networks they need to integrate into the Internet,
and what additional services are expected of them in ensuring successful interaction with
edge devices. This dissertation focuses on these roles IoT gateways fulfill, enabling them
to function as essential components of the IoT.
The main research question of this dissertation is: “For various kinds of IoT network
topologies, how can gateways be configured and managed, to support connectivity and
communication with IoT end devices?” To answer this question, four research areas for
IoT gateways were studied, by applying Design Science Research Methodology (DSRM):
Network Connectivity, Energy Consumption, Protocol Composition, and Gateway Man-
agement.
For network connectivity, the communication and reachability requirements exerted on IoT
gateways by IoT devices and various IoT edge network topologies were studied. For energy
consumption, the utilisation of gateway energy consumption patterns were investigated, in
order to optimise communication as well as monitor operational performance. For protocol
composition, the specification, implementation and deployment of protocols, gateway
protocol stacks and network services was researched. Lastly, for gateway management,
the research into redundancy management as well as development of IoT management
practices for operational management and configuration, was performed.
The results and contributions of this dissertation are categorised into three abstraction
levels of an IoT gateway. These are at the network, management and communication levels

i

ii Abstract

of abstractions respectively. At the network abstraction, the work is oriented towards IPv6-
based networks. The results describe the various IoT topologies, and gateway configuration
and design to aid with IPv6 address allocation and network connectivity for edge devices.
At the management abstraction, the dissertation identifies patterns in IoT gateway
management and contributes object models and communication techniques for gateway
configuration, operational monitoring, redundancy management and device proxying. At
the communication abstraction, the dissertation contributes an implementation framework
and a specification language allowing rapid development of communication protocols.
The results also describe how energy consumption in IoT gateways can be employed both
to optimise data transmissions as well as detect network-based attacks.

Both proofs of concept as well as conducted field experiments were used to verify the
results of the dissertation. Empirical findings and obtained results have also been adopted
both for Internet and IoT device management standardisation.

Preface

"My big fish must be somewhere."
-Santiago, Ernest Hemingway’s The Old Man and the Sea

My doctoral dissertation was in gestation for a significant amount of time. This was my
big fish. I have had the distinct privilege of meeting, interacting and working with some
immensely talented people throughout this process.

I wish to firstly acknowledge Tampere University for providing me the opportunities to
pursue my doctoral research, and the conducive environments in which to undertake it.
Prof Jarmo Harju was responsible for setting me on this journey and served as my mentor
and supervisor until his retirement. Prof Kari Systä then took an active role towards my
dissertation as my supervisor. I am grateful to them both for their guidance, reviews and
frank discussions which became instrumental in shaping and completing my dissertation.

I wish to thank Prof Jari Porras and Prof Winston Seah, for serving as pre-examiners.
Their very thorough reviews helped significantly improve my final manuscript. I also wish
to thank Prof Sasu Tarkoma for graciously agreeing to be my dissertation opponent.

My gratitude goes to Ms Elina Orava from the Faculty of Information Technology and
Communication Sciences and Ms Sonja Mattsson from the Library Open Science Services
for their advice and assistance in the publication of my dissertation.

I have selected nine peer-reviewed publications for inclusion into my dissertation, and my
deepest thanks go to my co-authors in all these papers: Karri Huhtanen, Riku Itäpuro,
Nadir Javed, Jaime Jiménez, Antti Kolehmainen, Juha-Pekka Luoma, Andrea Mola,
Maurizio Magarini, Mert Ocak, Teemu Savolainen, Davide Scazzoli, Jonne Soininen,
Markku Vajaranta and Giacomo Verticale.

I have been, and continue to be, greatly enriched by my involvement with the IETF
community, particularly the members of the CoRE Working Group, as well as with
members of the OMA, and Smart Object Committee of the IPSO Alliance (which is now
part of OMA SpecWorks).

No words can convey the depth of gratitude I feel towards my family members for their
trust, support and encouragement. Your sacrifices meant I never gave up.

Finally I wish to acknowledge the many persons without whom my dissertation would
not have come to fruition. I cannot name each and every single one of you, for you are
too many. Thank you all for giving me your shoulders to lean on when I needed your aid,
and to stand upon when I needed to reach higher.

iii

Contents

Abstract i

Preface iii

Acronyms vii

List of Figures x

List of Tables xi

List of Publications xiii

Author’s Contribution to the Publications xv

1 Introduction 1
1.1 Gateways in the IoT . 2
1.2 Research Questions . 3
1.3 Scope and Contributions . 5
1.4 Research Methodology . 7
1.5 Thesis Structure . 9

2 Background and Related Work 11
2.1 Connectivity and Reachability . 11
2.2 REST and IoT . 14
2.3 Energy Measurements . 15
2.4 Composing Protocols and Protocol stacks 16
2.5 Management of IoT nodes . 18
2.6 Summary . 20

3 Connectivity and Reachability Considerations 23
3.1 Gateways allocating native IPv6 addresses in edge networks 23
3.2 Gateway address allocation via IPv6 transition technologies 25
3.3 Data Reachability . 27
3.4 Summary . 28

4 Energy awareness in gateway communication 31
4.1 Undertaken Measurement Methods . 31
4.2 Optimising cellular REST communication 32
4.3 Anomalous Gateway Behaviour . 34
4.4 Summary . 35

v

vi Contents

5 Composing Communication Protocols 37
5.1 Addressing IoT Gateway Hardware and Platform Heterogeneity 38
5.2 Measuring network event handlers . 39
5.3 Protocol Specification and Code Synthesis 41
5.4 Monitoring runtime events and protocol parameters 45
5.5 Summary . 48

6 Gateway Management 51
6.1 Managing IoT endpoints . 51
6.2 IoT Gateway Management Patterns . 52
6.3 Operational considerations . 57
6.4 Summary . 61

7 Conclusion 63
7.1 Results . 63
7.2 Summary of Contributions . 65
7.3 Discussion and Future Directions . 65

Bibliography 71

Publications 79

Acronyms

3GPP Third Generation Partnership Project

6LowPAN IPv6 over Low-Power Wireless Personal Area Network

6lbr 6LowPAN Border Router

ABNF Augmented Backus-Naur Form

APIs Application Programming Interfaces

BLE Bluetooth Low Energy

Bluetooth SIG Bluetooth Special Interest Group

CBOR Concise Binary Object Representation

CoAP Constrained Application Protocol

CoMI CoAP Management Interface

CoRE Constrained RESTful Environments

DAD Duplicate Address Detection

DALI Digital Addressable Lighting Interface

DHCPv6 Dynamic Host Configuration Protocol version 6

DRX Discontinuous Reception

DSRM Design Science Research Methodology

DTLS Datagram Transport Layer Security

EDGE Enhanced Data rates for Global Evolution

GATT Generic Attribute Profile

GUA Global Unicast Address

HSPA High Speed Packet Access

HSRP Hot Standby Routing Protocol

HTTP Hypertext Transfer Protocol

IETF Internet Engineering Task Force

vii

viii Acronyms

IID Interface Identifier

IoT Internet of Things

IP Internet Protocol

IPC Interprocess Communication

ISP Internet Service Provider

JSON JavaScript Object Notation

L2CAP Logical Link Control and Adaptation Protocol

LAN Local Area Network

LoRaWAN Long Range Wide Area Networks

LTE Long Term Evolution

LWIG LightWeight Implementation Guidance

LWM2M Lightweight Machine-to-Machine

M2M Machine-to-Machine

MQTT Message Queuing Telemetry Transport

MSC Message Sequence Chart

NATs Network Address Translations

ND Neighbour Discovery

NB-IoT Narrowband IoT

OCF Open Connectivity Foundation

OECD Organisation for Economic Co-operation and Development

OMA Open Mobile Alliance

PI Provider Independent

REST Representational State Transfer

RTT Round Trip Time

SDK Software Development Kit

SDL Specification and Description Language

SLP Service Location Protocol

SLAAC Stateless Address AutoConfiguration

SDOs Standards Development Organisations

SDN Software Defined Networking

ix

TCP Transmission Control Protocol

UDP User Datagram Protocol

UE User Equipment

ULA Unique Local Addresses

UML Unified Modelling Language

URI Universal Resource Identifier

URN Universal Resource Name

VRRP Virtual Router Redundancy Protocol

WAN Wide Area Network

WoT Web of Things

XML Extensible Markup Language

List of Figures

1.1 Dissertation Scope and the Contribution . 5
1.2 Categories of research methods (classification scheme), from [1] 8

3.1 Roundtrip time comparison of IPv4, IPv6 and 6to4 26
3.2 IPv6 Address Types, from [2]. Note that the figure does not show 6rd traffic

as well as tunnelled IPv6 traffic, as these do not contain special prefixes. . . . 27
3.3 Abstraction of a simple CoAP-to-CoAP proxy over alternative transports. . . 28

4.1 REST-based Message exchange. 33

5.1 10000 HTTP requests, concurrency level 1000, no idle connections 40
5.2 5000 HTTP requests, concurrency level 100, 20 000 idle connections 41
5.3 DOORS Event monitoring depicting system objects 46
5.4 DOORS Event monitoring depicting message handling 47
5.5 Wireshark capture of multicast session announcements 47

6.1 End-to-end IoT device management. 52
6.2 Pattern 1 . 53
6.3 Pattern 2 . 54
6.4 Pattern 3 . 54
6.5 Pattern 4 . 55
6.6 Pattern 5 . 56
6.7 Pattern 6 . 57

x

List of Tables

1.1 Research methods employed in publications 8

5.1 Numerical results for Fig 5.1 . 40
5.2 Numerical results for Fig 5.2 . 41

6.1 Summary of IoT gateway management patterns used in publications 61

xi

List of Publications

1. Savolainen T, Soininen J, Silverajan B. "IPv6 addressing strategies for IoT."
IEEE Sensors Journal. vol 13, no 10, pp. 3511-3519, 2013, IEEE. DOI:
10.1109/JSEN.2013.225969

2. Silverajan B, Huhtanen K, Harju J. "IPv6 experiments in deploying and ac-
cessing services from home networks." Proceedings of the 2006 IEEE Asia-
Pacific Conference on Communications (APCC ’06), pp. 1-5, 2006, IEEE. DOI:
10.1109/APCC.2006.255794

3. Silverajan B, Harju J. "Developing network software and communications protocols
towards the Internet of Things". Proceedings of the Fourth International ICST Con-
ference on COMmunication System softWAre and middlewaRE (COMSWARE’09),
pp. 9:1-9:8, 2009, ACM. DOI: 10.1145/1621890.1621902

4. Silverajan B, Harju J. "Factoring IPv6 device mobility and ad-hoc interactions
into the Service Location Protocol." Proceedings of the 32nd IEEE Conference
on Local Computer Networks (LCN 2007), pp. 387-394, 2007, IEEE. DOI:
10.1109/LCN.2007.108

5. Silverajan B, Luoma JP, Vajaranta M, Itäpuro R. "Collaborative cloud-based
management of home networks." Proceedings of the 2015 IFIP/IEEE International
Symposium on Integrated Network Management (IM), pp. 786-789, 2015, IEEE.
DOI: 10.1109/INM.2015.7140376

6. Silverajan B, Ocak M, Jiménez J, Kolehmainen A. "Enhancing Lightweight M2M
Operations for Managing IoT Gateways." Proceedings of the 2016 IEEE International
Conference on Internet of Things (iThings 2016), pp. 187-192, 2016, IEEE. DOI:
10.1109/iThings-GreenCom-CPSCom-SmartData.2016.55

7. Scazzoli D, Mola A, Silverajan B, Magarini M, Verticale G. "A Redundant Gateway
Prototype for Wireless Avionic Sensor Networks." Proceedings of the 29th Annual
IEEE International Symposium on Personal, Indoor and Mobile Radio Communi-
cations (IEEE PIMRC 2018), pp. 1-7, IEEE. DOI: 10.1109/PIMRC.2017.8292683

8. Savolainen T, Javed N, Silverajan B. "Measuring energy consumption for REST-
ful interactions in 3GPP IoT nodes." Proceedings of the 7th IFIP/IEEE Wire-
less and Mobile Networking Conference (WMNC 2014), pp. 1-8, IEEE. DOI:
10.1109/WMNC.2014.6878863

xiii

xiv List of Publications

9. Silverajan B, Vajaranta M, Kolehmainen A. "Home Network Security: Modelling
Power Consumption to Detect and Prevent Attacks on Homenet Routers." Proceed-
ings of the 11th Asia Joint Conference on Information Security (AsiaJCIS 2016),
pp. 9.16, IEEE. DOI: 10.1109/AsiaJCIS.2016.10

Author’s Contribution to the
Publications

Publication 1 analyses the suitability of different IPv6 addressing strategies for nodes,
gateways, and various access network deployment scenarios in the IoT. The publication
is aimed at highlighting the heterogeneity of nodes and network technologies, extreme
constraint and miniaturization, renumbering, and multi-homing, present serious challenges
toward IPv6 address allocation. The author was responsible in contributing to the main
idea of the paper, in identifying some of the challenges, the main motivations and
challenges, describing topologies for IoT deployments as well as a thorough literature
survey.

Publication 2 focuses on how IoT gateways can be successfully employed to provide
connectivity as well as tunnelling services, to local area networks for end-to-end reachability
over the Internet. The publication provides the usage scenario of IPv6 home networks
and home gateways to ensure connectivity to edge devices and data sharing from home
nodes. Although the publication discussed IPv6 transitional technologies, many of the
challenges regarding overlays, tunnels and advanced configuration for gateways continue
to exist today to interconnect IPv6 edge networks via the global IPv4 Internet. Ease of
deployments and configuration, as well as minimising any disruption to existing network
services were studied. The author was the primary contributor to the paper.

Publication 3 explains the design and implementation of a network programming frame-
work which facilitates the design and implementation of communication protocols, as well
as communication protocol stacks. The author was the primary architect of all the core
components of this framework as well as some of the optional application layer protocol
components. The framework is especially suitable for the needs of IoT gateways, as it is
lightweight, portable across many POSIX-compliant platforms and offers a clean-layered
design that allows for rapid prototyping and implementation of protocols.

Publication 4 describes how advanced services and network applications can be discovered
upon portable and mobile nodes changing their IPv6 network points of attachments. The
approach allows movement awareness, even if mobility is shielded at the network layer,
such as with Mobile IPv6. The author designed and implemented 2 kinds of agents for
the Service Location Protocol (SLP), which can then be deployed into IPv6 as well as
mobile IPv6 devices and gateways for performing dynamic service discovery. The SLP
agents were implemented using the same framework described in Publication 3.

Publication 5 examines the issues of remote IoT network and gateway management,
especially in evolving smart homes consisting of multi-vendor IoT devices which may
require network segmentation and routing. The publication considers how gateway
management can be jointly performed by network operators and third party experts in

xv

xvi Author’s Contribution to the Publications

collaboration with the home network owners. The author was the primary architect of this
REST-based architecture which separates the management and control functionalities of
the gateway away from the actual connectivity, traffic forwarding and routing operations
within the home network.

Publication 6 highlights how management of IoT gateways differ significantly from
traditional network management practices, and the challenges that exist for remote
gateway management, particularly for proxies and exposing proprietary or vendor-specific
operations. The author is the primary contributor of this publication which proposes
solutions based on the Lightweight Machine-To-Machine (LWM2M) protocol, gateway
data models and prototypes.

Publication 7 describes how lessons learnt in the design of IoT gateways can be applied
towards mission-critical systems in which the data from heterogeneous wireless avionics
sensors must be initially aggregated by gateways and subsequently be transmitted to
the cloud with high reliability and no loss. As gateways proved to be possible points of
failure, the author proposed a redundant gateway management system in which redundant
gateways are employed, and contributed to the idea of developing a heartbeat protocol to
perform failure detection of an active gateway and aid rapid fail-over using a secondary
gateway.

Publication 8 delves into power consumption aspects for IoT gateways and devices in
cellular networks. Detailed measurements were undertaken in various 3GPP networks,
to compare and contrast the energy profiles of various REST-based protocols that can
conveying sensor data. The motivation for this study is to aid in optimising operation
times, particularly for devices and gateways which are energy-constrained. The author
contributed to the general idea of the paper, and was also responsible in the analysis
and interpretation of the obtained data. Moreover, the author proposed a method of
conveying CoAP messages using the WebSocket protocol, which was shown to be energy
efficient, and was subsequently adopted as an Internet standard.

Publication 9 expands on the role of power consumption in mesh and Wi-Fi gateways
from a security perspective. The author proposed an approach of using anomalous power
consumption as a means to detect various kinds of attacks in progress in IoT gateways.
By studying the energy patterns of the routers in various scenarios particularly with
regards to the routing infrastructure, network owners can detect attacks in progress with
a high level of confidence. The author was also responsible for the literature survey as
well as presenting the key findings from the measurements taken.

1 Introduction

The Internet of Things (IoT) is characterised by interconnected, communicating smart
objects and devices, such as sensors, actuators, electronic tags and miniaturised computing
platforms. There are more than 10 billion IoT devices today in many diverse domains,
ranging from industrial automation, connected lighting, intelligent transportation, logistics
handling, digital health, to smart homes, buildings and cities. These IoT devices produce
data upon which actions can be autonomously undertaken by other IoT devices and the
general Internet. Other networked systems, applications and human users also interact
with these devices to consume such data, particularly over the Web. In fact, the IoT
is envisioned to evolve towards an architecture where IoT devices and communication
become an integral, interconnected part of the Web. The realisation of this vision, called
the Web of Things (WoT), calls for applying principles of the Web architecture, especially
using the Representational State Transfer (REST) paradigm, so that real-world objects
and embedded devices can blend seamlessly into the Web infrastructure and tools [3].

Hardware diversity, owing to differences in chip-sets, radio technology, energy efficiency
and manufacturing costs has led to IoT devices exhibiting significant differences in
computational, storage, communication and power constraints. In order to categorise
differences in IoT devices in terms of these properties, the LightWeight Implementation
Guidance (LWIG) Working Group within the Internet Engineering Task Force (IETF)
devised a simple three device classification system in RFC 7228 [4] based on device
processing capabilities as well as the amount of volatile and storage memory available.
This was provided after performing an exhaustive study of commercially available chips
and design cores for constrained devices 1. The classification provided in RFC 7228 is as
follows:

• Class 0 devices, which have (much) less than 10 KiB of RAM for data and 100 KiB
of flash memory for program code. These smart objects can be considered to be
severely constrained and would require the assistance of more powerful devices to
connect them to the Internet.

• Class 1 devices, which have approximately 10 KiB of RAM and 100 KiB of flash
memory. These constrained smart objects are capable enough to use a protocol stack
specifically designed for constrained nodes, and can connect to the IoT without
needing any intermediary device. However, they cannot easily communicate with
other Internet nodes employing a full protocol stack.

• Class 2 devices, which have about 50 KiB of RAM and 250 KiB of flash memory.
These smart objects are capable of supporting most of the same protocol stacks

1At the time of this writing, RFC 7228 is being updated in LWIG to reflect newer architectures. See
https://tools.ietf.org/html/draft-bormann-lwig-7228bis-03

1

2 Chapter 1. Introduction

as used on notebooks or servers. However, even these devices can benefit from
lightweight and energy-efficient protocols and from consuming less bandwidth.

RFC 7228 focused on constrained, low-end IoT devices in terms of their hardware.
Taivalsaari and Mikkonen [5], on the other hand, proposed an alternative, software-based
classification identifying seven types of IoT devices based on their software architecture.
This classification not only included low-end devices such as sensors, but more powerful
nodes that could run full-fledged desktop operating systems. The resulting taxonomy
can then be used to understand ease of programmability and application deployment
constraints for any kind of device connected to the IoT.

1.1 Gateways in the IoT

Regardless of the types of IoT devices in existence today, the IoT is composed of a multi-
tude of such devices communicating and exchanging data with other connected devices,
applications as well as human users over the Internet. To overcome the heterogeneity
and constraints in hardware, software and communication protocols that various IoT
devices use, intermediate nodes called gateways are often employed for interconnecting
end devices in many IoT domains.

The concept of using gateways is certainly not new in computer communications. However,
they remain vital to the success of the IoT, and consequently, gateway usage continues to
grow in the IoT. Market projections forecast that, by 2021, the IoT gateway market will
result in a billion dollar industry [6], with shipments exceeding 64 million units [7]. IoT
gateways can be classified according to their capabilities, similar to IoT device endpoints.
They can be limited in computation power, storage capacity and power consumption. For
example, they can be battery-powered, and be designed to operate with energy efficiency
in mind. In Machine-to-Machine (M2M) environments they can operate for great lengths
of time without supervision. They can also be computationally powerful, and contain
support for operating systems, embedded development and executing application logic.
Some of the tasks that IoT gateways are used for are:

• Multi-protocol bridging and translation. IoT devices can use a wide variety of wireless
or wired technologies. In its simplest role, a gateway acts as a protocol bridge, to
interconnect an IoT device using one type of data link to another network segment
using a different data link. The most common example of such a gateway today is a
wireless access point or router offering 802.11-based Wi-Fi to clients, and connecting
to the Internet over a wired or cellular uplink. The same principle also holds for
other wireless technologies such as Long Range Wide Area Networks (LoRaWAN) or
Narrowband IoT (NB-IoT). Additionally, many deployed IoT devices and networks
exist today that are not natively designed to communicate using the Internet
Protocol (IP). Some examples here are Bluetooth, Bluetooth Low Energy (BLE)
and Zigbee-based devices. For these, an IoT gateway can serve as a communication
proxy by translating application, network and data link protocols. These allow
non-IP devices to be integrated into the IoT.

• Message and payload adaptation. Protocol translation is perhaps one of the simplest
aspects of a gateway’s functionality. It is also often the case that whenever there is a
communication disparity among communicating IoT endpoints, payload processing
needs to be performed for seamless data exchange. IoT gateways facilitate syntactic

1.2. Research Questions 3

and semantic interoperability by manipulating the serialisation, format and structure
of payload contents. Payload adaptation can be performed even when no protocol
translation is needed. For example, data values transmitted by an IoT device
conforming to one data model, can be adapted to a different data model understood
by a receiving endpoint, even if both IoT devices use the same communication
protocol.

• Data Processing. IoT gateways are increasingly becoming important for edge
computing, where, instead of processing all sensor data in centralised cloud systems,
intelligence and computing is transferred in IoT edge networks. IoT gateways
interact with edge devices as well as upstream services to aggregate, pre-process or
filter data. This is done in order to lower latency, reduce the number of transferred
bytes, or improve transmission reliability.

• Security and Resilience Computationally limited, as well as energy constrained
IoT devices, have a restricted availability for strong authentication and encryption
mechanisms for secure communication with an endpoint. In some industrial domains,
the legacy protocols and networks utilised can also contain little to no security, such
as lighting systems using a legacy technology standard called the Digital Addressable
Lighting Interface (DALI). For these usage scenarios, computationally powerful IoT
gateways can be introduced not only to improve the security and resilience of an
IoT network, but also provide security auditing, logging and intrusion detection
systems capable of detecting malicious activity.

These roles and properties of an IoT gateway, have a direct impact on the communica-
tion protocols, security, energy management policies, interfaces, interaction models and
embedded software that need to be developed. Also, gateway management needs to be
undertaken throughout the lifecycle of an IoT gateway, similar to IoT device management.
In other words, the kinds of role and properties an IoT gateway has, influences how it
can be commissioned and made operational into a network, how any application-level
logic can be securely deployed and how its firmware and any software can be securely
updated. Thus, while IoT gateways can constantly evolve in terms of hardware features,
power requirements and radio communication interfaces, some of the core techniques for
embedded protocol development, methods and patterns for gateway management, as well
as communication mechanisms can be abstracted, improved and designed based on sound
engineering principles.

This dissertation, comprising the introduction and its publications, describes these
considerations and the work undertaken in developing IoT gateways to facilitate data
transfer and endpoint communication in the IoT. The rest of this chapter discusses the
research questions, scope and contributions, undertaken methodology for the research as
well as the structure of the dissertation.

1.2 Research Questions

In this dissertation, there are four perspectives from which the research questions are
derived:

1. Connectivity and reachability. Low powered constrained devices today require
a border gateway to become reachable, while non-IP devices require gateways

4 Chapter 1. Introduction

capable of understanding and translating between different network technologies.
Very constrained devices, such as 1-wire sensors, require gateway assistance to
interconnect to the IoT. Performing bridging, translation and proxying at multiple
levels of a communication stack was discussed earlier as one of the most common
roles for an IoT gateway. In addition to that, IoT gateways provide other services
such as naming or addressing or tunnelling between an edge network and a core
network.

2. Energy awareness in gateway communication. Energy consumption is an important
trait in IoT networks. Not only does it have implications on the constraints and
operation of edge devices such as sensors and actuators, it also impacts the behaviour
of IoT gateways, particularly for gateways which may themselves be battery powered.
Battery drainage can occur rapidly, not only when a suboptimal combination of
application layer protocol and radio technology is used, but also when the gateway
is subject to misbehaving firmware or malicious attacks.

3. Designing, implementing and deploying protocols. The design and implementation
of communications subsystems as well as protocol stacks are often used to provide
advanced application level services. Implementing such services and protocols should
be performed in a consistent modular manner. When rapid development, testing
and prototyping are required, protocol implementation frameworks can supply many
advantages as compared to creating individual custom protocols from scratch. This
is particularly important when considering fast evolving protocols for which new
features need to be incorporated constantly.

4. Gateway management and configuration. IoT device management involves the
processes of installing, bootstrapping, operating and maintaining IoT devices in the
network. An IoT gateway is an important component of this process, in order to
allow a management server to reach the IoT devices. While some processes for device
management are applicable to IoT gateways themselves, IoT management services
have yet to consider the architectural impact of introducing gateways, gateway
configuration and gateway management explicitly, into the overall management of
an IoT network.

From these, the following research questions are addressed:

Research Question 1 : What do connectivity characteristics, communication support and
data reachability for current and future IoT network topologies require from IoT gateways?
(Publications 1, 2 and 8)

Research Question 2 : How can energy measurements be used to improve and monitor
gateway operation? (Publications 8 and 9)

Research Question 3 : How can the development of protocols and communication sub-
systems in IoT gateways be performed rapidly and consistently? (Publications 3 and
4)

Research Question 4 : What are the crucial aspects of IoT gateway management that
need to be considered, and how can gateway management be performed and aligned with
IoT device management? (Publications 5, 6, and 7)

1.3. Scope and Contributions 5

1.3 Scope and Contributions

The scope and contributions of this dissertation are illustrated in Figure 1.1. As the
figure depicts, the scope of the dissertation lies in specifying suitable abstractions for IoT
gateways as well as in practical development work in realising and validating the gateway
abstractions.

��������	
����
�������	���
�	�	��������������
	
����

��
������	���	���

�����	���	��
����
	�
����

���������������
�
	�
����

�	�	�������
����
	�
���

 ����
!�
����
	�
���

��������	
���
����
	�
���

�
�������"�	�!�
���������	
���

������
�����
	���

���#��
	
���

$��
	
��	��
������
����

�
���������
	����
��������
��������

%�	��	
������&�
��	��
���
'�������

Scope

Results

Figure 1.1: Dissertation Scope and the Contribution

From the IoT gateway abstractions, the results are categorised into three abstraction
levels: management abstraction, network abstraction and the communication abstraction.
These abstractions are augmented with prototypes, proofs of concept and measurement
data. Together, the obtained results form the contributions of this dissertation.

The research into the network abstraction focuses on a generalised IoT architecture
comprising of IoT nodes in an edge Local Area Network (LAN), an IoT gateway connect-
ing the LAN to a geographic or organisation-specific Wide Area Network (WAN) and
subsequently the Internet. The work strongly focuses on IPv6 for IoT, based on the sheer
number of nodes which aim to be connected to the Internet, and the difficulties seen with
IPv4 address allocation and flexibility. The contributions for the network abstraction are
listed as follows:

• Categorisations of IoT network topologies based on usage scenarios and required
connectivity for edge IoT nodes.

• Gateway configuration and IPv6 address allocation strategies to nodes in the LAN.

• Empirical research and measurement data demonstrating the feasibility of gateway-
enabled IPv6 transition and tunnelling technologies, in the absence of native IPv6
support in backhaul networks.

6 Chapter 1. Introduction

The research into the management abstraction concentrates on new methods for performing
IoT gateway management in a unified manner with existing open industrial standards for
IoT device lifecycle management. The contributions for the management abstraction are
listed as follows:

• Identification of specific gaps in IoT device management standards to allow lifecycle
management of IoT gateways.

• Categorisations of IoT gateway management practices based on observed live
deployments.

• Extending the Lightweight Machine-to-Machine (LWM2M) protocol, a well-known
IoT device management standard, for gateway management by designing new data
models and interaction methods for configuration, monitoring and operational
management of edge IoT gateways. The data models designed were subsequently
adopted as standard application-specific objects by the IPSO Alliance.

• Design of a redundant gateway management system using a heartbeat protocol.

The research into communication abstraction targets two subareas, which are in software-
based protocol development of the gateway’s communication subsystem, and in the
operational monitoring of energy consumption of gateway communication. Research
into protocol development for the gateway communication subsystem aims at producing
tools and libraries for consistent design, implementation and deployment of application-
level communication protocols. Energy awareness, especially for power-constrained
gateways, aims at prolonging the lifetime of a gateway, both in terms of energy efficient
communication, as well as detecting security anomalies. The contributions for the
communication abstraction are listed as follows:

• A C++-based protocol implementation framework called DOORS, providing a
uniform development environment encompassing C++ classes useful for protocol
development, including abstractions for hardware characteristics, and operating
system communication interfaces.

• A specification language describing protocol logic and messages, written in the
Extensible Markup Language (XML) that facilitates code synthesis that could be
compiled with code written using the DOORS framework libraries to obtain protocol
implementations.

• Energy measurement results for REST-based gateway communication. Measurement
data for the energy consumption of different REST protocols was obtained over live
cellular networks from three different Finnish operators and subsequent activity
resulting from this work became an Internet standard [8].

• Novel techniques to use IoT gateway energy measurements to detect and fingerprint
different categories of network-based attacks.

1.4. Research Methodology 7

1.4 Research Methodology

The Frascati Manual [9], prepared by the Organisation for Economic Co-operation and
Development (OECD), provides fundamental definitions for research and development,
which are internationally accepted in terms of what are included and excluded under
various terminologies [10]. According to the Frascati Manual, research and development
covers three activities[9]:

1. Basic research, which is experimental or theoretical work undertaken primarily to
acquire new knowledge of the underlying foundation of phenomena and observable
facts, without any particular application or use in view.

2. Applied research which is also original investigation undertaken in order to acquire
new knowledge. It is, however, directed primarily towards a specific practical aim
or objective.

3. Experimental development, which is systematic work, drawing on existing knowledge
gained from research and/or practical experience, which is directed to producing
new materials, products or devices, to installing new processes, systems and services,
or to improving substantially those already produced or installed.

Regardless of the type of research involved, the research process involves a series of actions
and steps that need to be considered [11]:

1. Formulate the research problem

2. Review existing work and literature

3. Develop a working hypothesis

4. Prepare the research design

5. Obtain the data

6. Analyse the data

7. Present findings

An analysis of papers by Ebeling et. al in five Information Science conferences from 2006
to 2010, revealed that up to 17 categories of research methods were used [1]. Each of
these 5 conferences were chosen to represent Information Science research in a specific
part of the world. Figure 1.2 describes these categories.

The resulting study revealed that the most frequently mentioned methods throughout all
five conferences were “descriptive/exploratory survey” (24.7%) and “concept implemen-
tation/proof of concept” (21.8%). The conclusion was that although there were many
methods available to researchers in the broad IS field, only a few dominating research
methods were used. The differences in research preferences around the world were also
highlighted: European computer science research has focused on qualitative or exploratory
research methods, in which the researchers predominantly used non-empirical methods
such as “conceptual” and “system development.”

8 Chapter 1. Introduction

Category Research method Keywords
AR Action research action research
CA Conceptual / mathematical analysis conceptual analysis, concept mathematical, concept study
CI Concept implementation /

proof of concept
implementation, proof of concept, concept proof,
conceptual model, reference model

CS Case study case study
DA Data analysis data analysis
ET Ethnography ethnography
ES Descriptive / exploratory survey survey, interview
FE Field experiment field experiment, experimental study, experiment
FS Field study field study
GT Grounded theory grounded theory
HE Hermeneutics hermeneutic
ID Instrument development instrument development, instrument, prototype, artifact
LH Laboratory experiment laboratory experiment, experiment
LR Literature review literature review, literature analysis
MP Mathematical proof mathematical proof
PA Protocol analysis protocol analysis
SI Simulation simulation
OM Other methods n/a

Figure 1.2: Categories of research methods (classification scheme), from [1]

Table 1.1: Research methods employed in publications

Publications P1 P2 P3 P4 P5 P6 P7 P8 P9
Conceptual Analysis (CA) x x
Concept Implementation (CI) x x x x x x x x
Data Analysis (DA) x x
Field Experiments (FE) x
Instrument Development (ID) x x x x
Laboratory Experiments (LH) x x x
Protocol Analysis (PA) x x x x

The research methods used in this dissertation largely are in line with these findings.
Using this categorisation, the publications included in this thesis generally fall into the
category of research methods displayed in Table 1.1.

While research methods may be understood as methods and techniques that are used
for the conducting of research, research methodology on the other hand, is a way to
systematically solve the research problem [11]. The research methodology is perceived
as the various steps that are generally adopted by a researcher in studying his research
problem along with the logic behind them. It is therefore necessary to know not only the
research methods, but also the methodology, as research methods constitute a part of the
research methodology.

To put these concepts into perspective, the focus of this dissertation is on applied research
as well as experimental development. Basically, the work undertaken for this dissertation
falls into a category of applied research methodology known as Design Science Research
Methodology (DSRM) [12].

DSRM is the predominant methodology used for Information Science research. It can be
envisioned as a process model consisting of six activities in a nominal sequence, namely:

• Problem identification and motivation

1.5. Thesis Structure 9

• Definition of the objectives for a solution

• Design and development of a research artefact

• Demonstration

• Evaluation

• Communication

Problem identification and motivation. In this activity, the specific research problem is
clearly defined, and the value of a solution is justified. All publications, P1 - P9 include
an identification of the problem and motivate the research direction clearly towards a
solution.

Definition of the objectives for a solution. The objectives of the solution developed should
be clearly outlined based on the problem identification. All publications, P1 - P9 provide
an objective of the research.

Design and development of a research artefact. Here, the theoretical knowledge obtained
from the previous two activities is applied to the creation of an artefact. This includes
both its functionality and its architecture as a means to overcome the identified problems.
All publications, P1 - P9, include such a development of an artefact.

Demonstration. When the artefact is designed, it is experimented with, used in simula-
tions, or otherwise used as a solution against the perceived problems initially identified.
Publications P1, P2 and P4 - P9 provide a demonstration activity. P3, being an analysis
paper identifying key problems and then offering solutions based on expert solutions, does
not have a demonstration phase.

Evaluation. In this activity, an analysis is performed as to how well the research artefact
meets the objectives highlighted once the problem has been identified. Improvements can
be made to the artefact, if deemed necessary by returning back to the design activity. The
result of evaluation can range from a comparison of the developed solutions against other
existing solutions, to justifying how the developed artefact meets the research objectives.
All publications, P1 - P9, provide a thorough evaluation of the solution.

Communication. The final activity is the process of dissemination of the obtained results
and its effectiveness against the problems identified, to relevant forums and publishing
outlets. In this regard, all publications P1 - P9 fulfil the criteria for this activity.

1.5 Thesis Structure

In addition to this introductory chapter and the inclusion of nine publications, this
dissertation adds six chapters.

Background and work related to this dissertation is reviewed in Chapter 2. Chapter 3
covers the key connectivity, communication and reachability functionalities needed in
IoT gateways. Chapter 4 summarises the main findings of how power consumption can
be used as a metric to determine both communication methods, as well as anomalous
gateway behaviour. Chapter 5 is devoted towards the work done for the development of a
protocol implementation framework that could be used for the development of advanced
protocols and protocol stacks for IoT gateways. Chapter 6 is focused towards findings
related to IoT gateway management. Chapter 7 presents concluding remarks.

2 Background and Related Work

The aim of this chapter is to present existing work related to this dissertation. The
chapter is structured to be aligned with the research questions from Section 1.2, as well as
the subsequent chapters in this dissertation. Where necessary, the background of specific
technologies or architectural principles are also briefly discussed, to frame the existing
and related work in context.

2.1 Connectivity and Reachability

It is already well understood that the need for interconnecting smart objects into the
Internet will exert tremendous strain on the existing addressing infrastructure of the
Internet running on IPv4. Currently, both the top level, as well regional Internet registries
have now fully exhausted the IPv4 address allocation space. The next-generation IPv6
protocol was standardised to overcome many limitations seen with IPv4, but challenges
still exist in migrating the Internet fully towards IPv6 as observed by the IETF Sunset4
Working Group [13]. However, IPv6 adoption has begun to accelerate in the last few
years. Live statistics on IPv6 adoption for Internet-based communication have shown
exponential uptake in the past half decade, with current penetration rates today in some
countries as high as 35% [14]. For the IoT, Ziegler et. al stress that IPv6 is referred to by
a growing number of IoT and M2M related standards, and that recent research favours
using IPv6 even on the most constrained devices. [15].

In this dissertation, IPv6-based networking and communication is seen as a fundamental
technology in several of the included publications, for enabling IP connectivity and
reachability for IoT devices and gateways. Simpler address allocation mechanisms and the
availability of global addresses were important motivations for using IPv6 in Publications
1, 2, 4 and 9. However, other factors were also considered. These included end-to-end
reachability in Publication 2 and easier network mobility in Publication 4.

This section discusses the related work around connectivity and reachability in the context
of Research Question 1 in 1.2 and Publications 1, 2 and 6. Subsection 2.1.1 introduces
focuses on the technologies on connecting edge IoT nodes into the Internet, which relate
to the research done for the dissertation, as well as have great market relevance today.
Subsection 2.1.2 then looks at existing literature and research work performed in the
academia.

2.1.1 Connecting edge IoT nodes
A variety of gateway connectivity solutions are used to connect IoT devices in edge
networks to the Internet. Many of these solutions require the gateway to perform
functions such as network address allocation, protocol conversion, tunnelling or packet

11

12 Chapter 2. Background and Related Work

adaptation. For end-to-end IPv6 communication, in addition to the kinds of IPv6 devices
present in the edge network, upstream IPv6 connectivity from a network or service
provider also determines what functionality gateways play, and how IPv6 connectivity is
supplied to end devices.
Two kinds of IPv6 edge networks are discussed in the following subsections. The first
is the Homenet architecture for IPv6 home networks, which is a networking enabler for
consumer-oriented IoT devices. Various aspects of Homenet are researched and discussed
in Publications 5 and 9. The second is about IPv6 over Low-Power Wireless Personal Area
Network (6LowPAN), a means of enabling constrained nodes to use IPv6 in an optimised
manner. 6LowPAN is not directly discussed in the Publications, but is nevertheless an
important technology for connecting IoT devices.

2.1.1.1 Homenet

Homenet was developed and standardised by the IETF Home Networking Working Group.
With the increasing amount of connectivity needed for intelligent consumer electronic
devices as well as the anticipated number IoT devices, sensors and actuators in the home,
it was recognised that residential home networks and gateways need to evolve beyond
simple Network Address Translations (NATs) and repeaters [16].
Home networks are envisioned to become complex enough to require multiple network
segments and subnets within the home. This would therefore require the presence of
interior gateway routing protocols, and it can therefore be assumed that Homenet supports
the existence of multiple gateways that act as routers: A border router supplying overall
connectivity services to the entire home and several interior routers, which, together with
the border router, need to be orchestrated to perform actual routing in the home network.
Home owners may not be technically adept. Consequently, one driving goal for the design
of the Homenet is to allow automatic configuration of the network in terms of IPv6
connectivity as well as discovery of services. The network must survive temporary uplink
disruptions and services within the Homenet must remain reachable at all times by other
nodes in the home network.
In order to meet these expectations and requirements, the Homenet architecture advocates
the following steps for obtaining IPv6 adddresses into the home network:

• The Internet Service Provider (ISP) has to firstly support native IPv6 addressing.
More specifically, it has to support the existence of residential IPv6 subnets, by
supplying IPv6 address blocks to a requesting Homenet border router. The border
router accomplishes this using an extension to the Dynamic Host Configuration
Protocol version 6 (DHCPv6), known as DHCPv6 Prefix Delegation [17]. DHCPv6
Prefix Delegation allows an IoT gateway to request a DHCPv6 server for an IPv6
prefix. The obtained IPv6 prefix represents an IPv6 address block allocated to the
gateway by the ISP’s DHCPv6 server. Gateways within the home can similarly
obtain prefixes from the border router with DHCPv6 Prefix Delegation.

• IPv6 devices within the home obtain their addresses statefully from their net-
work points of attachment using DHCPv6, or statelessly using Stateless Address
AutoConfiguration (SLAAC).

Although any internal routing protocol can be deployed in a Homenet, the Working
Group has adopted Babel [18] as the mandatory to implement routing protocol. Babel

2.1. Connectivity and Reachability 13

comprises part of the core Homenet protocol suite [19]. Babel is a distance-vector protocol
and provides fast convergence. This allows the mesh to automatically self-repair the
routes should gateway failure be detected. When Babel is used, instead of a hierarchically
organised routed network, gateways automatically configure themselves as an ad-hoc Wi-Fi
mesh network. Many of the connectivity and routing components for Homenet, including
Babel, are easily available for installation, particularly onto Linux-based embedded
platforms for home routers as well as microcomputers such as the Raspberry Pi. As a
consequence, Chroboczek [20] already describes some existing deployments for Babel,
from hybrid networks to small unmanaged networks. Because Babel itself is a very simple
protocol and can be deployed in constrained networks many IoT deployments using
Homenet technology can be envisioned.

2.1.1.2 6LowPAN

6LowPAN provides a way to allow end-to-end IPv6 communication with constrained
nodes with limited processing and power. 6LowPAN assumes the use of IEEE 802.15.4
radio technology: The network environment is assumed to be lossy, with a low bandwidth
supporting small packet sizes [21].

The gateway for a 6LowPAN network is called the 6LowPAN Border Router (6lbr).
Packets back and forth between an IPv6 backbone network and a 6LowPAN network
undergo adaptation by the 6lbr. Regular IPv6 addresses undergo header compression,
as well as fragmentation and reassembly [22] to adapt the sizes of IPv6 datagrams into
optimised packets suitable for transmission into the 6LowPAN network.

6LowPAN has been adopted for use in the standards of various consortia such as the ZigBee
Secure Energy Profile 2.0, the OpenThread Group and the Open Connectivity Foundation
(OCF) [23]. In addition, the Bluetooth Special Interest Group (Bluetooth SIG) as well
as the IETF have standardised the use of IPv6 over BLE [24], based on a new 6LowPAN
adaptation layer.

2.1.2 Integrating Non-IP Edge Nodes

Gateways play an integral role as an enabling the interconnection of non-IP edge nodes
into the IoT. IPv6 address allocations schemes for the IoT can sometimes be domain-
specific, and existing research work in this area has employed an optimal combination of
standardised and proprietary schemes. For example, Chakraborty and Chaki [25] propose
an IPv6 address allocation scheme for Smart Grids based on hierarchical clustering, in
which the addressing assignment is customised for smart grids. For Wireless Sensor
Networks (WSNs), Shin et al. [26] focus on reducing address collisions during Duplicate
Address Detection (DAD) using a virtual coordinate system based on locations of nodes in
a 6LowPAN. Cheng at al. [27] similarly propose another location-based address allocation
scheme for WSNs in a smart grid, called DSIPA, which aims at energy efficient address
configuration.

Similar to address allocation schemes, there is a lack of standardisation in mapping IPv6
(or even IPv4) protocol semantics as well as datagrams to non-IP protocols. Depending on
the technology involved, protocol conversion in gateways for integrating non-IP edge nodes
to the IoT can either be very trivial or a very complex operation. Innovative approaches
for multiprotocol gateways exist in academic research. While protocol conversion was
not performed as part of this dissertation, related academic research for multiprotocol

14 Chapter 2. Background and Related Work

gateways is discussed here for completeness, in enabling communication between IPv6
and non-IP networks.

Zou et. al. [28] proposed three approaches for the design of a home gateway to interconnect
Zigbee-based energy measurement sensors to IPv6 networks. The first is to have IPv6
over Zigbee, the second is adopt a dual-stack approach with both IPv6 and Zigbee
running side by side while the third option is to consider the conversion of 6LowPAN
and Zigbee addresses into standard IPv6 addresses. While the authors do not provide
an exhaustive comparison of these approaches, the design of their home gateway uses
the third approach. Zachariah et. al [29] proposed a general-purpose IoT gateway on
modern smartphones as a software service. This provides Internet connectivity to the
cloud over a cellular network, to BLE-based IoT devices. They envision that any BLE
device could leverage any smartphone as a temporary IP router and act as a normal IP
endpoint. Two approaches are proposed: The first approach uses the phone purely as a
6LowPAN border router to interconnect the BLE peripheral to the cloud, if it is capable
of running IPv6 over BLE. The second approach considers protocol translation, in which
the BLE profile data is translated and carried as a payload in an HTTP POST operation
to the cloud. This is similar to an earlier work from Rouhana and Horlait [30] who
proposed an architecture called the Bluetooth Web Internet Gateway, in which a gateway
performed protocol translation between Transmission Control Protocol (TCP) and the
Logical Link Control and Adaptation Protocol (L2CAP) layer of classic Bluetooth to
allow web-based communication by a Bluetooth-enabled endpoint. For integrating legacy
technologies and devices, Jara et al. [31] presents mapping techniques between legacy
technologies from home automation, industrial and logistic areas to IPv6 by the use of an
IPv6 addressing proxy. For wired networks, Meduna [32] looked at how to interconnect
wired lighting networks based on the DALI standard to IPv6 using a protocol translation
gateway running 6LowPAN.

2.2 REST and IoT

REST-based communication is an important facet of this dissertation and is a basis of
Publications 5, 6 and 8. For this reason, a short background is provided about using
REST in IoT in this section.

Today, interaction on the Web, as well as Web Application Programming Interfaces (APIs)
are predominantly based on the REST paradigm [33], using version 1.1 of the Hypertext
Transfer Protocol (HTTP). HTTP implements methods (such as GET, PUT, POST and
DELETE) to manipulate the representation of resource states. A Universal Resource
Identifier (URI) identifies the location of each resource served by an endpoint, as well as
the communication protocol necessary to allow clients to interact with servers.

When REST-based communication is performed with constrained IoT devices such as
sensors or actuators, each request or response can involve the transfer of just a few bytes
expressing the state of the resource. For such operations, using HTTP can be sub-optimal,
since it has been designed as a text-based protocol using a connection-oriented transport.
Consequently, the IETF Constrained RESTful Environments (CoRE) Working Group
designed a lightweight, binary, UDP-based REST protocol useful for IoT, called the
Constrained Application Protocol (CoAP). CoAP is similar in semantics to HTTP, but
optimised for constrained, IP-capable nodes [34]. Resources are described using a URI
containing a ”coap://” scheme name or alternatively a ”coaps://” scheme name if security
is required.

2.3. Energy Measurements 15

CoAP nodes exchange request and response messages using GET, PUT, POST and
DELETE method calls, and the protocol ensures that message overheads are extremely
small to avoid fragmentation. CoAP response codes are designed by intent to correlate
with their HTTP counterpart (2.01 Created in CoAP versus 201 in HTTP, and 4.04
Not Found in CoAP versus 404 in HTTP). These features are aimed at allowing CoAP-
based end points to easily integrate into the Web and communicate with HTTP-based
endpoints without much difficulty. Interworking between CoAP and HTTP are covered
by two documents: section 10 of RFC 7252 [34] which provides guidance for CoAP-HTTP
proxying, and RFC 8075 [35] which additional guidelines with regards to how URIs,
response codes, payload types are mapped between CoAP and HTTP endpoints.

2.3 Energy Measurements

Since IoT devices as well as gateways can have limited power, energy efficiency must be
treated as a 1st order constraint. In this section, the related work around IoT gateway
energy considerations are discussed in the context of Research Question 2 in 1.2 as well
as Publication 8 with regards to balancing energy efficiency with communication needs
and Publication 9 where energy consumption can be used for the detection of anomalous
network and gateway activity.

For home gateways, Kaup et al. [36] suggest the usage of the Raspberry Pi as a home
gateway that can be flexibly adapted to many needs to interconnect devices. They present
a power consumption model called PowerPi that could be used to derive possible power
savings based on CPU usage and network utilisation. The power profile of the Raspberry
Pi was also studied for its suitability as a remote gateway for wireless sensor nodes by
Astudillo et al. [37]. Martinez et al. developed a general methodology and framework for
modelling the energy consumption of IoT devices that can be employed to forecast the
impact of various application parameters on the power consumption levels [38].

In terms of general purpose measurement platforms, several research activities exist.
The popular Energino hardware and software platform was developed by Gomez et al.
[39] as an Arduino based low cost solution for energy monitoring in wireless networks.
EMPIOT is another energy measurement platform for wireless IoT devices designed and
implemented by Dezfouli et al [40].

There are a broad range of existing methodologies for taking energy measurements of
different kinds of devices. Merlo et al. [41] described how, in measuring power consumption
of Android-based mobile devices, they developed and implemented an app that extracts
energy consumption data both from dedicated APIs of the operating system as well as low
level kernel drivers to probe the battery information. Pathak et al. [42] also present their
work on designing and implementing software for the energy profiling running applications
in smartphones.

Power limited gateways make attractive targets for malicious activity that can compro-
mise the gateway or cause failures. Consequently, anomalous power consumption and
misbehaviour should be identified early in order not to affect the proper functioning of
the network. In studying anomaly detection in wireless sensor networks, Rajasegarar et
al. [43] summarised nine possible classes of attacks that could be mounted: Jamming,
Tampering, Sinkhole, Denial-of-Service, Spoofing, Selective forwarding, Sybil, Wormholes
and Eavesdropping. Anomaly detection in wireless sensor networks was also the focus of
the research by both Jurdak et al. [44] and Kanev et al. [45] although neither considered
the usage of power consumption as a metric. Oliner et al. [46] however, applied the

16 Chapter 2. Background and Related Work

usage of a collaborative approach of detecting energy anomalies in mobile devices by first
aggregating energy data from multiple mobile devices and then performing a diagnosis on
individual devices.

2.4 Composing Protocols and Protocol stacks

Development of communication protocols and application-level networking services in
the IoT communication protocols and networking services is challenging, given the
heterogeneity of networks and devices. Additionally, this remains an evolving area,
with emerging standards describing their own protocols, as well as new functionality
being incorporated to existing protocols. This has led to various development and
implementation efforts for communication protocols and protocol stacks in IoT gateways,
client and devices. When the required protocols or protocol stacks are not present
as part of the software or firmware of an IoT gateway or device, developers have two
alternatives. The first alternative is to retrieve and install any available third-party
source code or architecture-specific binary packages, compiling them if necessary. Should
custom protocols or more complex protocol stacks need to be developed, the second
alternative is to design and implement the required communication protocols or stack. It
is for the second alternative that using a protocol implementation framework, is a better
proposition.

The main emphasis in this section is on how existing protocol implementation tools and
frameworks can be employed to engineer communication protocols for IoT gateways. The
work discussed in this section pertains to Research Question 3 in 1.2 and Publications 3
and 4 and has been further structured into two subsections. Subsection 2.4.1 looks at
related work done for using domain-specific languages in creating new communication
protocols. Subsection 2.4.2 describes the approaches different kinds of protocol imple-
mentation frameworks take, in providing building blocks for protocol, or protocol stack
implementations.

2.4.1 Using Domain-Specific Languages
To accelerate the development of communication protocols from their initial inception
based on requirements to their eventual deployment, some protocol development tools
and frameworks rely on describing the the protocol in a high-level domain specific
language. The commercially available IBM Rational SDL suite[47] is an instance of a
framework uses domain-specific languages for protocol design. The SDL suite provides a
graphical development environment that allow a developer to specify the entire system
beginning with a high-level specification using the Unified Modelling Language (UML).
The developer can also visualise and conceptualise protocols and network components
with the Specification and Description Language (SDL) [48], a formal language that can
be used for the analysis and verification of communication protocols. SDL diagrams
specifies protocol designs using systems, blocks and processes. Systems encapsulate blocks
which similarly are composed of processes. SDL diagrams can be augmented with usage
and interaction scenarios with the Message Sequence Chart (MSC) editors provided. Such
a high-level approach to develop protocols allows easy iterations between design and
formal verification. Testing and simulation can also be undertaken with the framework
together with components provided, to eliminate any design errors. Finally, from the
validated and tested protocol design, the SDL suite enables the generation of C or C++
code and executables for some target architectures.

2.4. Composing Protocols and Protocol stacks 17

Bromberg et al [49] describe research work with a domain-specific language called z2z
that was developed to automatically generate network protocol translators. In z2z, the
developer specifies three kinds of modules: a protocol specification module, a message
specification module, and a message translation module. A compiler is then used to
generate running C code which is then linked to a runtime system. Burgy et al designed
a domain-specific language called Zebu which is derived from the Augmented Backus-
Naur Form (ABNF), to describe text-based and line-oriented IP-based application layer
protocol handling [50]. From the given specifications, the Zebu compiler generates
protocol-handling layers that can be tailored to the needs of the network application
using the protocol. Mercadal et al [51] adopted a similar approach to develop the Zebra
language, with the emphasis being to generate hardware parsers for embedded systems
instead of software-based parsers.

Liu et al. designed a protocol specification language called GALANG, which forms
part of their research in designing a protocol translation tool to facilitate IPv4 to IPv6
transitioning, called Generic Application Layer Translator (GALT) [52].

2.4.2 Using Protocol Implementation Frameworks
Instead of using domain specific languages, other kinds of protocol frameworks focus on
the direct support for code implementations. The development methodologies employed by
these frameworks, which take a protocol implementation from its conceptualisation until
its final conception, can differ. In the following subsections, some dominant methodologies
used by protocol implementation frameworks, as well as examples, are described.

2.4.2.1 Micro-protocol frameworks

Frameworks such as CORDS [53], Ensemble [54] and Cactus [55], provide a repository
of micro-protocols, that are used to construct a protocol implementation. Each micro-
protocol implements a single protocol-specific property as a building block. These
properties represent, among others, features such as congestion control, flow control, error
correction, sequencing and caching. Subsequently, a developer, by carefully analysing
or designing a protocol based on its set of properties, uses these blocks to implement
the resulting protocol. Bai et. al [56] describes the process of de-composition of routing
protocols in ad-hoc networks, which were implemented using micro-protocols. A related
paper from the research team reveals the usage and evaluation of ad-hoc and wireless
sensor network routing protocols implemented with micro-protocol frameworks [57].

2.4.2.2 Whitebox frameworks

Whitebox frameworks provide language-specific components and objects which can be
used by a protocol developer to obtain a protocol implementation, by deriving them
framework-supplied objects and classes. The Adaptive Communication Environment
(ACE) [58] is an example of a C++ white box framework used as a network programming
toolkit. ACE can be used resource constrained environments. It also supports high
performance, multiprocessing and concurrency for mission critical and real-time systems.
It shields the developer from operating system and network-specific details using wrapper
classes and platform adaptation layers. ACE employs software design patterns extensively
in three ways. Firstly, they describe an abstraction of the construction of protocols and
network services. Secondly, they explain inter-object interaction. Finally, they also are
used to document the way ACE itself works.

18 Chapter 2. Background and Related Work

2.4.2.3 Protocol Repositories

Protocol repositories often contain a library of ready-made protocols that the developer is
immediately able to use. The biggest advantage of protocol repositories lie in the ability
for rapid prototyping with minimal effort, using previously implemented protocols the
framework supplies. The biggest drawback is that in order to gain any advantage of
rapid prototyping over the other kinds of protocol frameworks, this approach requires
an active community or support team being able to implement a wide range of proto-
cols that a developer can subsequently use. The portable, Python-based Twisted [59]
implementation framework is such a protocol repository which has an extensive collection
of protocols. Twisted is event-driven, and objects called Deferreds implement callback
functions. Twisted has been used in both ad-hoc as well as wireless sensor networks
by the Simple Sensor Syndication project [60] in addition to the Lycaon [61] evaluation
framework.

2.5 Management of IoT nodes

This section visits existing network and device management standards, practices and
research work, that are important in the context of Research Question 4 in 1.2 as well as
Publications 5, 6 and 7. As Publication 6 as well as chapter 5 extensively reference the
REST-based Lightweight Machine-to-Machine standard, important architectural aspects
of the standard are discussed. Then, an overview of other related REST-based standards
pertinent to IoT device management are given. Finally, related research is presented.

2.5.1 The Lightweight Machine-to-Machine standard
Lightweight Machine-to-Machine (LWM2M) is a management protocol standard from the
Open Mobile Alliance (OMA) [62]. LWM2M is perhaps the most dominant REST-based
IoT device management protocol today. LWM2M was introduced by the OMA as a means
for managing an entire range of IP-enabled constrained and non-constrained devices,
both for device management and application data. LWM2M supports a client-server
architecture, where managed endpoints are called clients. The LWM2M management
server can be a physical host, or, for managing large-scale deployments, it typically resides
as a cloud-based service. LWM2M leverages open standards, particularly from the IETF.

LWM2M uses a RESTful architectural style, and natively relies on CoAP for messaging.
The LWM2M data model allows endpoints to expose their capabilities as standardised
Objects. Each LWM2M Object is uniquely identified with a Universal Resource Name
(URN) and an Object Identifier. It also contains a list of resources that are directly
mapped into CoAP-based URIs and resources. Objects and resources are identified in
a compact manner by a 16-bit integer. An endpoint can consist of different types of
Objects and can register any number of Object types and instances to a LWM2M Server.
OMA also maintains a public LWM2M Object registry with which third-party Standards
Development Organisations (SDOs), private organisations as well as individual users,
can register their own application-specific Objects. As an example, the IPSO Alliance
maintains its own set of application-specific LWM2M Objects. LWM2M operations on
managed endpoints are grouped into 4 logical device management interfaces:

• The bootstrapping interface allows either a client or a server initiated process for
the provisioning of keying material, configurations and access control lists, with

2.5. Management of IoT nodes 19

which the client can securely communicate with the server. For pre-provisioning, a
bootstrap server can be used as a trust anchor.

• The registration interface allows a client to inform the server about the kinds of
objects the endpoint is hosting.

• The management and service enablement interface is used by the server to manipulate
or retrieve object and resource representations on a managed client. In LWM2M,
resources can be read, written to, or executed. These basically translate into the
GET, PUT and POST CoAP operations.

• The information reporting interface allows long-lived subscriptions from the Server
to a resources of interest in a client. Then, whenever the state of a resource changes,
the client notifies the new resource value to the server.

2.5.2 Other IoT device management SDOs

In the IETF, the CoAP Management Interface (CoMI) [63] aims at enabling the use of
data models specified in the YANG modelling language [64] in constrained environments,
together with the use of CoAP. The use of YANG was first introduced in NETCONF
and then subsequently used in RESTCONF. Object identifiers in YANG are specified
as hexadecimal strings. NETCONF and RESTCONF also encode YANG payloads in
JavaScript Object Notation (JSON) or XML. Motivated by byte savings, CoMI uses
compresses YANG string identifiers to numeric identifiers using base64 encoding. Also,
CoMI performs YANG payload serialisation in the Concise Binary Object Representation
(CBOR) format, which is a highly compact encoding format suitable for use in constrained
networks.

The Open Connectivity Foundation (OCF) is an industry driven consortium to allow
application interconnectivity to IoT devices, as well as machine-to-machine communication.
The OCF specifications [65] describe an extensive RESTful architecture which provides
language-specific API mappings to a core framework which has functionalities ranging
from addressing, endpoint and resource discovery, device management, security and
messaging. The primary REST protocol that OCF uses is CoAP, although bindings for
certain operations such as firmware updates, can be performed using HTTP.

oneM2M is another industrial consortium established through an alliance of standards
organisations to develop a single horizontal platform the for exchange and sharing of
data among all applications [66]. The architecture supports a layered model which is
composed of three layers: Application Layer, Common Services Layer and a Network
Services Layer. Among others, the Common Services Layer provides functions such as
Discovery, Registration, Communication Management, Device Management, Security and
Location. For multiple device management, oneM2M supports several different protocol
standards of which LWM2M is one [67].

2.5.3 Existing Work

REST-based IoT device management, and the standardisation activity around it, focus
on Internet-enabled devices. As Publication 6 describes, today, device management
standards do not specify how the management of non-IP devices, as well as devices with
proprietary data models, are performed. Publication 6 describes how LWM2M-based

20 Chapter 2. Background and Related Work

device management can be extended towards the usage and configuration of gateways in
supporting the management of non-IP devices. Here, similar approaches are described.

Kim et. al [68] described the design of a multiprotocol IoT home gateway that provides
device management of IP and non-IP devices in the home using Message Queuing
Telemetry Transport (MQTT). The design of the home gateway supports third parties
to monitor the devices in the home, receive aggregated device data for reusing the data
and to send messages for device control. This is accomplished by allowing the gateway
to expose a REST interface using HTTP GET and POST methods. Huang et al. [69]
advocated the use of a framework employing Software Defined Networking (SDN) to
dynamically configure networks with IoT devices for scalability. Tayur and Suchitra
[70] applied the same principles of SDN for device management in smart cities from the
cloud, that also supports multi-tenancy. Also, within the domain of home networks,
Perumal et al. [71] developed an IoT device management framework for smart homes to
manage wireless IP and non-IP devices. The prototype can be deployed in smart phones
and consumer-grade computing equipment, and enables device configuration, device
discovery as well as data collection. Similarly, Jin and Kim [72] conceived an OCF-based
management architecture to manage various kinds of devices by adding a proxy layer
mapping OCF data models to the proprietary models of these devices. Chang et. al [73]
proposed and designed a gateway through which a LWM2M server can manage legacy,
non LWM2M devices. Additionally, the work demonstrates how interworking between two
management frameworks can be achieved using this gateway, by incorporating the gateway
to also work with the oneM2M platform. Datta and Bonnet [74] also implemented a
oneM2M-based device management framework that uses LWM2M.

2.6 Summary

This chapter presented research work and the state of the art related to the work done
in this dissertation. This was presented and structured according to the four research
questions, in terms of connectivity and reachability, energy measurements, protocol
composition and gateway management. At the same time, a background of the standards,
technologies and communication paradigms important in this dissertation, was given.

It can be seen that particularly for allowing reachability between IP nodes and non-IP
nodes, a variety of domain-specific address allocation, address mapping and translation
technologies can be utilised. The work in this dissertation builds on these approaches,
particularly in how IoT gateways can facilitate IPv6-based connectivity into edge networks,
as well as communication and data transfer between IP nodes and BLE-based IoT devices.
This is further employed for gateway and device management in this dissertation using
REST-based communications and standard data models in LWM2M to interact with
gateways to retrieve data from non-IP IoT devices.

For composing communication protocols, a large variation also exists for the tools,
frameworks and methods for , and there are no directly comparable qualitative metrics
amongst them. This variety is also due to specific application scenarios to which these
tools and frameworks are targeted for protocol composition. In this dissertation, a hybrid
approach was taken to combine the use of a domain-specific language to describe protocols,
partial code generation and a white box framework to abstract message-based inter-object
interaction and network services. In doing so, this presented a flexible approach for
addressing the runtime computing, storage and hardware constraints in IoT gateways, as
well as facilitating portability and run-time event monitoring.

2.6. Summary 21

The proposed approaches described in this chapter for undertaking energy measurements
were performed as a means to optimise power and reduce energy consumption in end
devices as well as gateways. Software-based approaches, such as smartphone apps, work
well in end devices and gateways to provide fine-grained profiling, but usually require
more powerful operating systems that may not always be found in IoT gateways in which
firmware run in embedded systems. In addition, when considering the use of power
consumption as a metric for security anomaly detection, they can either be inaccurate
or ineffective. The approach undertaken in this dissertation, therefore, adopts hardware
solutions and hardware-based data acquisition to address the hardware heterogeneity
common in IoT gateways, in order to undertake energy measurements to perform anomaly
detection as well as balancing energy efficiency with communication needs.

3 Connectivity and Reachability
Considerations

This chapter presents the dissertation work performed towards IP connectivity and
networking services provided by the gateway, in allocating addresses, delivering reachability
and communication for IoT devices in edge networks. Primarily this focuses on the work
done in Publications 1 and 2. However, work from other publications are also drawn
upon. Publications 5 and 9 employ Homenet IPv6 networking, Publication 8 is used to
illustrate how data reachability can be achieved with REST-based proxying, particularly
the use of alternative transports, and Publication 4 for advanced service discovery.

Because of the depletion of publicly available IPv4 addresses, the research in the publica-
tions strongly emphasise IPv6-based networking and communication, as a fundamental
technology that IoT gateways need to support for interconnecting IoT devices and net-
works. Therefore, the network connectivity and device reachability considerations for IoT
gateways in this chapter focus on the usage of IPv6 for future IoT network toplogies and
connected edge devices.

3.1 Gateways allocating native IPv6 addresses in edge networks

Publication 1 describes eight different kinds of edge network topologies that can impact
IPv6 addressability and reachability for edge devices when native IPv6 addresses are
available. From these eight topologies, six topologies are dependent on the existence of
one of more IoT gateways for proper address allocation for IoT devices. In the following
subsections, some specific challenges of an edge IoT network are examined, and the
solutions are presented for how an IoT gateway can allocate native IPv6 addresses into
the edge network.

3.1.1 Gateway solutions using DHCPv6 Prefix Delegation

IoT gateways must be able to cope and adapt to ISP prefix allocation policies and deliver
announcements and possible prefix allocations reliably to other gateways and devices in
the edge network. Without any pre-existing address assignment agreements between an
ISP and customer organisations, DHCPv6 Prefix Delegation is the standard approach for
extending networks. However, the prefix length supplied for customer LANs can vary
substantially from ISP to ISP. For example, ISPs can provide a /48 prefix, which allows
up to 65536 subnets per LAN, while supplying a /60 prefix restricts the LAN to just
16 subnets. In Publication 1, the gateway solution is to accomplish this by announcing
routes as well as longer prefixes into the edge network. This is also demonstrated in

23

24 Chapter 3. Connectivity and Reachability Considerations

Publications 5 and 9. The Homenet gateway in Publication 5, for example, received a
/60 prefix from the ISP, while in Publication 9, a /56 prefix was supplied instead. 1

An IoT gateway obtaining IPv6 address blocks using DHCPv6 Prefix Delegation must
also flexibly support different strategies to deliver IPv6 addresses into the edge network.
Publication 1 describes how a combination of stateful and stateless address allocation
strategiess can be successfully employed at the edge network. Stateless IPv6 addresses
are obtained with SLAAC, while DHCPv6 can be enabled for stateful IPv6 address
allocations. It is also important to note that DHCPv6 Prefix Delegation can also exist
within an edge network, that can enable a downstream IoT gateway to request IPv6
address blocks from the border gateway.

In cellular networks based on the Third Generation Partnership Project (3GPP) standards,
DHCPv6 Prefix Delegation has been specified for 4G Long Term Evolution (LTE) Release-
10 onwards [76] . However, DHCPv6 Prefix Delegation generally remains unsupported
and undeployed. Upstream bridging by the User Equipment (UE), such as a gateway, is
therefore used, by announcing the same /64 prefix that was received on the radio link, to
the LAN link [77]. While this allows edge devices to obtain global IPv6 addresses via the
gateway directly from the ISP it currently inhibits the automatic setup and routing of
IPv6 edge networks via Homenet. However the Homenet setup described in Publications
5 and 9 provide a partial solution by allowing routable IPv6 using ULAs in the edge
network.

3.1.2 Solutions for minimising connectivity disruption
In the IoT, address stability is important, given the expected heavy M2M traffic and
significantly large numbers of nodes in network segments. Connectivity disruption as well
as resumption can adversely affect addressing in the LAN, particularly if renumbering
occurs and new IPv6 prefixes are allocated. Frequent connectivity disruptions and
subsequent IPv6 address configuration operations also adversely affect power consumption
for energy constrained devices.

Internet connectivity disruption and resumption can be a result of several factors, such
as unexpected ISP service outages, poor signal quality on cellular connections, scheduled
service breaks, or nodes (and even networks) physically moving and changing their points
of network attachment. Such mobility can also potentially impact running services and
applications, and Publication 4 suggests possible solutions.

Homenet-based gateways for residential networks, described in Publications 5 and 9,
counter address renumbering by supplying (and multihoming) all nodes in the Homenet
with two kinds of IPv6 addresses: A Global Unicast Address (GUA) and a Unique Local
Addresses (ULA). GUAs and ULAs are roughly akin to public and private IPv4 addresses.
GUAs can change upon loss and regain of Internet connectivity. ULAs do not guarantee
duplicate addresses and address collisions beyond the LAN. However, nodes and services
within the homenet remain reachable to each other via their ULAs, which persist during
Internet connectivity outages.

Provider Independent (PI) IPv6 addresses are another alternative, in which the organisa-
tion is directly assigned an IPv6 address block by the Regional or Local Internet Registry.

1To ensure no IPv6 address depletion occurs in customer networks in Finland, Traficom, the Finnish
Transport and Communications Agency, discourages supplying /60 prefixes. Instead it recommends ISPs
to supply a /56 prefix to their customers (including residential users), allowing up to 256 subnets per
LAN, for a total of 16 million IPv6 addresses [75].

3.2. Gateway address allocation via IPv6 transition technologies 25

An organisation having PI addresses does not succumb to renumbering. However, PI
addresses are rarely issued, owing to the overheads and maintenance upkeeps necessary
at the Internet Registry. With PI addresses, no special action is needed on the part of
the gateway.

3.1.3 Solutions to support node heterogeneity

IoT networks can feature a diverse mix of constrained nodes, perhaps within even a single
subnet. Addressing requirements for these nodes might differ. For example, extremely
constrained nodes, such as Class 0 nodes, may not be able to perform Neighbour Discovery
(ND) [78] and Duplicate Address Detection (DAD) [79] operations, and consequently
require IPv6 address configuration assistance from less constrained neighbouring nodes or
gateways. As mentioned in Section 3 of RFC 7228 [4], Class 0 devices will participate in
Internet communications with the help of larger devices acting as proxies, gateways, or
servers.

Integrating non-IP IoT devices may prove challenging if they do not possess a unique
Interface Identifier (IID) that can be mapped easily into IPv6 addresses, such as the IEEE
EUI-64. In such cases, an IPv6 address needs to be allocated to the IoT device by the
gateway. This can be done either from a DHCPv6-based pool of unallocated addresses, or
by the gateway generating a 64-bit IID on behalf of the device. A range of methods for
arriving at different IIDs is discussed by Cooper et al. [80]. Apart from mapping IPv6
addresses to devices, the gateway should also participate in ND and DAD operations on
behalf of the device, to eliminate address collisions.

3.2 Gateway address allocation via IPv6 transition technologies

When an ISP is unable to provide IPv6 addresses that IoT devices in an edge network
can obtain, several kinds of translation, as well as tunnelling mechanisms are available,
that allow IPv6 address allocations to IoT devices in edge networks as well as IPv6-based
communication using IPv4 core networks.

Publication 2 describes the usage of 6to4 [81] technology in a home gateway to supply
IPv6 connectivity into the home. 6to4 was conceived as one of several alternative IPv4
to IPv6 transition mechanisms which permit end-to-end IPv6 communication over IPv4
intermediate links. Other examples include Teredo [82] and NAT64 [83].

Transitional IPv4 to IPv6 technologies continue to be useful for IoT for two reasons:

• Much of the deployed Internet, although transitioning to IPv6, rely on IPv4 infras-
ructure and have enabled IPv6 transit on a limited basis.

• In geographic regions where fixed line Internet connectivity is limited and only
a cellular WAN is present, transitional technologies aid in creating an IPv6 edge
network.

As opposed to native IPv6, transitional IPv6 mechanisms employ a variety of techniques
to transmit IPv6 packets over IPv4 links using either translation or tunnelling. An
extensive study of IPv6-over-IPv4 tunnel mechanisms was performed by Steffan et al.
[84]. A similar study was performed by Kim. Ruiz et al. [85].

26 Chapter 3. Connectivity and Reachability Considerations

Compared to native communication, transitional schemes induce packet processing and
transmission overheads. Mizoguchi et al. studied quality degradation of various Web
services between IPv4 and 6to4, with results showing that degradation is negligible for a
user, unless the link characteristics exhibit packet loss as well as higher latencies [86]. In
performance evaluation studies done by Bahaman et al. [87], packet throughput for UDP
transmission over 6to4 compared favourably with native IPv4 and IPv6, athough for TCP,
the authors reported a 50 per cent drop. Round Trip Time (RTT) measurements showed
that 6to4 was on par with native IPv4 and IPv6.

These findings are in line with in a related study of Publication 2 performed by the
author [88]. In the related study, experiments were conducted in live networks in Finland,
based on a content sharing prototype developed for interconnected homes. In one study,
measurements were taken between 2 endpoints geographically separated by 500 km. One
hundred HTTP GET and POST operations were applied on small files of approximately
400 bytes. First the tests were conducted between IPv4 endpoints. Subsequently they
were conducted between a 6to4 endpoint and a native IPv6 endpoint.

The results, depicted in Figure 3.1, indicate minor variations between using IPv4 or IPv6.
Although IPv4 communication did, on average, perform better, the RTT observed with
using 6to4 was only marginally greater. Additionally, it can be seen that both IPv4 as well
as IPv6 communication coped with retransmissions and packet loss on the live network.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Operation number

Ti
m

e
(s

)

Retrieve List
(IPv4)

Update List
(IPv4)

Retrieve List
(IPv6)

Update List
(IPv6)

Figure 3.1: Roundtrip time comparison of IPv4, IPv6 and 6to4

One other observation for the slightly larger RTT observed with 6to4 rests with its routing
mechanism. 6to4 uses anycast addresses to discover a 6to4 relay router to tunnel IP
packets to, from the 6to4 border gateway. The 6to4 relay can reside in an arbitrary
location on the Internet. The subsequent responses can follow a different path back to
the 6to4 border gateway. Therefore, for UDP-based connectionless communication using
6to4, which can be prevalent in the IoT, there would be no measurable RTT difference
with native protocols. TCP-based roundtimes would be affected, if acknowledgement
packets take a different path back to the source endpoint, as was reported by Bahaman
et al. [87].

While using 6to4 for highly reliable as well as high bandwidth services might be suboptimal,
the same would not hold true for IoT-based communication characteristics. However,
operational difficulties subsequently discovered with the use of anycasting in 6to4 [89]
led to the development and deployment of its successor, 6rd [90]. Nevertheless, its usage
remains popular as a transitional IPv6 technology, peaking at more than a third of the
total IPv6 traffic in October 2014, as Figure 3.2 depicts. Even when the IETF formally
deprecated the 6to4 anycast prefix and discouraged the inclusion of 6to4 in new host and

3.3. Data Reachability 27

router implementations in May 2015 [91], a small proportion of transitional IPv6 traffic
continues to manifest itself.

Figure 3.2: IPv6 Address Types, from [2]. Note that the figure does not show 6rd traffic as
well as tunnelled IPv6 traffic, as these do not contain special prefixes.

3.3 Data Reachability

An additional dimension for reachability besides connectivity issues, stems from whether
direct Internet connectivity between communicating endpoints is an essential requirement.
As communication in the IoT is usually data driven, the use of a gateway for proxying
and data relaying might be sufficient to fulfill the needs of communicating endpoints if
end-to-end IPv6 connectivity is not required. In effect, this decouples the availability of
an endpoint’s data, from its network connectivity with a communicating peer.

The concept of decoupling the message payload from the communication protocol is
presented in Publication 8. While the paper is oriented towards energy measurements,
which is discussed in Chapter 4, it also describes how a gateway can preserve the semantics
of REST-based communication while performing protocol translation to interact with
resource representations. CoAP’s original design was for using REST messages over the
User Datagram Protocol (UDP) or Datagram Transport Layer Security (DTLS). As part
of this dissertation, research was undertaken towards the design and implementation of
the WebSocket protocol [RFC6455] as an alternative CoAP transport.2 This was achieved
by decoupling of its Request-Response logic, from the underlying messaging logic. Two
kinds of underlying transports for CoAP are therefore discussed in Publication 8: CoAP
using UDP as its transport, and CoAP using the WebSocket protocol [RFC6455] as its
transport.

Websockets are an appealing transport for carrying CoAP messages for two particular
reasons. Firstly, a CoAP client may be in an access network that allows communications
only with HTTP or via HTTP proxies. In order to support the latter case, the constrained
node hosting CoAP server would need to have a minimal TCP implementation with
enough HTTP logic to negotiate a WebSocket session. While not as efficient as UDP,
this approach would allow access to CoAP servers from less open networks. A client can
communicate with a CoAP server by using end-to-end CoAP rather than traversing via a
HTTP-CoAP proxy.

Secondly, web applications, or applications running in a web browser environment, do not
have access to the underlying platform’s UDP or TCP socket APIs, and the only means
for communications besides HTTP is the use of WebSockets. Consequently, CoAP can be

2This research work was subsequently adopted into the IETF and culminated as RFC 8323[8]

28 Chapter 3. Connectivity and Reachability Considerations

implemented as a subprotocol within a WebSocket session, for example using client-side
Javascript, and can be executed in a browser.

Additionally, BT SIG is in the process of standardising the use of a REST-based API that
can be used by a client to a proxy to communicate with Bluetooth devices implementing
the Generic Attribute Profile (GATT) [92] . Thus a client device can interact with a
gateway either over HTTP, CoAP, or CoAP over WebSockets to interact with Bluetooth
devices using this API.

Figure 3.3: Abstraction of a simple CoAP-to-CoAP proxy over alternative transports.

The solution in Publication 8 also allows CoAP messages to be transported over other
alternative transport protocols. Thus, simpler gateway proxies result, such as a CoAP-to-
CoAP proxy, where only the transports differ. An abstraction of such a gateway is shown
in Figure 3.3.

3.4 Summary

Depletion of publicly available IPv4 address pools has introduced significant new challenges
for future public IP address allocation, particularly in the deployment, configuration
and management of IoT devices. IPv6 has long been promoted to overcome the address
exhaustion in IPv4 and provide significant advantages for connectivity and end-to-end
reachability.

The research in this dissertation shows, however, that IPv6 deployment, specifically for
IoT devices and networks continue to present significant challenges. Eight basic IPv6
network topologies for IoT deployments have been identified that IoT gateways need to
consider in Publication 1. The feasibility of IoT gateways supporting mesh networking,
automatic configuration and address allocation, particularly for edge networks in which
different realms of control may exist, is a key factor in the successful deployment of some
of the identified network topologies.

The results show that network operator support for DHCPv6 Prefix Delegation plays
a key role in delivering IPv6 address blocks to edge networks via border routers and
IoT gateways. Because of its scalability, the findings confirm that SLAAC is the most
straightforward technology to allocate IPv6 addresses for IoT edge networks and devices.
However, more complex deployment scenarios, can require additional measures to be
taken by the gateway, such as DHCPv6, DHCPv6 Prefix Delegation to deliver address
blocks to downstream gateways, or address mappings to support non-IP devices, in order
to support end-to-end connectivity and reachability.

3.4. Summary 29

When network operator support for DHCPv6 Prefix Delegation is not present, such as
in 3GPP networks, IoT gateways must perform bridging to deliver IPv6 connectivity.
While this allows end-to-end reachability over IPv6 to IoT devices, it cannot be effectively
utilised as an IPv6 address allocation strategy for the IoT network topologies described
in this dissertation. Using IPv6 transition technologies continues to offer an alternative
route to allow IPv6 deployment, connectivity and address allocation in such scenarios, or
indeed when only IPv4 is supported in the backhaul network. As described in Section
3.2, performance measurements undertaken demonstrate the feasibility of IPv6 transition
mechanism for IoT deployment.

The results of dissertation show that even when transport protocols or even networks differ
in the IoT between endpoints wishing to communicate and exchange data, IoT gateways
can employ other application level solutions using REST-based communication with
CoAP over alternative transports. This is an effective strategy in which multi-protocol
IoT gateways serve as REST proxies between disparate endpoints and still successfully
preserve protocol semantics.

4 Energy awareness in gateway
communication

This chapter describes the work performed in Publications 8 and 9. Publication 8 of this
dissertation investigates how different protocols used for REST-based communication in
the IoT, impact energy consumption in cellular networks. A common strategy used by
constrained IoT sensors to conserve energy is to mostly reside in very low power, or sleep
mode, sustain a very low duty cycle, and power up their radios only when necessary. This
is not a realistic strategy for gateways, however. Gateways, for example, are equipped
with multiple wireless interfaces and are more often required to be in active mode in
order not to severely affect data readings and sensor traffic. In some deployments, they
can additionally operate on battery power alone. As an example, cellular gateways exist
which provide Internet connectivity to edge networks based various kinds of wireless and
wired technologies. Optimising the usage of cellular radio therefore prolongs the duty
lifecycle of these gateways.

Power depletion of a battery, or increased power consumption in gateways may not always
be the result of sub optimal communication or increased communication from devices
in the edge network to the Internet. Publication 9 studies energy consumption patterns
in commodity home gateways induced with increased malicious activity. Specifically,
it considers the Homenet architecture consisting of multiple gateways organised as a
self-configuring mesh, and the impact of various attacks on the mesh infrastructure.

Taken together, these publications provide findings and insights as to how measuring
energy consumption in the gateway can be beneficially used for both selecting the right
kind of communication, and detecting communication anomalies quickly.

The rest of this chapter is as follows: Section 4.1 describes how energy consumption data
was acquired. Section 4.2 discusses how different REST protocols and transports, in
addition to different kinds of cellular network, significantly affect the power consumption
at a gateway. Section 4.3 discusses how anomalous power consumption in a gateway can
be used as a metric to detect malicious activity. Finally a summary of this chapter is
provided in Section 4.4.

4.1 Undertaken Measurement Methods

Publications 8 and 9 rely upon external data acquisition equipment to measure the power
consumption of the devices under test in real time, and subsequently store the data either
locally, or into external storage media. The device under test in Publication 8 was a
smartphone which can act as both an end-device, as well as a gateway used by both IP
and non-IP edge devices. In Publication 9, commercial consumer-grade access points

31

32 Chapter 4. Energy awareness in gateway communication

were used, in which the vendor’s firmware was replaced with OpenWRT, a linux-based
distribution for embedded system.

In Publication 8, the data acquisition device both supplied as well as measured the power
to the smartphone. The device supplied highly detailed measurements in real-time via a
USB interface to a PC. However, it was both costly and bulky, as it was custom ordered
and made to specifications for detailed power measurements aimed at designing new
smartphones. Additionally, it was not portable, as it was mains powered.

Owing to both cost and portability reasons, a different hardware solution was adopted
for Publication 9, where a hardware platform was constructed with low cost, off the shelf
components that could store data locally and could be powered from its own battery
source reliably. Open source software was also used to drive this platform during energy
measurements. Owing to its cost-effective design as well as form factor, it was easy to
replicate the platform to measure multiple devices at arbitrary locations and points in
time.

4.2 Optimising cellular REST communication

When REST-based communication is employed by IoT gateways, they typically either refer
to HTTP or CoAP. For this purpose, the usage of these two protocols over different kinds
of cellular networks were measured. As Publication 8 describes live 3GPP networks were
used based on 2.5G Enhanced Data rates for Global Evolution (EDGE), 3G High Speed
Packet Access (HSPA) and 4G LTE. Although it would have been interesting to compare
the obtained results for energy consumption against 5G as well as NB-IoT networks, at
the time of measurements, these networks were not yet commercially available. Also, the
total cost of communication, in terms of power consumption of all the intermediate nodes
between the communicating endpoints were not taken into account.

The envisioned use cases considered REST-based communication with remote hosts,
to which data aggregated by the smartphone is sent. HTTP was selected not just as
a reference point against which CoAP power consumption can be measured, but also
because many Web-based platforms predominantly offer HTTP APIs to interact with.

For CoAP, two further sub cases were studied. In its traditional protocol configuration,
CoAP uses UDP as its transport protocol. Because it is easy to envision using a
smartphone acting as a CoAP server over the WebSocket protocol (and for instance, a
web browser interacting with nearby BLE devices), usage of CoAP over WebSockets was
also measured.

Two kinds of message exchanges between a client and server supporting these three
protocols are depicted in Figure 4.1. Above the dotted line, the client-server messages
illustrate how sessions are set up. For CoAP, the messages show how a CoAP Observe
relationship is established. For CoAP+WS, the messages describe how a TCP and HTTP
session is set up and upgraded to use WebSockets. For HTTP, the messages show a TCP
session being established between the client and server.

Below the dotted line, message exchanges describe the transfer of the resource state from
the server to the client.

For reference, the use of CoAP over Secure WebSockets secured with TLS was also
measured. However session estabishment with TLS is omitted from the diagram for
simplicity.

4.2. Optimising cellular REST communication 33

Figure 4.1: REST-based Message exchange.

The hypothesis that IoT gateways and devices can use CoAP instead of HTTP for
energy efficient cellular communication was challenged. The subsequent findings did not
support the hypothesis conclusively. It was discovered that no circumstances occurred
where CoAP was less efficient than HTTP. In several instances, HTTP fared significantly
poorly particularly when its handshake and message transmission size pushed radio
transmissions into a higher energy consuming state. An example of this is the use of LTE
radio, and particularly in LTE networks in which the operator has enabled Discontinuous
Reception (DRX), a radio mode offering energy savings for applications that do not need
constant data streams. In a DRX-enabled 4G network, CoAP-based communication,
owing to its more compact packet sizes and concise message exchanges, were able to
exploit energy savings benefit, but HTTP, with its more verbose payloads and greater
exchanges of messages, could not. This was particularly apparent when small REST
payloads were sent in rapid one-second transmissions.

When radio signalling costs dominate the cellular activity, optimisations on the transport
and application layer were not as significant, and the energy consumption of HTTP was
comparable to that of CoAP. This occured in EDGE networks when REST communication
was performed periodically over ten-second transmissions. Thus if a deployment scenario
was known in advance, the usage of HTTP-based communication between a gateway and
a remote service can be feasible.

Usage of CoAP over WebSockets, as well as over Secure WebSockets, performed compara-
tively, with its performance closer to CoAP than to HTTP. This could be explained on
how the underlying transport performs in CoAP communication: After the initial HTTP
based upgrade handshake to a WebSocket connection, the communication is effectively
CoAP over a bidirectional TCP channel supporting framing. The results from these
measurements were taken into account when the usage of CoAP was standardised over
TCP, TLS and WebSockets as RFC 8323 [8].

From the obtained results, it can be postulated that energy savings are possible for a
power-constrained cellular IoT gateway if it possesses the ability to select the kind of
3GPP radio it uses, and has the ability to influence the payload size during transmissions.
For small messages sizes, for example, EDGE proved to be most efficient radio.

On the other hand it can also be seen that even with just CoAP-based communication,
message sizes, transmission intervals and radio selections can affect power savings signifi-

34 Chapter 4. Energy awareness in gateway communication

cantly. For IoT gateways which wish to deploy power savings in cellular radio connections,
the findings from Publication 8 reveal that two factors are therefore important as described
below.

• Aggregate RESTful interactions. Firstly, the gateway should be able to aggregate
RESTful interactions intelligently on behalf of edge IoT devices to ensure a good
tradeoff between radio signalling and actual communication, as well as ensure that
high powered radio states are avoided as much as possible. This means that in HSPA
networks, the gateway can perform Fast Dormancy, or ensures that radio states do
not enter into the high powered CELL_DCH (Dedicated Channel) state but instead
maintain communication not to exceed the thresholds supplied to remain in the
CELL_FACH (Forward Access Channel) state. In LTE networks, enabling DRX
support allows significant energy savings for the gateway. However, the timings for
both the entry into the CELL_DCH state from the CELL_FACH state, as well as
DRX cycles are network operator specific, and consequently require appropriate
configuration actions on the gateway.

• Coordination with IoT devices in the edge network. Secondly, the gateway needs
to co-ordinate as much as possible, communication between the gateway and IoT
devices which wish to transmit data. Providing timing hints to end devices allows
synchronisation of data transmission from the edge cloud as well as packet reception.
Research in this area is limited, although such a scheme was proposed in an Internet
draft by Savolainen and Nieminen [93].

4.3 Anomalous Gateway Behaviour

Publication 9 specifically dealt with an advanced smart home architecture based on
Homenet, where multiple gateways are present within the residential network. The work
was performed in a controlled laboratory environment using four IPv6-enabled Homenet
gateways interconnected as an ad-hoc mesh over a dedicated Wi-Fi radio, and which
supply Internet connectivity to edge IoT devices and computers over a separate Wi-Fi
radio interface in infrastructure mode. The Babel routing protocol was utilised, and
energy measurements were undertaken during different kinds of attacks on the routing
infrastructure.

The work was initiated with a working hypothesis that under specific kinds of attacks, a
Homenet gateway, as well as the network as a whole, would exhibit significant deviation
in power consumption. If the hypothesis is valid, then anomalous power consumption in
a gateway can be used as a source of information for attack detection.

The energy measurements taken were based on levels of severity in terms of intrusion
types. Three different kinds of attack surfaces were targetted: The wireless channel, the
routing protocol, and the payload carried by the messages of the routing protocol.

The findings established that eavesdropping attacks were indistinguishable in terms
of using energy measurements. However, a Jamming attack involving injecting de-
authentication frames towards the link between two gateways caused a more significant
surge in power consumption than injecting de-authentication frames just to cause a
Denial-of-Service attack on one gateway. Similarly a Denial-of-Service attack in injecting
invalid routing packets can be detected, particularly if the incoming packets force the
gateways into performing computations, such as checksum verification. The third kind

4.4. Summary 35

of attack which combined Sinkholes with Denial-of-Service, by constantly flooding new
routing information into the network forcing gateways to continually update their routing
tables, was extremely noticeable.

The observations can be used to conclude that route flooding attacks and some forms
of de-authentication attacks can be detected by using gateway power consumption as a
metric. Energy footprints obtained from these attacks were clearly visible. Additionally,
route flooding was particularly effective as a battery exhaustion attack, aggressively
shortening the operational lifetime of a battery-operated router by up to 50%.

On the other hand, the measurements were taken when no other traffic was present in
the network. The energy footprints of simple de-authentication attacks can be masked
if, in addition to routing traffic, the Homenet conveys user traffic. Thus, deploying the
gateways into a live network to accurately portray network utilisation patterns as well as
CPU processing loads, and then measuring the impact of these attacks, would provide
additional insight.

4.4 Summary

Energy measurement undertaken in Publications 8 and 9 formed the underpinnings of this
chapter. These measurements provided insights as to how energy consumption patterns
in IoT can be gleaned for border as well as multi-hop mesh gateways commonly found in
IoT network configurations, in two orthogonal ways.

The energy consumption patterns were firstly used towards understanding how application
payloads, communication protocols as well as radio networks can significantly impact
power consumption when sensor data is transported from the edge network to an external
endpoint. From the obtained results, it was seen that the best protocol and radio combina-
tion allowed approximately 60% more power savings compared to the worst. Secondly, the
energy consumption patterns were used towards understanding how security anomalies
can be detected in an edge networks, particularly during active attacks. Here, the findings
establish that incidents of eavesdropping attacks or simple Wi-Fi deauthentication attacks
cannot be accurately detected in small networks, registering just 23mW in a 4-router
configuration that does not have user traffic. However, a route flooding attack establishes
a significant energy fingerprint. When a distance-vector routing protocol, such as Babel is
used, route updates and routing information exchange among routers become significant
traffic wise as the number of routers in the edge network increases. From the results
seen, a route flooding attack would have a crippling effect on the routing infrastructure
if not detected on time. The findings show that even with just a 4-router network, a
network under attack would have each router displaying a sharp increase in average
power consumption from 2192mW to 2802 mW which is almost a 28% increase in power
consumption per router. Both Publications 8 and 9 show that usage of secure transports
and hashing functions have a negligible impact energy-wise, when compared against
insecure counterparts.

5 Composing Communication
Protocols

This chapter is based on the work done in Publications 3 and 4 for prototyping and
implementation of network protocols and communication software, that can reside in
IoT gateways and devices. More specifically, it discusses a lightweight C++-based
framework called DOORS1, that was developed for implementing protocols and network
services. These range from simple socket-based systems, to protocol stacks, proxying and
translation, as well as general event-based client-server applications.

In Publication 3, the core features of the framework are described, such as reusable
communication components, abstractions supporting protocols and protocol messages, as
well as runtime monitoring of the deployed communication protocols and protocol stacks.

While DOORS is particularly useful for the implementation of application-layer protocols,
it can also be used to implement protocols at the transport and network layers. DOORS
facilitates the easy addition of experimental features to existing protocol designs. For
example, Publication 3 described an implementation of an application layer discovery
protocol, the Service Location Protocol (SLP) in IPv6. The advanced features offered by
DOORS for protocol design were emphasised in both Publications 3 and 4, by extending
SLP with experimental mobility support for automatic service discovery during movement
and changes in the network points of attachment.

Section 5.1 describes how DOORS delivers information about hardware characteristics and
platform-specific Interprocess Communication (IPC) mechanisms which can aid protocol
development for constrained devices and gateways.

Section 5.2 provides and discusses measurements undertaken on the framework in terms of
network event handling. Because DOORS works with external event handling libraries in
order to perform event dispatching, several different kinds of operating system calls exist
for network communication. These are compared against each other using comparable
hardware platforms.

Section 5.3 describes a high-level specification language used to specify protocol messages
and state machines, which are synthesised into C++ classes, that form the basis of
protocol implementations. While Publication 3 provides examples of this specification,
this section supplies the full schema definitions used for the protocol specification.

Section 5.4 describes the event monitoring subsystem provided by the framework, which
incorporates a user-defined hierarchical symbol interface, that facilitates inspection of
message and protocol parameters at run-time.

1currently hosted in a public Github repository http://github.com/DOORS-Framework

37

38 Chapter 5. Composing Communication Protocols

Finally, Section 5.5 summarizes the main findings.

5.1 Addressing IoT Gateway Hardware and Platform
Heterogeneity

DOORS can be compiled and used on all UNIX and Linux variants. It is single-threaded
and, with the exception of libevent() described in Section 5.2, has virtually no external
dependencies towards third-party libraries 2. The framework does not restrict the protocol
developer from flexibly including such libraries or using advanced C++ language-level
features such as smart pointers, run-time interrupt handling nor external C++ template
libraries.

DOORS employs a modified build system based on the well-known GNU Autoconf
tools. This modified subsystem allows fine grained options to tune the build process
for specific needs, enabling and disabling the compilation of certain subsystems. This
modification was also done so that builds for multiple target architectures could be
performed concurrently on the same source tree, something that is impossible with a
standard Autoconf configuration. The existence of a separate build directory that is
unique to each target architecture provides a significant time savings advantage for testing
builds as well as the behaviour of the resulting binaries.

The build system allows straightforward compile-and-execute support for 32-bit and 64-bit
x86 and ARM architectures. However it is also capable of cross-compilation and being de-
ployed to embedded systems. As an example, with the appropriate Software Development
Kit (SDK) containing architecure-specific toolchains, DOORS-based protocols or network
services can be cross-compiled for use in OpenWRT-based gateways and access points,
and it is lightweight enough to be ported to an OpenWRT-based TP-Link TL-WR703N,
a compact, low-powered, battery operated wifi router measuring 5.7cm x 5.7cm x 1.8cm
having 4MB flash memory and 32MB RAM.

At compile time, platform checks are performed and a C++ header file is automatically
generated containing hardware and operating system specific information, which a protocol
might find useful at run-time. Example information includes the hardware architecture,
endianness, storage sizes of primitive types such as integers, availability of IPv6 support
and so on.

Although protocol developers can choose to obtain platform-specific information if they
want to, the framework provides abstractions that aim to shield developers from operating
system specific issues. This is accomplished in DOORS using the concept of virtual
devices. These virtual devices typically model aspects of communication activities such
as network endpoints and operating system IPC mechanisms such as sockets, pipes and
queues. In effect, each virtual device represents a file descriptor at the operating system
level.

Using virtual devices, it is possible for DOORS implementations to flexibly incorporate
support for different kinds of technologies. For example, Publication 3 described support
for Bluetooth communication. In addition, Publication 4 described the extensions made
to SLP for use with Mobile IPv6 and IPv6 multicast, while in Publication 3 a more
generic, protocol-agnostic mechanism was described that interfaced with an external

2While libevent() integration is extremely useful for network performance, it is not strictly essential.
DOORS can also be compiled and used without it

5.2. Measuring network event handlers 39

library capable of detecting changes in network addresses. These were made possible with
virtual devices.

Virtual devices belong to the I/O Handling Subsystem in DOORS, with the I/O Handler
monitoring virtual devices for I/O activity and performing network event multiplexing
and dispatching as necessary. The performance of such I/O multiplexing operations in
DOORS is discussed in the next section.

5.2 Measuring network event handlers

For network event multiplexing and dispatching, the I/O Handler in DOORS integrates
an event dispatching library, called libevent [94]. libevent is a highly portable C-language
library which provides a uniform interface supporting various low-level I/O multiplexing
system calls such as kqueue(), epoll(), select() and poll() 3. Although libevent defaults to
using the fastest event dispatching mechanism available to that platform, the protocol
engineer is also provided the ability to select the precise operating system event-dispatching
mechanism desired (as well as to be avoided). This can be a useful asset should the
protocol engineer know the expected traffic characteristics in advance.

Two benchmarking experiments were conducted to measure the differences in behaviour, as
well as relative performance, of the four multiplexing system calls above. Both experiments
relied on measuring HTTP client-server communication. HTTP loads were generated
from a client using the ab command-line utility. ab is an open-source tool provided by the
Apache Foundation, and used for benchmarking HTTP servers by accepting arguments
specifying the number of consecutive requests to make, as well as the concurrency of these
requests. This load generator resided in a MacBook pro running Mac OS X 10.7.

For the test server, a minimal HTTP server was implemented using DOORS. This server
was capable of responding to incoming HTTP GET request for a small named file. The
size of this file was 100 bytes. This was pre-cached by the server upon startup, before
listening for incoming requests. This minimised the effect of filesystem reads and reduced
the amount of computational processing overhead for the server in completing a particular
request in terms of TCP/IP segmentation and fragmentation. The server was deployed
on an Intel Pentium 4 host running at 2.80GHz, 2 GB RAM, a Gigabit Ethernet network
card capable of dual booting Ubuntu 10.04 LTS as well as FreeBSD 9.1.

Both client and server machines were connected via Gigabit switches and all non-essential
services were terminated prior to running the experiments.

In the first experiment, the client performed 10000 requests to the server with a concurrency
level of 1000 connections. No connections were kept idle. The performance of the server
was measured using each event dispatch method. Initially the server was booted into
the Ubuntu distribution to measure the performance of epoll(), select() and poll().
Subsequently it was also booted into FreeBSD to measure the performance of kqueue().

Figure 5.1 shows that minor fluctuations in response times appear in all the four plots in
the beginning, with poll() showing the greatest variance in its transient state. poll() also
takes slightly longer to reach steady state than the other 3 mechanisms. However, all
four dispatch backends used perform comparably upon reaching steady-state. Table 5.1
shows that, in the case where each connection containing an active HTTP request, over
time using poll even performs marginally better than other mechanisms.

3kqueue() is specific to BSD-based operating systems such as FreeBSD, while epoll() is specific to
Linux-based operating systems

40 Chapter 5. Composing Communication Protocols

Figure 5.1: 10000 HTTP requests, concurrency level 1000, no idle connections

Table 5.1: Numerical results for Fig 5.1

select() poll() epoll() kqueue()
Transfer Rate (kb/s) 1142.43 1199.29 1181.18 1166.05
Serving Rate (Requests/s) 7204.61 7570.02 7446.02 7336.76
Total Completion Time (s) 1.388 1.321 1.343 1.363
Mean Completion Time (ms) 0.14 0.13 0.13 0.14

It is important to note that these measurements were conducted to monitor the per-
formances of these mechanisms when there are no idle connections, and all incoming
requests are handled. However, it is typical that for some network services residing in
IoT gateways as well as end-hosts, that may not be the case. In fact, the active set of
events (which represent actively communicating end-points) will be proportionally less
than the entire event set of interest (which represent open sessions).

A second experiment was conducted to investigate the performance and efficiency of the
event dispatch mechanisms, when the event set of interest is far larger than the active
set. To do so, the HTTP server was initially preloaded with 20 000 idle connections.
Then, only a small fraction of active connections were enabled and the performance of
the different event dispatch mechanisms were measured. This was undertaken to obtain
an insight of the impact of such network traffic, where a large number of file descriptors
have to be monitored when just a small portion of active connections exist.

A small C program, called idleconn was used to open 20 000 connections to the server.
idleconn is part of a suite of HTTP performance measurement tools, called httperf. It
maintains a constant, user-defined number of idle connections to any arbitrary server
and TCP port until it is explicitly shut down. If an existing connection is closed for any
reason, idleconn attempts to reconnect and re-establish it immediately. idleconn was
deployed onto a third connected device, which was a Raspberry Pi 2 Model B.

Figure 5.2 shows the measurement results using poll(), epoll() and kqueue() when 20 000
idle connections exist. Measurements were taken for 5000 requests with a concurrency
level of 100 active requests. Because select() does not scale to support the large number
of open file descriptors, it has been omitted from this experiment.

The graph confirms that the proportion of few active connections to many idle connections
in the event set of interest significantly affects the response time when poll() is used, while
epoll() and kqueue() are largely unaffected.

5.3. Protocol Specification and Code Synthesis 41

Figure 5.2: 5000 HTTP requests, concurrency level 100, 20 000 idle connections

Table 5.2: Numerical results for Fig 5.2

poll() epoll() kqueue()
Transfer Rate (kb/s) 163.26 1200.22 1119.43
Serving Rate (Requests/s) 1033.27 7587.25 7082.15
Total Completion Time (s) 4.839 0.659 0.706
Mean Completion Time (ms) 0.97 0.13 0.14

As Table 5.2 shows, the serving rate, transfer rate and mean completion times of epoll()
and kqueue() remain relatively constant to those found in Table 5.1. Using the poll()
event mechanism on the other hand, performs significantly poorly. An 86% performance
degradation is seen in poll() when large interest sets having few active connections need
to be processed.

5.3 Protocol Specification and Code Synthesis

The primary aim of the DOORS framework is to enable protocol developers to derive
their own protocols using the C++ object classes, as well as the tools provided in
the code repository. However, several example protocols are also provided as part of
the framework that could be utilised for further network or application development.
For example, in addition to the IPv6-enabled SLP mentioned in the beginning of this
chapter, the framework also contains code implementing other protocols such as CoAP,
the Session Announcement Protocol (SAP) as well as the Real-time Transport Protocol
(RTP). Example prototypes are also provided for the CoAP Resource Directory as well as
application logic for both CoAP clients and CoAP servers.

Protocols implemented with the DOORS framework are initially modelled in terms of
their state machines, Protocol Data Units (PDUs) as well as incoming and outgoing
messages via Service Access Points (SAPs), using XML. The decision to use XML to
describe message and protocol specifications was taken in order to provide a technology
neutral platform for expressing many of the protocols and communications mechanisms
specified by various SDOs. These XML specifications are then parsed by code generators
in DOORS at compile time to produce corresponding framework specific C++ classes
such as Messages, Service Access Points, Service Primitives as well as extended finite
state machines. These can be directly used as part of an implementation. Three code
generators have been developed in order to specify this information using XML. These are
the Service Access Point generator, the Peer Generator and the State Machine Generator.

42 Chapter 5. Composing Communication Protocols

They are described in the subsections below.

5.3.1 The Service Access Point Generator
SAPs in DOORS are represented by a set of classes representing entry and exit points to
the service layer or protocol. The SAP XML specifications define sets of message types
that the service layer accepts or provides from other layers. These messages are classified
into two categories: User messages are accepted via the Service Access Point of the layer,
whereas Provider messages are supplied via the Service Access Point to other (generally
higher) layers. The XML Schema Definition of the SAP specification the code generator
expects, is described in Listing 5.1.

1 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
2
3 <xs:element name=’SAP’>
4 <xs:complexType>
5 <xs:sequence>
6 <xs:element ref=’t:User’/>
7 <xs:element ref=’t:Provider’/>
8 </xs:sequence>
9 </xs:complexType>

10 </xs:element>
11
12 <xs:element name=’User’>
13 <xs:complexType>
14 <xs:sequence>
15 <xs:element ref=’t:Message’ maxOccurs=’unbounded’/>
16 </xs:sequence>
17 </xs:complexType>
18 </xs:element>
19
20 <xs:element name=’Provider’>
21 <xs:complexType>
22 <xs:sequence>
23 <xs:element ref=’t:Message’ maxOccurs=’unbounded’/>
24 </xs:sequence>
25 </xs:complexType>
26 </xs:element>
27
28 <xs:element name=’Message’>
29 <xs:complexType>
30 <xs:sequence>
31 <xs:element ref=’t:Parent’ minOccurs=’0’ maxOccurs=’unbounded’/>
32 <xs:element ref=’t:Field’ minOccurs=’0’ maxOccurs=’unbounded’/>
33 </xs:sequence>
34 </xs:complexType>
35 </xs:element>
36
37 <xs:element name=’Parent’>
38 <xs:complexType mixed=’true’>
39 </xs:complexType>
40 </xs:element>
41
42 <xs:element name=’Field’>
43 <xs:complexType mixed=’true’>
44 </xs:complexType>
45 </xs:element>
46
47 </xs:schema>

Listing 5.1: SAP XML Schema Definition

5.3. Protocol Specification and Code Synthesis 43

5.3.2 The Peer PDU Generator
For communication with remote peers, DOORS provides a peer abstraction interface in
which the message format of PDUs are specified. Apart from the definition of the message
name and message fields, the XML specification of the PDUs also include 2 optional
elements: The Header element and the Parent element.

The message structure of a PDU would often consist of a payload, as well as a series of
octets prepended to the payload as a header. The payload contains information generated
and consumed by higher layers. The header itself can have fixed and variable parts. The
header typically contains information pertaining to, for example, protocol versioning,
the message type, length, an identifier, the payload content type, payload encoding and
possible checksums. As can be inferred, fixed headers do not generally change for different
PDUs, but the variable portion of the header can be arbitrarily lengthy or ordered with
various fields relevant to a specific type of PDU. Thus, should a PDU contain any fixed
headers, they can be specified under the Header element of the XML specification.

When a protocol specification contains PDUs which differ only very slightly (for example,
by just a single field), but are largely unchanged, then the Parent element offers a simple
way to express such PDUs, by using a pre-existing C++ class as a base. In this case, the
Parent would contain the message fields which repeat in every PDU, while the Message
element only contains the remaining field or fields specific to that PDU type. Subsequently,
in the generated C++ code, this results in a PDU class that is derived from the Parent
base class.

While describing the header and payload of a PDU is straightforward in XML and renders
easily towards code synthesis, describing serialisation and encoding schemes governing the
way the PDU is expressed over the wire, is extremely challenging as they can vary greatly
from one protocol to another. Consequently, encoding and decoding rules for each PDU
have not been included into the XML specification. Instead, the PDU code generator
generates template function calls, encode() and decode(), for each generated C++ class
representing a specific PDU. The XML Schema Definition of the PDU specification the
code generator expects, is described in Listing 5.2.

1 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
2
3 <xs:element name=’Peer’>
4 <xs:complexType>
5 <xs:sequence>
6 <xs:element ref=’t:Header’ minOccurs=’0’ maxOccurs=’1’/>
7 <xs:element ref=’t:Message’ maxOccurs=’unbounded’/>
8 </xs:sequence>
9 </xs:complexType>

10 </xs:element>
11
12 <xs:element name=’Header’>
13 <xs:complexType>
14 <xs:sequence>
15 <xs:element ref=’t:Field’ maxOccurs=’unbounded’/>
16 </xs:sequence>
17 </xs:complexType>
18 </xs:element>
19
20 <xs:element name=’Message’>
21 <xs:complexType>
22 <xs:sequence>
23 <xs:element ref=’t:Parent’ minOccurs=’0’ maxOccurs=’unbounded’/>

44 Chapter 5. Composing Communication Protocols

24 <xs:element ref=’t:Field’ minOccurs=’0’ maxOccurs=’unbounded’/>
25 </xs:sequence>
26 </xs:complexType>
27 </xs:element>
28
29 <xs:element name=’Parent’>
30 <xs:complexType mixed=’true’>
31 </xs:complexType>
32 </xs:element>
33
34 <xs:element name=’Field’>
35 <xs:complexType mixed=’true’>
36 </xs:complexType>
37 </xs:element>
38
39 </xs:schema>

Listing 5.2: PDU XML Schema Definition

5.3.3 The State Machine Generator
Listing 5.3 describes the XML schema for the protocol state machine, that the code
generator accepts. DOORS uses a transition table-driven design approach in which
State*Input tuples invoke appropriate event handlers. This facilitated easy synthesis
of C++ code as State Machine objects containing function pointers to pre-declared
event handling functions. Typically, protocol designers implement these event-handling
functions as member functions for C++ objects representing the protocol itself.

1 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
2
3 <xs:element name=’SM’>
4 <xs:complexType>
5 <xs:sequence>
6 <xs:element ref=’t:SAP-File’ minOccurs=’0’ maxOccurs=’unbounded’/>
7 <xs:element ref=’t:Peer-File’ minOccurs=’0’ maxOccurs=’unbounded’/>
8 <xs:element ref=’t:From’ minOccurs=’0’ maxOccurs=’unbounded’/>
9 <xs:element ref=’t:State’ maxOccurs=’unbounded’/>

10 </xs:sequence>
11 <xs:attribute name=’HIncludeFiles’ type=’xs:string’ use=’optional’/>
12 </xs:complexType>
13 </xs:element>
14
15 <xs:element name=’SAP-File’>
16 <xs:complexType>
17 <xs:attribute name=’Name’ type=’xs:string’ use=’required’/>
18 </xs:complexType>
19 </xs:element>
20
21 <xs:element name=’Peer-File’>
22 <xs:complexType>
23 <xs:attribute name=’Name’ type=’xs:string’ use=’required’/>
24 </xs:complexType>
25 </xs:element>
26
27 <xs:element name=’From’>
28 <xs:complexType>
29 <xs:attribute name=’Port’ type=’xs:string’ use=’required’/>
30 </xs:complexType>
31 </xs:element>
32

5.4. Monitoring runtime events and protocol parameters 45

33 <xs:element name=’State’>
34 <xs:complexType>
35 <xs:sequence>
36 <xs:element ref=’t:Interface’ minOccurs=’0’ maxOccurs=’unbounded’/>
37 <xs:element ref=’t:Timer’ minOccurs=’0’ maxOccurs=’1’/>
38 </xs:sequence>
39 <xs:attribute name=’Default’ type=’xs:string’ use=’optional’/>
40 </xs:complexType>
41 </xs:element>
42
43 <xs:element name=’Interface’>
44 <xs:complexType>
45 <xs:sequence>
46 <xs:element ref=’t:Input’ maxOccurs=’unbounded’/>
47 </xs:sequence>
48 <xs:attribute name=’Name’ type=’xs:string’ use=’required’/>
49 </xs:complexType>
50 </xs:element>
51
52 <xs:element name=’Timer’>
53 <xs:complexType mixed=’true’>
54 </xs:complexType>
55 </xs:element>
56
57 <xs:element name=’Input’>
58 <xs:complexType mixed=’true’>
59 <xs:attribute name=’Name’ type=’xs:string’ use=’required’/>
60 </xs:complexType>
61 </xs:element>
62
63 </xs:schema>

Listing 5.3: State Machine XML Schema Definition

5.4 Monitoring runtime events and protocol parameters

Event-based behaviour is represented in DOORS as base objects called Event Tasks,
while protocols are implemented based on a further derivative of the Event Task, called
the Protocol Task. Protocol Task objects work together with other specialized objects
for aiding protocol development such as finite state machine implementations, Service
Access Points, and encoding/decoding of Protocol Data Units, bi-directional Ports used
by Protocol Tasks for message passing and multiplexers that allow M:N communications
between Protocol Tasks. As described in Section 5.3 XML code generators can be used to
obtain finite state machine implementations, Service Access Point classes and messages
as well as Protocol Data Units from high level specifications.

At runtime, a scheduling subsystem has been designed that consists of a scheduler handling
requests from Tasks, and providing execution turns to these Tasks using a priority-based
callback mechanism. The Subsystem also contains timers that can be used for providing
soft real-time guarantees together with a timer manager.

Runtime event-monitoring ties in to the scheduling subsystem, with a text-based event
tracing and reporting interface serving as an interaction point between the running system
and the protocol developer. This interaction interface is modelled as a DOORS Task
called an Environment Task. This allows the monitoring of various parts of a running
system such as the state of tasks, internal variables, the number of messages processed,
their types, timers as well as the scheduler load. Additionally, the interface can be used

46 Chapter 5. Composing Communication Protocols

to modify data, trigger actions and send messages to interact and influence the runtime
behaviour of the communication system

The event-monitoring system employs a hierarchically organized symbol-handling meta-
interface in order to attach and observe the current state of running DOORS systems.
Symbols are stored in a symbol table, and each symbol can arbitrarily represent message
fields, tasks, C++ datatypes as well as user defined structures. Symbols also are arranged
in a parent-child relationship with other symbols. For example, an Event Task symbol
would contain child symbols such as those representing the state machine, the message
queues, and timers. Relationship between symbols can vary dynamically at runtime as
well. A good example of this would be symbols representing messages as they traverse
through a protocol stack, being queued and processed by different tasks.

Figures 5.3 and 5.4 depict how the event monitoring system looks like to a protocol
developer at runtime. Both these figures are based on an IPv4 implementation of the
Session Announcement Protocol, a UDP-based protocol, which is used to announce
multicast sessions in the network.

Figure 5.3 illustrates a simple hierarchically contextual command line interface accepting
user queries and conveying results. A query for “system print” reveals the running
scheduler, datatypes of tasks and internal variables, the messages the Environment Task
accepts from the user, and the Service Access Point between the Environment Task and
the PTask implementing the Session Announcement Protocol. A subsequent query for
“system show” reveals the current runtime state of the scheduler and tasks.

Figure 5.3: DOORS Event monitoring depicting system objects

Figure 5.4 on the other hand shows runtime information pertinent to message handling
and the operation of the protocol. The figure has been truncated for brevity. The Protocol

5.4. Monitoring runtime events and protocol parameters 47

Task “SAPSession.1”, representing a single announcement session, is initially shown
with a message in its system queue, representing a 15 second timeout value. Upon the
timeout, SAPSession.1 creates a protocol packet containing the session information and
delivers it to a lower level UDPTask containing a UDP socket, to subsequently trasmit
the announcement to the UDP multicast address 224.2.127.254.

Figure 5.4: DOORS Event monitoring depicting message handling

Figure 5.5: Wireshark capture of multicast session announcements

The usage of the event monitors does not preclude the usage of other available tools for
inspection of protocol packets or application profilers provided by the operating system.
For example, Figure 5.5 is an independent, simultaneous capture of protocol packets on
the wire using the well-known Wireshark application. The timestamps depict packets

48 Chapter 5. Composing Communication Protocols

being sent by the DOORS implementation every 15 seconds, with correlating protocol
headers, payloads and destination addresses.

5.5 Summary

Developing a gateway for various IoT networks requires a good understanding of the
domain in which it would be deployed. Apart from bridging and supplying connectivity to
the nodes in the edge network, a gateway can also engage in a variety of other functions.
These include:

• Network-level protocol translation, in which an intermediary gateway enables end-
to-end communication by allowing interoperability between dissimilar protocols and
data

• Proxying, in which an intermediary gateway processes and manipulate packet
headers without heavy interference into the payload

• Discovery support, in which a gateway actively engages in communication with edge
nodes to support group-based and advanced application services

• Lookup support, in which a gateway serves as a registry of services that edge nodes
can query directly for.

In all these cases, the communication subsystem and protocol stacks the gateway employs,
play a key role in fulfilling these functions. When the required communication functionality
needs to be designed and implemented as part of the gateway, a protocol implementation
framework offers a feasible route for developers to undertake. From the work done with
regards to the design and development of the DOORS framework for protocol composition
in IoT gateways, this chapter concludes with the main findings which are described in
the rest of this section.

Firmware and software development for IoT devices and gateways continue to pose a
challenge in supporting a large heterogeneity in platform architectures. Implementation
frameworks must firstly be able to remain useful to produce code which portable across
different hardware and operating systems, but also, deliver platform specific information
to running applications if needed. The Autoconf-based build system that DOORS has,
achieves this. As described in Section 5.1, platform specific information is detected by the
build system and written to a specific header file, allowing implementations to remain
portable and tailor runtime behaviour to the platform. Increased portability was also
achieved by limiting, or entirely eliminating, dependencies on external libraries.

How steep the learning curve of the framework is, particularly in relation to the anticipated
lifetime of the resulting implementation, is important. Should the need to rapidly
prototype, code and evaluate an implementation be necessary, the framework should
not only be able to offer the correct kinds of protocol classes, message types and object
handlers, but also be intuitive to use. DOORS facilitates this by providing an easy to
understand XML-based specification language, a protocol abstraction model, as well as
code generators that directly follow on to produce C++ code based on defined protocol
messages and states written in XML. The event monitoring interface was also kept
deliberately simple and hierarchical, allowing developers and administrators to remotely
access a console on an IoT gateway to monitor running communication protocols and

5.5. Summary 49

log events very effectively, similar to existing practices on current Internet routers and
switches.

In constrained environments where computing and memory requirements can’t afford
the execution of multiple toools at runtime, the DOORS event monitoring subsystem
provides substantial benefits for locally observing, testing and troubleshooting of protocols
running in embedded systems such as gateways. The observation of variable values and
operational states of executing tasks do not have any dependencies on source-level
debugging formats, and hence protocol implementations do not need to be compiled with
debugging support. This allows efficient optimisations for code size and execution time.
Because the hierarchical symbolic interface used by the event monitor is implemented as
preprocessor macros, they can also be independently and easily disabled when no longer
required. While existing network protocol analysers such as Wireshark and tcpdump are
prevalent for debugging well-known protocols, the DOORS event monitor is highly useful
for monitoring new protocols and protocol features. Additionally, it can also be used to
monitor protocols for non-IP networks that an IoT gateway can be connected to, and for
which no support is available in other third-party protocol analysers.

Lastly, the capacity of the framework to interwork and interoperate with other frameworks,
toolkits and applications is also important. A framework that offers a tightly coupled,
highly integrated development environment may not be as effective as a framework
offering a cleanly decoupled model with clear callback interfaces and communication
infrastructure. By adopting this decoupled approach, DOORS remains scalable from
resource constrained gateways, such as OpenWRT access points and older generation
Model A and Model B Raspberry Pi boards, to more powerful Linux and UNIX-based
computing platforms. A key factor for achieving this was with the DOORS I/O Handling
and virtual device objects, that enable monitoring callbacks and passing execution turns
with external libraries and applications. Together with the C++ classes provided, this
makes DOORS a highly suitable implementation framework that can be used to develop
a wide range of IP-based, as well as non-IP based communication protocols and protocol
stacks that can be deployed into IoT gateways.

6 Gateway Management

The purpose of this chapter is to discuss the issues of IoT gateway management work
that was performed in Publications 5, 6 and 7.

Gateways are an integral part of the IoT, and therefore occupy a crucial position in
modern IoT management systems. These systems aim to use lightweight methods to
perform lifecycle management of IoT endpoints, including bootstrapping, updating and
decommissioning. However, the part a gateway plays in IoT network management can
vary significantly, since it is closely tied to the network topology, the type of connectivity
available, proxying/caching functions, as well as security requirements. The placement of
management components within the overall architecture can also be affected, depending
on the network topologies, traffic characteristics, usage scenarios and the types of gateways
being used.

Section 6.1 provides an overall abstraction of how end-to-end management of IoT endpoints
is usually perceived. Section 6.2 provides details of gateway management patterns
that were observed in this dissertation. These patterns can also be perceived as a
specialisation of the Device-to-Gateway communication pattern in RFC 7452 [95], with a
stronger emphasis on the role of IoT gateways as explicit components in the management
architecture. Section 6.3 provides an analysis of some key operational and deployment
considerations that pertain to gateways in the context of end-to-end management of both
IoT gateways and devices. The chapter then concludes with a summary and key findings.

6.1 Managing IoT endpoints

A simple depiction of end-to-end management between a management service and an IoT
device is shown in Figure 6.1

Taken at its simplest abstraction, IoT management practices assume the following:

• A server with properties such as high scalability and availability hosts the man-
agement service that can potentially manage very large numbers of IoT devices.
Typically, this can also mean a cloud-based system

• All IoT endpoints to be managed are, to a large extent, IP-enabled to allow
communication with the management server. The management service interacts
with the managed devices using IoT protocols (such as CoAP, MQTT or proprietary
protocols) over IP.

• For applications requiring access to resources, data is retrieved from the management
service instead of directly from the managed devices, using a REST-based API
offered by the management service.

51

52 Chapter 6. Gateway Management

Internet

IoT
Device IoT

Device

IoT
Device

Apps
Cloud-based
Management

Service

Figure 6.1: End-to-end IoT device management.

Commercial IoT device management services offered today, such as Google Cloud IoT,
Amazon Web Services and the IBM Watson IoT platform [96] are built along these
assumptions. They do not prescribe guidelines for device connectivity; supplying Internet
connectivity and ensuring the IoT device remains reachable by the management service
remains the responsibility of the device owner or network operator. Once connected,
however, these cloud-based management services offer secure provisioning, monitoring
as well as data retrieval from these connected IoT devices. The aggregated data is then
subsequently processed, or is directly consumed by applications.

Viewed this way, gateway management is directly conflated with device management;
a management service does not discern the management of a gateway with that of any
other kind of IoT endpoint. However, managing the proper operation of IoT gateways
extends beyond configuration and monitoring, since any changes by a management service
to gateways serving edge networks can have an adverse effect on the management of IoT
endpoints residing in edge networks. Thus, different types of gateway management, as
well as deployment and implementation considerations are discussed in the next sections.

6.2 IoT Gateway Management Patterns

During the analysis, design and implementation work performed for Publications 5,
6 and 7, several repeatable practices for performing IoT gateway management were
observed. These are detailed as six gateway management patterns described in the
following subsections. In Patterns 1, 2 and 3, gateway management is influenced by the
kinds of underlying network topologies selected for IoT device deployment. These are
then followed by management patterns that are context-specific used to overcome certain
challenges across several application domains and integration scenarios.

6.2. IoT Gateway Management Patterns 53

6.2.1 Pattern 1: LAN with IP-based IoT devices
When a managed network setup and configuration is needed to supply IP connectivity to
IP-enabled IoT devices, a gateway needs to be introduced as an intermediary component
into the architecture. The sensors and actuators present in this management pattern are
assumed to possess the ability to use either Ethernet or Wi-Fi to obtain connectivity to
the LAN. In such cases, the management service exerts control over the configuration,
monitoring and updating of the gateway. Additionally organisational LAN policies may
warrant the need for the gateway to perform operations related to NAT and middlebox
traversal. For example, management operations supported by the IoT device can be
based on UDP as the transport (which is the case with LWM2M), but the communication
between the gateway and cloud may employ TCP instead. This pattern is used for
gateway management in Publications 5 and 6. Additionally, IoT gateway configuration
management as described in Publication 2 for connectivity provisioning, is aligned with
this pattern too.

Internet

Apps A
Cloud-based
Management

Service

Internet
��������

���
�����

���
�����

���
�����

Figure 6.2: Pattern 1

6.2.2 Pattern 2: PAN with non-IP IoT devices
Figure 6.3 illustrates a common management pattern, where a gateway is introduced
to interconnect devices in a Personal Area Network (PAN) to the Internet. Devices in
the PAN use a different network layer technology from the one used by the management
server. This can occur for example, if the IoT device uses a legacy or non-IP network,
such as Zigbee, Bluetooth or BLE. To manage non-IP devices, the management server
interacts explicitly with the gateway. IP-based management operations terminate at the
gateway. Application-logic in the gateway translate protocol requests and responses into
technology-specific operations to interact with the IoT device. Such a pattern is employed
in Publication 6 to allow a LWM2M server to interact with non-IP nodes via an IoT
gateway, aided by object and resource instances the gateway registers to the LWM2M
server on behalf of these non-IP IoT devices.

6.2.3 Pattern 3: Mesh-based edge network
Mesh-based networks have become increasingly popular as a means to extend coverage and
connectivity for IoT deployments at the edge. As opposed to traditional infrastructure
networks, mesh topologies offer resilience against partial failures of wireless links if the
nodes relaying traffic in the mesh are within radio coverage of at least two nodes. Figure
6.4 illustrates the gateway interconnecting the mesh to the Internet, acting as a border

54 Chapter 6. Gateway Management

Internet

Apps A
Cloud-based
Management

Service

Internet
��������

�������
���	�

�������
���	�

�������
���	�

Figure 6.3: Pattern 2

router. However, gateways can take on additional roles in mesh networks as well, based
on the type of mesh network present, as well as the types of network nodes present in the
mesh. These types are presented below:

• A non-IP mesh network, such as a BLE mesh network in which the role of the
gateway would be similar to that of Pattern 2, in order to manage all the BLE
nodes in the mesh.

• A low power IP mesh network, such as 6LowPAN may have differing requirements
on the gateway. When the IoT device in the mesh is so constrained to the extent
that management functionality cannot be feasibly deployed on its memory, the
gateway combines the role of serving as a management proxy in addition to being a
6LowPAN border router.

• A Wi-Fi mesh network, in which multiple gateways form a core, routable mesh
network, offering connectivity to edge IP nodes. Multiple gateways need to be
managed in the mesh network, in addition to the border router. This is the strategy
employed in Publication 5.

Internet

Apps A
Cloud-based
Management

Service

Internet
�������� �������

Figure 6.4: Pattern 3

6.2. IoT Gateway Management Patterns 55

6.2.4 Pattern 4: Gateway fault tolerance

Gateway downtime can adversely impact endpoint management, such as when continuous
monitoring of sensor data from edge networks is required by a cloud-based management
service. A common strategy used to prevent a gateway becoming a single point of failure,
is to introduce redundant gateways into the architecture, as shown in Figure 6.5. This
pattern is employed very effectively in Publication 7 to allow a secondary gateway to
assume an active role in case of any failures with a primary gateway.

Internet

Apps A
Cloud-based
Management

Service

Internet ���������

����
����	��

����
����	��

����
����	��

����
����	��

Figure 6.5: Pattern 4

Failures can be caused by misbehaving software as well as malfunctioning hardware.
Additionally, this pattern is employed in systems to minimise downtime during regular
maintenance and firmware update operations on gateways. Introducing gateway redun-
dancy into the management architecture differs from Pattern 3, where multiple gateways
can be active at once. The primary gateway would assume the role of the default, active
gateway while secondary gateways, with independent uplinks to the management service,
would be configured to be in standby mode.

6.2.5 Pattern 5: Disruption tolerance

Previous management patterns have assumed constant connectivity between the man-
agement service and the edge network’s gateways and devices. Connectivity disruption
can have an adverse effect on management operations. This can occur for several reasons
such as:

• Mobility: The sensors and gateway form part of a geographically mobile network in
which intermittent connectivity is the norm

• Power savings: The gateway can be energy constrained based on available battery
power, and economises radio usage by powering down its network interfaces on
occasion

• Link characteristics: The link between the gateway and the Internet is inherently
unreliable, or is lossy.

In this context, the design of a disruption tolerant management system is necessary.
Disruption tolerance refers to the ability of the various components in the LWM2M

56 Chapter 6. Gateway Management

Internet

Apps A
Cloud-based
Management

Service

��������
�����
�����
���	�

�����
���	
���

Local
Apps

��
L
A

��

Figure 6.6: Pattern 5

architecture to cope and be resilient when the uplink of the border gateway exhibits inter-
mittent connectivity and continue operating even when the edge network is disconnected
from the Internet.

As an example, gateways, sensors and end devices in a personal area network may need
to continue and communicate with a management service without service disruption, or
applications may need to be supplied information constantly.

The dominant management pattern to allow disconnected operations is to collocate a
primary management service within the same network topology as the managed endpoints,
to ensure reliable communication with managed entities in the network. A secondary
service resides in the cloud as a resource cache.

Application logic is therefore required to cope with synchronisation of managed data
between the two services. Hence, the primary management service usually resides as a
software component on the gateway, to facilitate easy detection of connectivity resumption
with the Internet. This application-level logic would then be responsible for communicating
with cloud-based applications interested in receiving endpoint data.

Publication 5 provides an example in which this pattern is employed in which the primary
REST-based management service resides as part of the edge network, with a secondary
service in the cloud. Synchronisation between the two is performed between the two in
a best-effort manner to provide eventual consistency between the resource states in the
primary service and the secondary service.

6.2.6 Pattern 6: Legacy platform integration
Many organisations have existing investments in proprietary management platforms and
contain deployments that cannot be easily migrated to newer interoperable management
solutions that integrate into Web-based platforms today. Consequently, a common way
to integrate vendor-specific or legacy management systems is to use an application-
level gateway that performs the high-level translations necessary to deliver management
operations from the management service and the specific IoT Device residing within a
different management architecture. This is depicted in Figure 6.7.

It can be seen that this management pattern restricts the ability of the management
service to perform end-to-end management to the physical devices present in the legacy

6.3. Operational considerations 57

Internet

Apps A
Cloud-based
Management

Service

Proprietary/
Legacy
Platform

Gateway y

Figure 6.7: Pattern 6

platform. Operations terminate at the gateway, and consequently, actual management
operations at the last hop are opaque to the management service. Additionally, as opposed
to other patterns introduced in this section, the gateway in this case can be deployed
as a software service, either residing in the cloud, or as a value-added service for the
vendor-specific platform.

The work done for the dissertation does not specifically investigate legacy integration
of external management systems and frameworks. However, this specific management
pattern is nevertheless an important facet of how gateways are used today.

6.3 Operational considerations

Owing to the wide variety of usage scenarios, devices and topologies present in the IoT,
several of the described management patterns can also be combined. Minor variations on
the same patterns can occur too. Furthermore, the patterns discussed are not exhaustive.
It is anticipated that, from new developments in the lifecycle management of gateways
and device, additional patterns will emerge. Advances in hardware design, computational
capabilities and storage capacities in future gateway would also have a major influence in
IoT management in terms of edge computing, lightweight virtualisation, and deployment
of application logic into gateways. In this section, some key considerations are presented
for gateway management in IoT. Where possible, the discussion is presented in the context
of using LWM2M as the gateway management protocol.

6.3.1 Similarities and differences with IoT device lifecycle
management

While some aspects of the gateway’s lifecycle management are analogous to IoT device
lifecycle management, additional steps need to be taken, particularly in the pre-operational
phase of the gateway. The pre-operational management phase for a gateway refers to the
measures that need to be taken in order to transition the gateway into an operational
state. More specifically, onboarding, bootstrapping and staging operations need to be
performed.

• Onboarding. From the perspective of an IoT device, onboarding refers to obtaining

58 Chapter 6. Gateway Management

connectivity into the LAN. However, from the perspective of an IoT gateway, the
onboarding operation refers to the steps undertaken in order for the gateway’s
northbound network interface to be connected to the Internet and reachable from
the management service. Consequently, a pre-established trust relation as well
as authentication credentials need to exist, initially between the ISP and the IoT
gateway for IP connectivity, and subsequently between IoT management service
provider and the IoT gateway.

• Bootstrapping. The bootstrapping operation can be either gateway or server initi-
ated upon obtaining Internet connectivity. A dedicated bootstrap server ensures
additional security credentials, such as keying material or certificates, are configured
into the gateway. The result of the bootstrapping operation is an assurance of the
identities of both the gateway and the management server to each other, as well as
possible communication privacy based on the use of an encrypted channel.

• Staging. Upon completion of bootstrapping, IoT gateways can be managed as if they
are standard IoT devices. Staging of the gateway can be necessary before the gateway
can enter into its operational phase. Staging in the context of gateway management
refers to the ability for the management service to deliver additional operations to
the gateways, in order to extend their role towards supplying connectivity for the
LAN. Between the bootstrapping and staging, a soft reset of the gateway might be
necessary. Some of the operations during staging include:

– Configuring the properties of one or more south bound radio or wired interfaces
to supply connectivity to edge devices.

– Configuration and deployment of advanced services allowing configuration of
edge devices.

– Configuration of security settings such as access control lists, passwords and
firewall rules.

Current IoT device management standards to support onboarding, bootstrapping and
staging are still evolving. For example, the data model for LWM2M supplies the Security
and Access Control Objects which are used for bootstrapping general IoT devices, but
data models and operations for onboarding as well as staging did not exist. Consequently
the development and design of the Gateway System Object, Gateway Fixed and Wireless
Interface Objects as well as the Gateway Firewall Object, undertaken as part of this
dissertation work, were adopted for usage by the IPSO Alliance as extensions to the
LWM2M object model.

6.3.2 Moving from Device Masquerading to Device Proxying
A distinguishing feature of an IoT gateway is its ability to communicate and serve its
resources over two or more connection endpoints. When Pattern 2 is implemented using
LWM2M, the gateway performs registration of the LWM2M Objects representing the IoT
endpoint to the LWM2M server. All subsequent LWM2M operations performed by the
server are then translated at the gateway into the operations to manipulate or retrieve
data in the IoT endpoints. Results are relayed to the server.

Publication 6 described new LWM2M objects which would allow the registration of
endpoints by IoT gateways, but preserve the semantics of the gateway serving as a proxy
to an endpoint, instead of masquerading the gateway itself as the IoT endpoint.

6.3. Operational considerations 59

Migrating an IoT gateway away from device masquerading to provide endpoint visibility
to a management server, can be accomplished at three levels:

• Using protocol semantics that enable the management server to perceive the gateway
as an intermediary component. For example, CoAP, which is used both by LWM2M
as well as OCF, explicitly supports the notion of a Proxy URI. A proxy URI can
be used to separate the identification of a resource at an endpoint as well as its
location, from an intermediate network device employed to communicate with the
endpoint.

• Providing application logic or a commissioning context to a management server
or a lookup facility during registration of an endpoint to be managed. The CoRE
Resource Directory, which supports CoAP-based registration support for endpoints
and resources, offers support orthogonally for both the usage of a commissioning
tool (which aids the registration of nodes too constrained to perform registration
on their own) as well as a proxy (which can be used at run time to retrieve and
manipulate resources on a registered endpoint).

• Establishing explicit Proxy objects within the data model supported by the man-
agement platform. Gateways registering proxy objects can then contain resource
fields or web links which then describe the data models of the endpoints that are
being assisted.

6.3.3 Undertaking Gateway Failovers and Redundancy Management
Pattern 4 described redundancy as part of a gateway management strategy to reduce
intermediate points of failure in managing sensors and obtaining sensor data from edge
networks. Redundant gateways provide high availability to sensor data by allowing
failover with one or more secondary gateways on standby. Such failovers can be either
initiated by the management service, or by the gateways themselves. Using LWM2M as
an example, it is initially assumed that all gateways register themselves to the LWM2M
server. The IPSO Gateway System object, described in Publication 6, of each gateway
can also be extended with a new resource field, “Gateway State”, which reflects the role
of each gateway in the redundancy model.

For a low latency edge network in which it is essential to minimise data loss from IoT
devices to the management service, a gateway initiated failover model,as described in
Publication 7, can be used. For this model, a secondary gateway remains in hot standby
state and monitors the state of the primary gateway using a heartbeat protocol. Should
a suspected failure on the primary gateway occur, the secondary gateway immediately
performs failure recovery by announcing itself as the default gateway at the edge network.
Combining the approaches of using the IPSO Gateway System Object from Publication
6 with a "Gateway State" resource, with the solution outlined in Publication 7, the
secondary server can change the value of its “Gateway State” resource into “primary”.
The LWM2M Server can subsequently either modify the value of the previous gateway’s
“Gateway State” resource field to “secondary”, or remove its information entirely should
the registration become stale after a given time.

When the scenario also includes the use of non-IP devices in the edge network (as
with Pattern 2), the steps outlined above for redundancy management are insufficient
to minimise data loss. This is primarily due to the fact that in Pattern 2, from the

60 Chapter 6. Gateway Management

perspective of a LWM2M server, the gateway also registers LWM2M objects which map
to the native or proprietary data model of the non-IP devices in the edge network. Data
transmitted from the sensors are first intercepted by the gateway before being adapted,
serialised and transmitted by the gateway over the Internet, using a content type format
that the LWM2M server accepts. Consequently, in the event of a failure, not only does
the secondary gateway need to ensure that connectivity between the cloud and edge
network is restored, it also needs to re-register the LWM2M objects specific to the non-IP
devices as well as resuming protocol translation and serialisation of the sensor data. Thus,
when non-IP devices are present in an edge network, not only does the secondary gateway
need to monitor the liveliness of the primary gateway, it also has to keep track of the
timestamps of the last sensor data values successfully transmitted by the primary gateway.
This is described in Publication 7.

In constrained networks where redundant gateways serve as border routers, a server
initiated failover strategy can also be employed. In this scenario, secondary gateways are
kept in cold standby, where no monitoring or heartbeat protocols are performed between
the redundant gateways. Should a primary gateway fail to update its registration to the
LWM2M server within the allocated time, the server elects a secondary gateway with
an active registration, changing the status of its Gateway State resource into “primary”.
This then initiates failover operations by the newly elected gateway to become the default
active border router of the edge network.

6.3.4 Multiparty Gateway and Device Management
As greater numbers of gateways and IoT devices become integrated into the Web of
Things, more complex IoT topologies will become inevitable. This is already evident in
current smart buildings in which smart lighting systems, utility networks, environmental
and ventilation systems can be federated with the IT network infrastructure. In such
environments, if the gateways and devices belonging to multiple stakeholders and owners
need to interact with each other, authorisation mechanisms and proper access rights to
sensor data is required.

Publication 5 describes how, in the context of a smart home, sophisticated gateway
management and configuration cannot always be performed by a home network owner.
The work in the paper stems from proposed future networking architectures for the
home, such as the Homenet architecture [16], which requires advanced configuration and
deployment of network services. When the Homenet becomes coupled with multi-tenancy
by introducing third-party owned fire alarms, remote surveillance and smart metering
sensors, expert management becomes necessary to collaboratively co-manage the home
network.

However, existing IoT management practices do not easily cater for performing collabora-
tive management or management of multi-tenant networks and devices at the edge. IoT
gateways that natively support multi-tenancy are not common although both research
prototypes and commercial solutions exist [97]. In such cases, gateway configuration still
requires a single point of control and administration.

Research activities in cloud computing and cloud architectures on the other hand have led
to the development of multi-tenant systems in the cloud: Data residing in a cloud-based
service can be presented as well as visualised differently depending on the needs as well
as access rights of the stakeholder. Thus, while gateways and IoT devices at the edge
can be directly configured and managed by a centralised service, Publication 5 proposes

6.4. Summary 61

that it is more feasible for collaborative management to be performed as a cloud-based
application service which interacts with the management service instead.

6.4 Summary

This chapter focused on research and work done for the management of IoT gateways. A
high-level architecture was first presented for how IoT endpoints are typically managed
today in Section 6.1. Then gateway management patterns were presented in 6.2 as
findings, based on studies done for this dissertation. Table 6.1 summarises the usage of
these patterns in the three main publications described in this chapter. As integration
with legacy management frameworks was not explored in this dissertation, the column
representing Pattern 6 is blank.

Table 6.1: Summary of IoT gateway management patterns used in publications

Gateway Patterns 1 2 3 4 5 6
Publication 5 x x x
Publication 6 x x
Publication 7 x

Section 6.3 identified the key issues for IoT gateway management and how this dissertation
provided solutions for them. There are still numerous challenges that need to be solved in
order to have a standardised way of performing gateway management. Because existing
network management practices used in enterprise-level networks to manage enterprise-
grade routing and switching equipment is infeasible for IoT networks, the work done in
this dissertation is to align gateway management practices with IoT device management.

REST-based communication, using CoAP and HTTP, between a management server and
managed gateways is a key factor towards this alignment. Additionally, it was shown
that LWM2M is extremely suitable as a management standard for gateway management.
However, since the data models that exist for LWM2M supported only management of
end devices, this dissertation developed data models that could model the functionality
of IoT gateways. These could then be incorporated into existing LWM2M management
systems to monitor both gateways as well as connected sensors and devices.

Another finding in this dissertation is that it is vital to model the gateway accurately
enough for configuration management, and perhaps even more so than device management.
A misconfigured and malfunctioning gateway, particularly one that serves as a border
gateway or an entry point to an entire edge network, can have serious repercussions for
the operation of all IoT devices and sensors. In addition to ensuring that a gateway has
been configured properly, LWM2M allows the monitoring the operational performance
of gateways in terms of observing various parameters such as CPU loads, bandwidth
characteristics, memory and storage. When the operational thresholds are exceeded, such
as with energy consumption as described in Publication 9, anomalous behaviour can be
rapidly detected.

It was also seen that it would be beneficial to integrate software-based event management
systems, such as the DOORS event monitor described in Chapter 5, as it would be easy
to model the hierarchical symbolic interface as a specific set of data models, to expose the
running state of communication protocols. However, that work has not been performed
as part of this dissertation.

7 Conclusion

The IoT is a continuously evolving environment which calls for protocols, network designs,
management and service architectures that can cope with billions of IoT entities. IoT
gateways are vital components in enabling this to happen, by interconnecting the sensing,
computing and actuating systems with the networking domain.

IoT gateways need to cope with new radio technologies, sensors, embedded systems and
heterogeneous communication strategies to securely connect the suppliers of the data
with the consumers. By recognising and abstracting the many roles that IoT gateways
need to perform, the main goal of this dissertation is simplifying the integration and
interoperability of edge IoT devices to the Internet, and facilitating remote configuration
and management. Where possible, the practical approaches developed in the dissertation
also placed heavy emphasis on the use of standardised communication protocols and
device management.

7.1 Results

The research problem of this dissertation was divided into four research questions as
described in Section 1.2. These research questions and the answers presented in this
dissertation are summarised next.

Research Question 1

What do the connectivity characteristics, communication support and data reachability for
current and future IoT network topologies require from IoT gateways?

Connectivity intermittence, network address renumbering, communication and addressing
support for device heterogeneity and scalability were identified as key challenges in IoT
networks. Network topologies for IoT were described and solutions were given for how
IoT gateways can be deployed to meet the connectivity requirements expected by IoT
devices. Deploying a self-healing mesh network of IoT gateways as advocated by the
Homenet architecture, provided solutions for automatic address configuration, network
disruption tolerance and scalability to support large scale connectivity for IoT edge
devices. IPv6 networking was particularly considered an important step towards enabling
globally unique identifiers for IoT devices. Hence, solutions were provided for how an IoT
gateway can facilitate the deployment of IPv6 to edge devices. In Publication 1, the IoT
edge gateway was shown to work in tandem with a connectivity provider or ISP to deliver
IPv6 addressing and reachability to edge networks and devices. In the absence of such
support from the ISP, support for an IPv6 transitioning or tunnelling mechanism must
be configured to an IoT edge gateway. A solution to employ IoT gateways to decouple
end-device address reachability and data reachability was also described. This equips the

63

64 Chapter 7. Conclusion

IoT gateway to facilitate REST-based proxying, where RESTful communication occurs
between two endpoints using different transports or REST protocols.

References: Publications 1, 2, 5 and 8, dissertation chapter 3.

Research Question 2

How can energy measurements be used to improve and monitor gateway operation?

Energy consumption patterns were measured for IoT gateways in two different contexts.
When optimising communication for energy efficiency, an IoT gateway can achieve power
savings of up to 60% by selecting the correct cellular radio and REST-based protocol
for communication. This indicates that IoT gateways should co-ordinate and aggregate
RESTful interactions with edge IoT devices to achieve better energy consumption. Energy
consumption of an IoT gateway can be used as a run-time metric to detect certain types
of anomalous or malicious activity when compared against baseline measurements. The
dissertation showed this was a particularly effective out-of-band strategy in distinguishing
jamming, battery draining, denial of sleep, and denial of service attacks, with each
producing distinct energy footprints from an IoT gateway under attack.

References: Publications 8 and 9, dissertation chapter 4

Research Question 3:

How can the development of protocols and communication subsystems in IoT gateways be
performed rapidly and consistently?

A lightweight protocol implementation framework that facilitates the rapid creation of
protocols, protocol stacks and network services called DOORS was developed. Com-
munication protocol logic and messages are specified using in XML from which C++
code is generated. As opposed to working at the programming language level, high
level protocol specifications allow easy additions and modifications to existing protocol
behaviour. The building and compilation tool-chain aims at portability in order to deploy
the resulting implementation across several hardware architectures for IoT gateways.
The framework supports native and cross-compilation tool-chains across several different
hardware architectures and UNIX- and Linux-based desktop and embedded systems. This
allows consistent development of network protocols and communication subsystems that
could be implemented across heterogeneous IoT gateways. At run-time, the framework is
able to supply consistent diagnostic and operational information of the running protocol
stack or network service, as well as flexibly migrate among different low-level network
event dispatch mechanisms if needed.

References: Publications 3 and 4, dissertation chapter 5

Research Question 4:

What are the crucial aspects of IoT gateway management that need to be considered, and
how can gateway management be performed and aligned with IoT device management?

Misconfigured and mismanaged gateways can negatively impact IoT edge networks and
device reachability several orders of magnitude greater than misconfigured or misbe-
having IoT devices. The role an IoT gateway plays in the network greatly influences
different aspects of its management. In terms of IoT gateway lifecycle management,
this dissertation focused on solutions for gateway configuration during bootstrapping,
operational monitoring, and failure and redundancy management. Six architectural
patterns for IoT gateway management were described. REST-based gateway management

7.2. Summary of Contributions 65

and integration with device management standards, particularly LWM2M were deemed
important. Consequently, solutions for extending LWM2M for gateway management with
new gateway-specific data models were implemented. IPSO data models were designed
that allowed LWM2M servers to interact with proprietary data models, as well as with
non-IP devices by using IoT gateways as communication proxies, to minimise device
masquerading. A REST-based solution for multiparty collaborative management of IoT
gateways and networks, using a cloud-based management service was developed. A
redundancy management solution for IoT gateways was described, that can be used to
prevent loss of critical communication and data transfer between a management service
and edge devices.

References: Publications 5, 6, and 7, dissertation chapter 6

7.2 Summary of Contributions

The dissertation scope and contributions were described in Chapter 1.3. As a summary,
however, this dissertation contributes to the scientific body of knowledge in the following
ways:

• Eight basic IoT network topologies were identified for end devices, with respect to
IPv6 addressing needs. Of these, the dissertation details IPv6 address allocation
steps that IoT gateways must provide for seven of these scenarios.

• The dissertation shows that IPv6 transition mechanisms can be used without any
significant impact on IPv6 reachability and communication with IoT end devices,
in the absence of operator support for IPv6.

• The dissertation provided empirical evidence that when IoT gateways engage in
REST-based communication over a 3GPP network, undertaken measurements
indicate that energy consumption can be markedly reduced if the deployment
scenario is known in advance. While the best performing combination was the use
of CoAP over a 2G network, energy consumption was significantly influenced by the
choice of RESTful protocol, payload sizes and trade-offs with radio signalling costs.

• The feasibility of using energy consumption data to detect security anomalies and
attacks on IoT gateways was demonstrated.

• A lightweight event-driven framework called DOORS was designed with which
communication protocols and protocol stacks can be implemented, deployed and
monitored in IoT gateways.

• Six IoT gateway management patterns were identified from the studies done in the
dissertation. The dissertation produced standardised data and interaction models
for IoT gateways, which allow REST-based management of both gateways and end
devices using well-known IoT device management standards.

7.3 Discussion and Future Directions

The research and resulting work of this dissertation have aimed to facilitate IoT gateway
development at the device, networking and application levels of abstraction. The work
done in the dissertation is also applicable to many of the IoT application domains and

66 Chapter 7. Conclusion

vertical segments, with promising future directions. In this section, some final discussions
and future research directions are given.

7.3.1 IPv6 and IoT

IPv6 has clear benefits compared to IPv4 in terms of a larger unique global address
space, easier address allocation, mobility, renumbering and overall routing efficiency.
For constrained networking, 6LowPAN networking is advocated as an efficient form of
IPv6 supporting header compression, energy efficiency and the ability to be processed
by devices with limited processing capabilities. Thus, delivering and supporting IPv6
in edge networks are featured strongly in this dissertation. For backhaul connectivity,
SDOs including the IETF and the Thread Group, are looking towards IPv6 networking
as a foundation to meet anticipated challenges wrought by the IoT. The Thread Group’s
networking protocol, in fact, is built entirely over 6LowPAN. In terms of deployments,
DHCPv6 Prefix Delegation is already supported by the firmware of certain commercial
residential broadband gateways while operator deployments of IPv6 over 3GPP networks
has become a reality. On the other hand IPv6 adoption and deployment has not been
as rapid as expected. Despite address exhaustion, IPv4 still remains in popular and
active use today. The use of network address translation, extensive private subnetting
and regional Internet registries reclaiming and reusing unused IPv4 address spaces, have
formed the basis of mitigation efforts to continue IPv4 usage. Dualstack approaches and
the use of IPv6 transition mechanisms are expected to play increasingly important roles
for Internet connectivity for IoT.

7.3.2 Impact of Application State

A related discussion pertaining to NAT utilisation and private IPv4 addresses in edge
networks, is that usage of NAT and NAT tables creates application state in an edge
gateway, as opposed to stateless IPv6 addressing, forwarding and routing into edge
networks. Minimising application state can be of significant benefit to reduce application-
level processing and memory consumption, both for constrained IoT gateways as well as
to lower packet forwarding latencies for IoT gateways in topologically flat edge networks
consisting of large numbers of IoT devices.

Nevertheless, as Publications 6 and 7 show, IoT gateways are also extensively used
to carry application-layer state. Thus, in addition to packet forwarding, the specific
integration challenges that IoT presents, means that gateways will be compounded with
application state to interconnect for data sharing with legacy back-end systems, translate
packets and data for the management of non-IP devices and networks, or, as described by
RFC 7228, assist Class 0 devices. In IoT domains where gateways are based on COTS
hardware, the likelihood of gateway failure, and subsequent loss of application state, is
higher than with enterprise-grade gateway equipment. Thus, gateway redundancy and
redundancy management such as that described in Publication 7, would become essential.
However, research is still needed for the design and development of a reliable mechanism
to synchronise application states and protocol interaction among redundant gateways in a
standardised manner. As an example, this is still an ongoing issue for enterprise networks
and enterprise-grade routers; High Availability routers using redundancy protocols such
as the Hot Standby Routing Protocol (HSRP) [98] or the Virtual Router Redundancy
Protocol (VRRP) [99], offer limited support for stateful NAT failovers.

7.3. Discussion and Future Directions 67

7.3.3 Gateway Management
IoT gateway management would continue to develop towards several interesting directions.
Semantic interoperability is an area of active research in the IoT. Today, the various SDOs
pursuing device management standards have largely converged towards using REST-based
communication between a management server and managed IoT devices. However, the
data models, serialisation and content formats utilised by these standards for retrieving
and manipulating resources and objects are still largely divergent and remain domain-
specific. Also as Publication 6 demonstrates, in addition to data models conforming
to a specific management standard, devices and gateways can also be shipped with
proprietary or vendor-specific data models. Future research into semantic interoperability
can aim at preventing a proliferation of disparate data models and standards, and instead
aim towards harmonising them such as via automatic runtime translation or the use of
hypermedia for dynamically generating client-server interaction models. An initial foray
into this research has already been performed by the author of this dissertation, towards
a semantic repository allowing the discovery, publishing and distribution of multiple kinds
of data models for IoT device and gateway management [100].

A further point of note worth mentioning regarding IoT gateway management is that,
IoT gateways are increasingly becoming more intelligent, with advanced application logic
and computational capabilities. As edge and fog computing become more prevalent,
software-based communication systems, network services and data processing applications
would be deployed from centralised servers into IoT gateways, either as lightweight
container and virtualisation technologies, or as native executables. Future work in IoT
gateway management would need to consider the deployment, monitoring, updating and
decommissioning of such containers and virtual machines running within the gateways as
well.

7.3.4 IoT Gateways in Home Networks
The home network, which Publications 2, 5 and 9 focus upon, offers a rich testing and
proving ground for IoT experimentation and deployment. It is an evolving environment
with a limited physical space that can contain diverse sensors, embedded systems, powerful
computing nodes and smart consumer electronic devices, all of which communicate using
different IP and non-IP wireless technologies, and sometimes need multiple gateways for
connectivity and interoperability. Additionally, although it is increasingly common to find
Commercial Off-The-Shelf (COTS) hardware in industrial IoT domains, as Publication
7 shows, it is commonly in the smart home domain that low-cost COTS equipment are
prevalently found. Publications 5 and 9 employ the use of multiple COTS gateways within
the home in a self-organising and self-healing multi-hop mesh over Wi-Fi, to scalably
support connectivity for a large number of edge IoT devices. Solutions for mesh-based
sensor networks have been widely deployed in smart cities and smart building, with
proprietary technologies as well as based on standards such as Zigbee and BLE mesh
networking. However, Wi-Fi based mesh networking such as the Homenet architecture
described in Publications 5 and 9 is a recent phenomenon. ISPs as well as commercial
vendors have begun rolling out residential Wi-Fi mesh gateways for home owners wishing to
geographically extend Internet coverage, strengthen signal strength or counter connectivity
blind spots. The Thread Group, focusing on IoT technologies for the home, is standardising
low power IP-based wireless mesh networking standards and protocols over the IEEE
802.15.4 wireless radio [101]. As a future direction, mesh-based connectivity to the Internet
within the home would become commonplace and home gateway implementations must

68 Chapter 7. Conclusion

consider issues such as autonomic networking, simplified gateway management and
deployment, in order to cater towards non-technical home owners and users.

7.3.5 REST-based Proxying
The work described in Publication 6 focused on IoT gateways possessing multiple network
interfaces acting as proxies between entirely different protocol stacks and radio technologies.
However, gateways can also perform proxying between two disparate transports for the
same management or application protocol. As an example, the LWM2M protocol relies
on using CoAP for obtaining management and resource information, with CoAP itself
has been standardised to use UDP and DTLS. However LWM2M is also specifying
TCP and TLS as viable bearer transports for cellular networks, as network management
functionality in IoT can often be hampered owing to the existence of middleboxes such as
firewalls and NATs between the management server and the managed nodes. Additionally,
the use of Websockets has also been proposed for consideration as an alternative transport
for CoAP, for similar reasons. A LWM2M gateway thus can function as a proxy for
LWM2M/CoAP clients over UDP in its LAN, while using a TCP or Websocket endpoint
in its WAN for communication with a LWM2M server. However, the LWM2M standard
does not really address the proxying of management operations. Therefore, with the
currently available data model, the gateway needs to masquerade the objects and resources
of each endpoint on its LAN as if they were its own, to an external management server.
Additionally, as Publication 6 discusses, the discovery and usage of proxy functionality
should be incorporated into future data models which unambiguously assert the location
and type of managed endpoints residing behind such a gateway. Although the CoAP
protocol supports a Proxy-URI option, how this can be achieved and defined in a Data
Model remains an open issue. However, in doing so, the semantic model becomes expressive
enough to cleanly separate end-to-end resource retrieval and interaction at runtime, from
any underlying transport-specific reachability issues. As the gateway resides in the path
between a management server and managed endpoints, a similar principle can also be
applied, in which the gateway functions as a translator for very resource constrained
endpoints, providing semantic interoperability for connected end devices. In terms of
caching and validation, an added benefit of this role is that the gateway then possesses and
provides a cached representation of the schema itself, and is able to locally validate the
translation of objects and resources exposed by a very constrained endpoint. Additionally
a gateway acting as a CoAP proxy may be requested to retrieve the same resource from
a CoAP endpoint over multiple transports. This could be possible if such an endpoint
exposes its resources over both UDP and DTLS (or UDP and TCP), for example. Instead
of retrieving the same requested resource representation multiple times, the gateway can
ideally returned an already cached, valid representation if one exists. Although some
work exists in understanding retrieval of CoAP-based resources over multiple transports
from an endpoint, it is still in its infancy.

7.3.6 Acquiring Energy Measurements
From the work performed in obtaining energy measurements in Publications 8 and 9,
it became apparent that there is significant benefit in obtaining and utilising energy
measurements to understand IoT gateway behaviour in several different dimensions, either
with hardware or software. Acquiring energy measurements using a hardware-based
approach as opposed to software, has certain drawbacks. The approach is not fine
grained enough to pinpoint power consumption information of all the various running

7.3. Discussion and Future Directions 69

components in the measured device. Consequently, it is vital that during data acquisition,
non-essential applications and services are shut down in the measured device to avoid false
positives. Secondly, it is also less convenient in terms of experimental setup, compared to
software-based systems, and calibration is often necessary before any measurements are
undertaken.

Having an external platform for measuring power consumption has several benefits.
External measurement equipment are device agnostic and the same equipment can be
used to measure a wide range of IoT gateways and devices. The approach is non-invasive
and eliminates any measurement bias caused by a software-based energy profiler, typically
as a result of a computational or I/O skew. Particularly for a compromised gateway in
which the firmware may have been maliciously replaced, a software profiler may not be
accurately detect any rogue activity. Additionally, measurements can be taken reliably
even when the measured device is under heavy stress or close to power depletion. The
dissertation shows that such measurement equipment can be built to be portable, with
low cost and common off-the-shelf components. Consequently, it is feasible to deploy a
large number of such equipment to simultaneously measure the energy consumption of all
gateways and devices in a network.

The measurement devices could themselves be managed in a standardised manner, such
as with LWM2M either over a different or the same backhaul network from the IoT
devices being measured. Using external measurement devices also is advantageous for the
future in being able to derive meaningful comparisons of different emerging wireless radio
technologies without having to develop custom measurement software.

7.3.7 Security and Privacy
Finally, security and privacy research have a significant role in ensuring the success of
the IoT. This is an extensive field of study in its own right. Some of the work performed
in the dissertation, particularly that of Publication 9, shed light into how network-
based attacks on gateways could be identified, based on specific energy footprints. Also,
energy comparisons in Publications 8 and 9 show that usage of secure transports and
hashing functions have a negligible impact energy-wise, when compared against insecure
counterparts. For the future, work would focus on the secure lifecycle management of
IoT gateways, particularly with secure bootstrapping, secure firmware updates as well as
trusted execution of application gateway logic.

Bibliography

[1] B. Ebeling, S. Hoyer, and J. Bührig, “What are your favorite methods?-an exami-
nation on the frequency of research methods for is conferences from 2006 to 2010.”
in ECIS, 2012, p. 200.

[2] IPv6-test.com, “IPv6 test statistics,” [Online; accessed 24-July-2018]. [Online].
Available: http://web.archive.org/web/20180724155456/http://ipv6-test.com/st
ats/

[3] D. Guinard, V. Trifa, F. Mattern, and E. Wilde, From the Internet of Things to
the Web of Things: Resource-oriented Architecture and Best Practices. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011, pp. 97–129. [Online]. Available:
https://doi.org/10.1007/978-3-642-19157-2_5

[4] C. Bormann, M. Ersue, and A. Keranen, “Terminology for constrained-
node networks,” Internet Requests for Comments, RFC Editor, RFC
7228, May 2014, http://www.rfc-editor.org/rfc/rfc7228.txt. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc7228.txt

[5] A. Taivalsaari and T. Mikkonen, “A taxonomy of iot client architectures,” IEEE
Software, vol. 35, no. 3, pp. 83–88, 2018.

[6] Technavio, “Global industrial iot gateway market - drivers and forecast
from technavio,” [Online; accessed 21-March-2019]. [Online]. Available:
http://web.archive.org/web/20170420190456/https://www.businesswire.com/new
s/home/20170420005801/en/Global-Industrial-IoT-Gateway-Market---Drivers

[7] ABI Research, “Gateways Power Nearly Every IoT Market as
ABI Research Forecasts Global Shipments to Exceed 64 Million
Units in 2021,” [Online; accessed 21-March-2019]. [Online]. Avail-
able: http://web.archive.org/web/20190321141121/https://www.abiresearch.com/
press/gateways-power-nearly-every-iot-market-abi-researc/

[8] C. Bormann, S. Lemay, H. Tschofenig, K. Hartke, B. Silverajan, and B. Raymor,
“CoAP (Constrained Application Protocol) over TCP, TLS, and WebSockets,” RFC
8323, Feb. 2018. [Online]. Available: https://rfc-editor.org/rfc/rfc8323.txt

[9] O. for Economic Co-operation and Development, Frascati manual 2015: guidelines
for collecting and reporting data on research and experimental development. OECD
Publishing, 2015.

[10] D. Aksnes, G. Sivertsen, L. T. Van, K. Wendt et al., “Measuring the productivity
of national r&d systems: challenges in cross-national comparisons of r&d input and
publication output indicators,” Science and public policy, vol. 44, p. 13, 2017.

71

72 Bibliography

[11] C. R. Kothari, Research methodology: Methods and techniques. New Age Interna-
tional, 2004.

[12] K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatterjee, “A design science
research methodology for information systems research,” Journal of management
information systems, vol. 24, no. 3, pp. 45–77, 2007.

[13] IETF sunset4 mailing list, “Closing sunset4,” 2018, [Online; accessed 25-October-
2018]. [Online]. Available: https://web.archive.org/web/20181025051445/https:
//mailarchive.ietf.org/arch/msg/sunset4/KgD6anjNnqK5i6KWcaP8PQ4y7No

[14] Google IPv6, “Per-country ipv6 adoption,” [Online; accessed 25-October-2018].
[Online]. Available: https://www.google.com/intl/en/ipv6/statistics.html#tab=pe
r-country-ipv6-adoption&tab=ipv6-adoption

[15] S. Ziegler, C. Crettaz, L. Ladid, S. Krco, B. Pokric, A. F. Skarmeta, A. Jara,
W. Kastner, and M. Jung, “Iot6–moving to an ipv6-based future iot,” in The Future
Internet Assembly. Springer, 2013, pp. 161–172.

[16] T. Chown, J. Arkko, A. Brandt, O. Troan, and J. Weil, “Ipv6 home networking
architecture principles,” Internet Requests for Comments, RFC Editor, RFC 7368,
October 2014.

[17] O. Troan and R. Droms, “Ipv6 prefix options for dynamic host configuration
protocol (dhcp) version 6,” Internet Requests for Comments, RFC Editor, RFC
3633, December 2003.

[18] J. Chroboczek, “The babel routing protocol,” Internet Requests for Comments,
RFC Editor, RFC 6126, April 2011.

[19] J. Chroboczek, “Homenet profile of the Babel routing protocol,” Internet
Engineering Task Force, Internet-Draft draft-ietf-homenet-babel-profile-07, Jul.
2018, work in Progress. [Online]. Available: https://datatracker.ietf.org/doc/html/
draft-ietf-homenet-babel-profile-07

[20] J. Chroboczek, “Applicability of the Babel routing protocol,” Internet Engineering
Task Force, Internet-Draft draft-ietf-babel-applicability-05, Nov. 2018, work in
Progress. [Online]. Available: https://datatracker.ietf.org/doc/html/draft-ietf-bab
el-applicability-05

[21] N. Kushalnagar, G. Montenegro, and C. Schumacher, “Ipv6 over low-power
wireless personal area networks (6lowpans): Overview, assumptions, problem
statement, and goals,” Internet Requests for Comments, RFC Editor, RFC
4919, August 2007, http://www.rfc-editor.org/rfc/rfc4919.txt. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc4919.txt

[22] J. Hui and P. Thubert, “Compression format for ipv6 datagrams over ieee
802.15.4-based networks,” Internet Requests for Comments, RFC Editor, RFC 6282,
September 2011, http://www.rfc-editor.org/rfc/rfc6282.txt. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc6282.txt

[23] Internet Society, “State of IPv6 Deployment 2017,” [Online; accessed 2-February-
2019]. [Online]. Available: http://web.archive.org/web/20190327143648/https://ww
w.internetsociety.org/wp-content/uploads/2017/08/IPv6_report_2017-0606.pdf

Bibliography 73

[24] J. Nieminen, T. Savolainen, M. Isomaki, B. Patil, Z. Shelby, and C. Gomez, “Ipv6
over bluetooth(r) low energy,” Internet Requests for Comments, RFC Editor, RFC
7668, October 2015.

[25] M. Chakraborty and N. Chaki, “An ipv6 based hierarchical address configuration
scheme for smart grid,” in 2015 Applications and Innovations in Mobile Computing
(AIMoC), Feb 2015, pp. 109–116.

[26] H. Shin, E. Talipov, and H. Cha, “Spectrum: Lightweight hybrid address autocon-
figuration protocol based on virtual coordinates for 6lowpan,” IEEE Transactions
on Mobile Computing, vol. 11, no. 11, pp. 1749–1762, Nov 2012.

[27] C. Y. Cheng, C. C. Chuang, and R. I. Chang, “Lightweight spatial ip address
configuration for ipv6-based wireless sensor networks in smart grid,” in 2012 IEEE
Sensors, Oct 2012, pp. 1–4.

[28] Z. Zou, K.-J. Li, R. Li, and S. Wu, “Smart home system based on ipv6
and zigbee technology,” Procedia Engineering, vol. 15, pp. 1529 – 1533, 2011,
cEIS 2011. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S1877705811017851

[29] T. Zachariah, N. Klugman, B. Campbell, J. Adkins, N. Jackson, and P. Dutta,
“The internet of things has a gateway problem,” in Proceedings of the 16th
International Workshop on Mobile Computing Systems and Applications, ser.
HotMobile ’15. New York, NY, USA: ACM, 2015, pp. 27–32. [Online]. Available:
http://doi.acm.org/10.1145/2699343.2699344

[30] N. Rouhana and E. Horlait, “Bwig: Bluetooth web internet gateway,” in Proceedings
ISCC 2002 Seventh International Symposium on Computers and Communications,
2002, pp. 679–684.

[31] A. J. Jara, P. Moreno-Sanchez, A. F. Skarmeta, S. Varakliotis, and P. Kirstein,
“Ipv6 addressing proxy: Mapping native addressing from legacy technologies and
devices to the internet of things (ipv6),” Sensors, vol. 13, no. 5, pp. 6687–6712,
2013. [Online]. Available: http://www.mdpi.com/1424-8220/13/5/6687

[32] J. Meduna, “A lighting interface to wireless network,” in Proceedings of the
IAB Workshop on Interconnecting Smart Objects with the Internet. Internet
Architecture Board, 2011. [Online]. Available: https://www.iab.org/wp-content/I
AB-uploads/2011/03/Meduna.pdf

[33] W. Jung, S. I. Kim, and H. S. Kim, “Ontology modeling for rest open apis and
web service mash-up method,” in The International Conference on Information
Networking 2013 (ICOIN), Jan 2013, pp. 523–528.

[34] Z. Shelby, K. Hartke, and C. Bormann, “The constrained application
protocol (coap),” Internet Requests for Comments, RFC Editor, RFC
7252, June 2014, http://www.rfc-editor.org/rfc/rfc7252.txt. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc7252.txt

[35] A. Castellani, S. Loreto, A. Rahman, T. Fossati, and E. Dijk, “Guidelines for
mapping implementations: Http to the constrained application protocol (coap),”
Internet Requests for Comments, RFC Editor, RFC 8075, February 2017.

74 Bibliography

[36] F. Kaup, P. Gottschling, and D. Hausheer, “Powerpi: Measuring and modeling the
power consumption of the raspberry pi,” in 39th Annual IEEE Conference on Local
Computer Networks, Sept 2014, pp. 236–243.

[37] F. Astudillo-Salinas, D. Barrera-Salamea, A. Vázquez-Rodas, and L. Solano-Quinde,
“Minimizing the power consumption in raspberry pi to use as a remote wsn gateway,”
in 2016 8th IEEE Latin-American Conference on Communications (LATINCOM),
Nov 2016, pp. 1–5.

[38] B. Martinez, M. Montón, I. Vilajosana, and J. D. Prades, “The power of models:
Modeling power consumption for iot devices,” IEEE Sensors Journal, vol. 15, no. 10,
pp. 5777–5789, Oct 2015.

[39] K. Gomez, R. Riggio, T. Rasheed, D. Miorandi, and F. Granelli, “Energino: A
hardware and software solution for energy consumption monitoring,” in 2012 10th
International Symposium on Modeling and Optimization in Mobile, Ad Hoc and
Wireless Networks (WiOpt), May 2012, pp. 311–317.

[40] B. Dezfouli, I. Amirtharaj, and C.-C. Li, “Empiot: An energy measurement platform
for wireless iot devices,” arXiv preprint arXiv:1804.04794, 2018.

[41] A. Merloa, M. Migliardib, and P. Fontanellia, “Measuring and estimating power
consumption in android to support energy-based intrusion detection,” Journal of
Computer Security, vol. 1, pp. 1–7, 2014.

[42] A. Pathak, Y. C. Hu, and M. Zhang, “Where is the energy spent inside
my app?: Fine grained energy accounting on smartphones with eprof,” in
Proceedings of the 7th ACM European Conference on Computer Systems, ser.
EuroSys ’12. New York, NY, USA: ACM, 2012, pp. 29–42. [Online]. Available:
http://doi.acm.org/10.1145/2168836.2168841

[43] S. Rajasegarar, C. Leckie, and M. Palaniswami, “Anomaly detection in wireless
sensor networks,” IEEE Wireless Communications, vol. 15, no. 4, pp. 34–40, Aug
2008.

[44] R. Jurdak, X. R. Wang, O. Obst, and P. Valencia, Wireless Sensor
Network Anomalies: Diagnosis and Detection Strategies. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011, pp. 309–325. [Online]. Available: https:
//doi.org/10.1007/978-3-642-17931-0_12

[45] A. Kanev, A. Nasteka, C. Bessonova, D. Nevmerzhitsky, A. Silaev, A. Efremov, and
K. Nikiforova, “Anomaly detection in wireless sensor network of the smart home
system,” in 2017 20th Conference of Open Innovations Association (FRUCT), April
2017, pp. 118–124.

[46] A. J. Oliner, A. P. Iyer, I. Stoica, E. Lagerspetz, and S. Tarkoma, “Carat:
Collaborative energy diagnosis for mobile devices,” in Proceedings of the
11th ACM Conference on Embedded Networked Sensor Systems, ser. SenSys
’13. New York, NY, USA: ACM, 2013, pp. 10:1–10:14. [Online]. Available:
http://doi.acm.org/10.1145/2517351.2517354

[47] IBM, “5724-x71 ibm rational sdl suite,” [Online; accessed 21-March-
2019]. [Online]. Available: http://web.archive.org/web/20190328112105/http:
//www-01.ibm.com/common/ssi/printableversion.wss?docURL=/common/ssi/r
ep_sm/1/897/ENUS5724-X71/index.html&request_locale=en

Bibliography 75

[48] R. Z. ITU-T and Z. Recommendation, “100: Specification and description language
(sdl),” International Telecommunication Union, 2000.

[49] Y.-D. Bromberg, L. Réveillère, J. L. Lawall, and G. Muller, “Automatic generation
of network protocol gateways,” in ACM/IFIP/USENIX International Conference
on Distributed Systems Platforms and Open Distributed Processing. Springer, 2009,
pp. 21–41.

[50] L. Burgy, L. Reveillere, J. Lawall, and G. Muller, “Zebu: A language-based ap-
proach for network protocol message processing,” IEEE Transactions on Software
Engineering, vol. 37, no. 4, pp. 575–591, 2011.

[51] J. Mercadal, L. Réveillere, Y.-D. Bromberg, B. Le Gal, T. F. Bissyandé, and
J. Solanki, “Zebra: Building efficient network message parsers for embedded systems,”
IEEE Embedded Systems Letters, vol. 4, no. 3, pp. 69–72, 2012.

[52] C. Liu, Y. Cui, C. Zhang, and J. Wu, “Generic application layer protocol translation
for ipv4/ipv6 transition,” in 2017 IEEE International Conference on Communica-
tions (ICC), May 2017, pp. 1–6.

[53] F. Travostino, E. Menze, and F. Reynolds, “Paths: Programming with sys-
tem resources in support of real-time distributed applications,” in Proceedings
of WORDS’96. The Second Workshop on Object-Oriented Real-Time Dependable
Systems. IEEE, 1996, pp. 36–45.

[54] M. Hayden, “The ensemble system,” Cornell University, Tech. Rep., 1998.

[55] M. A. Hiltunen, R. D. Schlichting, X. Han, M. M. Cardozo, and R. Das, “Real-time
dependable channels: Customizing qos attributes for distributed systems,” IEEE
Transactions on Parallel and Distributed Systems, vol. 10, no. 6, pp. 600–612, 1999.

[56] F. Bai, N. Sadagopan, and A. Helmy, “Brics: A building-block approach for
analyzing routing protocols in ad hoc networks-a case study of reactive routing
protocols,” in 2004 IEEE International Conference on Communications (IEEE Cat.
No. 04CH37577), vol. 6. IEEE, 2004, pp. 3618–3622.

[57] F. Bai, G. Bhaskara, and A. Helmy, “Building the blocks of protocol design and
analysis: challenges and lessons learned from case studies on mobile ad hoc routing
and micro-mobility protocols,” ACM SIGCOMM Computer Communication Review,
vol. 34, no. 3, pp. 57–70, 2004.

[58] D. C. Schmidt, “The adaptive communication environment: An object-oriented
network programming toolkit for developing communication software,” 1993.

[59] A. Fettig, Twisted network programming essentials. " O’Reilly Media, Inc.", 2005.

[60] M. Colagrosso, W. Simmons, and M. Graham, “Demo abstract: Simple sensor
syndication,” in Proceedings of the Fourth ACM SenSys Conference, 2006, pp.
377–378.

[61] P. Martı-Gamboa, “A framework for the evaluation of protocols and services in
ad-hoc networks,” Ph.D. dissertation, University of Dublin, 2006.

76 Bibliography

[62] Open Mobile Alliance, “Lightweight Machine to Machine Technical Specification
Version 1.0.2,” Feb 2018. [Online]. Available: http://web.archive.org/web/
20190327233643/http://openmobilealliance.org/release/LightweightM2M/V1_0_
2-20180209-A/OMA-TS-LightweightM2M-V1_0_2-20180209-A.pdf

[63] M. Veillette, P. V. der Stok, A. Pelov, and A. Bierman, “CoAP
Management Interface,” Internet Engineering Task Force, Internet-Draft
draft-ietf-core-comi-04, Nov. 2018, work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/html/draft-ietf-core-comi-04

[64] M. Björklund, “The YANG 1.1 Data Modeling Language,” RFC 7950, Aug. 2016.
[Online]. Available: https://rfc-editor.org/rfc/rfc7950.txt

[65] Open Connectivity Foundation, “OCF Core Specification Version 2.0.1,” Feb 2019.
[Online]. Available: https://openconnectivity.org/specs/OCF_Core_Specification_
v2.0.1.pdf

[66] oneM2M, “oneM2M: The Interoperability Enabler For The Entire M2M Ecosystem,
White Paper,” Jan 2015. [Online]. Available: http://www.onem2m.org/images/files
/oneM2M-whitepaper-January-2015.pdf

[67] oneM2M, “oneM2M Functional Specification Version 3.15.0,” Mar 2019. [Online].
Available: http://member.onem2m.org/Application/documentapp/downloadLat
estRevision/default.aspx?docID=29382

[68] S. M. Kim, H. S. Choi, and W. S. Rhee, “Iot home gateway for auto-configuration
and management of mqtt devices,” in 2015 IEEE Conference on Wireless Sensors
(ICWiSe), Aug 2015, pp. 12–17.

[69] H. Huang, J. Zhu, and L. Zhang, “An sdn_based management framework for iot
devices,” 2014.

[70] V. M. Tayur and R. Suchithra, “Software defined unified device management for
smart environments,” network, vol. 121, no. 9, 2015.

[71] T. Perumal, S. K. Datta, and C. Bonnet, “Iot device management framework
for smart home scenarios,” in 2015 IEEE 4th Global Conference on Consumer
Electronics (GCCE), Oct 2015, pp. 54–55.

[72] W. Jin and D. H. Kim, “Iot device management architecture based on proxy,” in
2017 6th International Conference on Computer Science and Network Technology
(ICCSNT), Oct 2017, pp. 84–87.

[73] W. G. Chang and F. J. Lin, “Challenges of incorporating oma lwm2m gateway in
m2m standard architecture,” in 2016 IEEE Conference on Standards for Communi-
cations and Networking (CSCN), Oct 2016, pp. 1–6.

[74] S. K. Datta and C. Bonnet, “A lightweight framework for efficient m2m device
management in onem2m architecture,” in 2015 International Conference on Recent
Advances in Internet of Things (RIoT), April 2015, pp. 1–6.

[75] Traficom, “Suositus IPv6:n käyttöönotosta kuluttajalaajakaistali-
ittymissä (in Finnish),” [Online; accessed 02-April-2019]. [On-
line]. Available: http://web.archive.org/web/20190402095056/https:
//www.traficom.fi/sites/default/files/media/regulation/200-2014-S-Suositu
s-IPv6-n-kayttoonotosta-kuluttajaliittymissa.pdf

Bibliography 77

[76] T. Savolainen, J. Korhonen, K. Iisakkila, B. Patil, J. Soininen, and G. Bajko, “IPv6
in 3rd Generation Partnership Project (3GPP) Evolved Packet System (EPS),”
RFC 6459, Jan. 2012. [Online]. Available: https://rfc-editor.org/rfc/rfc6459.txt

[77] C. Byrne, D. Drown, and V. Ales, “Extending an IPv6 /64 Prefix from a Third
Generation Partnership Project (3GPP) Mobile Interface to a LAN Link,” RFC
7278, Jun. 2014. [Online]. Available: https://rfc-editor.org/rfc/rfc7278.txt

[78] W. A. Simpson, D. T. Narten, E. Nordmark, and H. Soliman, “Neighbor
Discovery for IP version 6 (IPv6),” RFC 4861, Sep. 2007. [Online]. Available:
https://rfc-editor.org/rfc/rfc4861.txt

[79] D. T. Narten, T. Jinmei, and D. S. Thomson, “IPv6 Stateless Address
Autoconfiguration,” RFC 4862, Sep. 2007. [Online]. Available: https:
//rfc-editor.org/rfc/rfc4862.txt

[80] A. Cooper, F. Gont, and D. Thaler, “Security and Privacy Considerations for
IPv6 Address Generation Mechanisms,” RFC 7721, Mar. 2016. [Online]. Available:
https://rfc-editor.org/rfc/rfc7721.txt

[81] B. E. Carpenter and K. Moore, “Connection of IPv6 Domains via IPv4 Clouds,”
RFC 3056, Feb. 2001. [Online]. Available: https://rfc-editor.org/rfc/rfc3056.txt

[82] C. Huitema, “Teredo: Tunneling IPv6 over UDP through Network Address
Translations (NATs),” RFC 4380, Feb. 2006. [Online]. Available: https:
//rfc-editor.org/rfc/rfc4380.txt

[83] P. Matthews, I. van Beijnum, and M. Bagnulo, “Stateful NAT64: Network Address
and Protocol Translation from IPv6 Clients to IPv4 Servers,” RFC 6146, Apr. 2011.
[Online]. Available: https://rfc-editor.org/rfc/rfc6146.txt

[84] S. Steffann, I. van Beijnum, and R. van Rein, “A Comparison of IPv6-
over-IPv4 Tunnel Mechanisms,” RFC 7059, Nov. 2013. [Online]. Available:
https://rfc-editor.org/rfc/rfc7059.txt

[85] P. S. Kim, “Analysis and comparison of tunneling based ipv6 transition mechanisms,”
International Journal of Applied Engineering Research, vol. 12, no. 6, pp. 894–897,
2017.

[86] M. TOMOHIKO, I. YOSHIHIRO, and K. RYO, “Effect of communication
quality degradation on web usability over 6to4 networks,” Electronics and
Communications in Japan, vol. 100, no. 4, pp. 3–14. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/ecj.11941

[87] N. Bahaman, E. Hamid, and A. S. Prabuwono, “Network performance evaluation
of 6to4 tunneling,” in 2012 International Conference on Innovation Management
and Technology Research, May 2012, pp. 263–268.

[88] B. Silverajan, S. Kinnari, A. Vekkeli, and T. Vartiainen, “Beyond connectivity,”
IEEE Vehicular Technology Magazine, vol. 4, no. 3, pp. 55–61, Sept 2009.

[89] B. E. Carpenter, “Advisory Guidelines for 6to4 Deployment,” RFC 6343, Aug.
2011. [Online]. Available: https://rfc-editor.org/rfc/rfc6343.txt

78 Bibliography

[90] M. Townsley and O. Trøan, “IPv6 Rapid Deployment on IPv4 Infrastructures
(6rd) – Protocol Specification,” RFC 5969, Aug. 2010. [Online]. Available:
https://rfc-editor.org/rfc/rfc5969.txt

[91] O. Trøan and B. E. Carpenter, “Deprecating the Anycast Prefix for
6to4 Relay Routers,” RFC 7526, May 2015. [Online]. Available: https:
//rfc-editor.org/rfc/rfc7526.txt

[92] Bluetooth Special Interest Group, “GATT REST API White Paper,” Apr
2014. [Online]. Available: http://web.archive.org/web/20190403084316/https:
//www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=285910&_g
a=2.245581764.1383925978.1554280404-1893575694.1554280404

[93] T. Savolainen, “Optimal Transmission Window Option for ICMPv6 Router
Advertisement,” Internet Engineering Task Force, Internet-Draft draft-savolainen-
6lo-optimal-transmission-window-00, Jan. 2014, work in Progress. [Online].
Available: https://datatracker.ietf.org/doc/html/draft-savolainen-6lo-optimal-t
ransmission-window-00

[94] N. Mathewson, “Fast portable non-blocking network programming with libevent,”
2012.

[95] H. Tschofenig, J. Arkko, D. Thaler, and D. McPherson, “Architectural considerations
in smart object networking,” Internet Requests for Comments, RFC Editor, RFC
7452, March 2015.

[96] IBM, “Watson IoT Platform Overview,” [Online; accessed 24-July-2018]. [Online].
Available: https://www.ibm.com/support/knowledgecenter/SSQP8H/iot/overvie
w/overview.html

[97] R. Morabito, R. Petrolo, V. Loscri, and N. Mitton, “Legiot: A lightweight edge
gateway for the internet of things,” Future Generation Computer Systems, vol. 81,
pp. 1–15, 2018.

[98] Cisco Systems, “Hot Standby Router Protocol Features and
Functionality,” [Online; accessed 23-February-2019]. [Online]. Avail-
able: http://web.archive.org/web/20190617060257/https://www.cisco.com/c/en
/us/support/docs/ip/hot-standby-router-protocol-hsrp/9234-hsrpguidetoc.html

[99] S. Nadas, “Virtual Router Redundancy Protocol (VRRP) Version 3 for
IPv4 and IPv6,” RFC 5798, Mar. 2010. [Online]. Available: https:
//rfc-editor.org/rfc/rfc5798.txt

[100] B. Silverajan, H. Zhao, and A. Kamath, “A semantic meta-model repository for
lightweight m2m,” in 2018 IEEE International Conference on Communication
Systems (ICCS). IEEE, 2018, pp. 468–472.

[101] Thread Group, “Thread Overview,” [Accessed 10-September-2019]. [Online].
Available: https://www.threadgroup.org/Portals/0/documents/support/Thread
Overview_633_2.pdf

Publications

Publication I

IPv6 Addressing Strategies for IoT

T. Savolainen, J. Soininen and B. Silverajan

IEEE Sensors Journal. vol 13, no 10, pp. 3511-3519, 2013, IEEE.

DOI: 10.1109/JSEN.2013.225969

Publication reprinted with the permission of the copyright holders.

In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE
does not endorse any of Tampere University’s products or services. Internal or personal use of this
material is permitted. If interested in reprinting/republishing IEEE copyrighted material for
advertising or promotional purposes or for creating new collective works for resale or
redistribution, please go to
http://www.ieee.org/publications_standards/publications/rights/rights_link.html
to learn how to obtain a License from RightsLink.

1

IPv6 Addressing Strategies for IoT
Teemu Savolainen, Jonne Soininen, Bilhanan Silverajan

Abstract—In this paper we analyze the suitability of different
IPv6 addressing strategies for nodes, gateways and various
access network deployment scenarios in the Internet of Things.
The vast numbers of things being connected to the Internet
need IPv6 addresses, as the IPv4 address space was effectively
already consumed prior to the introduction of the Internet of
Things. We highlight how the heterogeneity of nodes and network
technologies, extreme constraint and miniaturisation, renumber-
ing and multihoming, present serious challenges towards IPv6
address allocation. By considering the topologies of various types
of IoT networks, their intended uses as well as the types of
IPv6 addresses that need to be deployed, we draw attention to
allocation solutions as well as potential pitfalls.

IPv6, IoT, addressing, renumbering, low-power, topology.

I. INTRODUCTION

In 2011, nearly 1 billion smart connected devices, compris-
ing of PCs, tablets and smartphones were shipped, with esti-
mates indicating that the number would almost double by 2016
[1]. The total number of Internet connected devices, however,
exceeded 8.7 billion in 2012 [2]. Within 7 years, expectations
are rife that the present number of connected nodes would be
significantly dwarfed, as estimates from standardization bod-
ies, network equipment vendors as well as network operators
range from 25 to 50 billion connected devices [2][3][4]. These
nodes comprise both smart devices as well as complexity and
resource limited nodes such as sensors and actuators. While
commonly available connectivity technologies such as cellular,
fixed Ethernet and Wi-Fi networks would continue to be used,
billions of resource constrained nodes are expected to also
utilise low power communication over technologies such as
Bluetooth Low Energy (BLE), DASH7, Insteon, 1-Wire, as
well as IEEE 802.15.4-based technologies such as ZigBee.

The phrase "The Internet of Things" (IoT) was the title of
the seventh report in a series of Internet reports the Inter-
national Telecommunications Union ITU-T issued to address
challenges to the network[5]. This report was published in
2005 and envisioned interconnected Internet-enabled networks
providing ubiquitous connectivity which had far reaching im-
plications for machine to machine communications, delivering
content to users as well as allowing everyday household
objects to be connected to the digital world. Advances in Radio
Frequency Identification (RFID), nanotechnology, sensors and
smart technologies (such as wearable computing, intelligent
homes and vehicles and robotics) were identified as technology
enablers for IoT. While the origins of the term "IoT" predate

Teemu Savolainen (teemu.savolainen@nokia.com) is with the Nokia Re-
search Center.
Jonne Soininen (jonne.soininen@renesasmobile.com) is with the Renesas
Mobile.
Bilhanan Silverajan (bilhanan.silverajan@tut.fi) is with the Tampere Univer-
sity of Technology.

the ITU-T report, the vision became a reality in 2010 when
Internet connected devices began outnumbering the world’s
human population [2].

One of the first steps in allowing such large numbers of
nodes to co-exist and communicate in the Internet is the
existence of efficient, scalable and federated architectures and
schemes for unambiguous naming and addressing. This is
particularly so in IoT, where there is an abundance of sleeping
nodes, intermittent connectivity, mobility and non-IP devices.
In addition to reachability, this provides the ability for unique
identification, facilitation of active mechanisms for service
discovery as well as passive lookups.

We examine how IPv6 can be effectively deployed for
various IoT topologies particularly with emphasis on address
allocation approaches. The motivation and contributions of
this paper are outlined in the next section. The terminologies
used to describe various concepts, topologies and solutions
are supplied in Section 3. Section 4 describes various relevant
facets of IPv6 for IoT node addressing while Section 5 outlines
and explains possible network topologies for realistic deploy-
ment as well as upstream connectivity. Mobility implications
are then discussed in Section 6 while solutions for address
allocation are presented in Section 7. We then arrive at a
conclusion of how well current and future addressing needs
for IoT devices are met by efforts towards IPv6 adoption for
the Internet of Things.

II. MOTIVATION

IPv6 address allocation schemes for constrained nodes have
been covered extensively in academic literature, particularly
by the wireless sensor networks (WSN) research community.
Some of the issues surrounding address allocation in WSN are
similar to IoT. The challenges of combining sensor networks
with IP access are discussed in [6], particularly with low power
networks such as 6LoWPAN. A scheme called MPIPA is pre-
sented in [7] that uses three-dimensional location coordinates
to assign unique IPv6 addresses to sensor nodes in a smart
grid. A lightweight stateless IPv6 address autoconfiguration
for 6LoWPAN using color coordinators is discussed in [8].
An IPv6 address allocation scheme applicable to MANETs
is outlined in [9] that allows the acquisition of unique IPv6
addresses from neighbouring proxy nodes by mobile nodes.
Three ways in which WSNs can be integrated with the
Internet are introduced in [10] along with a discussion of the
complexities and routing requirements of each approach.

Many of these contributions view IPv6 as a replacement
to IPv4 owing to its vast globally unique address space and
the simplicity of network configuration, therefore focusing
on parameters for optimal IPv6 address allocations to reduce
the chances of address collisions during Duplicate Address

2

Detection (DAD). We do not intend to revisit old ground, but
underline how the topology of IoT networks and the types of
IoT nodes impose new requirements and limitations on node
addressing, address configuration, reachability and naming
needs. Consequently this paper’s aim is to look at how well
current efforts in IPv6 research and standardisation cope with
technical challenges in the IoT for various scenarios, bearing
in mind the expected properties of IoT nodes and topologies.

The motivation of this paper is to highlight IPv6 addressing
schemes for nodes and gateways in various topologies with
the emphasis on issues such as:

Node Miniaturisation: Extremely severely constrained
nodes may not even have the ability to dynamically configure
their addresses. There will be nodes which broadcast or
communicate only unidirectionally and extremely miniaturized
nodes such as nano machines communicating with the Internet
(the Internet of NanoThings [11]) need to be considered for
the future.

Renumbering Challenges: A smart vehicle and its associated
networked sensors and nodes need to be renumbered upon
entering specific locations (such as during car servicing and
connecting to a service network), or in the absence of Internet
connectivity without adverse disruptions to the operation of
the intravehicular network, or communication with external
nodes

Multihoming Challenges: Smart homes in which multiple
stakeholders, which includes home owners as well as 3rd party
operators (utility meters, smart grids and device vendors) may
wish to access readings and data without being dependent on
a single Internet uplink from the home. An electricity meter
in the home may be simultaneously accessible from within
the firewalled home network by the home owner and from
the electricity provider’s own Internet uplink and downlink.
Multihoming scenarios also consider mobility scenarios with
multiple interfaces where vertical handovers occur or when
nodes migrate back and forth between IPv6 and non-IPv6
networks.

Proxying and Tracking non-IP nodes: The ability for an
IoT node to serve as a bridge or a proxy towards non-IP
technologies expected to be prevalent. BLE nodes and objects
tracked with RFID provide unique IDs or tag values that can
be used to generate IPv6 addresses. However, BLE IDs can be
regenerated by the node from time to time, while the points of
association for RFID tags change with respect to their readers
or writers. Considerations that IPv6 addresses may not be
permanent for such node types must be taken into account.

III. IOT TERMINOLOGY

The architectural elements that form the building blocks
for IoT can, and have been classified in many ways. The
authors of [12] presented a high level taxonomy of IoT to
illustrate the ubiquity of the architecture. They defined three
IoT components necessary for seamless ubiquitous computing:
Hardware such as sensors, actuators and embedded commu-
nication systems, Middleware such as analytic frameworks for
data computation and on-demand storage and Presentation
which provides a visual perspective with the aid of interpretive,

multi-platform tools. Node classifications have also been per-
formed in various ways. The IEEE 802.15.4 low-rate wireless
personal area network (LR-WPAN) standard classifies any
participating, networked node as either a full-function device
(FFD) which can participate in any topology, implement the
entire protocol set and act as a PAN co-ordinator, or it can be
a reduced-function device (RFD) for more limited nodes that
have minimal implementations allowing them to paticipate as
leaf nodes in various topologies without the ability to perform
any co-ordination activities [13]. In [14] authors discuss nodes
constrained by power and memory capacity and classifies them
as belonging to Class 0 for very constrained and simple sensor-
style devices, Class 1 for nodes containing approximately
10 Kilobytes of RAM memory and 100 Kilobytes of Flash
memory or Class 2 for nodes containing approximately 50
Kilobytes of RAM memory and 250 Kilobytes of Flash
memory. A different kind of taxonomy is presented when
discussing ambient energy harvesting sensors: IoT installations
are classified as Trivial, Classic, and True IoT based on
the number of nodes and communication technologies, to
understand their energy needs [15].

To understand the presented concepts and topologies in this
paper, we provide definitions of the various parts of an IoT
network and the types of node present in the IoT.

Node
IoT proxy

IoT Gateway

WAN Node

Node

Node

Node

 LAN

Internet

Figure 1: Internet of Things, generalised architecture

Figure 1 shows a high-level layout of the Internet of Things.
On the surface, the architecture does not differ from any
normal Internet network structure. The explanation of the
different building blocks are in the following.

IoT Local Area Network (LAN) is the network connecting
IoT nodes in a local - relatively short range - configuration.
Different network technologies can be used for connecting the
IoT LAN, both wireless, and wireline, and be present in one
IoT LAN. However, the technology used is relatively short
range, and the administration is under one entity (person, or
organization). IoT LAN topologies can differ from low-power,
short-range configurations, to building or organization wide
configurations. IoT LAN may or might not be connected to
the Internet.

IoT Wide Area Network (WAN) is a network that covers
geographically, and organizationally a wide area. While IoT
LANs may be connected directly to the Internet, the IoT can be
perceived also as a network of networks, with LANs connected
and aggregated via WANs which are subsequently connected
to the Internet. Hence, a WAN is usually a combination of
network segments administered by different players reaching
potentially a very large geographical area.

3

IoT node is a node in the IoT LAN, and through that
connected to the other nodes in the IoT LAN. If the IoT
LAN is connected to the Internet, the IoT node may also be
connected to the Internet directly. However, this is not always
the case. In addition, there are cases where the IoT node is
connected to the Internet though a WAN connection without
an IoT LAN being present.

IoT gateway is a router connecting an IoT LAN with a
WAN, and to the Internet. An IoT gateway is a layer 3 device,
which forwards IP packets between the IoT LAN and WAN
implementing both the network technologies. An IoT gateway
can potentially implement several LAN and WAN technologies
(wireless or wireline) depending on the configuration. The IoT
gateway forwards packets between the IoT LAN and the WAN
on the IP layer without performing application layer tasks.
In one IoT LAN, there may be zero or more IoT gateways
depending on the scenario.

IoT proxy is an entity that performs an active application
layer function between IoT nodes, and other entities. The
application layer functionality can range from relatively simple
application protocol conversion to more active application
functions. The IoT proxy can be collocated with the IoT
gateway.

IV. BACKGROUND TO IPV6

Recent development of IoT technologies, including the
transport of IP over low-power radio technologies, have con-
centrated almost solely on IPv6. For example, only IPv6
support for 802.15.4 has been defined. An IPv6 address is a
128-bit fixed length numerical address consisting of a subnet
prefix and an Interface Identifier (IID) portions. The length of
the prefix and the IID can vary based on link type, but typically
a 64-bit prefix, and hence also 64-bit IID, is used for address
configuration. The split at 64-bit boundary has become the
industry standard in the most common IPv6 implementations.
Thus, most if not all of the current implementations have been
designed with the assumption of 64-bit IID length.

The bits for the IID can be selected in several different
ways depending on the use-case and deployment scenario, as
described below. Additionally, the relatively large size of 64-
bit IID has fostered innovations where meaningful information
is encoded within IIDs.

• Modified EUI-64-based IIDs: A globally unique IID
generated from network interface’s globally unique iden-
tifier, such as IEEE 802 48-bit MAC address.

• Privacy Addresses: An IID generated using pseudo-
random algorithms, if a globally unique identifier is not
available, or if a host wishes to improve privacy by
making IID-based tracking impossible.

• Cryptographically Generated Addresses: For securing
IPv6 Neighbor Discovery procedures, IIDs may be de-
rived from public keys and signed using private keys.
These are seldom used.

A. IPv6 Addressing Architecture

The IPv6 address architecture defines two scopes for unicast
addresses: link-local and global. Link-local addresses are used

for auto-discovery and auto-configuration, and at least one is
always configured for each interface of a node. IPv6 packets
using link-local addresses will not be forwarded by routers to
other links, as the link-local addresses are not guaranteed to
be unique over a larger network. The global scope addresses,
on the other hand, are expected to be globally unique and can
be used in the scope of the whole Internet. A node needs a
global IP address to be able to communicate over the Internet.

Unique Local Addresses (ULA) [18] are designed to be
used in local networks larger than a single link, but not
for communications through the Internet. However, ULA are
designed to provide adequate uniqueness in order to have
extremely small risk of address collision. These addresses
are intended to allow routing over a network that expands
over multiple links and routing hops, and even can expand
over multiple networks. The address independence from the
Internet’s global routing system, and address administration,
is a desired characteristic in some deployments. ULA may
provide address stability and independence from an outside
provider such as the operator, but come with the cost of
limiting the communications’ scope.

Globally Unique Addresses (GUA) are globally administra-
tively guaranteed to be unique and routable in the Internet.
The administration is done by the Internet Assigned Number
Authority (IANA), which administers the global pool of ad-
dresses, and by the Regional Internet Registries (RIRs) who
administer address space received from IANA regionally. The
RIRs provide address space to the Local Internet Registries
(LIRs) - operators, companies, and other organizations, who
require address space for themselves, and possibly for further
allocation to their customers.

B. Host Address Configuration

The IPv6 protocol suite defines a set of well-known mech-
anisms for address autoconfiguration on an attached link.
These are Stateless Address Autoconfiguration (SLAAC) and
Stateful Address Autoconfiguration, the latter being nowadays
synonymous with the Dynamic Host Configuration Protocol
version 6 (DHCPv6). In addition, in the case of Virtual Private
Networks (VPN), Internet Key Exchange version 2 (IKEv2)
can be used for address configuration.

SLAAC has been designed to provide simplest possible,
yet dynamic, way for nodes to configure IPv6 addresses for
themselves. With SLAAC, hosts must configure link-local
addresses for all interfaces they use IPv6 on. The link-local
address can be configured even in absence of routers. The
routers on networks transmit ICMPv6 Router Advertisement
(RA) messages that may include IPv6 prefixes, which nodes
can use to configure one or more ULA or GUA addresses.
Once a node receives RA, it will parse it and select one or
more 64-bit IPv6 prefixes for combination with selected 64-bit
IIDs in order to create one or more 128-bit IPv6 addresses.
SLAAC is the most scalable of the mechanisms, as it does
not require the network to know which nodes exist and which
addresses they have configured.

DHCPv6 can be used to explicitly configure IPv6 addresses
to nodes, thereby providing network administrators with added

4

control over the nodes on their networks. Hence DHCPv6
is popular in environments where stricter control is required,
such as in enterprise networks. In addition, DHCPv6 can be
used for prefix delegation[16]. In prefix delegation, a router
is given the responsibility over a shorter prefix from which it
can advertise longer prefixes to the network segments under its
responsibility. DHCPv6 requires the DHCP server to keep state
on the allocated addresses. Hence, it provides more control on
the addresses, but less scalability than SLAAC.

Obviously IPv6 protocol suite supports manual configu-
ration of addresses, and this can include provisioning of
addresses with mechanisms other than SLAAC or DHCPv6,
including proprietary out-of-band tools. Provisioning or man-
ual configuration is the least scalable of these approaches.

C. Remote Address Anchor Points

IPv6 hosts will always configure addresses from the point of
network attachment, but additionally hosts may have addresses
configured from remote anchor points. These addresses belong
topologically to locations other than the hosts’ direct points
of network attachment. In order for the hosts to be able to
use these addresses, tunneling of sorts is is required. These
tunneling solutions include client-based Mobile IPv6 (MIPv6),
Network Mobility (NEMO)[17], or Dual-Stack Mobile IPv6
(DS-MIPv6)[20], but also gateway-based solutions exist, such
as Proxy Mobile IPv6 (PMIPv6)[19].

D. Network Prefix Translation

If hosts do not require direct visibility for global addresses,
it might be feasible to number a network with ULA and
utilize experimental IPv6-to-IPv6 Network Prefix Translation
(NPTv6)[21] at the gateway. NPTv6 differs from traditional
port and address translating NAT in that it translates in check-
sum neutral way and only the prefix part and not the transport
layer protocol port number. If reachability from Internet to
nodes numbered in such a setup is needed, the nodes need to
register their public IPv6 address, the address on the Internet
side of the gateway, to the used rendezvous system. Other
forms of IPv6 address translation, namely NAT66, have also
been discussed and speculated, but not adopted into use even
in an experimental manner.

V. TOPOLOGIES FOR IOT DEPLOYMENTS

The network topologies for which addressing needs are
considered in this paper and that are explained in this section
are illustrated in Figures 2 and 3. These topologies can be
extended to more complex topologies with variations, as we
will discuss in the end of the section.

A. Case A: Disconnected IoT Network Without a Central Node

A disconnected IoT LAN may have no Internet connectivity,
but only connectivity within a link itself. The underlying
medium may provide mesh, star, or shared connectivity, but
nevertheless IPv6-wise nodes are in a single link without any
router. Hence, there is no entity in the network providing
numbering services - ULA or GUA prefixes. In this kind

of topology, the main requirement for addressing is that IoT
nodes must be able to automatically number themselves. As
the automatic numbering has to be in very simple in some
cases, the IPv6 addresses may be statically configured. To be
clear, routable addresses are not needed, as the network is
not connected to other networks, such as to the Internet. The
absence of routers restricts the nodes to be on the same link
in this scenario. Therefore, the most suitable address type is
IPv6 link-local addresses.

B. Case B: Network With an IoT proxy
In the case B, the IoT LAN has been enhanced with an

IoT proxy, which is able to provide addresses and possibly
connectivity services for the IoT nodes in the IoT LAN. The
IoT proxy can have permanent or intermittent connectivity
to the external network, or in some cases without connec-
tivity. When the IoT proxy has uplink connectivity, it proxies
communication between the local IoT nodes and nodes in the
external network. In this scenario, where all communications
go through a proxy, the IoT LAN does not need global
addressing, but can manage with link-local or ULA addresses,
depending on the type of proxy.

C. Case C: Connected IoT network
This is a typical setup for providing IoT nodes with Internet

connectivity. An Internet connected IoT gateway provides
Internet connectivity to the IoT LAN. The IoT gateway
receives a globally routable IPv6 prefix from the Internet
service provider, and uses that prefix to number the nodes
in the IoT LAN. The different mechanisms for obtaining
the IPv6 prefixes are further described in Section VII. This
scenario allows the IoT nodes in the LAN to be provided
with a globally routable address. In addition, the IoT nodes,
which communicate only within their own link, may use link-
local addresses, and the IoT gateway may also provide ULA
addresses to the IoT nodes.

D. Case D: An IoT Network with Bridging Star Topology
In some scenarios a gateway is a center of a network

utilizing star topology. In such a network the same IPv6 prefix
can be shared by nodes connected via point-to-point links to
a gateway, and the gateway may implement a bridge. This
approach is used for ongoing IETF work on IPv6 transmission
over Bluetooth Low-Energy[23]. Also IoT deployment scenar-
ios exist that emulate a bridging star topology, but having
only the gateway maintain IPv6 representational states for
extremely simple IoT nodes which do not implement IPv6 at
all. For example, sensors connect and communicate to an IPv6
gateway with 1-wire or a similar solution without being IPv6-
aware. The gateway however allocates IPv6 addresses and
internally maintains a 1:1 IPv6 to a proprietary ID mapping
for each node.

E. Case E: A Point-to-Point Network with an Internet Gateway
The scenario E is very similar to scenario D, except that the

IoT nodes are not on a same link. Instead, they are connected
to the IoT Gateway via their own links. Hence communication
using link-local addresses is not possible between IoT nodes.

5

��

�

� �

��������	�
�
��

��

�� �� �� ��

������

���

��� ���

������

���

��� ���

������

���

��� ���

������

���

��� ���

������

���

��� ���

��

��������	��
��

��

�����������	�
��������
��
����������	�
���������
����with prefix ’x’�
���	���	�
���������
����with prefix ’x’�
�������
�������	����
������������!

������

���

��� ���

��

���

��

��

�

�

���

�

��

��

�
 ��

�

��

�
 ��

�

�������

����
���

����
�
� !

��������	��
��

�� ��������	��
��

�� ��������	��
��

��

��������	�
�
��

��

����
�
� !

����
�
� !

�

"

�"

�������

Figure 2: Set of IoT LAN Network Setups

F. Case F: Interconnected IoT Networks

When it comes to more advanced scenarios, two or more
IoT LANs can be connected to each other via a shared link
or through an IoT WAN. In this kind of case, the IoT nodes
of different LANs are obviously not on a shared link with
each other. Hence, the communication between them is not
possible with link-local addresses. If the IoT nodes need to
communicate with nodes on different network segments, used
addresses have to be either ULA or GUA, depending on
the network that is between the gateways. If the network
is the Internet, globally routable IPv6 addresses have to be
used within the network. Otherwise, the ULA will suffice. In
addition, in cases where, for instance, the Internet connectivity
is not always available, both address scopes can be used.

G. Case G: Multiple Gateways

The topologies described earlier represent the different
basic topologies. There are, however, variations to these basic
topologies that introduce additional addressing requirements.
For instance, there can be multiple gateways connecting an IoT
LAN to the Internet, or to the Internet and a private wide area
network - such as a corporate network - therefore, making the
IoT LAN multihomed. If the IoT nodes need to be reachable
from both networks, the IoT nodes need to have addresses
from the both networks. Consequently, the IoT nodes may
need to have multiple addresses of global scope.

H. Case H: Unidirectional IoT Nodes

A significantly different approach for using IPv6 with IoT
nodes is to run IPv6 over unidirectional links, or put otherwise:
have send-only IoT nodes. The unidirectional approach is
not fully compatible with existing IPv6 addressing solutions,
as all of those assume bidirectional communications channel
for Duplicate Address Detection, and for other signaling.
However, in some cases it might be an attractive use case to
utilize IPv6 even in such situations. For example, sensors could

be reporting readings using IP multicast. One way to address
nodes in such deployment is to trust link-local addresses to
be unique, hard-code them, and use link-local multicast as
destination address[22].

I. Variations of the Basic Topologies

In addition to the topology variations, the topologies can
also be combined. For instance, in the same IoT LAN some
nodes may be connected directly to Internet using global
addresses, and some nodes may utilize ULA or link-local
addresses for local communications or communicatios via a
proxy. In these cases, even if the addressing requirements
may vary between IoT nodes within the same network, it
is important to remember that nodes which communicate
between each other need to have an address of the same scope.

VI. MOBILITY IMPLICATIONS TO ADDRESSING

Movement in IP networks is related to the topological
location of the network. Hence, virtually any event where
the IPv6 prefix changes is considered movement. The IoT
networks may either be stationary, or mobile. Thus, due to an
event that causes renumbering of an IoT network, such as the
loss and regain of Internet access with a prefix change, even
a stationary network may move in the IP network topology.
This generates challenges to the addressing of an IoT network.
Figure 3 illustrates network movement and its implications to
addresses. In the following, we will briefly describe mobility
scenarios relevant to IoT networks.

1) The IoT network initially uses IPv6 global prefix ’A’.
Due to movement or a renumbering event, the network
is renumbered with global prefix ’B’. The IoT LAN is
capable of renumbering, and hence resilient to move-
ment.

2) As above, the IoT Gateway’s WAN-side addressing
changes. However, in the IoT LAN addressing is ex-
pected to stay stable. For instance, IoT nodes may be

6

�������

	

����
��� ����
���

�������

�

����
��� ����
���

�������

�

����
��� ����
���

����
���

����������� �����������

������

����
�����

�������
 �
��

!�����

���������

��
��

��
��

��
��

��
��

"#
"$

"$
"$

"$
"$

"$
"$

��
��

��
��

��
��

��
��

�������

%

����������� �����������

��
��

��
��

��
��

��
��

!���
�&�
� �����

�������������������� �����������

Figure 3: Mobility for IoT Networks

sleeping for extended periods and propagation of the
new prefix would take long. Hence, the IoT network
utilizes an addressing scheme independent from the
addressing used to connect to the Internet - for instance,
a ULA prefix (’UZ’ in Figure 3). The IoT gateway
must isolate the IoT LAN’s internal addressing from the
global addressing with a mediation function such as a
proxy.

3) In certain use cases it is expected that the IoT nodes’
global addresses stay stable regardless of the address
stability of the access network. An example is when the
IoT nodes are expected to be reachable from the Internet,
and their addresses are stored in some semi-permanent
database such as the Domain Name System (DNS). In
this case, IoT network must be numbered with a prefix
topologically anchored to a different location (’H’ in
Figure 3) than where the gateway is actually attached.
In this case, there is a tunnel to a remote anchor point.
As the IoT gateway’s uplink prefix changes from ’A’
to ’B’, no renumbering of IoT nodes takes place as the
nodes’ communications are using global prefix ’GH’ and
always routed via the remote anchor.

4) In some deployments the gateway might have ability to
make dynamic routing updates to the network, and hence
the prefix used in the IoT LAN can remain functional
even during movements. Essentially, the IoT LAN would
move within the network topology. Applicability of this
approach is limited to networks and IoT WANs, that
allow such routing updates from IoT gateways, that
do not leak updates to the Internet, that can handle
the numbers of routing updates, and that contain IoT
nodes tolerating delays caused by routing information
propagation through the network.

As with the topology scenarios, the mobility scenarios can
be combined in one network. An IoT LAN can be comprised
of multiple different types of nodes that have different require-
ments for the connectivity. For instance, some of the nodes can
be renumbered, some use either link-local or ULA for address
stability, and there may be even nodes that require stable global
addresses. This is dependent on the use case of specific nodes.

VII. ADDRESS ALLOCATION SOLUTIONS

In the previous two sections, we discussed the different
addressing requirements related to topology, mobility and
resilience. In this section, we discuss solutions fulfilling the
identified requirements. As the IoT gateway (possibly with
proxy functionalities) is the element that provides the IoT
LAN with Internet connectivity, it also has a central role in the
IoT LAN address management. Thus, many of the following
solutions place functional requirements on the IoT Gateway.

A. Allocating Addresses for IoT Nodes

The same mechanisms are used for address allocation of
IoT nodes as other nodes in the Internet - Stateless Address
Autoconfiguration (SLAAC), and Dynamic Host Configura-
tion Protocol for IPv6 (DHCPv6). These mechanisms were
described in Section IV-B in detail. Additionally, the nodes
can be statically configured in different ways, an address can
be configured over a management interface, or a node may use
IPv6 address based on a hardcoded hardware identifier. A static
IID may be helpful in scenarios where node identification
based on IPv6 address is a requirement.

Considering the requirements of Section V, the most rele-
vant mechanism for IoT node addressing is SLAAC with ULA
or GUA addresses depending on the deployment scenario. A
hardware-based or dynamically selected IID can be used for
creating link-local address, ULA or GUA. However, link-local
addresses based on hardware identifiers are practically the
only choice of addressing in setups where IoT nodes do not
have receive capabilities, and hence cannot perform Duplicate
Address Detection procedure.

Static configuration through a management interface could
be used, but the high operational maintenance cost, due to
reconfiguration effort in the case of network address renum-
bering, makes it an impractical approach for IoT.

Hardcoding addresses, during manufacturing or by reflash-
ing of IoT node firmware, of any other scope than link-
local is not advisable. The network topology, and environment
cannot be sufficiently known during manufacturing, and the
network topology can significantly outlive the lifetime of an
IoT node making this approach too restrictive. An IoT node
with a topologically incorrect address would be unreachable,

7

and transmissions of packets with improper addresses would
likely fail due to routers’ source address validation filters.

B. IoT Gateway/Proxy

IoT Gateway and IoT Proxy play central nodes in allocating
addresses to the IoT nodes, because they are the routers in the
IoT LAN and responsible for both the Internet connectivity
and possibly connectivity between IoT LANs. In the scenarios
C, D, E, and G, illustrated in Figure 2, the gateway advertises
globally routable prefixes, which are used by IoT nodes to
configure addresses with SLAAC. The IoT Gateway must
obtain prefixes from the upstream network with mechanisms
such as DHCPv6 Prefix Delegation. In addition to globally
routable prefixes, and regardless of the presence of Internet
connectivity, an IoT Gateway or IoT Proxy may also generate
an ULA prefix, as illustrated in scenarios B, F, and G, and
advertise it to the IoT LAN. As ULA addresses can be
generated and maintained independently from global addresses
or Internet connectivity, ULA is a good choice for IoT LAN
addressing in use cases where internal address stability is
important or connectivity to other IoT LANs is required.

The simplest of IoT nodes might only deliver data to the
closest IoT Proxy, as illustrated in scenario H in Figure 2,
which could furthermore aggregate data from multiple nodes.
In these cases, having ULA or GUA in use might be either
computationally exhaustive, or simply unnecessary. The sim-
plest nodes could manage with link-local addresses, and utilize
link-local multicast address as the destination address of their
packets. The IoT Proxy would gather packets sent to the link-
local multicast group, and proxy them forward.

When ULAs are used for providing address stability, but IoT
Nodes need to communicate to the Internet, the IoT Proxy may
need to implement application layer proxy, or possibly the IoT
Gateway may need to support the experimental NPTv6. An
application layer proxy could also perform other processing
as well, in addition to just passing data between the Internet
and the IoT Nodes. For example, the proxy could enrich
the information sent by IoT Nodes. Use of NPTv6 cannot
be recommended at this point of time, as the technology is
experimental and more research is needed generally, and in
particular in case of IoT, to assess its usability.

Until the Internet has fully transitioned to IPv6, the IoT
gateway may only have an IPv4-only uplink. Despite signifi-
cant efforts by the community to design a perfect IPv6 transi-
tion solution, no universal solution has been found despite the
availability of a toolbox of various tricks. Due to the challenges
in transition, forthcoming IoT deployments should be designed
to have native IPv6 connectivity. Otherwise, suboptimal al-
ternatives have to be chosen belonging to three categories:
protocol translation from IPv6 to IPv4 (e.g. NAT64), tunneling
IPv6 packets over the IPv4 (e.g. 6to4), and data relaying (e.g.
application layer proxies).

C. Global Address Stability

As stated above, ULAs can provide address stability within
the IoT LAN but with a cost. However, in certain scenarios
the IoT network, be it physically mobile or not, may require

globally routable addresses. IoT nodes or gateways have
to implement ways to inform upstream network about IoT
LAN, or node, movement. The solutions include tunneling
based approaches discussed herein, or use of routing protocols
discussed in Section VII-E.

Host-based mobility, such as DS-MIPv6, can be supported
by computationally capable IoT nodes, but is unlikely to be
supported by constrained nodes of any form. If the number of
IoT nodes in an IoT LAN is large, the signalling load to the
DS-MIPv6 tunneling end-point (Home Agent) - would become
an issue. In addition to host mobility, DS-MIPv6 supports
network mobility. Therefore, a more suitable place to terminate
DS-MIPv6 is the IoT Gateway.

As explained earlier, other mobility management technolo-
gies in addition to DS-MIPv6 do exist for IPv6 including
MIPv6, NEMO and PMIPv6. However, these technologies
have limitations that make them inferior in the IoT context.
MIPv6, and NEMO are constrained to work only on IPv6
which is a serious restriction in the beginning of IoT deploy-
ments, as currently, many networks are still IPv4 only capable.
DS-MIPv6 supports tunneling to the Home Agent (HA) even
over IPv4, and it works also in IPv6 only environments. Thus,
it is both a good solution now when IPv6 is not ubiquitously
available, and it is future proof. PMIPv6, on the other hand, is
made for network based mobility management. It means that
the access network has to provide the mobility management.
Therefore, it is only available as a solution as an operator
provided service.

D. Upstream Bridging

In some cases, address delegation mechanisms such as
DHCPv6 Prefix Delegation may not be available. The IoT
Gateway may be provided a single /64 prefix, from which
it obviously cannot delegate prefixes to the IoT LAN. This
scenario is present today, for instance, in 3GPP networks
where a mobile device is allocated a single /64 prefix. In this
case, the IoT Gateway has to somehow "bridge" between the
upstream provider and the IoT LAN. This problem is topical
in the IETF, as all proposals for this problem, this far, have
all had some issues.

E. Routing

In cases where the IoT LAN is considerably big and inde-
pendently operated, dynamic address allocation via DHCPv6
may not provide enough address stability and be sufficiently
scalable. As with any relatively big networks, the interface
between the IoT LAN, and its upstream network or networks
can be done with routing. When the IoT LAN is served by
one operator, and the IoT LAN has its address space from
that operator, interior routing protocols such as OSPF and IS-
IS may be feasible. In topologies where there are multiple
segments and routers within the IoT WAN, IoT LANs may
also use routing protocols for location updates. The IETF is
working on such scenarios in the Homenet Working Group,
which has been concentrating on the use of OSPF protocol.

8

F. Multihoming

Both networks, and nodes can be multihomed. We described
use cases where multihoming may be needed in Section II. As
small networks, such as home IoT LANs, cannot afford to have
their own address space, a multihomed IoT LAN would have
different prefixes from different Internet connections. Different
approaches to this problem exist. The two main approaches are
described in the following.

Proxy based approach: Either one proxy manages multiple
upstream connections with their relative IP addresses, or there
are separate IoT Proxies per upstream connection. In addition
to the different proxies, an IoT Gateway providing a prefix
from an upstream link can be provided.

Separate IoT Gateways: Multiple IoT Gateways provide
their own address space to the IoT LAN, and the IoT Nodes
are multihomed.

The first scenario above is relatively straightforward as the
nodes would not be aware of multihoming. However, there
may be cases where that approach is too restrictive. The
communication between the node, and the upstream network
is isolated by the proxy, which may not be desirable.

The challenge of multihoming is the multihomed node
has to know, which source address to use in communication
depending on the destination, and the IoT LAN originated
packets have to be routed over the correct IoT Gateway.
For upstream IoT Gateway selection, routing protocols can
be used between the Gateways. However, the IPv6 source
address selection rules may provide suboptimal results if the
destination address and source address are not derived from
the same prefix. Otherwise, the multihomed node has to
use policy information to select the correct source address.
However, currently no defined solution exists to convey such
information. The IETF has worked on multihoming solutions,
such as in the Multiple Interfaces (MIF) Working Group, but
currently there is no consensus on the solution.

VIII. CONCLUSION

Device heterogeneity, IP networks interoperating with non-
IP networks, and the amount of connected, unique entities
are defining features of the IoT. The configuration schemes
used to number IoT nodes are largely similar to current
practices for numbering standard nodes. The bigger question
is more often what address scopes to use and when, as we’ve
demonstrated herein. However, the more constrained the IoT
device, the more challenges emerge and areas for improvement
appear. For constrained IoT nodes, mobility, multihoming,
and generally renumbering events are resource consuming
due to an increased need to monitor movement and refresh
addresses. Mobility with help of remote anchor points requires
more infrastructure, routing-based mobility poses scalability
issues, and if these mobility events are hidden with the use of
ULA, IoT gateways are required to implement non-transparent
mediation functions. Similar requirements also arise from IoT
nodes that operate in unidirectional mode, and are unable
to configure global scoped addresses for themselves. These
mediation functions can, for example, take the shape of
application layer proxies or perhaps even perform translation

via NPTv6. It is also entirely possible we may encounter
situations where even the most constrained nodes can use IPv6,
but are not addressable with, or may completely disregard
obtaining IPv6 addresses. This may even be desirable in
certain scenarios. If not, however, it might be wise to define
lightweight, IPv6-friendly, and generic mediation functions.
We anticipate further research by both the academy and the
industry for discovering how, and if even the most constrained
nodes could somehow be efficiently addressed with global
scoped IPv6 addresses.

IX. ACKNOWLEDGEMENTS

This work was supported by authors’ employers and in part
by TIVIT’s Internet of Things research program, Finland.

REFERENCES

[1] International Data Corporation (IDC), "Nearly 1 Billion
Smart Connected Devices Shipped in 2011 with Ship-
ments Expected to Double by 2016", IDC Press Release,
http://www.idc.com/getdoc.jsp?containerId=prUS23398412, 2012.

[2] Cisco Systems, "The Internet of Things How the
Next Evolution of the Internet Is Changing Every-
thing", White Paper, http://www.cisco.com/web/about/ac79/
docs/innov/IoT_IBSG_0411FINAL.pdf, 2011.

[3] ITU Broadband Commission, "The State of Broadband 2012:
Achieving Digital Inclusion for All", ITU Broadband Commission
Report, http://www.broadbandcommission.org/Documents/bb-
annualreport2012.pdf, 2012.

[4] Ericsson, "More than 50 Billion Connected Devices", White Paper,
http://www.ericsson.com/res/docs/whitepapers/wp50billions.pdf, 2011.

[5] ITU, "The Internet of Things", International Telecommunication Union
Internet Reports, 2005.

[6] P. Neves and J. Rodrigues, "Internet Protocol over Wireless Sensor
Networks, from Myth to Reality", Journal of Communications, Vol 5,
No 3 (2010), 189-196, 2010.

[7] C. Cheng, C. Chuang and R. Chang, "Three-Dimensional Location-
Based IPv6 Addressing for Wireless Sensor Networks in Smart Grid,"
Proc. IEEE 26th International Conference on Advanced Information
Networking and Applications (AINA), pp. 824-831 2012.

[8] S. Hyojeong, E. Talipov and C. Hojung, "IPv6 lightweight stateless
address autoconfiguration for 6LoWPAN using color coordinators," Proc.
IEEE International Conference on Pervasive Computing and Communi-
cations(PerCom) 2009, pp. 1-9 2009.

[9] X. Wang and Y. Mu, "A secure IPv6 address configuration scheme for a
MANET", Security and Communcations Networks, 2012 :Wiley

[10] K. Zhang, D. Han and H. Feng, "Research on the complexity in Internet
of Things," Proc. 2010 International Conference on Advanced Intelligence
and Awareness Internet (AIAI 2010), pp.395-398, 2010.

[11] I.F. Akyildiz and J.M Jornet, "The Internet of nano-things," IEEE
Wireless Communications, vol.17, no.6, pp.58-63, 2010.

[12] G. Jayavardhana, R. Buyya, S. Marusic and M. Palaniswami, "Internet of
Things (IoT): A Vision, Architectural Elements, and Future Directions."
arXiv preprint arXiv:1207.0203 2012.

[13] IEEE-TG15.4, "Part 15.4: Wireless Medium Access Control (MAC) and
Physical Layer (PHY) Specifications for Low-Rate Wireless Personal
Area Networks (LR-WPANs)," IEEE standard for Information Technol-
ogy, 2003.

[14] C. Bormann, M. Ersue and A. Keranen "Terminology for Constrained
Node Networks", IETF Internet Draft draft-ietf-lwig-terminology-03
(work in progress), 2013.

[15] M. Lamppi, "Ambient Energy Harvesting", Proc. Aalto
University T-106.5840 Seminar on embedded systems,
https://wiki.aalto.fi/display/esgsem/2011S-iot, 2011.

[16] O. Troan and R. Droms, "IPv6 Prefix Options for Dynamic Host
Configuration Protocol (DHCP) version 6", IETF RFC 3633, 2003.

[17] V. Deverapalli, R. Wikikawa, A. Petresku and P. Thubert, "Network
Mobility (NEMO) Basic Support Protocol", IETF RFC3963, 2005.

[18] R. Hinden and B. Haberman, "Unique Local IPv6 Unicast Addresses",
IETF, RFC 4193, 2005.

[19] S. Gundavelli (Ed.), "Proxy Mobile IPv6", IETF RFC 5213, 2008.

9

[20] H. Soliman H (Ed.), "Mobile IPv6 Support for Dual Stack Hosts and
Routers", IETF RFC 5555, 2009.

[21] M. Wasserman and F. Baker, "IPv6-to-IPv6 Network Prefix Translation",
IETF RFC 6296, 2011.

[22] J. Arkko, H. Rissanen, S. Loreto, Z. Turanyi and O. Novo, "Implement-
ing Tiny COAP Sensors", draft-arkko-core-sleepy-sensors-01 (work-in-
progress), 2011.

[23] J. Nieminen, T. Savolainen, M. Isomaki, B. Patil, Z. Shelby and C.
Gomez, "Transmission of IPv6 Packets over BLUETOOTH Low Energy",
draft-ietf-6lowpan-btle-12 (work-in-progress), 2013.

BIOGRAPHIES

Teemu Savolainen received his M.Sc of Information
Technology in 2011 from Tampere University of Technology,
Finland. He is Principal Researcher and inventor at Nokia
and has worked on wireless networking with emphasis on
IPv6 enabled mobile handsets since 1999. Teemu has been
actively contributing to the IPv6 related standards at IETF,
3GPP, and lately at Bluetooth SIG for standardization of IPv6
over Bluetooth Low-Energy. He is co-authoring a book with
Jonne Soininen about "Deploying IPv6 in 3GPP Networks".

Jonne Soininen, M.Sc, is Head of Standardization
Strategy at Renesas Mobile and IETF Liaison to ICANN
Board. He has been working on IPv6 support for IETF
and 3GPP standards and networks since 90s. Jonne has
been active in 3GPP, 3G.IP, GSMA, ICANN, IETF, IGF,
ISOC, ITU-T, OMA, and the WIMAX Forum contributing
to the evolution of IPv6 and mobile cellular networks both
from technical and regulatory angle. During this time Jonne
Soininen has served as the chairman of the IETF V6OPS and
NETLMM working groups, he has been a member and the
chairman of the IETF Administrative Oversight Committee,
the ETSI Liaison to the ICANN board, and the vice-chair of
the ISOC Advisory Council.

Bilhanan Silverajan received his M.Sc in Engineering
from Lappeenranta University of Technology, Finland in
1998 and his B.Sc in Computer Engineering from Nanyang
Technological University, Singapore in 1993. He is currently
pursuing his PhD in Tampere University of Technology.
His research interests include pervasive networking, service
discovery, communications middleware and constrained
protocols for the Internet of Things.

Publication II

IPv6 Experiments in Deploying and Accessing Services from Home
Networks

B. Silverajan, K. Huhtanen and. J, Harju

2006 IEEE Asia-Pacific Conference on Communications (APCC ’06), pp. 1-5, 2006,
IEEE.

DOI: 10.1109/APCC.2006.255794

Publication reprinted with the permission of the copyright holders.

IPv6 Experiments in Deploying and Accessing Services from Home Networks

Bilhanan Silverajan, Karri Huhtanen, and Jarmo Harju
Institute of Communications Engineering

Tampere University of Technology
P.O. Box 553, 33101 Tampere Finland

Firstname.Lastname@tut.fi

Abstract

New networking challenges are arising in home

networks which will host advanced services in the
future. In this paper, we look at home networks as they
are managed today, and attempt to identify difficulties
that will arise in future when advanced usage is
desired. We discuss how IPv6 and standardised IPv6
transition technologies assist in deploying advanced
services from home networks. Our practical
experiences and experiments with bringing IPv6 to
home networks using 6to4, building an experimental
prototype home gateway device, as well as deploying
image sharing, data and streaming audio services
from these networks are detailed.

1. Introduction

In recent years, we have seen a dramatic increase in
homes having broadband access to the Internet.
Together with cheaper, more powerful and highly
portable computers available today, computing at
home is evolving from using a PC as a single shared
commodity for the entire family, to each individual
having his or her own laptop or PDA. Many of the
machines today have integrated networking abilities,
which has given rise to the desire to network them at
home for shared and simultaneous access to the
Internet.

With the advent of inexpensive 802.11-based
routers, wired networking has given way to wireless
environments at home. Consequently, setting up a
home network in many homes just involves connecting
personal devices and computers to a wireless router
integrated with an ADSL or broadband cable modem.
Upon startup, this device automatically contacts an ISP
upstream to obtain an IPv4 address which is usually
dynamically assigned.At the same time, the device
serves as an Application Layer Gateway (ALG), a

firewall/packet filter as well as a Network Address
Translator (NAT). The use of Network Address
Translation lets users conserve IPv4 addresses, and the
use of firewalls prevents malicious access to home
devices. The entire process on the whole is quite
transparent to the user.

However, as home networks gain popularity, we
envisage networked devices going beyond traditional
uses of the Internet at home. Services arising out of
social needs as well as digital media convergence will
proliferate and eventually dominate. There will be an
increased desire to host various kinds of services from
the home network itself, making them accessible either
to other devices in the home network, to private social
communities, or to the Internet at large. At the same
time, such networked devices will begin interacting
wirelessly with other home consumer entertainment
devices, set-top boxes and home security and
surveillance systems.

The premise of this paper resides in addressing this
fundamental shift in the way home networks of the
future will function. In addition to consuming services
coming into the home from the public Internet, these
networks will just as easily need to export various
services out into the Internet too. We therefore look at
home networks as they are managed today, and attempt
to identify challenges that will arise in future when
such a change happens. We also discuss how next
generation network technologies like IPv6 and
standardised IPv6 transition technologies assist in
alleviating shortcomings in IPv4 and deploying
advanced services from home networks. Benefits and
drawbacks of using this approach would be shown
regarding ease of deployments and configuration,
transparency in accommodating current and future
services as well as minimising any disruption to
existing IPv4 networks and services.

Section 2 looks at home networks in their current
form, and some of the current limitations in IPv4 with

them. Sections 3 and 4 discuss utilising IPv6 and IPv6
transition technologies in conjunction with home
networks. Section 5 elaborates on our studies in
bringing IPv6 to the home: our experimental home
gateway device and our experiments with deploying
some example IPv6 services related to image sharing,
data transfer as well as audio streaming. In Section 6
we draw observations based on our work while Section
7 contains some concluding remarks.

2. Home networks: current issues

The kinds of devices found in a residence are
usually desktops, laptops, PDAs, smartphones, gaming
consoles, printers, cameras, and media centers. With
these, the services and service types often desired or
present include:
1. Interactions like audio/video chat, LAN Gaming
2. Calendar, task synchronisation with family

members
3. Content storing, retrieval for movies, songs,

photos
4. Accessing blogs, webcams and other types of

multimedia content over the web
5. Remote access to the home network from external

networks to documents, various files, printers.

Although service types can be identified into one of

the above-mentioned broad categories, it is almost
impossible to anticipate every specific application
type, its behaviour and network or service usage. Since
many services involve traversal through the ALG,
firewall and NAT, this threatens to pose significant
scalability and configuration trouble for a typical home
network owner. This consequently impedes the
deployment and adoption time of some of these
services. Sometimes, it is even impossible for
multimedia and interactive services to work behind a
NAT. Consequently, some gaming and P2P
applications had begun incorporating kludges in their
protocols to circumvent ALG configuration issues, the
most common of which is to tunnel the protocol
through well-known ports such as port 80 or 25.

Another commonly used technique involves the use
of Simple Traversal of UDP through NAT (STUN) [1]
to discover and successfully penetrate different kinds
of NATS. However, applications using STUN need to
be redesigned and recompiled to become STUN-
aware, as STUN usage is not transparent to the
application.

To counter the fact that services such as those
relying on P2P protocols, LAN-based gaming, video
conferencing and messaging might break behind a

NAT-based system, ALGs contain embedded
intelligence and control interfaces. This allows a home
network owner to configure the gateway at the
application layer to allow some protocols to traverse
the NAT. Again, this becomes a cumbersome
approach, compounded with the fact that ALGs cannot
transparently cope with multiple instances of the same
service being hosted from the home network. For
example, if two or three web servers reside in a home
network, only one would be reachable at the default
port, with the others needing to be mapped to non-
standard ports on the NAT.

Therefore using NATs often continue to pose a
hurdle in deploying many of the services mentioned.
To overcome this, some homeowners have resorted to
obtaining and using multiple public IP addresses for
use in home networks from their ISPs. This goes a
little way in lifting the “NAT tax”. However, unless
these address are allocated from the same subnet block,
there is no guarantee the addresses allocated by the ISP
will reside in the same subnet; an ISP may own several
non-contiguous network blocks from which addresses
are dynamically allocated. This would result in
inefficient bandwidth usage for the home network, as
packet routing between 2 hosts in a home would begin
to involve the access router of the ISP.

For example, assume a home network setup has an
image server machine as well as a desktop machine
and obtains 2 different IP addresses for the 2 nodes
from its ISP, allocated from different subnets. If the
desktop were to try and reach the image server, instead
of the traffic being localised within the home, packets
would be sent first to the router of the ISP before being
sent back into the home. Although this does not
present a serious problem in this scenario, the quality
of service will significantly deteriorate if variable bit
rate traffic such as video streaming becomes involved.
Not only would the uplink and downlink be in danger
of congestion, it would introduce unnecessary packet
processing loads for the ISP access router.

3. Bringing IPv6 to home networks

Introducing IPv6 into home networks brings about
the following advantages:
1. In addition to DHCPv6 configuration, IPv6 also

introduces stateless auto-configuration. Home
devices can automatically construct their own
IPv6 addresses with their MAC addresses and
incoming router advertisements. This is extremely
useful in home networks where owners are
novices in network administration.

2. Application developers need not take complex
steps to implement solutions to overcome NAT
issues such as tunnelling and STUN. This allows
developers to focus efforts better in application
behaviour and protocol design without having to
worry about NAT-traversal and other low-level
issues.

3. The IPv6 protocol itself has been built with end-
to-end security and mobility in mind. This is a
significant advantage considering the number of
anticipated mobile devices that have been targeted
for use in wireless and 3G networks.

4. Routing in IPv6 is more efficient, owing to its
hierarchical address architecture.

5. All major operating systems, which include
Windows XP, Windows Mobile, Mac OS X,
UNIX, Linux and Symbian, support both IPv4 and
IPv6 out of the box.

While the benefits of migrating to IPv6 remain
clear, moving from IPv4 to an all-IPv6 Internet is not
expected to happen anytime in the near future, owing
to the need for significant upgrades to all the
intermediate network elements involved. Instead, the
IETF has outlined and standardised technologies which
aid the IPv4 to IPv6 transition. One of the clear
advantages the standards aim to promote is to allow a
smooth migration for the future, while ensuring that
existing IPv4 traffic and current IPv4 services are not
affected adversely. The most prevalent idea for aiding
the IPv4 to IPv6 transition is based on tunnelling IPv6
traffic in IPv4 packets.

4. IPv6 tunnelling using 6to4

Fig 1. IPv6 home networks with 6to4

One of the most widely-used approaches to IPv6
tunnelling is 6to4 [2]. The 6to4 technique is a simple
and effective way to set up a transitionary mechanism
to bring IPv6 into an existing IPv4 network. Gateway
devices at home can be set up as 6to4 border routers,
which communicate in IPv6 by perceiving the IPv4
Internet as a unicast link layer. The tunnel setup is
usually automatic, and requires minimal configuration.

Such 6to4 automatic tunnels are created by locating the
nearest 6to4 relay router using the well-known anycast
address 192.88.99.1 [3]. Figure 1 shows how a typical
setup looks like, with the home gateway having NAT
capabilities in IPv4, but behaving as a 6to4 border
router in IPv6.

The home gateway will also possess an entire
subnet of the form 2002:ipv4address::/48, where
ipv4address is the dynamic IPv4 address of the home
gateway. Together with a 16-bit subnet, the home
gateway can now behave as an IPv6 router in the home
network, and can begin router advertisements
containing this 64-bit prefix to the devices at home.
Hosts in the home network use these router
advertisements to configure their own IPv6 addresses,
just like in a native IPv6 network. In this way,
although IPv4 traffic and reachability remains
unaffected with hosts in the home network having
private IPv4 addresses, IPv6 addresses obtained will
be global. A comprehensive description of 6to4 is
given in [2].

5. IPv6 home network experiments

In order to conduct our tests, we decided to build an
experimental wireless home gateway and a test
network. This experimental home gateway was built
using version 3.0 of the popular Linksys WRT54GS
wireless router. OpenWrt [4], a Linux-based
distribution containing many of the commonly found
utilities for routing and packet filtering, was used as
the router firmware. OpenWrt provides only a minimal
firmware distribution with support for optional add-on
packages, allowing a highly flexible customisation of
the home gateway functionality.

IPv4 packages providing DHCP as well as NAT
functionalities were installed to allow the router to act
as a DHCP server and a NAT device. This allowed
other devices in the wireless network to negotiate and
obtain private IPv4 addresses.

At the same time, we installed OpenWrt packages
that enabled IPv6 and 6to4 as described in the previous
section. Once the gateway device received an IPv4
address, it then created a 6to4 tunnel device with the
address 2002:ipv4address::1, to communicate with the
nearest 6to4 relay router. It then began sending IPv6
router advertisement messages into the home network
for home devices to automatically configure their IPv6
addresses. The /48 subnet from the router was
subpartitioned to create a /64 subnet for the home
network, the subnet arbitrarily chosen to be 1234.
Therefore, the router advertisements were announced
in the home network containing the prefix

2002:ipv4address:1234::/64. This is described
informally in the sequence diagram of Figure 2.

With this home gateway setup, different services
were deployed to provide access to clients sitting
outside the home network. Research on content sharing
at home reveals that right after general Internet usage
such as www browsing and email access, the most
widely shared content types in a home network are
documents, photos and music [5]. Therefore, the
following content sharing experiments reflected these
three types of services and extrapolated sharing them
out of the home networks.

Fig 2. IPv4 and IPv6 connectivity for homes

5.1. Hosting a home web server image gallery

In the first test, we experimented with accessing a
web server residing in the home network hosting photo
albums over IPv6. An Apache web server was used
together with Gallery version 1.5 [6], an open-source
PHP software capable of organizing and sharing
multimedia content such as digital images and videos
over HTTP. Gallery’s configuration was modified to
allow users to register and log in via its web interface
and the entire server was protected with a simple
.htaccess password protection scheme. In addition,
Gallery’s web interface was also capable of allowing
the administrator to configure various settings.

Clients used IPv6 from outside the home network to
access the web server using common web browsers, as
well as add, remove and post comments. Both native
IPv6 access, with clients residing in true IPv6 space,
and tunnelled access, with clients using IPv6
tunnelling using 6to4, were successfully tested.

In addition, IPv4 clients without IPv6 or 6to4
capabilities were also successfully able to connect and
browse through the photo albums. This was achieved
using a publicly available IPv6-to-IPv4 translation
gateway [7] which allows clients from IPv4-only
networks to view content from IPv6 websites.

This is especially important in some 3G networks
which place access restrictions for IPv6-in-IPv4 traffic,

resulting in IPv6-capable smartphones and/or 6to4
capable laptops being prevented from accessing IPv6
websites.

5.2. Hosting a file server for remote authoring

In this experiment, an Apache Tomcat web server in
the home network was configured to allow access to
local files through the use of Web-based Distributed
Authoring and Versioning (WebDAV) [8]. WebDAV
is a highly flexible protocol in providing writing as
well as reading rights to files. It is also highly
prevalent, with many operating systems contain built-
in functionality for WebDAV, permitting application
to perceive a WebDAV server as just another network
drive or folder on the desktop.

Home Gateway ISP IPv4 Router 6to4 Relay RouterHome Device

DHCP Ask IPv4 addr
Give public IPv4 addr

DHCP Ask IPv4 addr
Give private IPv4 addr

construct
6to4

address

IPv6 Route Advertisements

configure
IPv6

address

IPv4 traffic

IPv6 traffic

Home Gateway ISP IPv4 Router 6to4 Relay RouterHome Device

DHCP Ask IPv4 addr
Give public IPv4 addr

DHCP Ask IPv4 addr
Give private IPv4 addr

construct
6to4

address

IPv6 Route Advertisements

configure
IPv6

address

IPv4 traffic

IPv6 traffic

Using an IPv6 enabled WebDAV server this way
provided an extremely effective technique for file
sharing, storage and access from outside a home
network; any client with built-in or 3rd-party
WebDAV support can be used to retrieve, edit and
upload files directly on the server without any special
editors, protocols or applications. Such files also
included images or blog entries. In our experiments,
we used client laptops running Windows XP as well as
Mac OS X, to successfully mount WebDAV shares
over IPv6.

5.3. Hosting a home audio streaming server

In the final test, we successfully experimented with
accessing mp3 music streams originating from a home
network. An IPv6-capable Icecast2 [9] streaming
server was installed in a home machine running
Ubuntu Linux. Icecast2 servers need source clients to
originate the streams. We used a source client called
IceGenerator [10].

IceGenerator resided in the same machine as the
server. The source files for IceGenerator, however, did
not reside locally on the machine. Instead, the Linux
host also mounted shares containing mp3 files from 2
other machines in the home network, using SMB/CIFS
over IPv4. These 2 other machines ran Windows XP
and Mac OS X respectively. IceGenerator then
retrieved mp3 files from these local mountpoints, and
recursively fed them to the Icecast2 server. External
clients listened over IPv6 to the audio streams using
popular mp3 players such as iTunes, Windows Media
Player, xmms and VLC.

Therefore, the test setup successfully involved IPv4
communication between the 3 nodes in the home
network for file sharing, and IPv6 communication
between the streaming server and the rest of the world.

6. Observations

In performing these experiments, we observed that
the one of the primary requirements that need to be
met before deploying IPv6 services from the home
network, is the support for IPv6 transition mechanisms
from ISPs, network operators and vendors. At the very
minimum, the use of 6to4 requires at least 1 public
IPv4 address from the ISP. In addition, ISPs should not
prohibit using IP packet encapsulation, especially
protocol type 41 (IPv6 in IPv4). For optimal
performance, the public 6to4 relay router should
naturally be as close as possible to the ISP. Our
experiments used a publicly available 6to4 relay
operated by the Finnish University Network, FUNET.

A client wishing to use the nearest 6to4 relay router
would tunnel its packets to the IPv4 anycast address
192.88.99.1.This would raise doubts as to the trust
relationship between the home network’s 6to4 router
and the closest 6to4 relay router which responds to the
anycasting. However, only those ASes running 6to4
relay routers and are willing to provide access to the v6
network announce a path to the 6to4 anycast prefix [3].
Existing peering and transit agreements ensure control
over 6to4 service provision and access.

Also, ISPs can encourage early adopters by
providing their own 6to4 relays, IPv6 deployment
instructions as well as experimental 6to4 firmware, as
demonstrated by [11]. Other means of obtaining IPv6
tunnels to the home also exist. Teredo [12] can be used
for end hosts if ISPs serve only private IPv4 addresses,
and several Points of Presences (PoP) exist in many
countries which provide free IPv6 tunnels [7].

Although the basic packages provided with
OpenWRT performed adequately for our purposes, it
is necessary to deal with changes in IPv4 addresses
occurring whenever connections to the ISP from the
home are dropped and need to be renegotiated. Instead
of manually configuring our home gateway each time
this occurs, we used some scripts in our home gateway
to check for changes in the IPv4 address. If such a
change occurs, the 6to4 tunnel device is recreated with
the new IPv6 address, and router advertisements
containing the new prefixes are also sent into the home
network.

One important requirement for properly deploying
IPv6 is the need for a proper DNS service. Home users
typically are not expert administrators, and with IPv6
autoconfiguration, remembering numerical IPv6
addresses is highly difficult. Running a naming service
inside the home network is equally unlikely. In all our
experiments, servers in the home network used an

external IPv6 Dynamic DNS provider [13], updating
the DNS server whenever address changes occur.

7. Conclusions

Many network-level reports about IPv6 and
transition technologies have been published, but very
few studies, experiments and trials have been detailed
to test the kinds of services commonly found in home
networks.

A thorough performance analysis on the various
services is needed. However our empirical experiments
and observations show that the use of next generation
networks and services in home networks holds real
promise, and will strongly provide added value and
market potential to broadband subscribers as well as
network operators. With consumer broadband
subscriptions representing a fast growing market
segment, supporting such activities is very essential.

8. Acknowledgments

The authors wish to thank Antti Vekkeli and Jari
Vanhala for their effort in installing OpenWrt and
developing scripts for our prototype gateway device.

9. References

[1] J.Rosenberg, et. al, “STUN – Simple Traversal of User

Datagram Protocol (UDP) Through Network Address
Translators (NATs)”, RFC 3489, March 2003

[2] B. Carpenter and K. Moore, “Connection of IPv6
Domains via IPv4 Clouds”, RFC 3056, February 2001

[3] C. Huitema, “An Anycast Prefix for 6to4 Relay
Routers”, RFC 3068, June 2001

[4] Linux OpenWrt project, http://www.openwrt.org
[5] Kurt Scherf, “Putting the Home Network to Work”,

Parks Associates White Paper, June 2005
[6] Gallery project, http://gallery.menalto.com
[7] SixXS IPv6 deployment effort, http://www.sixxs.net
[8] Y. Goland, et. al. “HTTP Extensions for Distributed

Authoring – WEBDAV”, RFC 2518, February 1999
[9] The Icecast project, http://www.icecast.org
[10] The IceGenerator project,

http://sourceforge.net/projects/icegenerator
[11] Earthlink Research and Development, “Earthlink IPv6

in the Home”, Last modified July 2005, URL:
http://www.research.earthlink.net/ipv6/

[12] C. Huitema, “Teredo: Tunneling IPv6 over UDP
through NATs”, RFC 4380, February 2006

[13] IPv6 Dynamic DNS Service, http://www.dns6.org

Publication III

Developing Network Software and Communications Protocols Towards the
Internet of Things

B. Silverajan and J. Harju

Fourth International ICST Conference on COMmunication System softWAre and
middlewaRE (COMSWARE’09), pp. 9:1-9:8, 2009, ACM.

DOI: 10.1145/1621890.1621902

Publication reprinted with the permission of the copyright holders.

�

�

Developing Network Software
and Communications Protocols
Towards the Internet of Things

Bilhanan Silverajan and Jarmo Harju
Department of Communications Engineering

Tampere University of Technology
P.O. Box 553, FIN-33101 Tampere

+358 (0)3 3115 3906

Firstname.Lastname@tut.fi

���������
���� ��� �	��
���� �
������� �	������ ������ ��� �	�� ���
����� ���

�������� ��� ��
������ ���� ����
���� ��
������ �������� �������� ���
��

���������� ���� ����
��� �����
���� ������ ��� ��
������
�����
�����
��� ��� ��
����� ����������� �	�
����
�������� �	��� ����
�
���
������ 	��� �	�� ������� ���� �
���
��������� ��� ����
��
������������� ���� �
�������� ���� ��� ������������ ��� �����
��
�
��
�

�����
�
���
������
��	������
��������	��������	���������
����������
��������
����������	�����!�����������������������������
	����������������������
��������������
����
��������������������������

����	�
����� ���
� ��������� ���� �����!��
�����
���� ������
�
�����
���� �	��������� ��
� �
���
��������� �����
��� �	�� ����
�
�	����
������� ��	��	��� ����
���
����� ���� ���	�����	�� ������������
�
�
���
���	�����
����
��������	�����������	���������
����������

�����
���� ���� 	�������� ������� ���
���������� �
������ ���
��

�����������
�	������
�����

��	
��
�
����������
�	��
��
��	�
��
"�#�$� %�������� ���	�����
��� ���� ������&'� *����
��
��

������������ +�
������ ��

���������<� "�#�#� %��������
!������
�&'�=�������������>
�������=
�	������
��

"
�

����

���
>�
��

������?�������@������������Q!��
�
����������

#
$%�
���
>
�������Q������
�����*����
��=������������
�
���
����

&'� (���)�*��()��
@������������
��������	�
���
�����������
��������	�������	����
������
�������� ��� �� ����
���
����� ��� ��
������� ���� ����
����
��
����������������	����
�����
�����
���������������������
������

�������� ���
� �����
���� ������ ��� �����
���� ��� #ZZ\�� �	��

����
���������������

�����������^����� _��^`�
����������
���
��
���������� �	��
�����������	��������
����������������� �	�� ����
�����
����� ������� ��� �	�� ����� ��� ���
������� ��
��
�� ��� ����
����������
���
�������������������������	������
��������	�����%$&���

�	��
���
�� ��������� �	�� ��������� ���	����������
�
���� �����������
��������� ���� ������
��{������ �	���������� ������������ �������
����
���������������
�������������	��
���
������������	����	����
��
����
���
�� _���	� 	�
��� ���� ����	�
��`� ���������� ��� �	�� ����
����
���������������������	������������?��������
���!�����������
������
�����
��
�	�
�����������
���	��������������
���
������
������
��
��� �
������� =�����
���� ��� �	�� ������ ���������� ��� �	�� ����
����
������ ��� �!�
�
���� 	���
�������� ��� ����
�� ��� ��

�� ��� �	��
�
��
�������
����
����� �����
����� ���������� ���� ���
���
�����
�����������������������
�
��	���������������>?=�������	��
�
��
����� ��
����������� ����� @��?� ����� ���� ��
������� @��?� %#&�
	���� ����� ������� ��� ���� ��� �	�� ��������� ���	��������� ��
� �	��
����
��������	����������
����������
������
�����������
������
���
�����������
�������������������	��������

�
���
���+,�-�//
�����������������
���������������

���������������������������������������0�����������
����
������������������

������������	��������������

�

����
��
��������
���
�������|��������	���	���	������
��������	�����
	�����������������
������������������������
����������������
�����
�	������	�����|���������	����
����������
��������!������������
�����
���
�
�������� ������ ��� ���	��� �����
���� =�� ����
�� $� ������
������

Personal Area
Networks

Ad-Hoc
Networks

Enterprise
Networks

Home
Networks

Vehicular
Networks

Wide Area
Networks

Cellular
Networks

Personal Area
Networks

Personal Area
Networks

Ad-Hoc
Networks
Ad-Hoc

Networks

Enterprise
Networks
Enterprise
Networks

Home
Networks

Home
Networks

Vehicular
Networks
Vehicular
Networks

Wide Area
Networks
Wide Area
Networks

Cellular
Networks
Cellular

Networks

�

���������}�	���~
������	~
�����~�������������~

�����~�	����	�������
�����
�����}~
�����
~����������������~}	�����	���	��������������	�~	��������~���
}�	� �~��� ��� ���	����	��� ���� �����	� ��� ��������~
� ~��~}	~��� ~}�� 	�~	�
���������~�� 	���� }�	���� ~}�� 	��� ��

� ��	~	��}��}� 	��� ����	��~���� ��� �����
�	��������� ��� �����
����� 	�� ���	� �}� �������� ��� 	�� �����	����	�� 	��
��	���
���������������������������������}�~}�����~������
������	
�������}���������������?���}�����
~}���
"�������	��������="�������������� � ������������!������
�

�

�

�	���� ������
����� �
�
� ��
������ �
��� �����
��� ��� ���	��� ����

��	� �����
��� ��� ��	�����
�� ��

������ ����
��
��������� �
���
�����
�������	���
���������	������������������������Z#�$$�������
+�����"=*���+"?�=�����Q?�Q��������������
������
���� ����
��������	� �
� �
?=� ������ ���
������� ��

������������ +�����
���

��
��������� �����
���� ���	� ��� �Z#�$#� +��=��� 	��	�
� ������
�������
� �����
��� ������ ��� ��?>=$��^>=$��>=%� ���� ����
����
� ���
��� ����������
����� �����
��� ���	� ��� &������ �
�� ����
������� �!������� ��� ����� ��
������
����� ��� �	��
����
� ��� �����
��

�����
����
���
������
���������

��� ��������� ��� �	���
����� ��� ���������� ��
������ ����
�����
���	���������� ��
������
�������� ��� �	�� �����
�� ������� ��
������
���
��
� �	�� ����
���� >
��������
���� ����� ��� �������
���� ������� ���	�

��������	��������
���
������ �����
������ ��

���������������� �	��
�
�>� ������������� ���� ?�">�� ���	�
� �	
���	� �� ������� ��
������
	������� �
� ���� ��� ���	��� �����
��� ���	� �
������ �>�'� ���
������
����� �
����������� ������
��
����
�	� ����� ��� ����
�� �>�������
����
���� ��
������
��� ������ ��� �>�#�� 	���� ������ ��� �
������

����
�	� ���� ������
���� �
���������� ��
� �!�
����� ����
� �	��
������
������
��{������ ��� ������� �>�#� %(&��
��	�
����
�	� ��
�� ��� �	��
��
��
����� ��������� ����
��� *����
�� ��������� %'&� ���� ��	�����
�
�����
�����������������
��������>�#�����QQQ��Z#�$\�'�����������
����
������
��
��	�����
���������	��������
���%\&��=�����������
����������
���������
������������
����
���������
�����������
��������
����	��	�����	�����
���������������
���	�����������������������
��
���������
��%#&��

�	��� ���	����������
� ��
����������������������� �	��
���������������
�����
��
�������
�� ���� �
�
���
��� ��� �������
���� �����
��
������
�� ���� ��

���������� �
��������� ����������� ����
���
������������	�����	�����������������	������
��������	�������	������
�
�	����
��������	��������������
���
��������������	��	�����
������
���� ���	�����	�� ������������ �����
�� �
�
���
�� �������� ���

����������
�����
��������	������������������
�����������
���������
�������� ��

���������� �
�	������
���� �	����
����� �
�
�
�������
���������� ����
����� ����

������ ���	� ���
���
���� ���������� ����
�����
�� �����	
����� ���� �����	
������ ���
�������� ���
��

���������� �
��������� ��� 	��	������� ��)����������
��

����������
�������

;'� �)����)�����<��)�#������
<(���������
�	���
������������ �	�� ����
���� ��� �� ��

����������
����
�����
�	�� ������������� ��� ����� ���������� ������ 	��� ������� �	�� �����������
��
� �	�� �������
���� ��� ��
��������� ��� �����
�� ������������� ����
�
�������� ������� =����������� ����
������� ���	� �
�����
������
�
�
�������������
��

������������
�����������=>�������	������
������
���
������ �����
�� �	�
���� ������������ ����
������� ���	� 	��	�
�
������ �
�������� ��

����� ����� ��� ����
� ���	�
� ��� =>�� ������ ��� ��
���
�
���
���
����������
������������������
�������	��	����
����
������ ����
��� ��
�� ��� �	�� ������������ �������� "����|��������
��������
�� ���� ��� �	�� �
���
��������� ��� �����
�� ������
�� ����
���������������
�������������	��	��������������
���
�������������
�	�� �����{��� ��

���������� �
�������� �	�
�������� ��� ��� ��� �������
�����
� �	��� �	��� �	���� �
������� �
���
���������� ����� ��� �
�����
�	����{�����
��

���������
��������������	��
�����������������������
������ ��� ��� �
��
����� ��� ����
������ 	��� �!������ �	����
��

�����������
���������
�������������

�����

������������������������
������	����
��������������������!��
�����������
��
����������������������������	��
��
�����������	����
��������
��� �	��������
���� �	�������������������������
������������

���
�����������
���
����������������

����=���	��
��
��������� �	��
��������
������������������������������
������
��������
��������
����������������� ���
����� �	��
� ����
��
����� ��� ���� ��
����+����
������
�������� ����� �
������ ������������ �	������ ��� �	�� ����
�	�������� ����� ���� �����
�� ����
� �	�
����
������� ����� ��� ���
�!���������	��	�
�����
��
����������	����
����
�����
�����
�������
��� �	�� ����
����� ������ ��� ���
���!��� ��
� ���������� ������� ���
�����
������������������	�
����
�����������	��	�����	����!����������
������� ���	� ��

����������
��� ���� ����� ����
� �����	
��������
������ �������� ���� ��
����� ������� �������� ��������� ����������
���
�
���� �
������ ��������� ��������� ������ �	��� ������������� ����
�!������������������������	������������
�����

��������
���������
�����������
����������
���������������	���
���
	���� ���
�������� ����������������� ^��
� ��������� ����

���� ���	�
������� ���� ������������ ��	�����
��
������� �
�
� �������
������� ���
�
������� ����
������� 	�
���
�� ���������������
�������	$
����
�����
��

�������������� ����
����������	� �	�� �

�����������
��
�����
=��	���	� ��
���������� ��

���������� �
���� ���������� ������
�����
�
�
��
���������
��������������������������	������������������
���	��	����������������	���
�������	����������

����������������
����
����
����������

���������������������������������������	���
��������������	������������
���������������������	����
�������!��
����������>�
����������������
��������
�����
�

���
�����������
��� ��
��������� ��� ��

���������� ������������� ��
�����
�����

�����������	��������	�����
������
�������������	������
�������
�	������ "����|�������� ��� ����
� ��� �	���� ��
������ �
����������
�����
����� �
�
���
��� ����� ��� ������� ���� ����
�� �������� ���
�!����������������������
��	���������
���

+��	� �	�� ���
����� ���
��������� �	�� ���� ��
����� �������
�� ����
���������
����
��

������������������
��������������������������
�����������������
�	���
�������������
�����������
���
���������
�
�������� ����
��������� ������������� ���� ��� �����{��� ��
� �������
��
������������
�����
�
����������
������������	��	�����������������
�����
�� ������ �	�
����
�������� ��
� �!�
����� ����� �	���	� ���	� ��

��	� ��
������ �����
�� ���� �� +����� �����
��
��� �
������ �>�
�������������� �
����������� ����
������������ ������������� ��� ���	�
�����
��� ������ ��� ������� �����
����� =

��� ���	� ���	� ����� ����
�����
������

������	�����
���������
��
��	����
��
�����������
���	�
������{���
������������
�����������������������
��������
������
���
������������������������

�������������	������������
������

�	��� ����� ��
����� ���
������ ����
��
������ �������� ���	� �	��
��	���
�|���������

�������
������������� ���� ��
��

����$����
� �����
������ �!��
������� ���

������ ��������� �
������� �� ��������� ����
������� ��
� �	��
�������
���� ��� ��������� ������������� ���� �
�������
�
���
����������� +	��� �	��
����� ��� ����������� ��� ����������
��

����������� ��
�������� ��� ��� ������
����� �
�
���
��� ����

�������
�� ������ ��� ������� �� ����
��� ���������� ��
��
����� �	���
��
��������������
�'�

•� >
�������� �����
�� ��
� ��

���
��
������������ ���� �
��	�����
������������
����
�|��
�
������������������������

•� >
������������
�����������
����
��
�����

��������������������
��
�	�
���

���{��������������������
�������

•� =���������
������
���
�������������
������������������
�
����
���������������������

•� �
�����

����
�|��
�
������ ��������� ���� �������
������ ��
�
��
���������

�

�

•� ������������������
���
�����������������
�����������
����������
��������������������������������������	�����
������������

•� =������
�����������
����������
��

���������������
����������

�������� �������������� ������������ ������� ����
�
����� ���
�����������
����������
�����	�����������������
���

*����
��
�������
�� ���� ��

���������� �
�
���
��� �
�� ���� ���
����� ��
�)�
�
���� ���
���� �������� ��� �	�� ����
�� ����
���� ����
����������� �	�� ����
���� ��� �	������ �	�� ��
����� ��� �!��������
�
�������� ���� �����
�� ������������� ��� ����
������� �	�������
�����
����������������������������
�
��
���
����	��
�
���
���
��� ��������� ������
� ����
��
������ ����� ���� ��
���� ��
������
����

������ ��� ����
������ ��
��������� ���� ����)���� �
������ ��
�
�������
��� ����
� �������� �	�� ������������ ���� �	�� ����
������
������

��	����
�������������
���������	���
�����������

���������
��������������

���������������
���������
�����
��������
�
�����
���� �����!��
�����
����� �����
�����
����� ����
�
�����
������� ������������� ��� ������������� ���� ����
����� �	������
����������
���
���������
�����������
������	����������������������
������������ �
� �
�������
������� 	������� ��� �	�� ������� ��� �
���
�
�����!������

��������
������!������������
��
�����

��� �	�� �
�
���
�� �
�
�������
�� ����
��
���� ��������
����
��
������������� �
�
�
��������� ������������� �	�� ������� ��{�� ��� �	��
���
�
���� ���� �!���������� �
�� ����� ��� �
���� �
��
������ �	��� ���
�������
��������������������������
�������

+�� ���������� �	��� ���	�����	��
�������� ���� ������������
�
�
���
��� ����
�������
��
��
������ �� ����� �������� ����
�
������� ��� �����������
���� �����
���� ������ ��� ��

�����������
��
��������������������������� ���
���������
�������
�����������
����

�������
���������������
�����
�����
��������
�
���������	���
�	����������� �
���
������������� �����
�� ��
�������� ��� �	������
�	���������
����
��������������������������
�������	����	���	�
��

�'� �=���))������<��)�#�
?��@�������"%%������
���
��
�

�����
�
���
���������������
��
� �
���
������� �
�������� ���� �����
�� ������������� �	��	� ���
��
��������������������
������	����

���������������
������������
��
���
���	�� �
�
���
������������������� ��
�����������������
��
��
�������
��������
�
���
����������������������
����������
�������
�������������� ��)���������� ��������� ��� ����� ��� ����
��� ������
���������������
��
����������������	���	��	�������
����
�
���
�����
�������� ��� �	�� �������
����� �
��
�

���� ��
����
�� ��� �	��	�
��������� ���������� �
�� �
������ ��� �	�� ��������
� ���� �������� ���
������ 	�����
��� =��� �����
��� ������������ ���� ���
� ������� �
��

������ �����
�����������?��@���	����
�� �	���	���������������
�����������	�������������$�����������
������

�����

�������
����������?��@��������	���
�������������	�����	���
�	�� ��������
� ��� ���� 	����
��� �
�
� �!�
������� ���� ��� �	��
��������� "%%� ��������������� �����
��� ���	� ��� ��
������� ����
�!��������	�����������
�����
���������
�
���������	�
��
�
���
���
�����	�
����
������
�
���������
������	��������������������������	���
��� �� ��������	
������ �
�
���
�� �	��� ���� ��� ��
������ ���� �����
��
���� ��
������� ���� ^*��� ����"���!� ��
������� @��������� �����
��
��
�?��@������������!������� �������
������
������������
��
����������	�����
��������

���������*���������
����������������
����+@��� �� "���!������� ��

��
�� ����
�������� ��
� ��
������
���������������

�'&� �
��
%�
���
���	
�	�

�
�	�� ?��@�� �
�
���
�� �������������
������� �������� �	��
���
������ �����
� ���� �	�� ������������� ���� �
������� �� �����

�
�������
��������
��
�����	���������	����������
��
�
����
������
�����
������������������

?��@��
������������������
������������������������
���
�������
������������������
�����������������������>�
�����������������������
��

�����������	����	���	�
��	
���	�����������>�
��������������
����������Q��	���������
��
��������������������	���������
��������
����
�����
�����������������
��������

�
�������������

�	�
���
��� �	��
��������� ������� ���� �
���
��������� ��� ���
������������� ��� ����� ��� ���� ����
������� ���	� ?��@��� ��� ��
�����
�����	
����������
���������������	����������������	���
�
���
��
������
����
�|��
�
�������
�����������������	
����������
��������
��� ��
��������� ����
������� �����
��� ����
�� #� �������� 	��� �	��
��
�����
����������������
����������������	���
�
���
��������	�
�
���	��	��
��	���������
�����������
������!��
�������
�
������������
�
�	������
�����
��
�����������
����� �	���� �����
��� �
�� ����
�����
����	������������

�	�� >
�������� ���
�� ��������� ����
��� �!������� �
�������
�
���
���������� �	��� �� ��������
� ���� ��
������ �����
�
���
���������� ��

������ ���������� �������� �	�� @������
��
�
�����
��>
������� _@�>`�����@�>�"���
���>
������� _@�">`�%*&�
��
� ������ ��
��
����� ��� �>�#��������� ��
�����"�������� >
�������
_�">`�%�&���
���
������������
�����������=�������
����>
�������
_�=>`� %�&� ��
� �������� ��������
����� ��� ����� ��� ^?>� ���� �">�
	����
�����������
����	��>�'������>�#��

�
���
���>,����������	�����
�������
�����
��
 �����/��

�

�	�� >
������� ������!� ��������� ��������{��� >
������� ������ ��
�
������� �
������� �������
����� ������� ������
��	����
�
���
����������� ��
����� =������ >������� ���� ��������$���������
��� >
������� ?���� ^������ �����
��������� >�
��� ����� ��� ������ ��
�

������� �������� ����
�������!�
�� �	��� ������ �'*�
��

��������������������������

�	��=����	
������"�@�=���������
���
�
����� �� ���	�����	���
���
�
��������"�@�=������������
������	
��������

�����������
�	��	� ��������� ��� ��� ��)���� @�|����� �
���
� _�@�`�� �� >�
������
��)����=�����
�_>�=`���������
�������
��������
�����������������
��
��
����������	����

������	��?���
������������������
�����_?��`�
�����	��?���
����������������
�����_?��`���	��	�
�����������>��

�������	
���
��������������	�

����������������

�������	�
�	��	���
��
���

����������������	
��
���

���	����	�����	
�
���
�
���

��������
������

RTP/RTCP SLPGIOP

TCPmuxUDP SAP

�
�	����	��
�
�� ������
�
���

��!��"�	������

�	���	���
��
���

��
#�����!���	
����
�
���

Scheduler �����
Timer

Manager

$%��&�	!��	
����
�
���

I/O Handler ���	���

�����������	���

'�������
�����	���
'�������
��	������

���������

����������	

���	
������	��

�������	
���
�����
��������	�

����������������

�������	�
�	��	���
��
���

����������������	
��
���

���	����	�����	
�
���
�
���

��������
������

RTP/RTCP SLPGIOP

TCPmuxUDP SAP

��������
������

RTP/RTCP SLPGIOP

TCPmuxUDP SAP

�
�	����	��
�
�� ������
�
���

��!��"�	������

�	���	���
��
���

��
#�����!���	
����
�
���

Scheduler �����
Timer

Manager

��
#�����!���	
����
�
���

Scheduler �����
Timer

Manager

$%��&�	!��	
����
�
���

I/O Handler ���	���

������

$%��&�	!��	
����
�
���

I/O Handler ���	���

�����������	���

'�������
�����	���
'�������
��	������

���������

�����	���
'�������
�����	���
'�������
��	������

���������

����������	

���	
������	��

�

�

=����	���
������������	��>
�����������
��������������	����
��������
��� �	�� =����	
������ "�@�=� ��������
�� �
�� �
���
������ ���
����
�����������������������)��������?��@����	���������	��������
��������
�����������������	�����
�	��������
�|�������
�
��������
���� �
�������� �!�������� ��
��� ��� �	���� ������ ������ �� �
��
����
������ ���������
��	����
�� �	�� ��������
� ����� ��������� ��
�
��
�	��� ������������ ��
��
�������� �����
������
�����
������� �����	�
�
���	�����
�
�
�����
��

�	��Q�����
�����
������������
���������������������������
����
��
���
�����
���
�������
��������
������������
����	�����	�����������
�����������
������
���������	����
��
����
���������
����������	��
�
������� ��
�
�� ��� ����� ��� �	�� ��	�����
� ������ �	�� ��������
�
�����������������������
�����
��������������������������
���
������
��������������������
��������������������������
�������������
�����
�
�������������������������������
���������������
��������?��@��
�������������������
�����������������
�����������
����������������
����� ������ ��� ����� ��� �� 	��
�
�	������� �
����{��� ��
���� 	��������
����
������	
���	��	��	��	��������
�����
����

�����������	��	��
�������������

��� ���������� �	�� ^��������� ���� ��
�
�� ������
���� ��������
�
������ ������ �����
�� ��
� �
���
��������� ����
����
��
�
�
��

�����
����� �	�� ^��������� ������� ����
�� ������ �����������
��
����
��� ���� ������ ��
�������� �
�
�� ���� ����� �������� �
������
���!����������������
��������
��������������
����������

������	��
��
�
�� ������
���� ������� ����
�� ���������
�
�
��

�����
���� �����
���� ������� ������������ ���� ������
�
�
��
�������������

�	���$�������������������
���������������
��"��������
���
�����
����� ��� �	�� ����
���� ?��������� �������� �
�� ����
����� ���
�����|������������������

�';� =��	���������	�
�������
!��
�(�	

"��
��
��
������
��
�

�����
�
���
������
���������������������
����
�
�
���
��������
��������������	�
���

�������������
������������
�����������������
�������������������������������
����������	�
���
��
�������
������������������	���������!������������������������$�������
	�������������
��

������������� �	����

�
� ��� �	��
����������������� �	������� ��������
�
�	�����	�������
����	�����������	���$�������������������
��

�	���������������
�����������������������	����������|��
�����������

������� ?��@�� ������������ ��
� ����

������ ��
�������� ��� �	��
������� ������� ���� ���� ����������� ����
������� ���	� ����

������
��������� �
������
� ����� ���� ������� �
�	������
��� 	���� ���
������
�����
� ���� ��
������ ����� ��� ���� ��!���� ��
����� ����
����� ����
������
�
������������������	��
���

������������������
�������

�	�� �$�� ��������� ��������
� ��� �	�� �
�
���
�� ��� ��
������

����������� ��
� ��������� �������
����� ������ ���� ������������� ��
����������� ����
����� ��� ��

�������� ���	� �!��
���� ��������� ���
���
���������	�����������������
���������������
�������������
�����
�������������

�������������������������	���������
�������������
�
���
������ �����
� ����
��
������ ��

���������� _�>"`� =>��� ���
��)����� ���	��� ?��@��� ���	� ��
����� �������� ��

������ ��������
�>�'� ���� �>�#� �����
�� �������� �	��� ��
��

� ���	� �������� ����

��������� ��

����������� ��
��
� �$�� ����������� ���	� ��� ������ ����
������ ��� ����� ��� ���
������ �����
� ��
������ ���	� ��� ��

�������
��
��������������!��
���������

�����
����� ��� ���������������������
���	�����
�������	���������
�����������������=������������
�����
����
	�����
�������	
���������������
������ ������������������
���
��

�

��������<��	������������������
�������������
�������������
�������
��� ��
�� �	��� ��� �!�������� ��
�� ��� ��������� �
�
� �	�� ��	��������
��������
������	��	��������������������������� ��� �	��� �������� ���
��
��

��	�������������������
���
��������

�	�� ��������
�
������ ��� �� ������� ������������ �$�� ������
� ���

�������	����������
�|��
�����
���

������������	���$��������
�
���
�������������
������������!����������
����
�
��	����	�����
����
����
���	����������
���������
�����������������������
��

�������
������������	���
����������������������������������
�
��
�����������
�	�����
������ �����
������ ���������
����
���	����
��������������
��

������
��� ���	� �	�� �$�� ������
� ������ �	��
� ���������
��� �	��
������
�
�����
���	���������������	���
��������������
���������
����
����� ����
����
�� ��� ������� ����������� ���� �������� ������� ��� ���	�
��������+	�������������������
����������������������������
����������
�	�� ��
����� ������� ��� �������� ��� �	�� �$�� ������
� ��� 	������ �	��
�������

"����|�������� ��� ����� ��� �	�� 	���� ���
������ �����
� �
� ���
�������������� =>�� �����
��� �$�� ��

���������� ������ �����
����
����
���?��@�� ���������������������!������� ��� �����
�� �	��
���	����������|����������������
���������������

�	���
��	�������� �
������� ?��@�� �	�� ���!�������� ��� ���������
�����
������ ����
�����������	���
�������������������
������	����
����
������ �	�����
� ���	� �� ����� �
������ =�� ��� �!�
����� �	���

��	����
���������������|��������
�������������
���
������
�����
�������� �������� ��� ��������	� ��

���������� ���	� @�����
�
�|������ "�

���������� _@�"���`� %$Z&� ���� "������� "����
"���
��� ���� =���������� >
������� _"#"=>`� %$$&�� �	�� �
��������
	��� ����� ���������� ��� "���!������� �������� �	��� ���� �	�� ����&�
��������� "���!� ��������	� ������� ��������	� =>��� �
�� ����
������
��{��� ��
���� �����
���� ���
������ �����
��� ������
�� �	��
�
�
���
���� ��������	� ��
����� �������� ���� ��� ������� �!�������
����
��� ��	�
� ��������	� ������� ���� ���
������ �����
�� �	���
?��@�� ����
��� ����� ���� �������� �	�� ��
����� �������� �!��
�� ��
����������� ����
����� ��� ������������� ���� ������ ��� ?��@��� ���
�
������� �� ��
�� ��
������
����� ��� ���
�� ��� �	�� �
�
���
�� ���
����������������	���������

������������

��� ��� ����������������� ��
� ����������
� ����!����� �	�� �
�
���
����
��
����� �������� ��� ����
����� ��	�
� ������ ��� ��

����������
���	���������������
������

���������������	����&�������
������
�
?=��

�'�� =���?�
!
���
�

�
�	�	�����"��

!��
������
<
����
��
����

�����������������
�����
���������?��@���
���������������
�!�
������ ������ ��

�������� �
�
� �	�� ���� ����
���
������ ��
�
�!�
�����
�������� �
�� �������� ���������� ��� ��
����� ?���� ^�����
_�?^�`������
��
��
������������
�������� ����������
�����"���
��
������)�����������
�����=������>������_�=>�`��>��
�����
����������
���������������������������������������
����������>
�������?����
^�����_>?^�`��
���������������������
����>��
��������

������ ��� 	����� ���������� �
�
� �	�� ""���� _����
�
���
��� �	��
��^��`� ���� ���� ������
��� �������� ��
����� ���� �
�������
��������������� ��� ���������� �
������� �������
���� 	���� �����
��
��

��� ���	� ��

��� �������������� ����������� ����������� �?"��
�	��� 	��� �	������ ������� ���	� �	��
�)�
���� ��� ������������� ����
�
�����������������������������
��	������
��������	��
���������
��
����
����� ����

����� ��� ��!�������� ������
��� ����
����� ��� �	��
����
���� Q������
���� ����� ��
��� _�Q��`�� +��	� �	�� ��
���� ���

�

�

�������
���� ��
� �
������� �������
���� �!�������� �
������ �������
�	��������

�������������
���������������������
������������������
��	�
���

����
���
����

������������	�����	�����������"�����	��
+�
���+����+���"����
���
�_+("`��
����	��?"�����	����)����
������
����"����
���
�_���`��

��
��	���
��������	����������������������������
���
������
��������
���� ����� ��	�����
� ��� ?��@�� �	��� ����������� �
�� ��������� ���
�
��������� ������������� �
� �����
�� ��
������� �
�� �
������ ��� ��"�
��� �	�� ��������
�� �	���� ��"� ��������������� �
�� �	��� ��
���� ���
����
���
�� ���?��@�������
����� ��
�� ����
��������

����������
�
�
���
�� ��������� "%%� �������� ���	� ��� ���������� ��
�����
=������>���������
�����>
�
�������������������!��������������������

��	�������

����
��(��
���������
���	���������	�������������	��>
�������?����
^����� _>?^�`� ��� �	�� ��
�����"�������� >
������� �
�� ���������� ���
?��@�� ������ ��"�� �	���� ����
��'� _�	��	� ��� �!�������� ��� �	��
��!�� �������`� �
������� ��� �!�
���� ��� 	���
���
���� ����������
������� ��
��
��� �
�
� �� �	�
�� ��
��� ���
�
�� �
�� ����� ���������� ���
��"���

+�����,~��-.�������./�
��+����~���,~��-.�
���~���./�
������+���
�/^�}	��������}+����
�/��
������+���
�/^�}	����}�	��}�?+����
�/�
������+���
�/^�}	 ���~�
�	��}�	�+����
�/�
������+���
�/^�}	����
~��+����
�/�
������+���
�/^�}	 ���0	1����	+����
�/��
������+���
�/^�}	���2�?+����
�/�
������+���
�/�	�33�	��}��
~}��~�+����
�/�
��+�����~��/�
��+����~���,~��-.�@�@4��./�
�������+�~��}	/�����~���+��~��}	/�
�������+���
�/=������	����@���	+����
�/�
�������+���
�/�	�33�	��}���������	���+����
�/�
�������+���
�/�	��}����	�����������	+����
�/�
�������+���
�/�	�33�	��}��������~	�+����
�/�
�������+���
�/�	�33�	��}�����+����
�/�
��+�����~��/�
��+����~���,~��-.�@�@��5./�
��������+�~��}	/�����~���+��~��}	/�
��������+���
�/^�}	��������"����+����
�/�
��������+���
�/^@����	�����
Q}	����+����
�/�
��+�����~��/�
��+����~���,~��-.�@�@Q�./�
��������+�~��}	/�����~���+��~��}	/�
��������+���
�/�������^@����
�+����
�/�
��������+���
�/�	�33�	��}���������������+����
�/�
��������+���
�/^�}	��������"����+����
�/� � �
��������+���
�/�	��}����	������������	+����
�/�
��������+���
�/�	��}����	����~		����	����	�+����
�/�
��������+���
�/=�	��
��
���	����=		�=�	��
��
�+����
�/�
��+�����~��/�
6������������~���6��
��+�����~��/�
+�����/�

�
���
���@,�#$%��������������������� ������/���%!�/�����������

 ��������������������������&!�'���������
�
=��	���	� �	�� ��������������� �
�� �
������ ��� ��"�� �	�� ��
���� ��� ���
�����	��?��@��"��������
���
����
��	��
�������������������������
������� "%%� ��)������ ������
� ������ ��"� ��
�
������� ����
�
������� �������������� ��
���� ��� �� ����
��� ��
������
�� ��
�
��������
���	���������������

�����������
�	������
�������!�����

���� ������ �
�
� ��
���� ������ ��� ������ ���
���� ���� �
�����
�������������� ����
���� ����
���
�
�� ����
���� ��"� ��
����
��
��� ����
���������
���� ��
�������� �
�����

������� ���� ��
�������
���	���	�
���"����	�����������
��	������
����

�	��� ������� ��
� ����
�
�������� �	��
��������� ������
�� �
�	������
��
�	��	�
����
�� ������� ����� ��
� ����
�� �!��������� ��� ����� ���
����
���
�������� ���	� ��	�
� ���������� �!��
���� ��
������ ����
�������������� =���
�������� ����� ��� �����
�� �
� ����� ��
��������
�
�
���
�� �������� ��� �
�������� ������� �
� �
����� ��� ��� ��"�
������� ���� ��� �
�����

��� ��
� ������ ����� ?��@��� �	��� �����
�
������� �� ����
��� ���� ��� �!�
������� ���
��� ���
� ����������
�
���
������ ���� ������� ��� ��� ���� ���
�������� ����� ��
�������
?��@�������
������������
����

��������������������
�����	����
��������������	��	��
������������
�����
����
���������
������������� �	�����

����
��
��������������
��
������ �
������� �� ����
��� ���
���	� ����
��� ��

���{���� �	��
���������?��@�������
�������
�����������
�������
������

�'(� �

!��
������!

$�"�
�<����
��
!��
��
��������������������
�������
������������
��
��	����
���	����
��
����	�
��
�������������	���
���������� �������
��	����
����
����
��������������
������������<��	������������
�
����������������������
�������
���
����� ����
������� �������
� ��
������ ���� ������������
����� ����
� ��
������ ��� �����
�� �������
������� �
�
� ���	��� ���
���
���
����
�� �
������� ����
��
����� �
������� ��� ����
�������

����
�	��	���������

����
���� ���������� ���� ��
����� �������
�� ��� ?��@�� �
��
	���������� �	������
����?���������������� �������� ��� ��� �>�#�
�
���
�������������	����
�����"��������>
�������_�">`�%�&��

�	�� ����
���� ?��������� ������� 	������� ����
������� ���	� ����
������ ���
�
���� ����
�������� �
������� =>���� ����������
���
����
����

������ ���	� ��� �� �	����� ��� �	�� �����
�� ���
���� �
� ��������

�����������!��
������������������������
����
���
���������	����	�
�
��������
�� ��� �	���
�
���
��� �����
��� ��� �>�#������������ �>�#�
�����
���� ���
�����
���� �	������ ��� �	�� 	���� �>�#� ���
���� ���
��	���� ��� ���� �	�� ��
����� ������������� ���� ��
�������� ������ �
�
��
�
�������	��?��@���
�
���
���^����������
�����	�������	���
����
������������������	�
�����
��������
����������������������	��
����

���������?��@�����������
���������

"�

������ ��� >�������
������� =>��� �
�
��	���� ���� �!���� ��� ���
���
������ �����
� �	��� ������ ���� ������������ ��� ��
������
��
�����
�	��� ����

������� ��� ������ ��
���������� 	����� �
�� ��

������
�������
�� ��� ������� �	�� ����

������ ��
������ �
�
� �	�� �">$�>�
�
������� ������ �
���
���������� ��� �	�� ����� ��� �	�� ����
����
?��������� �������� ���	� ���������� ����

������ ��� ��������� ���
����
����������	����������������
�
������������
�������%$#&�����
����
"������� ���
�
��� �	���� ����� ��
����� ��� ��� �
������
������
���
����������������	��	����������

���� ��� �	�� �>����
���������������
�	��
��������������>�����
������������
������
���������"��
�������
�!��
��� ��� =>�� �	��� ���� ��� ����� ���	� ����	
�������� ����
�����	
���������

������ �����
�������� ��� �	�� ��������� ������� ���
������
� �
�
��
������
��	��
�����
�������
���������
���
������������������^����

���
����� �	�� ��������� ������� �����
��� �	��
���
����
����

������
�������� �
�
� ���
������� ����� ��
������� ��
�
�
��������������	�
�?��@���������=���	��
�
������	���
�������
��������� #� ������'� �	��
������ ������� 	�
�� ���
����� ���� �	��
��

���� ��
����� ���
����� +	��� ��
������ ����� �����
��� ����� ��

�

�

��
����������
��� �	�������
��������������������������
��������
��
�	��� �	��
������ �����
���
��� ����� ����� ���� 	�
�� �����
��� ���	�
��
� �	���>�#����
������	����

���������
������
����������"��������
��'��

+�=��,~��-.����
�	�?�	��	��}����
�./�
��+^���/�
�����+����~���,~��-.@����	��./�
�������+���
�/�	��}���~�
,~��+����
�/�
�������+���
�/^�}	 ���~�
��+����
�/�
�����+�����~��/�
�����+����~���,~��-.^}�����	��./�
�������+���
�/�	��}���~�
,~��+����
�/�
�������+���
�/^�}	 ���~�
��+����
�/�
�����+�����~��/�
��+�^���/�
��+��������/�
�����+����~���,~��-.������}	./�
�������+���
�/�}�	=�������~+����
�/�
�������+���
�/�}�	=������~+����
�/�
�����+�����~��/�
��+���������/�
+��=�/�

�
���
���),�#$%��������������������� �����	��$� �
����$��

�*��
���������������!�����+��!,-�������������	��/���������������� ��

������	��
�	���������-������������������������.������������
+��/��������/����������	���/�������������$� �
����$��

�,�

������!����������������+��/��������/��������$� �
����$��

��
����������	����	���/����,,�

�

^������	�������������������	�������� �������
������������
������

���
���� ���������� ����

������ ��� ������������� �
�
� �	��
�
�
���
�� �����'� �	�� ������������� �	�
�������
������� �	��
����

������ ��� �� �����������
����
� ��� ��

����������� ���� �����
���� ��� �����
���� ��� �	������ ����
� ���
�������� �	�� ���������
�����������	����	�
�	������������������
��������������	��	������
����
�����	�������������� �	�������������� ��������� �	����	�
��������
Q!�
��
��������������������������������	������
�������������
��	�
�
����

������ _���	� ��� ����
��	����� ����
��������� �����!��
����

�������
����
��
���!�������`��

�	�� �">� �
���
��������� ��� ?��@�� ��
�
����� ��
�� ��� �	��
>
�������� ���
�� ���� ��� ����� ��� �
������ �����
�� ��
� ��
�����
�������
�������	�
�����
��������
��������������������������

�">��������
����
��������
��������������������
�����	��	����!��������
��� �������
������� ��
������ ���� ��� �������
��� ���� ����
������ ����

��������� ����
������� ������ �������� �
� �������� ��	����
�� ���� ���
�������
��� ������������ ��� ������ ������
���������� ���� ��� ����
������
�� �">� ����� ���� �����
�� �	�� ������� ��� ����
����� ��
�����

��������
��� ��
� �	������ ��� �����
�� ������������ ����
������ ���
�!��
����
��	���� ��
��
�������� �	���� ������������"����|�������� ����
����	�����������������������
�����!��������
��������������

�	�� ?��@�� �
���
��������� ��� �">� �!������ �	�� ������
�� �">�
����
��������������������>�#����#������������������%$(&����
���������
����
������� ���� 	�������
���
���� ��� �	��
������ ������ +	���
����

��������
�����������
���
�����������	���������	�������
��
��������� ���
��������� �	�� �
������� ��� ����� ��� ����� ��

����������
������ ��� ����
��������� �������
� ��
������ ��� �	�� ���� �����
���
���������� �	���
����������������
��� �	��������������
������������
�
�������� ��
������� �	��� ������� �� 	��	� ������ ��� �
����
� ���
������������� ����
���� ��
������� ��� ���������� �	��	�
� �	�� ��
�����

���������������
���	�����
���
����������	�
�� �	��
����������� ���
��

����������������
��	��	�
��	����
����������������������
�������

���	���������	����

������������������
�������	
�����

�'0� (�	

%�
���������(�	

��

�����	$�
������

�	�����
�	�� 	���
�������� ����
�� ���� ����� ��� �����
���� ���� ����� �	��
�!�������� ��� ��	�
� �����
��� �������
�������
��� �
�
���
��� ����
������

� ��������� ���
�
����
���� ��� ������ ����� �������� �	���
�������
���� ���
���� �����
� �������
����� �������� ��� ������ ���
�
����� �	��� ������
���� �
�
���
��� ���� ������ �
�� ����
�{��� ��
�
������
���������������������
��������
�����������������������������������
�������!�
�
������������
���
�

������
�
���
������������
��������
�!	����� �� 	��	� ������ ��� ����
��
����� ���� ����
���
�������� ���
�
���
����	��
�������������
��	���������

��

����
��
���
��	�����������������������
������������������	��#����������
�����
��������������
���
�����������
���	��������������������
����
��� �����
�� �
��
�

���� �
�
���
��'� >
�������������
����
���
���������
���
���������������
���
���������

>
������������� ����
��
����� ���� ����
���
�������� ��� �� ����������
���
���	�	�

�������� ��
��������������
������������� ����
�������
���	� �����
���� �������� ���� �����
����� ���	���������� �������
�
���������������
��������
���������������������
�������������������
�
�����
�� �
��������� ��
� �!�
�����
���� ��� �	�� ���������
��
���������������������������������	������
��������	��������������

������
��� Q!�
����� �������� &������ �����
��� @��?� ����� ����

�����
� ��� ���
������ ����
� ��������	� ��������� ������ ����� ���
�
���
���������������������
�������� �	���������������������
���
����� �	�� ����
���� ������
�|��
�� ���	� �� �
������� ���� �
����������

��	����
��	��	�|�������������
����������������
���	��

��
����������� ����
��
����� ���� ����
���
�������� ��� �� 	��	�
�������
���
���	� �	��� ������� �����
���� �����
�� ���� ��
������ ��� ����
�������������������
�������
��������	���������������������������	����
��
����������
������������

����
�����������
��������
�
��������
��
��������

����������������
������
���������������
��
�����	���
��������������
���
���������	������
��������

����
�������������

�������
�� �����
������ ����������� �	���� �����
�� �����
����
�����
���� �����
�� ��
�������� ���	� ��
����� �
������������ ��������
�����
�� ���� ���
������� �����
�� �����
�� ��� �
���
���� �����������
������������
�����	���������
����

?��@�� �����
��� ���	� �
������� ���� ��
����� ������ ���
���	���
���������� =�� ��� �!�
����� �	�� �
�
���
�� ���� ��� ����� ��� �
�����
�
�
�� �������� ���� 	�
�� ����
������� �
�������� ������������� �	��
�������� ��� ��
������������ ��

�������� ���
� ����
��� ��
������
���	������������	����+����������������	'�=���
����������������	�
��� �� �
�
��	���� �
� ��� ����
���� ������� ���� ���	� �������� �
�
� �	��
�	���������
�������
��
��
�?"*=��������������������������^>�>�
���
� +����� �	���� ������ �� ���� ����
� ��������	� ����
����� ��� ��

�
���� ����
���� =��
��������� ��� �������� (�#�� ?��@�� ��
�����
�������� ���� ��� ������� �!������� ��� ����
����� ��	�
� ������ ���
�����
��� ��� ������ �	�
���
�� ?��@�� ������ ���� ��
��� ��� �����
�
�����������
������������
�����������������������
�
����	�&������
�����������#"��>=*�%\&���
�����������
������
����

=�� �	����
����� �������
�����!�
������!������	����
�����"��������
>
�������=�������	��	�	����������
���
������������?��@���
��
������ ��
�������� ���	� ��	�
� �>�#� �
���
����������� �">� ����
�	�
���
���������� ��
�����������������
������
����� ���������������
��
������ ��� ��	�
� �������������� �
�
���
��� ���� ������� �	���� ����

�

�

����� �
�
� ��
���� ��
������ ���	� ��� �
������� ���� ����� ��
��
�� ���

�
�� �����
�� ����
��� ��
������ ���	� ��� �	�� �>�#� ���
���� ��� ��
?�
����*�
����
��
� ��� �� ��
����������
�����������������������
�>�#� ������ �
� �	�� �������� ����
�������� ��� �� ��������� ������� ������
���	������������������	��	��	�����������������	��������

=���	����
����
��������
����������������
�����������������������
��
��
�������� ��� �
��������� ��� �������
����
����
�	� ��� ��
�������
@��?� ���� �	�� ����
���� ��� �	������ ��
�� ��������
���
�������
��
�
�	������
��� �����
��� ���	� ���
��������� ��� %$'&� ����� ������
?��@�� ������ ���)���� ��� �����
���
�� ��� ��� @��?� =����� ���	�
�
��������������� �
� ���
� ��
��������� �	������ ���
������� @��?�
����

�����������"���
������	��	������	�������
���������

�������� �	�� ������� ��� ����� ���
��� �
��
�

���� ���� �	�� �����
��
��
� ��� 	��	� |������� ����� ���
��� �
�)����� ��� �	�� ����
���� 	���
���� ��� �� �����
������ �	���� ��� �	�� ��
����
� ��� ����� �	�
���� ����
����������	�
��
��������������������������
�������
�
��	�������������
����
�������	�����
���������

�����������	�
����
������
�
������������
����
�
��	���������� ��� �����
��������
����� �	�
����
������
��������
���	���?��@���

����������������	�������
���	����?��@����������������������	�
�
������������
���	���
����
�����	���
�
���
��������������
��
���
�
����������
�����������	�
�
�������
�������
�
���
�����

=�� ��� �!��
�
���� ��� ������������� �����
�� ��
� ����
������� ��)����
��
������������������	
��������

���������������!������
������
�>������
����?��@���
������������
����
���)����������������
��
�������
���� ������ �����	
������ "�@�=� ��

����������� ���
�������� �	���
����� �!������� �����
�� ��
� "�@�=$���>� ���
�
������
����������������������>�#������
�����	������	��	�
����������
�
�	������
��� �����
������ ���	� ��)���������� "�@�=�
����
���
�����������������
����������?��@���

����
���1,�$

��2
���
���//
������������������������ �
����
"����|�������� �	���
����� ��� ����� ��� �������� �����
�� ������
?��@�� ��� ��

�������� ���
�������� ������� ��
�������������
����������� �	�� ��������� ��� 	�
�������� ����
��
������
��

����������� ��
����� ��������� �
�������� ���� �	�� �����	
������
"�@�=������
��������
�������	�
��������������!��
�����
��
�
���
����������������	��������������
��������
���������

�������
�
�����
������ ��� ����	�
�� ����
�� \� ������
����� �	���� �	������ 	��� ����
���
�����
���� ������ ��� ������������� ���� ��
������������ ��� ����
�������
���	��!��
������������������

�'3� �
��	
���
	%�
������
��
%�
����
�	��=��������"�

����������Q���
��
����_="Q`�%$\&�����������

���
���� ��� ������� �	������� �����������
�������� �
�
���
�� ��
�
���� ��� "%%� �����
�� �
��
�

����� ="Q� ������� ��� �
�
�������
�������
����� �
���
��������� ���� ������
����
���
��� ���� 	���
�������
��������������
������������������

������������
�������
�����
�
�
��	��������������!���������
����
��������
����������
��
������

������� �
������� ����
���� ��
�� �����
��� 	��	� ��
��

�����
������

��� �����
����� �����

����� ����
�����
��������� ����

�����	
��������="Q�
������!���������������������������
������	�
��
� ����
��������� ���� ��� �� ���
��� ��� �������� �
��
�

�
�� ���
����
�� ��
����
� ���	� ���� ��
����� �����
��� ��� �������� �	��
�
�
��������� "�@�=� �����
�� ���	� ="Q� ��� �
������� ���� �	�� �	��
="Q� �@�� _�=�`�� ���	� ="Q� ���� �=�� �
�� ��

�
�������
�����
���� ���� ��)��� ����� ������
���� ���������� ��� ����
���� �	��
?��@�� �
�
���
��
������ ��� �	�� ��������
��� ��
����
���� ���	�
��

��� �
������� �������
���� ��������� ���� �
������� �!�������
�����
�� ��
� ������� ������ ���	������ ��
����� =������ >������� >��
�
����
������� ���� >
������� ?���� ^������ ��� ���������� ?��@��
�
���������������������!��������
�����
����������������������������
��� �� �
������� �
� �
������� ������ ����
� �������
���� ��
� ��
����
����
������� ��� �	�� ��������
�� �������� ����
��������� �
�������

��������� ����������� ������� ���� ��
������� ���
�����
�� ����
��
��

���� ����
������� �
� ����
����� �����

����� ��� ����� ���
�	������!����������

�	�� �������� %$#&� �����
����� �
�
���
�� ��� ����� ��� ��������
���
�������
������
�
���
������������������
����������
�������>��	����
�������� ��� ����� ��� �!������ ����� ���� ������

� �	��	� �����
���
>��	���� �������� 	��� ��� ������� ��������
� ��

������ ���� 	���
�����|������� �
������ ��� �!��������
����� ��� �
�������� �	��� �
��

����� ��� ��� �
��
���� ���
������� ��
� �

������� ���� ��� >��	���
��������������=��	���	����������������������������
���������
����
�
��)����������
�������
����

�������������|������
������	
���	�
�	���
�
���
������������������
�������	�����������	�������������
��
�
���� ������ ��� �����
�� ��
������ �	��	� �������� ���� ��
��
���
��	���������������������
��������������
���

=��� (� �
�
���
��� _?��@��� ="Q� ���� �������`� ������ �	�� ��
��
�������������
������
���������������
������	�����������	���
��
�
�
����������� ������������� ������������
�� ���� �	
�������� �
���
����
��
���
� ������ �������	���� ����
��	
�� �	��� ��

������� ��� �	��
@�����
� ������� �����
�� %$*&�� �	�
���� �� ������� 	�����
�
�����
��

����
��������
������
�����)����� ��
��

����������������^�������	�
�

������� �	��	�����
������|���������
�������!� ����
����
�|������
���� ���������� ����������� ������ 	�����
�� ��� �
������ �����������
�������� ��� ?��@��� �	�� @�����
� ��� �
���
������ ��� �	�� �$��
��������� ��������
�� "����|������� ?��@�� ���� ����
��
�� ���	�
�	����
�����������������������	��	��="Q��������������
�
���
����
������
������	�������������������?��@���������������
��������	��
������ "%%� ���
�
�� ������>��	���� ��� �
������ ��������� ������
����
���
����������

('� ������������
=�� �����
��� ��� �	�� ����
�� ��������� ��� ������� ���� �����
���� �	��
����� ��
� ��
���� �������
������ �	��� ���� ��������� ��� ��
��� ���

���
�������������	��	��
���������������
������
���
�������������
��

����������� �
�������� ���� �����
����� ������������
�
�����
��
��� *����
��
������
���� ������ ��� ����� ��� ��� �������� ���
���
�����������������������!�������������	��	���
��������
���!�������
��

�����������
�	������
����

���
����	
�

���
���
�������	
�����

�����
�	

��
����

�
�
�
����

��
��?
���
��
�
��
�
����

������
�
��
�
����

��
��?
���
��
�	

��
����

��������������������

�	�
���

��

�
����	��
�
�
���������	�
��

��
����	�
��

�����
�����
��	�
��

��
����
��	�
��

��������
��	�
��

�����
���
��������
��	�
��

���������������

� �
���	�!��	�

���
������

	��������

���
����	
�

���
���
�������	
�����

�����
�	

��
����

����������

�	�
���

��

�
�
�
����

��
��?
���
��
�
��
�
����

������
�
��
�
����

��
��?
���
��
�	

��
����

��������������������

�	�
���

��

�
����	��
�
�
���������	�
��

��
����	�
��

�����
�����
��	�
��

��
����
��	�
��

��������
��	�
��

�����
���
��������
��	�
��

���������������

� �
���	�!��	�

���
������

	��������

�

�

��� �
��
� ��� ���� ���	� �������
���� ��� ��

����������� �
��������
���� ������
��� ��� ���
������� �	�� �����
��� ��� �� ����
��� "%%�
�����
������
�
���
���������?��@���+���!���������	����
�����
����� ��� �	��	� ?��@�� ���� ��� ����� �	����
�
������� 	��	���
����
���
����� ���	�
���� ������ ��� �!��
���� ���
�
����� �
�
���
���
���� ��	�
�
�������
�� ���������� ��������
��
��� ��
����� ���
��
����
����	����������������
����
���

�������������������������
�
�
��������������
�������?��@��������
�������
���������	��������
���
����� ��
��� �	��� �����
� ��� ��� ��	�
���� ��� ���
����� ��� ����
�����
���
��
�

�����
�
���
����

0'� �����������
%$&� ����
���������������

����������^�����#ZZ\���	������
����

����	��������^�����
����@���
����*���
��
�#ZZ\��
%#&� ���	�	������������	�������������	
�����=�������+�����
������@��

#ZZ*��>�
�������@��?�����*��
�������"�

����������
���	���������QQQ�>�
�������"�
�������#��(��_���������
#ZZ*`���'��#��

%(&� ��	������?���>�
������"�������=
��������#ZZ'�����������
�����
������>�#���Q���@�"�(**\�������#ZZ'��

%'&� ?���
������������+���������@���>��
������=��������	���
���>��
#ZZ\��*����
�����������_*Q��`������������
��>
��������
�Q���@�"�(�#(�������
��#ZZ\��

%\&� ��������
����������	������
��*����������������"����
��?��
#ZZ*���
���
�����������>�#�>����������
��QQQ��Z#�$\�'�
*����
�����Q���@�"�'�''�������
��
�#ZZ*��

%#&� "�
�������������
����	�����#ZZ*��?���������
����*����
�����
=
�	������
����Q���@�"�'�(���=�
���#ZZ*��

%*&� ��	��{
����������"����
�������
���
�����@��������������������
#ZZ(��@�>'�=��
�����
��>
���������
�@������
��
=��������������Q���@�"�(\\Z�������#ZZ(��

%�&� ����
����Q��#ZZ$����
��������������>
���������������������
��
��>�#���Q���@�"�($$$������#ZZ$��

%�&� �������������>�
������"�������+	������@��#ZZZ����������
=�������
����>
���������Q���@�"�#�*'��������
�#ZZZ��

%$Z&���������	�������������
�����
����_���`��#ZZ(��@�"����
���	����Z*�$Z����������	�����������������
�����$�$�������
#ZZ(��

%$$&���������	�������������
�����
����_���`��#ZZ*��"�
��
���������������#�$�%�Q?@�������#ZZ*���

%$#&�������
��������������
����������������
�������#ZZ*��>
��������
����
��������

���������=���������������+�
����������
���������

����������>
�������������$(�	������Q�
������
��

�
���	�����������>��"#�#�+�
��	���_Q���	�����
*��	�
������������#ZZ*`��Q^*�"Q�#ZZ*��

%$(&������
����������������
�������#ZZ*�������
�����>�#�?������
�������������=��	�������
��������������	����
��������������
>
�����������>
��������������QQQ�"����
��������������
"�
����
�*����
���_?��������
�������������
�#ZZ*`���"*�
#ZZ*��

%$'&����������Q��������	�
������"��+��=
�	���������@��?�
��������
����QQQ�����
����"�
�������$Z��\�_�����
��
���
������
�#ZZ#`������#��

%$\&���	
�����?��"��$��(���	��=?=>���Q�"�

����������
Q���
��
���'�=����������
�������*����
��>
��
�

����
����������
�?����������"�

����������������
������
�
�������������$$�������^��
��
����"����
�����_�
���������
�=��^�=��?���
��
�$���`��

%$�&���������=��#ZZ�����������*����
��>
��
�

����Q�����������
���@��������������������*�Z�\���$ZZ�#����

%$�&���	
�����?��"��$��\��@�����
'�=�����������	����
���>����
��
��
�"����

����Q�����?�
�������!��������Q�����������
�
?������	�����>����
���������������>
��
�
�?������
_������
��>����
�����
���`��"	����
�#���=�������+������
$��\����*�Z�#Z$��Z��	�	��

Publication IV

Factoring IPv6 Device Mobility and Ad-hoc Interactions into the Service
Location Protocol

B. Silverajan and J. Harju

32nd IEEE Conference on Local Computer Networks (LCN 2007), pp. 387-394, 2007,
IEEE.

DOI: 10.1109/LCN.2007.108

Publication reprinted with the permission of the copyright holders.

Factoring IPv6 Device Mobility and Ad-hoc
Interactions into the Service Location Protocol

Bilhanan Silverajan and Jarmo Harju
Institute of Communications Engineering

Tampere University of Technology
Tampere, Finland

Firstname.Lastname@tut.fi

Abstract— The rise in device mobility, interactions for service
discovery as well as IPv6 networking, necessitate a means by
which a clear and consistent approach towards supporting rapid,
dynamic service discovery and service provision must be
undertaken. This paper describes ways to provide movement
detection, automatic and dynamic discovery of network services
as well as network characteristics at the point of attachment for
mobile devices moving in IPv6 network spaces. It employs a
service discovery mechanism based on using the Service Location
Protocol (SLP), one of the most extensively researched and
standardised discovery protocols in existence today. We show
why traditional means of service discovery have shortcomings
when used in advanced mobile networking environments, and
describe new extensions to overcome these issues without losing
compatibility to existing work in SLP. Prototypes developed and
tested from the work described provided empirical verification
over several of our production and research IPv6 networks.

Keywords-Service Discovery; IPv6; Mobility

I. INTRODUCTION
Research on service discovery mechanisms has increasingly

gained prominence and importance owing to tremendous
advances in consumer mobile computing. More than ever, the
use of portable devices and the ease with which they roam into
various kinds of network environments is fuelling a need for a
simple yet scalable model through which users, devices and
mobile applications can be automatically discovered for
interaction. More importantly, new breeds of applications are
emerging in which traditional paradigms of networks and
services are being tested to their limits. Mobile devices need
rapid service discovery mechanisms that are neither predicated
on the presence of lookup mechanisms nor on specific network
topologies; the ability for mobile applications to scale, interact
and dynamically discover services from small, ad-hoc
associations among a set of bandwidth and resource
constrained terminals, to infrastructure oriented communication
within large enterprise-level bandwidth-rich environments,
presents an interesting research challenge.

Additionally, portable devices have increasingly begun
carrying their content and services with them. Therefore, not
only will these devices attempt to locate and access resources
in their immediate environments, they will also need
mechanisms with which they can advertise and offer their
services into network spaces they roam into. To date, very few

service discovery mechanisms exist which are both lightweight
and dynamic, yet remain compatible with existing standards
that could meet these requirements.

This paper describes a powerful, robust and very adaptable
technique which employs a service discovery mechanism that
can meet the needs of such a scenario. This approach is based
on using the Service Location Protocol (SLP). Among the
various IP-based service discovery protocols in existence, the
IETF standardised SLP remains one of the most extensively
tested and utilised to date. It is also one of the most flexible,
scalable and lightweight discovery protocols to be conceived.
Applying SLP for use in IPv6-based mobile environments
however, revealed ambiguities and inadequacies in the
standards. The work described in this paper attempts to
overcome those limitations, and extends the usage of SLP in a
clear and consistent manner towards supporting rapid, dynamic
service discovery and service provision by mobile devices in
IPv6. Our experiments with a prototype have provided
empirical verification using the prototype over several of our
production as well as research networks.

Section II provides an introduction to the Service Location
Protocol, while Section III discusses some related work done
on SLP itself within the IETF, extending it in various ways
towards remote service discovery, IPv6 and notifications.
Section IV contains a thorough description of the motivations
of our service discovery mechanisms, while sections V to VII
describe the enhancements necessary to properly realise the
service discovery for mobile environments in IPv6 using SLP.

II. SERVICE LOCATION PROTOCOL: BACKGROUND
The Service Location Protocol (SLP) was standardized by

the IETF SRVLOC Working Group in 1997 [1]. It was further
revised in a second version in 1999 [2]. Subsequently, unless
otherwise explicitly stated, all work done on and with SLP
from that time on has referred to version 2 of the protocol.

Being such an established protocol, SLP has formed the
basis of application and device service discovery in enterprise
networks and products from several commercial vendors such
as Apple Computers, Hewlett-Packard, IBM, Lexmark, Novell
and Sun Microsystems. A standalone open-source version in
both C and Java, called OpenSLP is also available [3]. Apart
from these, SLP is applied widely in different ways: Recently,
the IETF also ratified the usage of SLP for use in iSCSI as a

basis for device discovery [4], while ANSI recommends SLP
usage in its Architecture for Control Networks specification [5]
as a discovery protocol for use in lighting systems, media
servers and theatrical entertainment Equipment. Usage of SLP
can also be found as modules in configuration, monitoring and
management tools and frameworks [6], [7].

SLP’s entire operation and logic is contained within entities
known as agents, and a protocol used in interactions among
them. Applications, middleware and other protocols can then
use these agents to perform service discovery, advertise and
offer existing services or perform updates whenever the
services or their parameters change. The agents defined in SLP
are the User Agent, the Service Agent and the Directory Agent
(DA). Of the three, the UA and the SA are mandatory, while
the DA is an optional entity.

The UA aids client applications in discovering the locations
of services. Server applications register their service with SAs
with a Service Type string URL. When there are only UAs and
SAs present on a network, all service requests are sent to the
administratively scoped multicast address 239.255.255.253.
For example, a print server might register itself to an SA with
“service:printer:ipp://printserver.mycompany.com/printer1”.
The SA would then respond to any UA multicasting a request
for a printing service, such as service:printer” or
“service:printer:ipp”. SAs also multicast SA Advertisement
messages on the network if solicited by a UA. In the absence of
multicast, broadcast may also be used.

The DA provides a centralized service for all service
announcements in a very large network, so that a point of
single contact exists for a UA trying to discover various
services. DAs also advertise their presence periodically and
SAs are required to register their services with DAs they
discover from DA Advertisements. UAs also interact directly
with the DA instead of SAs, if one is present in the network. In
this mode, UAs essentially use the DA as a lookup service.

There can be multiple UAs, SAs and DAs residing in the
same network. For performance reasons, the UA normally
exists in the same host as client applications. UAs can be a
standalone process, but are also commonly found as a
component or components, for example in middleware, that
multiple client applications can use. In this sense, instead of
being a standalone process, they can be invoked as a library
function. SAs tends to reside on the same hosts as server
applications, but they could also reside elsewhere in the
network too. Depending on how they are configured, SAs tend
to handle either a single service URL or a closely related set of
services.

The number of DAs in the network are generally not as
prevalent as UAs or SAs. Although SLP advocates the usage of
a single DA in a network, the upper limit is not defined and it is
not uncommon to find large enterprise networks that have tens
of DAs running. The stipulated mandatory rule is that every SA
must register its services with all DAs that are present in the
network.

The discovery of a DA in a network by the UA can be
accomplished in 3 ways: The UA can be statically configured
with the location of a DA, it can dynamically discover the

presence of a DA through DA Advertisements, or it may
actively solicit a DA Advertisement by requesting a directory
agent service type at any point in time.

Figure 1 depicts interactions and a possible event sequence
among the three agents after the DA multicasts its presence on
a network and responds to SA Service Registrations and UA
Service Requests.

Figure 1. SLP Service Discovery

Apart from service requests, SLP also provides for the
solicitations and replies for attributes using Attribute Requests
and Replies. The operation works similar to requesting services
on the network. Attribute querying is an optional feature.

III. OTHER RELATED IETF WORK IN SLP
Apart from the basic definitions of SLP, work was also

done in addressing DA scalability using a mesh approach
called mesh-SLP [8], where in a network with multiple DAs,
SAs need only register with any and only a single DA
discovered, with the DAs exchanging and synchronising all
service registrations in the network amongst themselves.
Additionally, an extension was defined for allowing
notifications and subscriptions in SLP in which UAs can be
explicitly notified whenever changes in service availability
occurs [9]. Below, we discuss two of the most significant
efforts in the IETF which concern our work. The first relates to
SLP usage in IPv6, while the second describes SLP usage for
remote service discovery.

A. Using SLP in IPv6
When SLP was extended for use over IPv6 [10], significant

thought went into rectifying certain aspects of the protocol as
used in IPv4. Usage in IPv6 was optimised to take advantage of
a greatly expanded address space and address scoping as well
as a slightly different multicast model from IPv4. These
include:

1) Broadcast addresses and scoping rules
In IPv4, agents are able to broadcast service requests and

solicit responses from the current subnet. In IPv6, such
broadcast-only support is removed, as IPv6 itself uses link-
local multicast in places of broadcast.

UA

DA

SA

1. mcast DA Advert

2. SrvReg

3. SrvAck

4 SrvRqst

5 SrvRply

In IPv4, multicast service requests and advertisements can
be bounded by administrative scoping rules, as well as the
time-to-live (TTL) value of the datagram packets. In IPv6, the
address prefix FF distinguishes a multicast packet from that of
a unicast packet [11]. The scope of a service request or
advertisement is determined by the next byte of the multicast
address itself. Therefore the prefix FF0X is used in SLP for
multicast and scoping, where the X is between 1 and 5 (1 for
node-local, 2 for link-local and 5 for site-local). Because
addresses in IPv6 can be represented both by the global address
of the interface or its link-local address, services can be
advertised with SLP using the link local address of the interface
also. Consequently, careful usage is advocated in avoiding
situations where a service with a link-local address location is
advertised and obtained via multicast solicitations at the site-
local scope.

SLP in IPv6 also introduces the concept of zones for multi-
homed hosts, but as zones are out of scope of this paper, they
are not discussed further.

2) Multicast addresses for Service Request and Replies
In IPv4, only one multicast address is used for all service

requests and advertisements. In IPv6 however, a range of
multicast addresses have been reserved for use with SLP.
Using the scoping rules mentioned above, Service Type
Request and Attribute Request messages are sent to FF0X::116.
DA solicitations and advertisements are sent to FF0X::123. All
other regular service request and advertisement messages are
sent to an address which can range from FF0X::1:1000 to
FF0X::1:13FF. The specific address is calculated by the UA
and SA at runtime, by obtaining the result after applying a hash
algorithm to the Service Type string to obtain a value between
0 and 1023. Beginning from the first address of FF0X::1:1000,
this then establishes the offset to obtain the final multicast
address. Compared to their IPv4 counterparts, SLP agents in
IPv6 need to endure significantly less processing overhead
owing to the fact that they join only the multicast groups
pertinent to the service concerned.

B. Remote Service Discovery in SLP
A recent IETF standard describes how SLP can be used to

perform service discovery in remote domains by conducting
operations using an enhanced DNS infrastructure [12]. The
focus is on how UAs can interact with the local DNS service to
query for information about DAs in remote networks using
SRV [13] resource records. This simple procedure is outlined
below:

1. Let’s assume there are two networks, A and B. A device
from network A wishes to roam to network B.

2. Before services can be successfully discovered, network B
must have at least one DA, which is registered with B’s
DNS server as an SRV record. For example, the DA could
be registered as _slpda._udp.b.com for the target da.b.com.

3. Before the device moves from network A to network B,
the UA on the device does a DNS lookup for the QNAME
_slpda._udp.b.com and will obtain a DNS reply providing
the location of the DA in network B as da.b.com

4. Subsequently, when the device moves into network B, the
UA can interact with network B’s DA as its location is
now known, to perform service requests.

IV. MOTIVATIONAL BASIS FOR OUR SLP EXTENSIONS
Extending SLP for IPv6 as well as remote service discovery

as explained in the previous section, provide an important basis
for service discovery work in next generation IP networks.
However, the primary use of SLP was still envisioned as
service discovery for fairly fixed, enterprise network
topologies, and the extensions were conceived at a time when
IETF work with Mobile IPv6 was still ongoing. This mobility
factor, together with the current general trend of portability and
content sharing devices, imply that feature interactions among
the various technologies have not been thoroughly investigated.
This renders it difficult to use SLP in its current specification(s)
for service discovery in advanced mobile networking.

In this section, these interactions are described in the
following subsections below, leading to the motivation of the
undertaken work as described in this paper.

A. Moving from a client-server to a P2P paradigm
One of the most radical paradigm shifts that appears set to

occur in the mobile computing world is the move away from
the traditional client-server model of communication, where a
mobile device moves only as a client into new network spaces,
needing only connectivity and communication with local
servers.

From tangible products today, such as mobile devices
carrying images, videos and documents with them, to research
on location-aware peer-to-peer systems, we can observe that
soon, it will become just as important for mobile devices to
offer services in network vicinities the device roams into. SLP
does not yet provide a mechanism for this; the remote service
discovery described in Section IIIB has only been defined for
DA discovery for incoming UAs trying to find services, not
incoming SAs trying to register services. Clearly, a solution is
needed to overcome this.

B. Automatic and dynamic discovery
In general, the mechanism of locating a specific resource,

object or service can be performed in two ways [14], “Lookup”
and “Discovery”. “Lookup” refers to a passive process of
locating a specific object, resource or service based on some
matching criteria. It is initiated by a seeker, and requires the
existence of some agent to answer the request. “Discovery” on
the other hand, is used to refer to a more spontaneous process,
in which many entities become aware of other entities on the
network, and present themselves to other entities.

Based on the above definition, we can classify the remote
service discovery mechanism in SLP as a lookup mechanism,
owing to its reliance on a DNS server to perform DA lookups.
Looking at the procedure outlined in section IIIB, it is clear to
see that steps outlined can only occur in the simplest of
scenarios, as it implies the device, while in Network A, already
knows its next point of network attachment to be Network B
before it roams there; what would be most likely is for

movement from Network A to B to occur first, before the
device queries Network B’s DNS server for a DA.

In IPv4, addresses for mobile devices are generally
configured via DHCP, where the DNS address is also supplied
implicitly. Thus, the mechanism described above would be
feasible. In IPv6 however, the preferred method of address
configuration, for both fixed and mobile hosts, is stateless
autoconfiguration [15]. This relies solely on router prefix
advertisements in the device’s point of network attachment.
Consequently, DNS addresses are not supplied to the mobile
device, implying that even if the foreign network does support
this SLP extension, the mobile device would be unable to
exploit it immediately. In the best case, the device, upon
movement to network B, might try to query network A’s DNS
server, but network and firewall policies might prevent any
meaningful exchange from taking place.

In order to successfully address this problem, a mechanism
needs to be in place which actual discovery takes place in the
new network, relying on the visited network’s ability to provide
broadcast or multicast mechanisms. This mechanism should
also not impose any restrictions that may be placed on the
mobile device or reliance on communication with its home
network, such as having to relay on network A’s DNS server to
discover services in network B.

C. Rediscovery and re-registration of services
One of the most important factors affecting service

discovery and device mobility is the rapid rediscovery of
critical or everyday services in new networks upon movement.
Currently UAs may cache service URLs obtained from SAs for
a period of time corresponding to the lifetime defined by the
SA. However, SLP has no provisions for service rediscovery,
for UAs to automatically perform discovery of selected
services whenever movement occurs. The same is also true for
service registrations; SAs periodically advertise their services
to the network (in the absence of a DA) or register their
services to the DA before the service lifetime expires. Re-
registrations upon movement to new network spaces are not
provided.

We intend to augment this basic behaviour in SLP with a
mechanism, whereby applications can notify their agents about
services that need to be automatically rediscovered or
reregistered upon movement.

D. Multiple addresses and service reacability
Extending SLP for use in Mobile IPv6 networks needs to

address the challenge of dealing multiple source addresses and
source address selection. When roaming, every mobile node
(MN) will have two addresses: its permanent home address
(HoA) and its temporary Care-of Address (CoA).

In cases where MNs have roamed into foreign networks
and attempt to initiate unicast or multicast communication
using UDP, source address selection procedures stipulate the
HoA be used by default [16]. Accordingly, since the HoA is
used as the source address, all packets are first tunnelled to the
Home Agent (HA) in the home network before being
subsequently forwarded on by the HA to their final intended

destination. This would have an adverse effect in the case of a
UA trying to perform active service discovery when the device
it resides in roams into a foreign network. If the UA chooses to
perform a Service Request at the site-local scope, the rules state
that the HoA must be used. Consequently, the multicast Service
Request packet will instead be sent to, and multicast only in its
home network; agents in the foreign network would never see
the Service Request.

To an extent, this problem is now being studied and
addressed within the IETF, and procedures outlining how the
source address selection algorithm can be influenced at the
application level using a new IPv6 socket API for address
selection [17] is being defined. The basic idea then could be
that the SLP agents can choose to state that the usage of the
CoA is always preferred over the HoA to avoid such situations.
However, though promising, this work is still in its draft stages,
currently with little implementation support if any.

Clearly, the way forward in this problem is to provide a
mechanism to the SLP agents in mobile nodes informing them
of newly acquired addresses, and allow them to use the CoA
instead.

E. Multiple addresses and service advertisements
In addition to service requests, SLP service advertisements

too can be adversely affected by IPv6 mobility. Consider the
following scenario (fully qualified host names are used instead
of numerical IPv6 addresses for clarity):

1. Mobile Node 1 has a permanent IPv6 address, HoA-of-
mn1.NetworkA.com in its home network A, and it has an
instant messaging client advertising its presence using an
SA. So, the service URL advertised would be something
like service:im:jabber://HoA-of-mn1.NetworkA.com, if we
choose the Jabber chat protocol, just for the sake of an
example.

2. MN1 then moves into a foreign network B, acquiring a
temporary address, CoA-of-mn1.NetworkB.com. Since
with Mobile IPv6, the IP layer shields movement, the SLP
layer remains unaware of the new address.

3. Let’s assume that Fixed Node 2 residing in network B,
having the IPv6 address fn2.networkB.com is in the same
subnet as MN1.

4. A chat application in FN2 wants to find other jabber chat
clients in the same subnet for a P2P-like chat, and uses the
UA in FN2 to issue a link-local Service Request for
service:im:jabber.

5. Because MN1 is in the same subnet, it will directly
respond to this request with a Service Reply, giving
service:im:jabber://HoA-of-mn1.NetworkA.com as the
service URL.

6. The messaging application in FN2 will attempt to connect
to MN1’s chat application using MN1’s home address.
MN1’s Home Agent will capture this packet and attempt
to tunnel it to MN1 in the foreign network.

7. At this point, one of two things will happen: Either the
communication attempt will be successful, or Network B’s

firewall policies will not allow incoming connections into
the network and drop the packets. Thus, even though MN1
and FN2 reside in the same subnet and SLP
communication succeeds, service reachability will be
compromised, owing to the service advertisement using
the HoA.

As proposed earlier in subsection D, providing SLP agents
with information regarding the MN’s CoA would alleviate the
above issue to an extent.

However, the presence of multiple addresses, one
permanent and the other temporary, also raises an interesting
question of service persistence which SLP has not yet
addressed: Does the application really want its service to be
reachable permanently, regardless of its current point of
attachment, or should the service be advertised so that it is
reachable only in its current point of attachment, or both?
These decisions reflect the desired persistence, availability and
reachability of the advertised service and its address.

Therefore, any extension for SLP taking into account
mobility should address the interaction between the application
and the SLP agents, to accurately reflect the desired visibility
of the service.

F. Movement Detection, Network Resource Awareness
When considering mobility and accessing local services,

one of the foremost factors for consideration in application
development is the provision of some basic method that allows
for detecting device movement into different network spaces.

The type of information provided to the client application
when the device moves may range from a very simple boolean
trigger, to an encapsulated message containing very rich
network information. The key idea in providing movement
detection information is to allow it to be processed by any
movement-sensitive applications resident in the mobile device
reactively.

Therefore, closely related to all the issues in the previous
subsections is the necessity of enhancing SLP functionality by
providing movement detection to SLP agents which reside in
mobile devices, regardless of whether Mobile IPv6 is used or
not. Upon obtaining movement information, agents can choose
to rediscover or readvertise services.

In conjunction with movement detection, we also wish to
extend SLP to provide a notion of the underlying network’s
capabilities to support service discovery. With the current
specifications, agents are provided with an idea of the
network’s capabilities only at startup, and cannot adapt to it at
runtime.

When considering mobility, the link characteristics as well
as the capabilities of the various networks to be visited can be
vastly different. For SLP, support for multicast is of prime
importance.

Hence, an agent must be able to cope roaming from a
network supporting full native multicast, to one in which site-
local multicast and above is unsupported, and still be able to
successfully perform service discovery.

G. Compatibility and interactions with SLP extensions
Although many extensions to SLP have now been

standardised by the IETF, all of them work invasively with the
basic protocol; Usage of SRV resource records necessitates re-
engineering UAs to understand DNS query-reply mechanism,
SLP agents in IPv6 cannot interwork with SLP agents in IPv4
owing to a difference in the way multicast is used, mesh-SLP
as well as service notification mechanisms all require UAs,
SAs and DAs to again be re-engineered differently.

As previously mentioned, using these extensions in fairly
fixed network topologies is rather straightforward, but could
prove to become quickly unmanageable in mobile
configurations. This is largely owing to the fact that there is no
notification in SLP to an incoming mobile device to ascertain
which of the abovementioned extensions are in place in the
visited network. Hence, an agent optimised to work with one
type of extension would fail to function properly when moving
into a network supporting a different SLP extension.

Thus, the final target of this work is to ensure that our
proposed new extensions remain as transparent as possible.
Since the work to be done uses IPv6, we aspire to ensure
communication with other IPv6 SLP agents is carried out
without creating any additional incompatibilities. The new
agents introduced should work non-invasively, but learn the
SLP capabilities of the visited network. Other SLP agents (in
IPv6) should continue to interact with the new extensions and
agents developed without needing any changes or
enhancements to their behaviour, protocol mechanisms nor
message structures. From the perspective of the resident agents
in any visited network, the incoming agents that use and
advertise services would be treated without difference to any
others already present.

V. NEW IPV6 AGENTS FOR SLP
In order to fulfil the objectives outlined in the previous

section, we introduce two optional agents to SLP in IPv6. The
first is a Visiting Agent, (VA) which resides in the mobile
device itself. The second is an Access Agent (AA), which
resides in the fixed networks, especially in network segments
that form the initial point of entry for mobile devices visiting
the network.

We first conceived the idea of using an AA and a VA in
[18], which described a service discovery mechanism based on
using SLP wirelessly over mobile IPv6. The work described
provided a simple notion of movement detection and was
designed to overcome the problem of using multicasting in
foreign networks. However, as Mobile IPv6 protocol stack
implementations matured and other standards became ratified,
inadequacies in meeting the desired objectives were observed.
Extensive refinements and testing was done, resulting in the
work described in this paper.

The two agents are described in detail in the following
subsections, beginning with the AA.

A. SLP Access Agent
The AA resides in the networks which the mobile node

visits, periodically advertising its presence with link-local

multicast AA Advertisements. AA Advertisements contain
information that incoming mobile nodes with VAs can
ascertain about the foreign network.

The general packet structure of each advertisement is
described in Figure 2. Thin dotted lines indicate variable length
fields, whereas fieldnames denoted in italics denote optional
fields.

SLP Header

AA URLAA URL Length

DA URL Length
Prefix
Length
Network
Features

Auth
Blocks Auth Blocks

AA Prefix

DA URL

SLP Header

AA URLAA URL Length

DA URL Length
Prefix
Length
Network
Features

Auth
Blocks Auth Blocks

AA Prefix

DA URL

Figure 2. AA Advertisement Message

Each advertisement begins with a standard 4-byte SLP
Header field. This is immediately followed by a 2-byte field
describing the AA URL length as well as a variable length
Service URL field of the AA. This URL would be of the form
service:access-agent://<address>, where <address> is the
globally unique IPv6 address of the Access Agent.

The advertisements are periodically sent to the link-local
multicast address ff02::1:1259, the address being calculated
using the standard hash algorithm for service announcements
described in [10]. Also, AAs can respond to active solicitations
for advertisements by VAs (or other UAs) in the network for
the service type service:access-agent. Advertisements sent in
response to solicitations are multicast into the subnet, instead of
directly being sent as a unicast reply to the VA. This allows
other VAs that might be present on the same subnet to receive
AA Advertisements quicker in order to do movement detection.
However, a minimum timing interval must be given to the AA,
in order to prevent a flood of multicast packets from the AA
into the network resulting from replies to all active solicitations
in addition to periodic unsolicited advertisements. Should the
AA receive an active solicitation before this timing threshold is
exceeded, it must refrain from replying.

Access agents also listen for DA multicast advertisements,
joining the well-known SRVLOC-DA group [10], ff05::123 at
site-local scope and below. If at least one DA announces its
presence, the location of the DA is included in the AA
Advertisement. AAs also provide information about the IPv6
network prefix for the subnet they reside in. A 1-byte field then
follows describing the capabilities and features in the network,
with individual bits being set to reflect whether the network
supports site-level multicasting, all other SLP extensions [8],
[9], [12] that might be enabled in the present network, and if
the AA is willing to serve as a multicast proxy for the VA.
Both the network prefix as well as the subsequent 1-byte
network capabilities field are configured from information
provided to the AA by the site’s administrator at startup.
Should the network support IPv6 stateless autoconfiguration,
the value of this prefix would be the default link prefix
announced by the site’s router.

SLP also defines its own optional authentication
information that can be used to verify the authenticity of the
message, and if used, these authentication blocks will form the
last part of the structure of the AA Advertisement.

B. SLP Visiting Agent
Visiting Agents are designed to facilitate the process of

service discovery as well as service provision for mobile client
and server applications. Both service discovery and registration
are performed using standard SLP messages: SrvRqst and
SrvRply are used for discovery while SrvReg and SrvAck are
used for registration. Visiting agents listen for AA
Advertisements in the network segments they visit. By
observing changes in both the source address of the
advertisements and the announced IPv6 prefix contained within
each AA Advertisement, VAs can discern whether they have
moved into new network spaces.

However, it is also entirely possible some VAs can detect
movement “out-of-band” in several other ways. These include
the use of low-level packet capture or interface monitoring
tools, information supplied from advanced applications capable
of monitoring Mobile IPv6 routing headers [19], and
application-driven prompting from a human user. In such
cases, to reduce service latencies, the VA can actively solicit
AA Advertisements to understand the capabilities of the new
network from the received advertisements.

When AA Advertisements provide the location of a site-
specific DA, it is obligatory for the VA to perform service
discovery and service registrations using the DA. At the same
time, the VA can also learn about the SLP characteristics of the
new network: If mesh-SLP is used, the VA need only register
any of its services with just one DA. Naturally, whenever
movement occurs into a new network, the VA is also
responsible for ensuring previous service registrations in the
old network must be deregistered prior to re-registrations into
the new network.

Alternatively, in the absence of a DA in the network, the
AA Advertisement can also indicate to the incoming VA if the
AA is willing to serve as a multicast proxy. If so, the VA sends
its service requests and registrations to the AA via unicast. The
AA subsequently multicasts the original service requests from
the VA into the site-local network, relaying all replies it
receives back to the VA. The AA also acknowledges any
service registrations made by the VA, and listens for multicast
service requests from any site-local agent requesting for the
specific service. In case a service type matches, the AA sends a
reply to the agent originating the request, containing the service
URL that was originally registered by the VA.

Should the AA Advertisement not indicate the presence of a
DA, nor the willingness of the AA to serve as a multicast
proxy, the VA must check from the received advertisement if
the visited network supports site-local multicast. If it does, in
the case of a Mobile IPv6 node, the VA can use the CoA to
issue and respond to site-local multicast SLP packets. The VA
can choose to form its CoA, using its own link-local address
and the network prefix provided by the AA Advertisement.
Should the VA not choose to use the CoA, or if the network

does not support site-local multicast, all SLP communication is
limited to agents residing in the local subnet only.

Once the VA ascertains the necessary information, service
rediscovery and re-registrations can be performed for mobile
applications as described in the next two sections.

VI. PERFORMING AUTOMATIC SERVICE REDISCOVERY
In SLP, standard APIs in C and Java are defined for

interaction between applications and SLP agents [20]. The
function calls are designed to aid applications requesting
services from UAs or registering services with SAs. For service
discovery, the C function call that client applications invoke
upon a standard UA is SLPFindSrvs(). Among others, this
function call is invoked with arguments that include a Service
Type string, a callback function through which results are
returned as well as a client-specific cookie value, which is
passed back to the client’s callback function upon returning
results.

In addition to this function call, the VA also provides for
automatic service rediscovery for client applications whenever
the mobile terminal moves into a new network. Upon
movement, service queries are reissued into the new network,
either using the new DA, the AA or direct multicast. Clients are
then notified of any new results. Table I provides the full
binding for both C and Java. Both the original standard method
calls as well as the additional automatic versions supported by
the VA are shown.

TABLE I. LANGUAGE BINDINGS FOR SERVICE DISCOVERY

 Standard Discovery Auto-Discovery
C Binding SLPError

SLPFindSrvs(
SLPHandle hSLP,
const char *pcServiceType,
const char *pcScopeList,
const char *pcSearchFilter,
SLPSrvURLCallback
callback,
void *pvCookie)

SLPError
SLPAutoFindSrvs(
SLPHandle hSLP,
const char *pcServiceType,
const char *pcScopeList,
const char *pcSearchFilter,
SLPSrvURLCallback
callback,
void *pvCookie,
SLPBoolean findmode)

Java
Binding

For
Interface
Locator

public abstract
ServiceLocationEnumeration
findServices(
ServiceType type,
Vector scopes,
String searchFilter)
Throws
ServiceLocationException

public abstract void
autoFindServices(
ServiceLocationEnumeration
enumeration,
ServiceType type,
Vector scopes,
String searchFilter,
int findmode)
Throws
ServiceLocationException

The function call provided in C is SLPAutoFindSrvs(). The
signature for this function call is the same as for SLPFindSrvs,
with the addition of a boolean field specifying a findmode
value. If the function is invoked with findmode set to 1, auto-
queries are initiated, with the client callback being invoked by
the VA each time movement occurs and results need to be
returned following an auto-query. If findmode is set to 0, the
auto-discovery feature for this service type would be disabled,

and subsequent movement into new networks would not trigger
rediscovery.

VII. SERVICE RE-REGISTRATIONS AND PERSISTENCE
Similar to service auto-discovery, the VA also has

provisions for automatic service re-registrations upon
movement into new networks, for mobile applications wishing
to be located by other network applications using SLP. In this
case, the C function that mobile applications invoke upon the
VA is SLPAutoReg(). Among others, this function call accepts
a string containing a partially or fully formed URL (such as
either the hostname, or a full service URL). It also accepts a
second string specifying the service type, which could be
combined with a partially specified URL to obtain a fully
formed service URL. A callback function and a cookie are also
supplied by the application and subsequently invoked by the
VA upon operation completion to report status. The boolean
value of 1 for regmode indicates to the VA that service re-
registrations upon movement are desired in new visited
networks (to either the local AA or a DA), whereas a value of 0
indicates that the application wishes an explicit deregistration
of the service, with no new re-registrations when entering new
networks. Table II below provides the full bindings in C and
Java for service registrations that the VA supports.

TABLE II. LANGUAGE BINDINGS FOR SERVICE REGISTRATION

 Standard Registration Re-Registration
C Binding SLPError

SLPReg(
SLPHandle hSLP,
const char *pcSrvURL,
unsigned short usLifetime,
const char *pcSrvType,
const char *pcAttrs,
SLPBoolean fresh,
SLPRegReport callback,
void *pvCookie)

SLPError
SLPAutoReg(
SLPHandle hSLP,
const char *pcSrvURL,
unsigned short usLifetime,
const char *pcSrvType,
const char *pcAttrs,
SLPBoolean fresh,
SLPRegReport callback,
void *pvCookie,
SLPBoolean regmode)

Java Binding
For

Interface
Advertiser

public abstract void
register(
ServiceURL URL,
Vector attributes)
throws
ServiceLocationException

public abstract void
autoregister(
ServiceURL URL,
Vector attributes,
int regmode)
throws
ServiceLocationException

When using Mobile IPv6, the notion of persistent and
transient services are introduced for the VA to advertise in the
various networks during movement. Persistent services are
standard SLP services, registered by applications with the
home address of the mobile node. To achieve this, the
application provides the HoA as a partially formed service
URL, and supplies the service type when using either SLPReg
or SLPAutoReg. These registrations guarantee that the service
remains available throughout the lifetime of the VA,
transparently to any interested application regardless of the
location of the mobile node, remaining true to the spirit of IP
mobility.

Transient services, however, are services offered in the
immediate localised surroundings, using the CoA of the mobile

node. These services are only available for the duration of stay
in the foreign network by the mobile node. However,
applications may not have any idea what their current CoA is,
nor indeed what future CoAs would be, whenever re-
registrations are required. To overcome this, applications
register the service by providing the string literal “[coa]” as the
partially formed service URL instead of a hostname. The
service type is supplied just as with persistent services. The VA
then replaces “[coa]” with the current care-of address and
forms the full service URL with the given service type. This
URL is subsequently registered into the local network.
Naturally, whenever the VA moves to a new network, it will
need to unregister transient services from any DA or AA of the
previous network and re-register them in the new network.

Mob App VA AA UA Fixed App(DA)

Join service mcast group

SLPAutoReg, [COA]

AA Adv

SrvDeReg

SrvAck

Network B

SLPFindSrvs

Network A

SrvRqst

SrvRply
Results

Use service

Mob App VA AA UA Fixed App(DA)

Join service mcast group

SLPAutoReg, [COA]

AA Adv

SrvDeReg

SrvAck

Network B

SLPFindSrvs

Network A

SrvRqst

SrvRply
Results

Use service

Figure 3. Transient service re-registration procedure when a mobile node
roams from Foreign Network A back to its Home Network B.

This sequence of events is depicted in Figure 3, which
shows a mobile application together with its VA moving from
Network A to Network B. Let’s assume that the mobile service
to be autoregistered is a transient service, and that the VA has
already previously registered it to a mesh-SLP DA, discovered
via Network A’s AA while the mobile node was in Network A.
Upon movement into Network B, the VA ascertains via the
new AA advertisement that no DA is present in Network B,
and that full multicast is supported. Furthermore, by observing
the AA prefix, it discovers the mobile node has returned back
to its home network. Consequently it deregisters the service
from the old DA, joins the service specific site-local IPv6
multicast group.and begins listening for multicast Service
Requests. Once a service match is discovered, the VA replies,
supplying the application’s service URL with the CoA (which
in this case will also be its HoA).

VIII. CONCLUSION
In this paper, two new SLP agents were described for

service discovery with advanced mobile networking.
Prototypes of VAs and AAs in C++ and Java on Linux and
Windows laptops as well as Linux, Solaris and Mac OS X
workstations were implemented, tested, and verified
practically. Automatic service discovery and registrations were
successfully accomplished and non-intrusive interworking with
existing SLP agents (standard DA, UA and SA) was also
achieved. IPv6 roaming with a portable Linux terminal running

mobile applications and a VA was performed using four of our
native IPv6 production and research networks. Experiments
were successfully performed both when the portable terminal
was Mobile IPv6 enabled, and without Mobile IPv6 support,
with the terminal either acquiring a global IPv6 address
through stateless auto-configuration, or simply using link-local
communication with other IPv6 devices in an ad-hoc manner.

The work described in this paper, and subsequent design
and implementation, fulfilled all the aims listed in section IV.
Utilising SLP in this manner remains lightweight, running
directly atop UDP and using the multicast characteristics of the
network. It is unlikely that a single service discovery standard
for advanced mobile networking would soon prevail, based on
technical reasons or otherwise. However, the approach to
overcome the challenges outlined in this paper can also be
applied to various other popular service discovery mechanisms.

REFERENCES
[1] J. Veizades, E. Guttman, C. Perkins and S.Kaplan, “Service Location

Protocol,” RFC 2165, June 1997.
[2] E. Guttman, C. Perkins, J. Veizades and M. Day, “Service Location

Protocol, Version 2,” RFC 2608, June 1999.
[3] The OpenSLP project, http://www.openslp.org
[4] M. Bakke, J. Hafner, J. Hufferd, K. Voruganti and M. Krueger, ”Internet

Small Computer Systems Interface (iSCSI) Naming and Discovery,”
RFC 3721, April 2004.

[5] EPI-19, “ACN Discovery on IP Networks,” ANSI BSR E1.17,
Entertainment Technology – Architecture for Control Networks, 14
March 2006.

[6] P. Goldsack et. al., “SmartFrog: Configuration and Automatic Ignition
of Distributed Applications,” Published in HP OVUA 2003, 29 May
2003.

[7] The LiveTribe project, http://www.livetribe.org/
[8] W. Zhao, H. Schulzrinne and E. Guttman, “Mesh-enhanced Service

Location Protocol (mSLP),” RFC 3528, April 2003.
[9] J. Kempf and J. Goldschmidt, “Notification and Subscription for SLP,”

RFC 3082, March 2001.
[10] E. Guttman, “Service Location Protocol Modifications for IPv6,” RFC

3111, May 2001.
[11] R. Hinden and S. Deering, “IP Version 6 Addressing Architecture,” RFC

2373, July 1998.
[12] W. Zhao, et. al., “Remote Service Discovery in the Service Location

Protocol (SLP) via DNS SRV,” RFC 3832, July 2004.
[13] A. Gulbrandsen, P. Vixie and L. Esibov, “A DNS RR for specifying the

location of services (DNS SRV),” RFC 2782, February 2000.
[14] R. E. McGrath “Discovery and Its Discontents: Discovery Protocols for

Ubiquitous Computing,” Presented at Center for Excellence in Space
Data and Information Science, NASA Goddard Space Flight Center,
April 5, 2000

[15] S. Thomson and T. Narten, “IPv6 Stateless Address Autoconfiguration,”
RFC 2462, December 1998.

[16] Draves, R “Default Address Selection for Internet Protocol version 6,”
RFC 3584, Feb 2003.

[17] E. Nordmark, S. Chakrabarti and J. Laganier, “IPv6 Socket API for
Address Selection,” IETF work-in-progress, 5 March 2007.

[18] B. Silverajan, J. Kalliosalo and J. Harju, “A Service Discovery Model
for Wireless and Mobile Terminals in IPv6,” Proceedings of IFIP-TC6
8th International Conference on Personal Wireless Communications
PWC 2003, Venice, Italy September 23 - 25, 2003.

[19] S. Chakrabarti and E. Nordmark, “Extension to Sockets API for Mobile
IPv6,” RFC 4584, July 2006.

[20] J. Kempf and E. Guttman, “An API for Service Location Protocol,” RFC
2614, June 1999.

Publication V

Collaborative Cloud-based Management of Home Networks

B. Silverajan, J.P. Luoma, M. Vajaranta and R. Itäpuro

2015 IFIP/IEEE International Symposium on Integrated Network Management (IM), pp.
786-789, 2015, IEEE.

DOI: 10.1109/INM.2015.7140376

Publication reprinted with the permission of the copyright holders.

Collaborative Cloud-based Management of Home
Networks

Bilhanan Silverajan, Juha-Pekka Luoma, Markku Vajaranta, Riku Itäpuro
Tampere University of Technology, Finland

Email: firstname.lastname@tut.fi

Abstract—Future home networks are expected to become ex-
tremely sophisticated, yet only the most technically adept persons
are equipped with skills to manage them. In this paper, we
provide a novel solution as to how complex smart home networks
can be collaboratively managed with the assistance of operators
and third party experts. Our solution rests in separating the
management and control functionalities of the home access
points and routers, away from the actual connectivity, traffic
forwarding and routing operations within the home network. By
so doing, we present a novel REST-based architecture in which
the management of the home network can be hosted in an entirely
separate, external cloud-based infrastructure, which models the
network within the home as a resource graph.

Index Terms—Homenet, Network Management, Cloud, IoT.

I. INTRODUCTION

Many residential home networks today consist of little more
than a broadband-enabled WiFi access point and Network
Address Translator (NAT), offering wireless and wired con-
nectivity to any and all authenticated end-devices. If wireless
coverage is spotty, wireless repeaters are used to cover blind
spots. If application network performance is deemed to be
laggy, more bandwidth is acquired from an Internet Service
Provider (ISP). Granting connectivity to new devices or pro-
viding visitor access is typically accomplished by sharing a
well-known password for wireless access. Therefore, apart
from occasional activity, present practices require minimal
management of the residential wireless home network by the
home owner.

In recent years however, the home has rapidly become a
natural convergence point for emerging technological devel-
opments and innovations. The smart home of tomorrow is
expected to be an integral industrial and commercial testbed
for the Internet of Things (IoT), Smart Cities and Grids, and
even 5G connectivity. Connected homes are rapidly becoming
a fertile ground for commercial vendors introducing their
own ecosystems for home automation, health care and remote
monitoring. This is widely anticipated to produce a rapid
proliferation of computing, sensing and actuation systems
in the home. Many of these systems also are integrated
with home owners’ personal mobile devices and into cloud-
based platforms. At the same time, traditional Internet usage
and connectivity usage scenarios would continue to play an
important role.

Needless to say, these developments present severe strains
onto any residential home network. To allow large numbers
of sensors and smart devices to be connected and reachable

via the Internet, network addresses need to be efficiently and
properly allocated. Various members of a family may have
different needs and connectivity priorities for their connected
devices, while device vendors, utility and electricity providers
may equip a smart home with their own products which may
or may not be connected to the provider’s network via the
home network. A home network owner may also wish to
segregate visitor network traffic away from critical portions of
the network itself, giving rise to the need to perform network
segmentation, traffic shaping and routing. Management of such
a residential home network poses a few problems. Firstly, it is
highly challenging for an average home owner to administer
complex networks. Secondly, any technical assistance sought
currently for management of access points and servers in
the home relies upon the ability to remotely or physically
access the customer premise equipment (CPE) which may
not always be possible, owing to geographical issues or the
presence of dynamic IP addresses, NATs as well as firewalls if
other network routers or access points are positioned arbitrarily
within the home network topology.

In this short paper, we address this challenge, as to how
operators and third party experts can assist home owners
in managing complex networks of the connected home in
the future. Our focus is specifically on residential home
networks that comply with the IETF Homenet standards and
architecture. A brief description of Homenet is provided in
Section II. We provide a novel solution of managing the home
network in an external cloud using a browser based GUI
or a REST-based interface, that integrates well with other
REST-based and IoT services for added value to the home
owner. The design and implementation of our solution are
elaborated upon in Sections III and IV. With proper access
control and authorisation methods in place, this provides a
far more flexible and convenient solution for co-managed
networks to be viewed by external parties, without having
to manage individual home routers using traditional methods
requiring remote access and local login credentials for each
router. This is discussed in Section V. We then conclude this
short paper in Section VI.

II. IETF HOMENET

The Home Networking (Homenet) Working Group was
chartered in 2011 by the Internet Engineering Task Force
(IETF), in anticipation of the growing complexities of res-
idential home networks, with the increase in number and

demands by both connected computing devices and IoT-
type constrained nodes. Homenet’s intent is to research and
standardise networking protocols and other mechanisms useful
for residential home networks [1]. Although the properties
and network topologies in a home network are not mandated,
the home network is envisioned to grow large enough to
require multiple network segments and subnets within the
home, implying the existence of several routers which need
to be orchestrated to perform actual routing using one more
more well-known interior gateway routing protocols such as
Babel [2], OSPF [3] or RIP [4]. Homenet supports both
IPv6 and IPv4 address allocation mechanisms. Additionally
Homenet advocates each node in the network to possess both
a globally unique IPv6 address, as well as a local IPv6 address
to avoid operational communications disruptions within the
home, should an ISP uplink incur any downtime. Multiple ISP
uplinks can be present in a Homenet-based network. Finally,
a Homenet Control Protocol (HNCP) [5] is being specified,
with which participating routers obtain information about the
network capabilities, routing protocols and services present in
the home network.

III. DESIGN

Our approach has been inspired partly by Software Defined
Networking (SDN) based principles, in which the network
management and configuration functions of the home are
reflected in the cloud and separated from the traffic flow and
routing aspects of the home network. While common practices
in SDN-based networks aim at real-time control of network
elements, we choose to apply SDN concepts for network
configuration management. Hence, direct control of packet
flows and protocols such as OpenFlow are outside our scope.
This is reflected in our architecture, as shown in Figure 1.

Figure 1: Proposed architecture

A cloud-based platform (henceforth referred to simply as
a ’cloud’) serves as a centralised network management and
control platform to remotely manage home networks. This
effectively behaves as a remote SDN controller, while having
the network management service in the cloud provides a
platform for the development and use for various kinds of
operator tools, services and new network management apps,

both native and web-based. The cloud interfaces with a trusted
device that acts as a local controller, instead of directly
communicating with the home network equipment. While the
cloud provides a management interface and an effective means
to deliver decisions to the home network, a local controller,
possessed by the home owner, serves as a control point to
execute decisions taken by the cloud-based controller, into
the home network. To act as a local controller, a trusted
device such as the owner’s smartphone needs access to the
Internet-based cloud service hosting the remote controller, and
either a direct or tunnelled access to the home network. These
connections need not be available at the same time if caching
of configuration data is used by the smartphone.

If network configuration changes are made in the cloud,
the smartphone can be made aware of any updates to the
homenet configuration. Should the cloud provide a push-
based notification service, the notification triggers manage-
ment actions by the smartphone on the native management
interfaces of homenet devices. If push notifications are not
supported, REST-based polling by the smartphone can be
used instead. Finally, the smartphone then connects to each
element in the home network automatically to deliver the
changed configuration. This is illustrated in Figure 2, and
further elaborated upon in Section IV.

Cloud / BaaS

Configuration
Resource Graph

Browser
app

Native
app

B

Local Controller
(Smartphone App)

Cached
Configuration
Resource Graph

Push notifications

Co
Re

Home Network

CoAP/RESTCONF

Figure 2: Collaborative Management Design

IV. IMPLEMENTATION

Our test environment for prototyping our cloud-based col-
laborative network management solution consists of several
portions. Firstly, we created an ISP capable of providing
Internet connectivity to various home networks via IPv4 and
IPv6. A DHCP server delivers a single IPv4 address to home
border routers (as most ISPs do today), while IPv6 prefix
delegation consisting of a /60 prefix is provided to supply the
home network with global IPv6 addresses. Secondly, we then
deployed a Homenet-compliant residential network with four
wireless access points (consisting of TP-Link TL-WDR4300
and Buffalo WZR-HP-AG300H). The stock firmware was
replaced with the latest OpenWRT snapshots from the trunk,

based on Linux kernel version 3.10.49. The 2.4 GHz radio
interfaces provided WiFi connectivity to client devices in the
home, while all the 5 GHz radio interfaces were dedicated
towards creating a wireless mesh network, in which the Babel
routing protocol was utilised. This allowed for a resilient
residential network where the network topology adjusted to
favour routes with the strongest link characteristics, while
remaining transparent towards the clients.

Figure 3: Parse Cloud-based platform

To manage the home network, we used Parse [6], a pop-
ular Backend-as-a-Service (BaaS) cloud platform, to host
the remote controller. The configuration parameters of home
network devices are represented as data objects on Parse as
depicted in Figure 3. Parse provided several features useful
for our prototype, such as a cloud-based data store, user
management, user role based access control, push notifications,
and support for cloud-hosted code. Our prototype uses Parse
JavaScript SDK to provide a web GUI for the users of the
cloud-based management service. This GUI allows users to
add and remove managed devices, view and set configuration
parameters of a network device, and change the set of config-
uration parameters currently used by all network devices.

Figure 4 shows our design for storing versioned configura-
tion data in Parse. Several named configurations of the home
network devices can be stored in the cloud, maintaining current
as well as previous versions of configurations. Each configu-
ration comprises the parameters of all home network devices
being managed. When there are changes to a configuration
and the changes have been committed, a new version of the
configuration is created. The set of previous versions of each
configuration allows reverting to a previous version of the
network configuration if needed. New named configurations
can be created as needed, either using a previously stored
configuration as a template or by taking a snapshot of the
current state of home network device configurations.

Parse also supports a REST based API that could be used
for providing access to parts of the Homenet configuration by
Internet-based automation services such as If This Then That
(IFTTT) [7]. This provides the ability to build management
apps that can configure and manage the home network via
Parse, based on policy or context-based events triggered from
IFTTT recipes (such as powering down non-essential radio
interfaces based on time, user presence, or power savings
profiles). An initial prototype of the local controller imple-
mented in Node.js is currently running on a Linux PC and

Figure 4: Versioned configuration data

uses the Parse JavaScript SDK to access the home network
configuration data stored in the cloud. It then executes man-
agement commands on each router over SSH. Work is being
undertaken to instead use an Android-based smartphone as the
local controller that receives push notifications from Parse. The
phone then uses REST-based method calls using CoAP [8], or
RESTCONF [9]. CoAP is the basis for device management
in the OMA Lightweight M2M [10] specifications, while
RESTCONF is a RESTful approach towards using NETCONF
[11] to manage the access points.

V. SECURITY ISSUES

To allow collaborative management of the home network by
the different stakeholders, it should be possible to define access
rights to different subsets of network configuration parameters
for groups of users according to their user role. The basic rule
we wish to adhere to is to ensure that all modifications to
the network are done via the cloud, and that executing these
changes to the residential network via the local controller
can only be rendered possible with explicit authorisation of
the transaction by the home network owner. To accomplish
this, we rely on a two-phase authentication and access control
security model which are closely tied with each other.

In the first phase, authentication and access control to the
data in the cloud is addressed. In this phase, the owner of the
network would be free to assign roles and time-based access
to various types of apps (or providers and users) accessing
the cloud-based data. This allows trusted users to read and
write the resource graph of data objects representing the
configuration parameters of home network devices. Different
views and access rights to the resource graph can be provided
on a continuous or time-limited basis according to arbitrarily
defined user roles. Certain roles, such as the primary Homenet
user, could have full read-write access to all configuration pa-
rameters, while other users may be limited to read-only access
or have no visibility to parts of the network configuration at
all. An external service-specific controller such as an Internet-
based automation service could also be provided access to
selected parts of the network configuration via the cloud.

Once a valid management operation is performed in the

cloud, the local controller is notified, and successful execution
of the operation is achieved by the local controller onto the
residential access points upon successfully completing the
second phase of authentication and access control. For this
phase, an AAA-based mechanism is employed, in which the
RADIUS protocol [12] is heavily used. Each home contains a
RADIUS server capable of authenticating local users against
provided credentials such as passwords, for obtaining network
connectivity from the home network. However, when the local
controller receives a request to update network settings, it can
escalate its privileges from obtaining connectivity, towards
performing network administration, by supplying credentials
provided to it from another federated RADIUS-based realm,
such as a security service provider (which could be the
network operator, or a third party service provider). Success-
fully authenticating against these credentials would allow the
local controller to be recognised as a valid executor. In our
implementation, our initial strategy for the local controller has
been to obtain an assurance of its identity by the security
service provider, which informs the home RADIUS server
what the device being authenticated is allowed to do.

VI. CONCLUSIONS AND FUTURE WORK

In this short paper, we presented our active work-in-progress
architecture, design, and implementation experiences in pro-
viding a new solution to allow expert external assistance to
co-manage residential home networks of the future, without
the need to have end-to-end network or physical connectivity
to each element that needs to be configured and controlled
in a home. Our initial tests and results appear promising
as valid solutions of using a cloud-based controller for the
management of, among others, Homenet-compliant home net-
works, without breaking any compatibilities. The connected
home is becoming the technological focal point for intelligent
control and communications systems, as well as consumer
and personal electronics and advanced sensoring and actuating
components. However, it is commonly assumed that it is
the sole responsibility of the home owner to manage his
network, which is a daunting prospect. Our solution offers
a clear separation of concerns for the multiple stakeholders
interested in making the smart home a success: The owner,
the members of his family, the network operator, the cloud
service providers and various third party experts. In so doing,
new business models and revenue streams are created, while
allowing service providers access and management capabilities
to govern any devices they own residing within the home.

Apart from obtaining expert help, there are several other
advantages to our approach. For example, a home network
operational state and properties of the routing and switching
elements can be preserved easily in the cloud. As residential
access points tend to be commodity, cost-effective equipment,
this approach allows easy rectification and replacement of
defective routers, by restoring existing network configurations
into new equipment. Also, upgrading network equipment in the
home to take advantage of new technologies can be performed
without much consternation.

Communication between the cloud and the local controller
is completely REST-based. Uplink disruptions, as well as
disruptions between the local controller and the routers, do
not affect the actual operation of the home network. Once
the uplink resumes, the local controller synchronises any
changes or new policies with the cloud and applies them to the
home network. In future, we aim to deploy RESTCONF-based
communication between the local controller (i.e. smartphone)
and the residential network elements. This allows easy inter-
working and integration with the Web of Things, allowing the
formulation of intelligent decisions and sophisticated policies
by obtaining contextual and geophysically relevant data from
external web-based data sources. This results in fine-tuned
policies for network performance towards various energy pro-
files, bandwidth control, data aggregation and traffic routing.

The architecture also considers proper authentication and
role-based as well as time-limited access control as an impor-
tant facet. While we are using RADIUS-based authentication
and access control using passwords, in the future we aim
at investigating SIM-based authentication solutions [13] that
could identify the roles a owner’s smartphone can fulfill.

Finally, the solutions proposed and studied in our research
are highly scalable, allowing not only management of home
routers, but also other types of constrained IoT-like nodes such
as sensors and smart consumer appliances that allow REST-
based resource retrieval and manipulation.

VII. ACKNOWLEDGEMENTS

This work is funded by the Finnish Digile IoT Programme.

REFERENCES

[1] T. Chown, Ed., J. Arkko, A. Brandt, O. Troan and J. Weil, "IPv6 Home
Networking Architecture", IETF Internet draft, work in progress, July 4,
2014; http://tools.ietf.org/html/draft-ietf-homenet-arch-17.

[2] J. Chroboczek, The Babel Routing Protocol, IETF RFC 6126, Apr. 2011;
http://tools.ietf.org/html/rfc6126.

[3] R. Coltun, D. Ferguson, J. Moy and A. Lindem, Ed., OSPF for IPv6,
IETF RFC 5340, July 2008; http://tools.ietf.org/html/rfc5340.

[4] G. Malkin, RIP Version 2, IETF RFC 4822, Nov. 1998;
http://tools.ietf.org/html/rfc2453.

[5] M. Stenberg and S. Barth, "Home Networking Control Proto-
col", IETF Internet draft, work in progress, June 25, 2014;
http://tools.ietf.org/html/draft-ietf-homenet-hncp-01.

[6] "Parse - The complete mobile application plaform", Oct. 5, 2014;
http://parse.com.

[7] "IFTTT: Put the Internet to work for you", Oct. 5, 2014; http://ifttt.com.
[8] Z. Shelby, K. Hartke and C. Bormann, The Constrained

Application Protocol (CoAP), IETF RFC 7252, June 2014;
http://tools.ietf.org/html/rfc7252.

[9] A. Bierman, M. Bjorklund, K. Watsen and R. Fernando, "REST-
CONF Protocol", IETF Internet draft, work in progress, Feb. 13, 2014;
http://www.ietf.org/archive/id/draft-bierman-netconf-restconf-04.txt.

[10] "Lightweight Machine to Machine Technical Specification", Candi-
date Version 1.0 - 10 Dec 2013, Open Mobile Alliance, OMA-TS-
LightweightM2MV1_0-20131210-C; http://www.openmobilealliance.org.

[11] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed., and A.
Bierman, Ed., Network Configuration Protocol (NETCONF), IETF RFC
6241, June 2011; http://tools.ietf.org/html/rfc6241.

[12] C. Rigney, S. Willens, A. Rubens, and W. Simpson. Remote authen-
tication dial in user service (RADIUS), IETF RFC 2865, Jun. 2000;
http://tools.ietf.org/html/rfc2865.

[13] H. Haverinen, Ed. and J. Salowey, Ed., Extensible Authentication

Publication VI

Enhancing Lightweight M2M Operations for Managing IoT Gateways

B. Silverajan, M. Ocak, J. Jiménez, and A. Kolehmainen

2016 IEEE International Conference on Internet of Things (iThings 2016), pp. 187-192,
2016, IEEE.

DOI: 10.1109/iThings-GreenCom-CPSCom-SmartData.2016.55

Publication reprinted with the permission of the copyright holders.

Enhancing Lightweight M2M Operations for
Managing IoT Gateways

Bilhanan Silverajan∗, Mert Ocak†, Jaime Jiménez†, Antti Kolehmainen∗
∗Tampere University of Technology, Finland
{bilhanan.silverajan, antti.kolehmainen}@tut.fi

†Ericsson Research, Finland
{mert.ocak, jaime.jimenez}@ericsson.com

Abstract—Heterogeneity in constrained networks and gateways
is perhaps one of the single greatest challenges facing end-to-
end management of devices and networks in the IoT. Today,
the Lightweight M2M (LWM2M) protocol, leveraged on open
Internet standards, has become a strong contender for REST-
based IoT management. However, significant challenges exist
for remote gateway management, particularly for proxies and
exposing proprietary or vendor-specific operations. This paper
presents some effective solutions in LWM2M for overcoming
these challenges, using object modelling and linking. The pre-
sented approaches are also validated with prototypes.

Index Terms—LWM2M, IPSO, CoAP, Gateway Management

I. INTRODUCTION

Several major Standards Development Organisations
(SDOs) have undertaken considerable effort in establishing
protocols, architectures and communication guidelines in the
Internet of Things (IoT) domain. The recent standardisation
of the Constrained Application Protocol (CoAP) [1] by the
Internet Engineering Task Force (IETF) was an important
milestone. It effectively extended the Representational State
Transfer (REST) paradigm, upon which the web API model is
predominantly based today, towards constrained IoT devices
and smart objects. CoAP also is becoming the foundation for
REST-based device management in IoT. The Open Mobile
Alliance (OMA) developed the Lightweight M2M (LWM2M)
architecture [2] around CoAP, specifying guidelines, interfaces
and data models for managing devices, sensors and actuators.
A similar strategy was adopted by the IPSO Alliance [3],
which augmented LWM2M with semantically interoperable
object models as building blocks which can be composed
together to describe more complex smart objects.

Because the growth of the IoT is fairly organic, there would
always be a need to integrate and interconnect a variety of
existing and deployed smart objects, many of which use legacy
and non-IP communication using different kinds of gateways.
Even with natively IP-enabled smart objects in the future,
connecting billions of devices in the IoT would encompass
multiple Layer 2 and Layer 3 solutions. This would require
IoT gateways to not only supply connectivity and routing, but
also behave as protocol translators or application level proxies.

We characterise an IoT gateway according to its function-
ality. It can supply wireless IP connectivity to devices and
sensors by bridging two kinds of Layer 3 networks with fixed

or cellular backhaul links. It can proxy between non-IP net-
works and the Internet. It can facilitate endpoint reachability
for management operations in the presence of firewalls and
NATs using packet encapsulation or tunnelling. It can finally
provide application-level architectural interoperability among
existing management tools and systems.

Other ways of categorising IoT gateways in terms of the
computational power, form factor or energy consumption
patterns are also possible. Quite often, gateways in IoT can
fulfill multiple roles. Many IoT gateways used in constrained
environments also possess similar properties as IoT devices
and smart objects in terms of hardware heterogeneity, compu-
tational ability, battery lifetimes or remote management. Con-
sequently, as long as any potential limitations are addressed,
managing IoT gateways using IoT device management proto-
cols and architectures would, on the surface, appear to be a
logical step for the configuration, control, and lifecycle man-
agement procedures. Even in situations where the gateways
themselves are not constrained or are more computationally
powerful, there are significant advantages in terms of semantic
interoperability and evolution, when a management server can
adopt the same methods in managing an IoT device as well
as the gateways along the network path. This forms the basis
of our work described here.

In this paper, we apply our experience gained with
LWM2M-based management and standardisation activities in
IPSO towards utilising LWM2M and IPSO data models for
effectively managing IoT gateways. While in this section, we
showed the importance of gateways and gateway management
in the IoT, section II provides an overview of the LWM2M
architecture and IPSO Objects. Section III offers a deeper in-
sight into the major challenges of using LWM2M for gateway
management particularly with exposing dynamic operations
as well as proprietary and non-IP data models. Section IV
offers some novel solutions for overcoming these limitations,
by using new object models as well as web linking and the
Information Reporting Interface of LWM2M. To add further
clarification in this paper, we present a simple example of
how this can be achieved in practice, by demonstrating an
example energy management scenario in Section V. Findings
that validate our work are discussed in Section VI before
conclusions are presented in Section VII. Related work is
discussed throughout the paper as concepts are presented.

II. LWM2M ARCHITECTURE AND IPSO OBJECTS

LWM2M provides a light and compact secure communi-
cation interface along with an efficient data model, which
together enables device management and service enablement
for M2M devices [5]. The architecture defines a client-server
communication model. A LWM2M Server is typically lo-
cated in a private or public data centre and can be hosted
by the M2M service provider to manage LWM2M clients.
The LWM2M Client resides on the device and is typically
integrated as a software library or a built-in function of a
module or device. An optional Bootstrap Server can be used
to manage the initial configuration parameters of LWM2M
Clients during bootstrapping the device.

Management operations between the server and client are
grouped logically into four interfaces: The Bootstrap Inter-
face, the Device Discovery and Registration Interface, the
Device Management and Service Enablement Interface, and
the Information Reporting Interface. As mentioned previously,
LWM2M uses CoAP for communication as the underlying
transport protocol. CoAP itself has similar method calls and
response codes as the Hypertext Transfer Protocol (HTTP).
LWM2M’s management operations map onto CoAP method
calls and response codes. CoAP resources are also identified
using Uniform Resource Identifiers (URIs). LWM2M intro-
duces a data model where LWM2M resources are logically
collected into LWM2M Objects. This is achieved by intro-
ducing a simple hierarchical object model, in which objects
represent sensor or actuator types, with a list of resources
representing the properties specific to that object type.

The OMA also maintains a naming authority called the
Open Mobile Naming Authority (OMNA). The OMNA op-
erates an Object and Resource Registry with which objects
and resources can be standardised with a name, description,
types and so on. An unambiguous identifier is also assigned.
For on-the-wire efficiency, this ID is used instead of names,
during CoAP operations. Multiple objects of the same type can
be differentiated by their Instance ID. This allows objects and
resources to be mapped in a standard way into CoAP resources
and URI path components, in the form of /<object ID>
/<object instance ID>/<resource ID>.

It is common that at startup, each LWM2M Client reg-
isters several distinct objects to a LWM2M Server. Upon
registration, the Server assigns a unique endpoint ID to
each Client. After registration, the Server is further able to
differentiate various endpoints by prepending the endpoint
ID to the object and resource identifiers. Subsequently, the
Server is able to perform read, write and execute management
operations on Client objects and resources using standard
CoAP method calls and URIs. Such a CoAP URI might be
coap://lwm2m.example.org/123/3/0/2 which re-
trieves the serial number (Resource ID 2) of object instance
0 of the LWM2M Device object located at the LWM2M
endpoint hosted on lwm2m.example.org having an endpoint
ID of 123.

In addition to the OMA, the IPSO Alliance also defines

smart objects and object models. IPSO Objects are defined in
such a way that they do not depend on the use of CoAP, and
any RESTful protocol is sufficient. Nevertheless, to develop a
complete and interoperable solution the IPSO Object model
is based on LWM2M specification and object model [6].
While LWM2M uses objects with fixed mandatory resources,
IPSO Objects use a more reusable design. As devices increase
in complexity, IPSO specifies how to compose sophisticated
Objects by using simpler Objects as building blocks and
linking them with specific resources called Object Links.
Object Links point to other objects within the Client and are
expressed as two concatenated integers separated by a colon,
such as 3304:2, where the first integer represents the Object
ID and the second the Object Instance. IPSO Objects are also
registered with the OMNA.

III. CONSIDERATIONS OF GATEWAY MANAGEMENT IN IOT

A study undertaken by the Internet Architecture Board
(IAB) to understand the impact of IoT on existing Internet in-
frastructure led to the publication of an informational standard
on architectural considerations for smart object networking
[4]. One of the findings outlined is the device-to-gateway
communication pattern, which is an architectural pattern con-
necting proprietary and non-IP nodes to the Internet using
gateways. While the pattern considers reachability and end-
to-end communication, such a communication pattern also
impacts gateway management, operations and the management
of non-IP endpoints. These are described in the subsections
below.

A. Integrating non-IP and proprietary data models

The use of LWM2M and IPSO data models between the
LWM2M server and managed endpoints requires both reacha-
bility and end-to-end IP connectivity. The specifications do not
cater for the management of non-IP end-points which use short
range wireless radios such as Bluetooth Low Energy (BLE),
Z-Wave or Zigbee.

One approach towards managing non-IP nodes is to mas-
querade the nodes’ properties in the gateway itself. Should
a gateway be used to bridge these networks into the IoT, it
can also translate between the kinds of data models expected
by the LWM2M architecture and the proprietary data models
used by the end-points. Integrating such proprietary models to
the network requires the gateway to serve as an intermediary
on behalf of these end-points in terms of registration and
management operations. Often this can be an effective solution
for exposing properties as a proxy to the LWM2M server in a
RESTful way as standard LWM2M or IPSO Objects. This
is highly effective for managing very resource-constrained
endpoints, providing semantic interoperability for connected
end devices. It can also be used to expose proprietary gateway
models for configuration and control.

As an example, the Unified Configuration Interface (UCI)
[7] of the well-known OpenWRT Linux platform for gate-
ways organises configuration information as various files with
well-defined names in /etc/config/, such as network, firewall,

Resources in IPSO Gateway System Object In /etc/config/system:

 config system
 option hostname 'IoT-TUT-GW'
 option zonename 'Europe/Helsinki’

 option dns '8.8.8.8'
 option cronloglevel '8'

 config timeserver 'ntp'
 list server '0.openwrt.pool.ntp.org'
 list server '1.openwrt.pool.ntp.org'

Name ID Access Type

Hostname 0 R,W

Timezone 1 R,W

DNS Servers 2 R,W

NTP Servers 3 R,W

Fig. 1. Excerpts showing mapping between IPSO and UCI system data models

system and wireless. Reading these files would reveal that
UCI internally models configuration-specific data into well-
defined sections called zones with nested properties called
options. Correlation between the nested UCI configuration data
and LWM2M or IPSO hierarchical data models can therefore
be performed. Figure 1 depicts this correlation between the
system configuration data used by UCI and the IPSO Gateway
System Object. The IPSO Gateway System Object can be used
directly with LWM2M, although, at the time of this writing,
its Object ID as well as URN are still subject to change and
final assignment by IPSO.

A similar strategy can be employed to model the properties
of non-IP devices and sensors. In BLE, data exchanged
through the Generic Attribute Profile (GATT) is organised
hierarchically into Services and Characteristics. A single
service is a logically grouped collection of characteristics,
while characteristics contain type, values and properties such
as supported operations. GATT services and characteristics
are therefore very similar to LWM2M Objects and Resources.
Consequently, an intermediate gateway can be used to manage
BLE endpoints in LWM2M using this approach. Integrating
such proprietary models to the network requires the gateway
to translate between the data models.

However, such translation is done using proprietary methods
in most of the current gateway implementations and hence,
creates silos between different gateway manufacturers. As an
example, Bluetooth SIG publishes GAP and GATT REST
API white papers [8] [9] to standardize the APIs defined on
Bluetooth gateways but common data models to seamlessly
integrate the Web and BLE data models are needed to provide
interoperability between these two technologies. The BIPSO
project, on the other hand, aims at harmonising BLE data
models with those of IPSO, by providing a standard mapping
between IPSO Objects to BLE Characteristics with well-
defined Characteristic Values [10].

The LWM2M architecture currently does not also possess
adequate semantics for describing such proxying, as while
CoAP itself supports proxies via the Proxy-URI option, how
this can be achieved and defined in LWM2M remains open.
Consequently, while the gateway can integrate and host data
models on behalf of proprietary or non-IP endpoints, it needs
to masquerade the objects and resources of each endpoint on
its LAN as its own. In other words, the management server
remains unaware that such Objects refer to physically distinct

endpoints external to the gateway. Ideally, discovering and
using proxy functionality should be incorporated into future
data models which unambiguously assert the location and
type of managed endpoints residing behind such a gateway.
This way, the runtime interaction would become expressive
enough to cleanly separate end-to-end management from any
underlying connectivity issues.

B. Exposing proprietary and gateway-specific operations

IoT device management rarely takes into account non-
atomic, transaction-based or system-specific method calls
which are inherently present in many operations related to
gateway configuration. Often, these calls also differ from
vendor to vendor. While the LWM2M data and operation
models support read, write and execute operations on a re-
source (effectively a CoAP GET, PUT or POST operation), a
gateway’s proprietary or native configuration API often needs
to be invoked upon a change in a resource’s representation.
This is effectively an implicit process not exposed to the
management server as the object model does not attach any
semantics to the kinds of native operations that could or should
be invoked upon actions on Objects and resources. When
applied to gateway management this can become an issue,
as the object model does not accurately capture the kinds of
operations and configuration changes a gateway may need to
perform in the background, to properly reflect the resource
state in the LWM2M object model.

As an example, consider a packet filtering mechanism on
an access point, for which an example LWM2M or IPSO
object model comprises of firewall objects. Each firewall
object represents a single rule, while each resource represents
an option, such as a name, source or destination address,
incoming interface, connection state. In order to first properly
construct and then trigger the firewall rule on the gateway
as well as to subsequently monitor its status, each action on
the object to be taken needs to be modeled as a resource.
Moreover, an additional final commit resource is needed
to trigger the firewall rule to make the changes effective.
Without any additional semantics, similar kinds of object and
resource models need to be developed for other policy objects,
system configuration and the gateway’s network interfaces. A
different gateway implementation may also choose to perform
its runtime firewall management in a different manner, and
incorporate additional resources to reflect these operations in
a static manner within a different object model. In the long
run, this leads to untenable and fragmented Object models
with poor interoperability. Clearly, a better solution would
be to retain a core reusable Object model representing the
properties of a gateway or an endpoint being proxied by the
gateway, and conceive a mechanism which exposes system-
specific operations dynamically at runtime.

In HTTP-based REST models, resources can be dynamically
supplied from a server to a client with hypermedia by embed-
ding a REST constraint called Hypermedia As The Engine
of Application State (HATEOAS) [11]. Using HATEOAS,
an origin server only exposes resources directly necessary

for the current context, while returning possible operations
on the object or resource as hyperlinks and relation types
implementing standard REST verbs. While using HATEOAS
increases the messages exchanged between a client and a
server, it allows the responses from the server to the client to
be more transparent, and allows run-time discovery of allowed
operations on the server by a client.

If HATEOAS can be used, the firewall object can be
simplified so that the gateway’s native API invocations are
exposed to a management server over a REST interface when
necessary. A commit hyperlink could be exposed under a
name resource if and only if the firewall object has yet to
be deployed, for example. Hypermedia-based APIs, content
types and HATEOAS, however are currently unsupported by
LWM2M.

IV. STRATEGIES FOR IOT GATEWAY MANAGEMENT

In order to overcome the challenges outlined in Section
III, our solutions were inspired by a technique employed by
IPSO. Recognising that attempting to define complex devices
as discrete Objects can easily result in large and unsustainable
models, IPSO deliberately defines collections of Objects as
simple building blocks. These are then aggregated by devel-
opers to construct Composite Objects using Web Linking [12].
Such a Composite Object would have resource lists similar to
simple Objects. However they would also contain Resources
whose types are defined as LWM2M Object links. These
would then contain reference URIs which are mapped to other
Object Instances assembled to create the Composite Object
Model, as outlined in section 4 of [6].

A. Semantics for Proxy Management

The issues described in Section III-A can be overcome
using a similar approach as IPSO by using Web Linking.
This requires the Object model of a managed non-IP endpoint
to furnish enough semantics to the LWM2M Server which
describes and identifies the gateway being used as a proxy.
For example, we have drafted 2 IPSO Objects which aim at
working with low-powered non-IP nodes, particularly for BLE.
These are depicted in Fig 2 as the Personal Area Network
(PAN) Interface Object, and the BLE Generic Attribute Profile
(GATT) Object.

The PAN Interface Object is a generic Composite Object
that can be used for modelling multiple PAN interfaces of
either an endpoint or a gateway. For each interface, the Type
Resource specifies the kind of PAN this interface represents,
such as BLE, Zigbee, Classic Bluetooth and so on.

The address associated with the interface is also expressed,
followed by 2 Resources representing the properties of its
communicating peer. For an endpoint, these would represent
the gateway’s PAN address as well as the LWM2M Endpoint
ID supplied by the Server, while for a gateway, multiple
instances of the Peer Address Resource would represent man-
aged end-points, and optionally, any Endpoint ID. In the case
of a BLE-based endpoint, multiple instances of the Low Power
Interface Resource would be linked to multiple instances of the

Resource
Name

Resource
ID Type Access

Type
Handle 0 String R,W
Service 1 String R,W

Characteristics 2 String R,W

ess

IPSO PAN Interface Object

IPSO BLE GATT Object

Resource
Name

Resource
ID Type Access

Type
Type 0 String R,W

PAN Address 1 String R,W
Peer Address 2 String R,W

Peer Endpoint ID 3 String R,W
Low Power Interface 4 ObjLink R,W

Fig. 2. IPSO PAN and BLE GATT objects.

BLE GATT Object, with each BLE GATT Object representing
a single BLE service.

Describing managed endpoints via a proxy in this manner
supplies an LWM2M Server with enough structured infor-
mation to correlate as well as understand the kinds of non-
IP endpoints being managed and through which gateways
communication is possible.

B. Interaction model with dynamic linking

Gateways often have system-specific operations that need
to be performed during management. Section III-B outlined
the current shortcomings that prevent LWM2M Servers from
understanding and invoking them. However, just as with
proprietary data models from the previous section, a simple
but effective technique using Object links allows an LWM2M
Server to be aware of contextual operation invocation on the
gateway, based on the current representational state of the
gateway’s objects and resources. Additionally, the LWM2M
Information Reporting Interface is relied upon as a notification
mechanism at runtime to dynamically supply information
of gateway-specific operations to the LWM2M Server. This
notification mechanism is based on CoAP Observe [13], which
allows an observer to register an interest on an observable
CoAP resource, so that when the representational state of the
resource changes, the observer is notified.

Classic LWM2M and IPSO data model depict Resources
and Objects in a fairly static structure. To this, another class
of gateway objects need to be introduced, which we term
Interaction Objects. Interaction Objects contain a list of exe-
cutable Resources, each of which represents a system-specific
operation required by the gateway, in order to effect runtime
changes when requested by the LWM2M Server. Such an
instance of the Interaction Object could be linked to a specific
Gateway Object Instance together with another Interaction
Object having observable Resources, which computes the state
of the Object Instance and updates its Resource values to
supply the object link to the correct Interaction Object Instance

Resource
Name

Resource
ID Type Access

Type
Observ-
able?

Op List 0 ObjLink R Yes
Active Op 1 Integer R Yes

Resource
Name

Resource
ID Type Access

Type
UCI_GET 0 String X
UCI_SET 1 String X

UCI_COMMIT 2 String X

Resource
Name

Resource
ID Type Access

Type
HCI_TOOL 0 String X

HCI_CONFIG 1 String X
GATT_TOOL 2 String X

(A) IPSO Operations Object

(C) IPSO UCI Commands Object

(B) IPSO BLE Commands Object

Fig. 3. IPSO Interaction Objects.

TABLE I
IPSO WIRELESS GATEWAY INTERFACE OBJECT

Resource Name Resource ID Type Access Type
Ifname 0 String R,W
Mode 1 String R,W

Disabled 2 Boolean R,W
SSID 3 String R,W

MAC Address 4 String R,W
IP Address List 5 String R,W

Transmission Power 6 Integer R,W
Network 7 String R,W

and the Resource ID representing the system-specific operation
to be invoked.

Fig 3 illustrates three draft IPSO Objects that, when com-
posed together with an IPSO or LWM2M Gateway object, can
accurately provide the management server with hypermedia-
like operations on the gateway. For example, assume that the
gateway registers an IPSO Wireless Interface Gateway Object,
composited together with the IPSO Operations Interaction
Object as well as the IPSO UCI Commands Interaction Object.
The Wireless Interface Gateway Object is shown in Table
I. At registration, the OP List Resource in the Operations
Object would point to the UCI Commands Object Instance
registered by the gateway, while the Active OP Resource value
would reflect the currently active operation. In this particular
case, the value would be 0, to reflect that the currently active
operation would be the UCI GET executable resource. If the
LWM2M Server, at some future point in time, choose to
disable the Wireless Interface Object by setting the value of
the Disabled Resource to “1”, the value of Active OP would
be changed by the gateway to “1”, reflecting that the next
active operation on the Wireless Interface Gateway Object
would be the UCI SET executable resource. Subsequently, if
the LWM2M Server has a previously established notification
relationship with the Resources in the IPSO Operations Object,
it would be automatically informed by the gateway of a
pending system-specific operation.

V. EVALUATION AND TESTING

The enhancements to LWM2M discussed in the previous
section were evaluated by implementing the proposed Objects
for IoT gateways in an experimental setting. Our main use
case for the validation of our approach was a simple energy
management use case. Our test environment consisted of

Public
Internet

Leshan
server

LAN

WiFi
GW

BLE
GW DAQ

Fig. 4. Experimental setup. Red arrows indicate IP communication, while
blue arrows depict BLE communication. Green line indicates direct physical
connection to monitor power.

several devices to mimic a heterogenous gateway management
scenario using LWM2M. This is depicted in Figure 4. Two
kinds of gateways were set up. The first was TP-Link AC-
1200 Wi-Fi Access Point (AP) connected to the Internet over a
fixed Ethernet connection offering IPv4/IPv6 access. The stock
firmware was replaced with the OpenWRT Chaos Calmer dis-
tribution and additional hardware and software was installed so
that the AP was capable of scanning and communicating over
BLE as a GATT client. The second gateway was a Raspberry
Pi 2 serving as a BLE gateway primarily for bridging and
connecting to BLE sensors. The BLE gateway was connected
to the AP as a Wi-Fi client. Both gateways had embedded C-
based LWM2M client code from the Eclipse Wakaama project
modified and implementing the IPSO Wireless and System
Gateway Objects, proposed PAN Object, BLE GATT Object
as well as the Interaction Objects. A custom GATT server
was also implemented in the BLE gateway with a proprietary
service, enabling authorised clients to connect and write to a
specific service and characteristic to control its Wi-Fi interface.
Additionally, the gateway periodically announced its presence
by transmitting BLE advertisements. The precise power being
supplied to the BLE gateway was non-invasively monitored
in real-time using a data acquisition (DAQ) device which
provided real-time, precise, energy consumption statistics of
the BLE gateway. The DAQ device was built in-house, contain-
ing an energy consumption monitoring toolkit, a Hall-Effect
current sensor connected to an Arduino board and controlled
over a Raspberry Pi Model B. Finally an Ubuntu laptop was
also added into the setup for monitoring purposes. The laptop
was also connected to the WiFi network and was capable of
BLE-based communication. All 3 devices (the AP, the BLE
gateway and the laptop) used the Linux BlueZ Bluetooth stack.

Both gateways registered to, and were managed over the
cloud, using a public Java-based LWM2M server from the
Eclipse Leshan project. The LWM2M server was hosted by
the Eclipse Foundation and was residing at leshan.eclipse.org.
An HTTP interface to the Leshan server allowed control, con-
figuration and management operations using a web browser.
This was performed using an Android-based phone forming a
connection to https://leshan.eclipse.org over LTE.

To perform our tests, we initially controlled the server to
successfully retrieve and write resources on both gateways.
This was performed over IP to both gateways. However, both
the AP as well as the BLE gateway registered their PAN

� � �� �� �� �� �� �� 	� ��
�
� �� ��
�
��
�
��
�
��
�

���

����

��	

��	�

���

����

��

��
�

���

����

�

2. Wi-Fi Disabled

4. Wi-Fi Resumed
1. Wi-Fi and BLE
Operational

3. Only BLE Radio
Operational

5. Wi-Fi and BLE
Operational

Time (s)

Po
w

er
 (W

)

Fig. 5. Managing Energy level in the BLE gateway using LWM2M

Objects, with registration updates being performed every 300s.
Both gateways also listed each other as peers in their respective
BLE GATT Object Instances. Our intention was to see if using
our approach with exposing system specific operations dynam-
ically as well as proxying and working with non-IP endpoints,
we can first successfully power down the Wi-Fi interface of
the BLE gateway, thereby losing direct Internet connectivity
between the LWM2M Server and the BLE Gateway without
adversely affecting management. Subsequently, we wanted to
demonstrate that by using the AP as a proxy, the LWM2M
Server would be able to use the BLE Command Object of
the AP to communicate with the BLE Gateway and power its
Wi-Fi interface up once more. During these steps, the power
consumption of the BLE Gateway should be observed to see
if we were successful.

VI. FINDINGS

Using the object modelling techniques described in the
previous sections, the LWM2M server successfully executed
several kinds of operations on the BLE gateway, depending on
the communication context. The server was able to retrieve or
change resource representations on the BLE gateway directly
when IP connectivity was present, and the BLE gateway
was able to provide the correct object links to allow the
server to disable the WiFi interface. Additionally, once the
WiFi interface was deemed to be disabled, the server was
also able to retrieve the correct endpoint identifier of the
AP and utilise it as a proxy to enable the WiFi interface
via the APs BLE interface. The BLE gateway then resumed
communication with the server over the higher powered WiFi
interface. These events are graphically depicted in Fig 5, which
shows the power consumption of the BLE gateway during
this test scenario. From the graph, it can clearly be seen that
periodic transmissions over Wi-Fi resulted in bursts of energy
consumption, and when the Wi-Fi interface was powered down
at around 40s, the power consumption of the BLE gateway
decreased significantly. In order to allow the BLE gateway
to update its LWM2M registrations, Wi-Fi was once again
powered up and the subsequent activities such as association
with the AP, obtaining IP addresses, resuming services and

updating LWM2M registrations over Wi-Fi, are once again
clearly visible. In addition to the power measurements, these
activities were also verified by using the laptop to solicit ICMP
responses from the BLE gateway to Ping packets, inspecting
the LWM2M server for fresh registrations and subsequent
updates from the BLE gateway at the Leshan server.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented novel methods to manage IoT
gateways effectively, using LWM2M. We focused on two
specific areas, namely allowing vendor-specific and proprietary
gateway operations to be effectively modelled as resources in
an object model which the management server can interact
with, and the ability to expose and manage endpoints by ex-
plicitly modelling proxy operations that gateways may possess.
These were achieved by extending existing object models to
contextually expose permitted operations on a gateway to a
management server at runtime.

Work is ongoing for REST-based management of IoT de-
vices and gateways, particularly in the IETF. RESTCONF [14]
is one such example. RESTCONF is however, HTTP-based,
and it faces limitations for constrained device management.
Ongoing work on CoAP Management Interface (CoMI) [15]
aims to adapt RESTCONF for use in constrained environments
using CoAP. Additionally, the use of HATEOAS as well
as Web Linking to define the relation types between object
instances on different endpoints would heavily aid IoT gateway
management. These are actively being pursued in other SDOs.

VIII. ACKOWLEDGEMENTS

The authors thank Carsten Bormann for his review and
useful comments. Funding was provided by the EIT Digital
ACTIVE project.

REFERENCES

[1] Z. Shelby, K. Hartke, and C. Bormann. ”Constrained Application
Protocol (CoAP)”, IETF 7252, Jun. 2014.

[2] Open Mobile Alliance, ”Lightweight Machine-to-Machine Technical
Specification v1.0, Candidate Enabler”, Aug. 2016.

[3] IPSO Alliance. IPSO Objects http://ipso-alliance.github.io/pub/
[4] H. Tschofenig, J. Arkko, D. Thaler, and D. McPherson, ”Architectural

Considerations in Smart Object Networking”, IETF RFC 7452, March
2015.

[5] J. Prado,”OMA Lighweight M2M Resource Model”, IAB IoT Semantic
Interoperability Workshop 2016, March 2016

[6] J. Jimenez, M. Koster and H. Tschofenig, “IPSO Smart Objects”, IAB
IoT Semantic Interoperability Workshop 2016, March 2016

[7] OpenWrt UCI System, https://wiki.openwrt.org/doc/uci, Accessed
September 2016.

[8] Bluetooth SIG, ”GAP REST API White Paper”, April 2014.
[9] Bluetooth SIG, ”GATT REST API White Paper”, April 2014.

[10] BIPSO, http://bluetoother.github.io/bipso/, Accessed September 2016.
[11] M. Kovatsch, Y. N. Hassan, and K. Hartke. ”Semantic Interoperability

Requires Self-describing Interaction Models”, IAB IoT Semantic Inter-
operability Workshop 2016, March 2016

[12] M. Nottingham, ”Web Linking”, IETF RFC 5988, September 2016.
[13] K. Hartke, ”Observing Resources in the Constrained Application Proto-

col (CoAP)”, IETF RFC 7641, September 2015.
[14] A. Bierman, M.Bjorklund, and K. Watsen, ”RESTCONF Protocol”, ID-

ietf-netconf-restconf, September 2016.
[15] P. van der Stok, and A. Bierman, ”CoAP Management Interface”, ID-

vanderstok-core-comi, March 2016.

Publication VII

A Redundant Gateway Prototype for Wireless Avionic Sensor Networks

D. Scazzoli, A. Mola, B. Silverajan, M. Magarini, and G. Verticale

29th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio
Communications (IEEE PIMRC 2018), pp. 1-7, IEEE.

DOI: 10.1109/PIMRC.2017.8292683

Publication reprinted with the permission of the copyright holders.

A Redundant Gateway Prototype for Wireless
Avionic Sensor Networks

Davide Scazzoli∗, Andrea Mola∗, Bilhanan Silverajan†, Maurizio Magarini∗, Giacomo Verticale∗
∗Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy

Email: {davide.scazzoli,maurizio.magarini,giacomo.verticale}@polimi.it, andrea1.mola@mail.polimi.it.
†Tampere University of Technology, Tampere, Finland

Email: bilhanan.silverajan@tut.fi

Abstract—Wireless Sensor Network (WSN) technologies
provide advantages that allow them to replace traditional
wired systems in an ever growing number of applications.
This paper describes the design of a WSN for mission
critical applications such as the case of avionics, in which
data collected from the sensors can be delivered to a
cloud application through multiple independent gateways,
thereby increasing data availability in presence of failures.
Since the same data might be distributed along multiple
paths, system-wide synchronization must be provided in
order to guarantee data consistency. A heartbeat protocol
is introduced along each path in order to guarantee timely
detection of any single failure. We present a solution that
can be implemented using open source software and com-
mercial off-the-shelf hardware, which makes this approach
viable for networks with a large number of heterogeneous
sensors. Results reported in this paper show some sample
measurements as well as the performance evaluation for
our heartbeat algorithm in terms of latency between a
failure and a full recovery of the system.

Keywords—Wireless Sensor Networks (WSNs), Relia-
bility, Single Point of Failure (SPF), Mission Critical,
Redundancy Management

I. INTRODUCTION

Wireless sensor network (WSN) technology has been
successfully employed in many non-critical application
domains ranging from agriculture and habitat monitoring
to smart buildings. Often they employ multi-hop commu-
nication and routing protocols over lossy channels with
varying levels of reliability. However, a recent survey on
reliability in WSNs indicates that by carefully selecting
link metrics and power consumption levels, WSN-based
systems can often provide a high level of reliability
[1], which make them a feasible alternative to wired
sensor networks for mission-critical applications. The
International Telecommunications Union (ITU) arrived
at a similar conclusion, and allocated the spectrum band
between 4.2 and 4.4 GHz for the development of wireless
avionics intra-communications (WAIC), with the intent
of replacing traditionally cabled systems with wireless
ones within aircraft [2].

In order to obtain real-time sensor data monitoring
systems, a common technique used, particularly in the

Internet of Things (IoT), is the device to gateway com-
munication pattern for smart objects [3]. This pattern
captures a common way in which sensors communicate
with a local gateway over a short range wireless radio,
which subsequently aggregates the data to be sent to
a remote server or a cloud. This technique also allows
the transmission of wireless aviation sensor data via a
gateway situated in the aircraft, to ground-based com-
mand and control centers for real-time monitoring, either
over a satellite or cellular connection. In such instances,
the gateway itself becomes a critical component of the
communication architecture.

However, while the reliability of WSN communication
is being addressed by active research, and architectural
patterns can be used to describe the role of the gateway
for transmitting sensor data, there is little guidance
given for the proper functioning and reliability of the
local gateway, particularly for mission critical avia-
tion systems. A gateway failure would mean complete
blackout of all critical sensor data. Similar challenges
exist in gateways of other mission-critical systems for
autonomous land and maritime vessels.

In this paper, we look at addressing this aspect
by describing a novel technique which employs heart-
beats, algorithms and redundant gateways to improve
failure detection of primary gateways and providing a
fast recovery mechanism using a secondary gateway
to continue transmitting sensor data to the cloud with
no sensor data loss. Performance measurements using
gateway prototypes built using low-cost commercial off-
the-shelf (COTS) hardware demonstrate the feasibility
of the approach. We remark that we focus on fail-over
management for the redundant gateway assuming that
the link between gateway instances is not a limiting
factor, as we will see in Sec. IV. Henceforth, we rely on
standard transport layer protocols to handle data delay,
replication and link failures.

Realistic options exist for low-cost alternatives in
WSN-based communications. An example of this is the
emergence of XBee modules from Digi International [4]
which provide different wireless connectivity solutions

within the same form factor component for easy inte-
gration with other standard platforms such as Arduino.
Coupled with open source software, general purpose
hardware can address many of the major obstacles for
sensor network technology to become a transformational
force in mission-critical application domains, such as
avionics. Using this approach it is possible to improve
upon the weak aspects of current WSN applications such
as lack of reliability, flexibility, interoperability, and in its
extreme difficulties in long-term deployment, operation,
and maintenance especially by non-skilled personnel [5].

The rest of the paper is organized as follows. Section
II gives a survey of the redundancy management solu-
tions available in the literature as well as typical WSN
applications. The architecture of our WSN prototype
is described in Sec. III, while Sec. IV illustrates our
solution for handling redundant hardware. Experimental
results are given in Sec. V and, finally, Sec. VI concludes
the paper.

II. RELATED WORK

A. Redundancy Management

Traditionally, fault detection, isolation and recovery
(FDIR) is achieved by having several redundant systems
interconnected with each other in some way. Each sys-
tem monitors the output of other systems and detects
faults by comparing results in a voting scheme [6]. Much
work has been done within this method [7] and many
systems adopt it for its robustness and reliability against
silent data corruption (SDC) errors. While this method
offers good reliability and performance it is resource
intensive as multiple systems must perform the same task
to provide the results for the voting algorithm, making
the solution ill suited to the constrained environment of
IoT and WSNs. More recently, an approach based on
heartbeats has been introduced in the field of redundancy
management [8]. This methodology was first adopted
to monitor processes inside distributed software appli-
cations [9]. This method is based on the transmission of
status packets called heartbeats in which each redundant
system informs the other systems of its current status.
Different models of this solution exist, the PUSH model,
the PULL model and even hybrid solutions [10]. When
using the PUSH model, the nodes being monitored pe-
riodically send heartbeats to the nodes monitoring them,
while in the PULL model, the monitoring nodes request
heartbeats from the nodes being monitored. Simulations
of the performance of different implementations give
interesting performance results [11], motivating further
work in this field. This recent shift in methodology is
further aided by the introduction of machine learning
algorithms that are able to detect SDC failures without
relying on any redundant data [12].

Fig. 1. System architecture. Multiple sensor nodes can connect with
multiple gateways concurrently. All the gateways belong to a single
entity defined as the Transmission Data Concentrator. Sensors are
distinguished as High Data Rate (HDR) or Low Data Rate (LDR).
Each gateway has an independent connection to the cloud.

B. Wireless Sensor Networks

The main objective of WSNs is the acquisition of
data from sensor nodes without relying on any com-
munication infrastructure. Many example applications
of such technology exist in the literature, from wide
area networks deployed to monitor an active volcano
[13] to personal area networks used to monitor health
parameters [14]. These solutions take advantage of the
relatively close proximity of sensor nodes in order to
gather data collected from multiple sensors into a single
node, the sink, where it can then be stored and analyzed.
By doing this, the nodes of a WSN are able to meet more
stringent requirements than a general IoT node in terms
of power consumption and hardware resources. In order
to combine the advantages of IoT and WSNs the sink
node often takes the role of an IoT gateway, delivering
collected data from the sensor network towards the
internet. Some example applications of this approach
are emerging in the literature [15]. We aim at extending
these results towards mission critical applications where
reliability requirements often contrast with the limited
resources paradigm.

III. SYSTEM ARCHITECTURE

We consider a WSN with different types of sensors,
possibly characterized by different wireless technologies.
The data sinks are two (or more) gateways, which are
interconnected among them. The set of interconnected
gateways is referred as Transmission Data Concentrator
(TDC). The gateways are equipped with the wireless
technologies used by the sensors and are also inter-
connected with each other by means of an independent

communications medium, such as an Ethernet connec-
tion. We assume that the local link between them is
highly reliable, that is, it is assumed free of failures.
This assumption can be met without a large increase in
costs by exploiting the close proximity of the gateways
inside the TDC.

The wireless sensor nodes are broadly distinguished
into high data rate and low data rate depending on
whether they require more or less than 10Kbps of
capacity for transmission. For high data rate Wi-Fi was
chosen for its low overhead and high capacity while for
the low data rate we used ZigBee for the low energy
consumption and high scalability. The respective benefits
of these two protocols have allowed them to be used
in many WSN applications, which, in turn, translated
to a large amount of COTS devices made available on
the market. The reliability of the communication from
sensors to gateway is provided by standard transport
layer protocols and is not a subject of this paper, while
the redundancy on the sensor nodes is handled according
to the type of sensor. For Wi-Fi we have implemented
an ad-hoc network which allows the sensors to commu-
nicate with all the gateways at the same time, while for
ZigBee we have addressed the problem of the network
coordinator being a single point of failure by using the
method described in [16].

Figure 1 shows the system architecture. The sensors
acquire the relevant measurements and transmit them
wirelessly. This has the advantage of eliminating the
downtime needed for sensors to switch between gate-
ways in the event of a gateway failure. Each TDC is
thus responsible for data acquisition from the sensors
and the configuration management of the sensor, which
includes providing synchronization to the wallclock time.
We achieve synchronization solutions by means of the
Timing-sync Protocol for Sensor Networks (TPSN) [17],
which can be seamlessly incorporated in our redundancy
management algorithm described in Sec. IV. Internet
connectivity to the Cloud is provided by the use of
external components, e.g., USB keys connected to the
cellular network. A smart gateway, which is capable of
processing, aggregating or even reducing the data vol-
ume transmitted towards the cloud, will greatly reduce
resource consumption [18]. Another advantage of having
smart field gateways capable of collecting and aggregat-
ing data in a meaningful form is a great simplification
of maintenance procedures.

The functionality of the gateway is organized in five
modules, as shown in Figure 2: sensor management,
cloud management, redundancy management, controller
and dashboard. These modules will be further described
in Sec. IV-D. All these modules need to share informa-
tion between each other so a database which is capable
of handling concurrent access in a reliable manner is
needed. In the prototype we use the Redis NoSQL, open

Fig. 2. Gateway software modules. The REDIS database handles
concurrent data access from multiple independent services.

source, in-memory data structure store, which works as
a lightweight database, cache, and message broker [19].
Further, Redis’ keyspace notifications makes it possible
to implement synchronous communications between the
modules. This allows for easy management of multiple
concurrent applications by exploiting a common data
structure. Thanks to its replication function it is possible
to quickly synchronize databases belonging to different
devices when needed. We used this function in our pro-
totype to fill gaps in the data among different gateways
as further described in Sec. IV.

IV. GATEWAY REDUNDANCY MANAGEMENT

To explain our approach for managing redundant hard-
ware, we consider a TDC with two gateways, in which
one acts as a primary gateway while the second acts
as a secondary gateway. The primary gateway contains
the master database and is responsible for sending the
relevant data towards the cloud. The secondary gateway
is kept in hot standby, in order to assume the role of
the primary gateway and minimizing downtime in the
event of a failure in the primary gateway. A protocol
was designed and implemented in the gateways, which
allows each gateway to participate in the election of
primary and secondary roles. Subsequently this protocol
was generalized to the case of N gateways joining the
TDC at arbitrary time instants.

In this section we describe the general protocol struc-
ture, the assumptions, the definition of the failure points,
the procedures for cold start, and how failure situations
are managed.

A. Design Assumptions and Goals

We consider the following design assumptions:
• No power constraints in the TDC. The TDC is

always on to collect data from sensors that can be
freely transmitted once ready.

• There are no bandwidth constraints inside the TDC.
Since the gateways inside the TDC will be in close
proximity this assumption is easily verifiable.

Fig. 3. Heartbeat Period

• A faulty gateway is silent. Each gateway either
operates correctly or is silent. We do not consider
the case of gateways forwarding incorrect messages
or sending heartbeat messages but ignoring data
messages.

• No residual transmission errors. The wireless MAC
protocols employ error correction and error detec-
tion mechanism that result in erroneous message
being discarded by the receiver.

• Non-catastrophic failure scenario. We consider that
at least one gateway is working at any given time.

B. Periodic Heartbeat Procedure

The heartbeat period is dynamic, because it depends
on the number of active and available gateways. Within
each period, each gateway must send a heartbeat packet
inside a predefined time window, as shown in Figure 3.
After all active gateways have transmitted their heart-
beats, a time window of duration Tfree is allocated to
allow other gateways to join as well as handling the
rest of the traffic present on the channel such as data
synchronization between the gateways. A gateway joins
the network by successfully transmitting its heartbeat in
the Tfree slot, after all other currently active gateways
have transmitted theirs. Once joined it will be allocated
a new slot of time duration Tgw for transmitting its
heartbeat packet by all the gateways which have received
its heartbeat in the previous cycle. The application of
this structure makes a timely identification of missing
heartbeats easy to implement. Due to the close proximity
of the gateways it is possible to take advantage of
high speed communication technologies such as Ethernet
or Wi-Fi. Since the heartbeat contains only essential
information its impact on the communication resources
is limited, thus Tgw is generally much smaller than Tfree,
as such it is possible for it to share the communication
channel with other services. The heartbeat packet trans-
mitted by the gateways contains the following informa-
tion:

• hostname: The machine hostname. It must be
unique in the network. As it does not impact our
algorithm we do not delve into hostname or address
assignment.

• gateway state: There are three possible gateway
states: available, backup, outofservice. These states
will be described later in this section.

• gateway role: Either primary or secondary.
• total number of gateways: The number of gate-

ways in available or backup state seen by the

Algorithm 1 Gateway Initialization and main loop
for all interfaces do

check interface status
end for

if all interfaces online then

gateway_state ← available
else if all interfaces offline then

gateway_state ← out_of_service
shutdown

else

gateway_state ← backup
end if

Listen for Heartbeats for time 2(TGW + TFREE)
if Heartbeat detected then

gateway_role ← secondary
else

gateway_role ← primary
end if

loop

Transmit Heartbeat in allocated timeslot TGW

Store Received Heartbeats
end loop

transmitting gateway in the previous heartbeat trans-
mission interval.

• list of interfaces: The List of the gateway’s mon-
itored interfaces with respective working/not work-
ing status. In the prototype considered in this paper,
the interfaces are ZigBee, Wi-Fi, and LTE. The
Ethernet was not included as it is assumed free of
faults.

• reliable: Reports the last data set acknowledged by
the cloud. It is used in case of a primary gateway
failure by the gateway which takes over. By resum-
ing transmission from this point data continuity is
guaranteed even after a takeover.

• gateway id: This field shows the place of the
heartbeat inside the dynamic frame structure. It
is used by gateways which join the network to
identify the place of the heartbeat received inside
the dynamic frame structure.

C. Employed Procedures

The gateways are divided in three possible groups:
available, backup and out-of-service.

A gateway belongs to the available group only when
all the interfaces are working. This means that the
gateway can receive the data from all the sensor nodes,
and it can forward them to the cloud. On the contrary, the
out-of-service group is related to the gateways with no
working interfaces. Otherwise, gateways that have partial
failures will belong to the backup group. These gateways
can assume a primary role only if there are no other
available gateways. Even when there are only backup

Fig. 4. Data structure of the Redis database shared by the services running on the gateway and their relationship.

gateways running if there is at least one working inter-
face for each network section (LTE, ZigBee and WiFi)
the system can still work by leveraging on the Redis
Replicate function. By using this function the databases
from the gateways can be shared via the redundancy
channel enabling gateways with malfunctioning inter-
faces to still receive data by sharing another gateway’s
connectivity. This is possible thanks to the assumption
of faultless local link which was stated earlier in this
section.

There are three main procedures to handle role assign-
ments which are detailed below.

a) Initialization: When a gateway is switched on,
it verifies the status of all its interfaces and, according
to the result, it decides which status to assume be-
tween the available, backup and out-of-service. After
this initial check it looks for the other gateways by
listening for other gateways’ heartbeats for a minimum
time of 2(Tgw + Tfree). If no heartbeat is received, the
gateway self-elects as primary and begins broadcasting
its own heartbeat. Otherwise, the gateway role depends
on its status and those of the seen gateways. In the case
of equal status the one that was already transmitting
the heartbeat will retain the primary role while other
gateways joining the network will assume secondary
role. This procedure allows for a dynamic number of
gateways to join the TDC arbitrarily, thus supporting
scenarios where some gateways are in cold-standby or
might attempt to fix internal issues by rebooting.

b) Main: After the gateway initialization, the peri-
odic procedure consists in sending a heartbeat for the
other gateways. In the case of the primary gateway,
it sends its heartbeat with its log data and with the
gateway_id field equal to 1. Otherwise, it replies back
with its heartbeat and increments the gateway_id field
by 1 for each heartbeat received. After each gateway has
transmitted its heartbeat inside their Tgw slot they start
listening for a period of time defined as Tfree. During
this interval the available and backup gateways listen
for heartbeats of new gateways that want join the TDC.

c) Failure: An interface failure is detected by the
gateway thanks to the self-verification test. When a
failure is detected the gateway will switch to backup

Algorithm 2 Election of a new Primary Gateway
if Primary_State ! = available or Primary
Heartbeat Timeout then

if gateway_state == available then

for Each available gateway do

Check if gateway_id is greater
end for

if Own gateway_id is the lowest then

gateway_role ← primary
end if

end if

end if

status and, depending on the status of the other gate-
ways, it may also switch role to secondary. If, after the
failure, there are no available gateways without failures
it will maintain its primary role until a new gateway
with available status joins the network. After the other
gateways discover the failure, either through notification
or a timeout, a new primary gateway is elected following
the procedure depicted in Algorithm 2. For cases where
multiple gateways have the same status then the primary
is chosen by the order established in the frame, which
is indicated in the gateway_id field of the heartbeat
packet.

D. Modular Architecture

The gateway software modules interact with each
other through the Redis data channels. Figure 4 shows
the data structures used during normal operation by each
module:

a) sensor module: stores various information about
the nodes of the WSN, such as their status: online or
offline, whether they have been connected before or
not and the type of available sensors. To do that, four
Redis sets and one key with the expiration time have
been defined. Of these, three keep track of the sensor
nodes which are currently online, offline and online at
least once. The last one is used to track the type of
sensor node which is identified from the node’s MAC
address. To update the sets, for example in case of a
node failure, a key value pair with the expiration time is
set. Once this key is expired, the system will publish a

Fig. 5. The cloud dashboard used to visualize data which is sent from
the primary gateway twice per second. In this instance the data from
two sensor nodes equipped with accelerometers is displayed. A failure
of the primary gateway is simulated at the time 10:33:38 indicated in
the figure, however, data continuity is maintained.

related notification, and a software module will update
the offline and online sets. A node can have multiple
different sensors or one sensor can sample different
physical quantities. Hence, for any node a set is created
which contains the data measured and the timestamps
associated.

b) controller module: keeps track of the status of
the various interfaces by using four key values as shown
in Fig. 4. Three are used for the gateway interfaces which
were described in Sec. III while the last one is used for
the status of the gateway as a whole which, as described
earlier in this section, can assume three states: Available,
Backup or Out of Service.

c) redundancy module: utilizes only two keys, one
for the boot time and one for defining the gateway role,
which can be primary or secondary, as described earlier
in this section.

d) cloud module: keeps track of the status of the
data sent towards the cloud by updating three sets,
Published, Not Acked and Acked. The Published set
is filled with the relative data coming from the sensor
nodes, as they get forwarded toward the cloud the data is
moved to Not Acked and lastly Acked when the Cloud
acknowledges the received data. These sets also act as
a backup of the data and are used by the secondary
gateways for retransmission in case of a failure of the
primary one. Data consistency is guaranteed by the use
of application layer protocols such as MQTT or CoAP.

e) dashboard module: is tasked with the local
display of the sensor data. It can be used for maintenance
procedures or as a backup when cloud connectivity is
unavailable.

V. EXPERIMENTAL RESULTS

We have tested the effectiveness of the redundancy
management algorithm in handling failures by imple-
menting the protocol in a prototype. Then, we simulated
various failures and measured the system reaction times.
Figure 5 shows an example of the cloud dashboard

Fig. 6. The experimental prototype used for verification of the
redundancy algorithm. In the figure are shown the high data rate Wi-Fi
sensor nodes at the bottom, the low data rate ZigBee sensor nodes in the
middle and the two gateways at the top. The hardware used consists
in Arduino UNO with XBee S2 transceivers for the LDR sensors,
Arduino DUE with XBee S6B transceivers for the HDR modules and,
for the gateways, Raspberry Pi 3 Boards with XBee S2 transceivers
and LTE keys.

showing the Wi-Fi sensor nodes equipped with 3-axis
accelerometers. We simulated a crash of the primary
gateway at time 10:33:38 AM and, as can be seen from
the figure, the continuity of the data is maintained despite
the failure. The performance was measured in the time
taken for the system to fully recover after a failure which
is given by the equation:

Tdown time = Tdetection + Theartbeat + Trole switch, (1)

where Tdetection indicates the time taken for a gateway
to detect a failure of their interfaces, Theartbeat the time
taken to transmit an updated heartbeat and Trole switch

the time taken by the secondary gateway to switch to
primary role. This time was measured experimentally
with our prototype which is depicted in Fig. 6. We used
two gateways which exchanged heartbeats every 100ms.
The reduced dimension of the heartbeat packet limits
the impact on the network resources. We performed 200
tests which consisted in simulating an interface failure on
the primary gateway and measuring the interval of time
elapsed until a heartbeat with switched role was received
from the other gateway, all of this was recorded using a
laptop connected as a control unit. The histogram of the
measured intervals is reported in Figure 7.

From these results we can see that, in the majority of
cases, the response time is below the heartbeat exchange
interval that we used. Nevertheless, a non negligible
amount of simulations gave higher downtimes. This is
caused by the channel used for running the algorithm, as

Fig. 7. Histogram of the observed downtimes for our proposed
heartbeat algorithm measured with our prototype. The gateways were
set to exchange heartbeats with an interval of 2Tgw+Tfree = 100ms.

inside this channel there were two Secure Shell (SSH)
sessions open for monitoring the gateways as well as
gathering the experiment results. This result helps in
dimensioning proper measures against the worst case
scenarios that can happen in a field implementation
where limited resources are contested by multiple ser-
vices. From our experimental verification we have an
average time to recover of approximately 170ms, this is
comparable to results obtained with non COTS devices
using the same Ethernet protocol we employed in the
redundancy channel [11].

VI. CONCLUSION

This paper describes an architecture for the manage-
ment of faults in gateway nodes in a wireless sensor
network with the aim of meeting strict reliability re-
quirements of mission critical applications while using
off-the-shelf commercial hardware and open source soft-
ware. The main contribution is the development of an
algorithm for efficiently managing the redundant hard-
ware in the constrained environment typical of wireless
sensing applications. Data consistency across different
devices’ databases is guaranteed despite partial link
failures thanks to transport layer protocols, which allows
us to neglect issues like duplicated delayed packets and
missed sensor data broadcasts. We have deployed this
algorithm in a prototype within the context of Wire-
less Avionic Intra Communications. From experimental
verification, we have observed that the algorithm pro-
vides a quick response to failures. Its simplicity allows
easy implementation and limited taxing of the resources
available. Many options are available as future work in
this field. The redundancy management can be improved
to work together with machine learning algorithms to
deal with silent data corruption errors. The prototype
architecture enables the further study of data aggregation
solutions for machine type communication in upcoming
Internet of Things scenarios.

ACKNOWLEDGMENT

This work has been partially funded by the EIT Digital
HII ACTIVE Project and the DIMECC Design4Value
Programme.

REFERENCES

[1] M.A. Mahmood, W.K.G. Seah, I. Welch, ”Reliability in wireless
sensor networks: A survey and challenges ahead”, Computer
Networks, Volume 79, Pages 166-187, ISSN 1389-1286, 2015.

[2] International Telecommunication Union (ITU). Technical char-
acteristics and operational objectives for wireless avionics intra-
communications (WAIC). Report ITU-R M.2197, 11, Geneve
2010.

[3] H. Tschofenig, J. Arkko, D. Thaler and D. McPherson, ”Archi-
tectural Considerations in Smart Object Networking”, RFC 7452,
DOI 10.17487/RFC7452, March 2015.

[4] Digi International Inc. http://www.digi.com/
[5] J. Williams, “Internet of Things: Science Fiction or Business

Fact?” Harvard Business Review Analytic Services Report, De-
cember 2014.

[6] Osder S. ”Practical view of redundancy management application
and theory” Journal of Guidance, Control, and Dynamics 22.1
(1999).

[7] Fayyaz M. and T. Vladimirova. ”Fault-tolerant distributed ap-
proach to satellite on-board computer design” Aerospace Con-
ference, 2014 IEEE.

[8] F. T. Shane and D. B. Thomas. ”Heterogeneous Heartbeats:
A framework for dynamic management of Autonomous SoCs”
Field Programmable Logic and Applications, 24th International
Conference IEEE, 2014.

[9] Hoffmann, Henry, Jonathan Eastep, M. D. Santambrogio, J. E.
Miller, and A. Agarwal. ”Application heartbeats for software
performance and health” ACM Sigplan Notices 45, no. 5 (2010):
347-348.

[10] Zou, J. X., Zhang, Z. Q. and Xu, H. B. (2010). ”Design of
heartbeat invalidation detecting mechanism in triple modular
redundancy multi-machine system” COMPEL-The international
journal for computation and mathematics in electrical and elec-
tronic engineering, 29(2), 495-504

[11] Lei, Z., Liu, F., Yang, S., Heng, Z. ”Dynamic heartbeat algorithm
of redundant mechanisms in WIA-PA” 3rd IEEE International
Conference on In Computer Science and Information Technology
(ICCSIT), 2010

[12] Hinojosa, Alfredo Parra, et al. ”Handling silent data corruption
with the sparse grid combination technique” Software for Ex-
ascale Computing-SPPEXA 2013-2015. Springer International
Publishing, 2016. 187-208.

[13] G. Werner-Allen, K. Lorincz, M. Ruiz, O. Marcillo, J. Johnson,
J. Lees, and M. Welsh, ”Deploying a wireless sensor network on
an active volcano” IEEE Internet Computing, vol. 10, pp. 18-25
(2006).

[14] Lo, Benny PL, et al. ”Body sensor network - a wireless sensor
platform for pervasive healthcare monitoring” (2005): 77-80.

[15] Ferdoush, Sheikh, and Xinrong Li. ”Wireless sensor network
system design using Raspberry Pi and Arduino for environmental
monitoring applications” Procedia Computer Science 34 (2014):
103-110.

[16] D. Scazzoli, A. Kumar, N. Sharma, M. Magarini, and G. Ver-
ticale. ”Fault Recovery in Time-Synchronized Mission Critical
ZigBee-Based Wireless Sensor Networks” International Journal
of Wireless Information Networks, 1-10, 2017.

[17] Ganeriwal, Saurabh, Ram Kumar, and Mani B. Srivastava.
”Timing-sync protocol for sensor networks” Proceedings of the
1st international conference on Embedded networked sensor
systems. ACM, 2003.

[18] Dawy Z, Saad W, Ghosh A, Andrews JG, Yaacoub E. ”Toward
Massive Machine Type Cellular Communications” IEEE Wireless
Communications. 2017 Feb.

[19] Redis. https://redis.io. Accessed: 2016-11-18.

Publication VIII

Measuring Energy Consumption for RESTful Interactions in 3GPP IoT
Nodes

T. Savolainen, N. Javed and B. Silverajan

7th IFIP/IEEE Wireless and Mobile Networking Conference (WMNC 2014), pp. 1-8,
IEEE.

DOI: 10.1109/WMNC.2014.6878863

Publication reprinted with the permission of the copyright holders.

Measuring Energy Consumption for RESTful
Interactions in 3GPP IoT Nodes

Teemu Savolainen
Nokia, Finland

Email: teemu.savolainen@nokia.com

Nadir Javed
Nokia, Finland

Email: nadir.javed@tut.fi

Bilhanan Silverajan
Tampere University of Technology, Finland

Email: bilhanan.silverajan@tut.fi

Abstract—As the Internet of Things (IoT) evolves to encompass
ever increasing quantities of smart devices, sensors and other
smart objects, attention must be paid to considering what
kinds of wireless networks should be employed, and the data
transfer protocols to be used to allow communication among
these entities. It is highly important that energy consumption for
communication remains as minimal as possible. In this paper
we present power consumption measurements in end devices,
when REST-based resource retrieval is performed with HTTP
and CoAP over 3GPP EDGE, HSPA and LTE networks. Our
findings are based on actual measurements taken over the radio
interface of a mobile handset in live cellular networks, and show
that for a few transactions of small packet sizes, HTTP performs
comparatively well in terms of power consumption. Also, power
consumption is lowest in the handset when EDGE is used, but an
LTE network with operator assisted power savings approaches
power consumption levels seen with EDGE. Finally, for sessions
consisting of large number of transactions, we show that using
CoAP over the WebSocket protocol results in significantly less
power consumption compared to HTTP.

Index Terms—Energy Measurement, IoT, CoAP, HTTP, 3GPP.

I. INTRODUCTION

Today, leading cellular technologies are those based on
the Third Generation Partnership Project (3GPP) standards,
including 2.5G Enhanced Data rates for Global Evolution
(EDGE) [1], 3G High Speed Access (HSPA) [2], and 4G
Long Term Evolution (LTE) [3]. They are ubiquitous, globally
available and provide a wide coverage area. Because they
support Internet Protocol (IP)-based data communications,
they are very attractive for wireless smart objects which form
the basis of the Internet of Things (IoT) [4]. Such smart
objects comprise many kinds of networked devices, ranging
from computationally powerful smartphones and tablets to
highly energy constrained sensors and actuators. Interactions
are envisioned to occur among things as well as human users
arbitrarily regardless of time and location.

There is also an expectation that IoT communication is
highly data driven, and will converge with the vision of the
Web of Things [5], where seamless integration and inter-
operability with the World Wide Web (WWW) occurs for
IoT nodes in exchanging, serving and retrieving resources.
An important paradigm for Web-based resource retrieval is
the Representational State Transfer (REST) [6] architectural
approach. Two significant REST-based protocols are the Hy-

pertext Transfer Protocol (HTTP) and the Constrained Appli-
cation Protocol (CoAP) [7].

IoT-based communication is anticipated to be substantial,
and heavily dominate cellular and Internet traffic. REST-based
interaction forms a significant share of this activity. Using
cellular networks requires greater power compared to wireless
communication technologies such as IEEE 802.11ah, IEEE
802.15.4, and Bluetooth Low-Energy. As cellular networks
themselves provide only basic IP-connectivity, IoT nodes
have to select the appropriate transport and application layer
protocols to utilize for power efficiency on their own.

To date, little or no work exists in literature giving an
indication of the energy consumption of IoT nodes when
REST-based interactions are performed in cellular networks.
In this paper we address this by undertaking detailed, live
measurements to analyse the power consumption of a cellular
node interacting via 3GPP networks consisting of 2.5G EDGE,
3G HSPA, and 4G LTE technologies.

We performed extensive data acquisition on power con-
sumption for REST-based communications on these cellular
networks. Such communication considered not only HTTP, but
also CoAP, CoAP over WebSockets [8] and CoAP over Secure
WebSockets. Section II provides a background of the REST-
based protocols for IoT and the justification for measuring
them. Section III describes aspects of 3GPP cellular networks
that impact a host’s power consumption and presents related
studies. Section IV describes the experimental setup used for
measurements. The methodology for the measurements and
preliminary results are described in Section V. The findings
based on measurements are documented in Section VI where
the impact on energy consumption resulting from the type of
3GPP network as well as REST protocol are presented. We
then conclude the paper in Section VII.

Throughout this document 2G refers to EDGE, 3G to HSPA,
and 4G to LTE. Furthermore, "CoAP" refers to CoAP over
UDP, "CoAP+WS" to CoAP over WebSockets, "CoAP+WSS"
to CoAP over WebSockets secured with Transport Layer
Security (TLS), and "HTTP" for HTTP over TCP. "REST-
based protocol" or "REST protocol" refers to any of these
application-level REST-based resource retrieval mechanisms.

II. IOT RESOURCE RETRIEVAL

REST-based resource retrieval and manipulation is ideal for
use in the IoT, as its communication primitives are simple

and well understood. A Universal Resource Identifier (URI)
providing sufficient information about each resource is advo-
cated, while four types of methods (GET, PUT, POST and
DELETE) manipulate the representation of resource states. In
the IoT, many resource constrained nodes act as both clients
and servers. Examples of such nodes are tiny sensors behaving
as servers and actuators behaving as clients. Less constrained
nodes such as smartphones or workstations can also communi-
cate with IoT endpoints, but the REST architecture stipulates
that such communication is undertaken in a simple request-
response style purely for resource retrieval or manipulation.

HTTP-based APIs for many Internet services and cloud
platforms are prevalently REST-based today [9]. Although
HTTP communication between Internet servers and smart
objects and sensors is popular [10], [11], it is verbose, text-
based, and not suited for compact message exchanges. Instead,
an extremely lightweight and bandwidth efficient alternative
called CoAP [7] is being developed in the Internet Engineering
Task Force (IETF). Like HTTP, CoAP also uses URIs and
REST-based methods and similar response and error codes,
that allow both constrained and non-constrained nodes to
interact. It is, however, completely binary, and it uses UDP
which is more suited than TCP for lossy and constrained
networks. Hence, CoAP nodes, therefore, cannot communicate
with HTTP nodes as is. One solution for this would be to
use a CoAP-HTTP protocol translation gateway, in which an
intermediate proxy node assists in translating CoAP method
calls and URIs to HTTP and vice versa [12]. Proxies can also
choose to translate TLS-based https:// into coaps:// URIs, in
which CoAP uses Datagram Transport Layer Security (DTLS).

Using such a gateway would be useful in networks where
Internet access is allowed only via an HTTP proxy. It is also
useful in corporate or cellular networks which have restrictive
administration policies on some non-TCP and non-HTTP
traffic, such as CoAP over UDP, but from which clients are
allowed to conduct end-to-end bidirectional HTTP sessions to
well-known web servers. For the client however, HTTP-CoAP
proxying would continue to incur the cost of using HTTP
between itself and the translation gateway without gaining any
advantage in CoAP communication.

A lower overhead to HTTP can be incurred instead by sub-
stituting UDP with the WebSocket [13] protocol to transport
CoAP packets [8]. This avoids the need for HTTP proxying,
but requires the client and server to first mimic an HTTP
session by performing an HTTP handshake over TCP, before
upgrading it to a WebSocket session. During the WebSocket
handshake, the use of CoAP is negotiated between the end-
points. Subsequently, CoAP messages can be exchanged by
conveying them within WebSocket frames. End-to-end security
in this case, can be preserved, using secure WebSockets
(WebSocket over TLS). The paper therefore focuses on the
relative energy profiles of these REST-based protocols: HTTP,
CoAP and the use of CoAP over (secure) WebSockets.

III. 3GPP BACKGROUND AND RELATED WORK

Power management is one of the biggest challenges in
today’s cellular devices. Gadgets have to be charged often,
which is to great extent caused by power consumed for
wireless communications. The power consumption depends on
many things, some of which are physical in nature like distance
to base stations, and some of which are logical and caused
by properties of used protocols. 3GPP cellular access’ power
consumption has been analyzed by several research papers,
such as those from Henry Haverinen et al. [14], Jui-Hung Yeh
et al. [15], [16], Niranjan Balasubramanian et al. [17], and
GSMA [18]. Studies have also been performed for suitability
of LTE as a wireless technology for IoT gateways. Costantino
et al. used packet level simulations on ns-3 to investigate
performance issues with LTE when conveying CoAP traffic
from interconnected edge devices via a gateway [19].

Below we briefly describe the main aspects of 3GPP cellular
network protocol features relevant to our measurements.

A. PDN connection

In 3GPP networks logical Packet Data Network (PDN)
connections are established for transportation of IP packets
[20]. The PDN connection in 2G and 3G is referred as Packet
Data Protocol (PDP) context, and in 4G as Evolved Packet
System (EPS) bearer. The PDN connection can be considered
to be layer two in Open Systems Interconnection (OSI) model.
For each PDN connection IPv4 and/or IPv6 addresses are
allocated by the network. Throughout this paper an already
established and always-on PDN connection is assumed. This
means that for each measurement we took, the PDN connec-
tion had been already established, and continued to be active
after the measurement ended. While setup and teardown of
PDN connections do consume energy, an established PDN
connection effectively does not.

B. 2G properties

Procedures used for Medium Access Control/Radio Link
Control (MAC/RLC) at the GPRS radio interface are specified
in 3GPP 44.060 [21]. A key feature is Temporary Block
Flow (TBF), which is a unidirectional MAC layer connection
between a mobile station and a network. For bidirectional
transfers TBFs are set for both directions. The TBF is set up,
and radio resources allocated for it, only temporarily for the
duration of the data transfer. TBF is closed after configurable
time of 0 to 1500 milliseconds after the data transmission ends.
No TBF is active when a cellular device is idle.

Niranjan Balasubramanian et al. found 2G GSM to be more
power efficient than 3G, especially for smallish (<500kB) data
volumes [17]. Pauls Friedrich et al. studied the feasibility
of 2G GPRS for machine-to-machine (M2M) [22] and the
research focused on developing a connection model and using
that to analyze whether nodes should stay always-on or
completely turn off the cellular radio when not transmitting.
The results from their research points to use always-on for
scenarios where frequent communications are needed.

C. 3G properties

Features of 3G’s Radio Resource Control (RRC) state
machine [23] are significant for cellular devices’ power con-
sumption. RRC can be in idle mode or in connected mode
with four possible substates: CELL_DCH (Dedicated Chan-
nel), CELL_FACH (Forward Access Channel), and URA_PCH
(URA Paging Channel) or CELL_PCH (Cell Paging Channel).
The URA_PCH is not currenctly used [14]. The CELL_DCH
state is designed for bulk data transfer, but is also the most
power consuming. The CELL_FACH state, designed for sig-
naling and transfers of few hundred bytes, consumes roughly
40% of the CELL_DCH [18]. The optional CELL_PCH state
consumes about 1-2% of the CELL_DCH [14]. Entry into the
CELL_DCH state is triggered by the network, for example,
after an operator configurable amount of data is sent within a
period of time. After T1 seconds of inactivity in CELL_DCH
state, the RRC transitions to the CELL_FACH state, from
where transition to the CELL_PCH state or to idle mode
occurs after T2 seconds of inactivity. If the CELL_PCH state
is used and entered, transition to idle mode happens after T3
seconds of idle in CELL_PCH. T1 and T2 timers are usually
configured for two seconds or slightly more, while T3 can be
several minutes [14].

In 3GPP Release-8 the CELL_FACH state is improved with
enhanced dedicated channel (E-DCH), which allows larger
amounts of data to be sent before switch to CELL_DCH occurs
[24]. The 3GPP Release-8 also allows devices to actively
enter to less power consuming states by sending a Signalling
Connection Release Indication (SCRI) message, which is also
referred as Fast Dormancy [23], [18].

D. 4G properties

4G LTE networks are able to provide fast connectivity for
smartphones, but with the expense of complex and power
consuming circuitry. LTE standards support a technique called
discontinuous reception (DRX), which enables significant en-
ergy savings for applications that do not require constant data
streams. When a mobile station is in the DRX mode, it listens
for incoming data in (DRX) cycles. The DRX cycle is divided
into short and long DRX cycles. When DRX mode is entered,
first a short DRX cycle is used for a predefined time before
switching to a long DRX cycle. The short DRX cycle can
have values from two to 320 milliseconds, and the long DRX
cycle can have values from 32 to 2560 milliseconds [25]. The
longer the time in DRX cycle, the more power is saved, but the
higher the latency as transmissions can start only at these cycle
intervals. For applications requiring fast responsiveness shorter
cycle times are needed, whereas delay tolerant applications
can accept longer cycle times. Similar to 2G and 3G, the DRX
system contains tunable parameters such as the DRX inactivity
timer T1, which defines time without traffic until enabling of
DRX. As of this writing, DRX is supported in some but not
all commercial 4G LTE networks.

IV. EXPERIMENTAL SETUP

The experimental setup for our energy consumption inves-
tigation, described in Figure 1, consisted of a prototype Nokia
Lumia Windows Phone 8 smartphone using Qualcomm Snap-
dragon™S4 dual-core processor and connected to 2G, 3G and
4G cellular networks. The smartphone periodically transmitted
resource records with GPS data to Internet-connected PCs
running Ubuntu and Windows, using REST protocols: HTTP,
CoAP, CoAP+WS or CoAP+WSS.

Figure 1: Setup for measuring energy consumption

Instead of a built-in battery, power to the smartphone was
supplied and instrumented using a proprietary precise data
acquisition (DAQ) device based on a National Instruments
chipset. The DAQ device was used as an ammeter which mon-
itored and delivered the total power consumption in realtime
via a USB interface to a PC.

The phone was equipped with a test app that enabled the
smartphone to supply GPS data to remote endpoints, in effect
mimicking a smart object or IoT node capable of periodically
transmitting sensory data or location information. The app
maintained the GPS receiver in a constant, powered-on state
throughout its lifetime, and used a native Geolocation API to
acquire location co-ordinates every few seconds. As depicted
in Figure 2, selection for the required REST protocol could
be performed at runtime by the application via a settings
page, although for the purpose of this paper, experiments
over raw UDP were not conducted. For our measurements, an
option for sending the location information as a fixed number
of transactions was also provided in the same page. The
implementation and usage of the remaining REST protocols
were as follows:

• For HTTP communication, the HTTP client library in
.NET framework was used. HTTP POST requests were
periodically transmitted to an HTTP server with the
location information supplied as a URL-encoded payload.

• For CoAP communication, an in-house C# CoAP proto-
col library was used. The app behaved as a CoAP server
listening for incoming requests from CoAP clients. The
CoAP server supported the CoAP Observe option, which
a CoAP client specified in its GET request message to

retrieve the location information resource. This subse-
quently set up a notification relationship between the
CoAP server and the client, in which individual, periodic
CoAP 2.05 Response messages were sent by the server
containing the location information as a binary payload.

• For CoAP+WS communication, another in-house CoAP
library was used, which was extended with the Web-
Socket4Net WebSocket library for .NET. In this case, the
app initially behaved as an HTTP client, and upgraded
the HTTP connection into a WebSocket session with the
server. During the WebSocket handshake, usage of CoAP
as a sub-protocol was negotiated. Subsequently, the app
periodically transmitted CoAP POST requests with the
location information supplied as a binary payload to the
server, encapsulated as WebSocket frames.

• For CoAP+WSS, app behaviour and implementation was
identical with plain WebSockets. TLS version 1.0 was
used to secure the WebSocket connection. A 1024-bit
RSA key encoded in an X.509 certificate was used
for the TLS handshake, in which the use of Advanced
Encryption Standard (AES) cipher with a 256 bit keysize
was negotiated for payload encryption.

Figure 2: App Settings: Ways of delivering GPS information

Two laptops on the public Internet were used to commu-
nicate with the smartphone. Both laptops were equipped with
packet capture tools to allow on-the-wire packet inspection. A
Windows-based laptop with an in-house C# implementation
served as the CoAP client obtaining location updates after
setting up a CoAP Observe relationship. An Ubuntu Linux
laptop was used to communicate with the app for the other
REST protocols: Apache, together with a small PHP based
implementation was used as the HTTP server, while a Node.js-
based implementation with the Worlize WebSocket-Node li-
brary was used by the server end-point for CoAP+WS and
CoAP+WSS communication.

V. METHODOLOGY

This section presents our methodology and measurements.
We start by describing the acquisition of our dataset and then
follow with analysis of costs in terms of transactions as well
as energy consumption.

A. Data Acquisition

Data acquisition was performed in four types of live cellular
networks having the following types of connectivity: EDGE,
HSPA, LTE without DRX enabled and finally, an 80ms cycle
DRX-enabled LTE. In each of these networks, attention was
paid towards determining the energy consumption of deter-
ministic REST-based transactions, in which the transmission
rate for requests or responses are kept constant.

Two types of data samples were taken in which the trans-
mission intervals were either 1s or 10s. For the 1s intervals,
20 points of measurements were taken in which the number of
REST transactions ranged from 1 to 20. For the 10s intervals,
10 points of measurements were taken in which the number
of REST transactions ranged from 1 to 10. This acquisition
process was performed four times in total, to compare energy
patterns for HTTP, CoAP, CoAP+WS and CoAP+WSS.

From the data harvested from the smartphone, a cumula-
tive total of 480 distinct energy consumption patterns were
acquired over several weeks. The DAQ equipment provided
means to detect and eliminate the phone’s idle power con-
sumption, which includes the display backlight, away from the
obtained readings. While the power consumption figures in the
measurements taken for cellular radio communication included
location fetching, the actual power consumed by the GPS
receiver remained consistent throughout the tests at 45mA, and
hence did not interfere with the final measurements. Figure 3
provides a single graph containing the plots of all the energy
consumption patterns of the REST protocols in all the cellular
networks, for 1s location information transmission intervals.
Certain lines are highlighted, while others are intentionally
greyed, to emphasise the range of results and variations. The
rest of the paper discusses these.

Figure 3: Spread of measurements for 1s intervals.

B. Transaction Costs

Major factors influencing power consumption used for re-
source updates hinge on the number of connectivity events,
packets, and bytes transferred for each REST protocol and
underlying transport. For a single transaction involving a
resource update, Table I provides a breakdown of the number

Table I: Bytes and packets exchanged for connection setup, RESTful update, and closure. Measured for session containing
only one transaction. Figures include all TCP signaling, where applicable.

Protocol Setup Setup RESTful RESTful Closure Closure Total Total
bytes packets bytes packets bytes packets bytes packets

CoAP 102 3 94 2 0 0 196 5
CoAP+WS 656 6 124 2 252 6 1032 14
CoAP+WSS aprx. 2252 16 aprx. 440 6 aprx. 577 aprx. 9 3193 28
HTTP 144 3 763 4 160 4 1067 11

Table II: Power costs for 10s (left) and 1s (right) transmission intervals in mAh for protocols tested in 2G, 3G, and 4G.

Protocol 2G one 3G one 4G w/o DRX 4G with DRX 2G additional 3G additional 4G w/o DRX 4G with DRX
trans. trans. one trans. one trans. trans. trans. additional trans. additional trans.

CoAP 0,82 / 0,65 0,78 / 0,84 1,46 / 1,45 0,70 / 0,72 0,30 / 0,04 0,31 / 0,06 0,62 / 0,06 0,33 / 0,05
CoAP+WS 0,53 / 0,61 0,72 / 0,76 0,80 / 0,97 0,73 / 0,66 0,35 / 0,05 0,30 / 0,06 0,60 / 0,07 0,31 / 0,05
CoAP+WSS 0,71 / 0,62 0,76 / 0,85 1,15 / 0,94 0,76 / 0,76 0,29 / 0,05 0,34 / 0,06 0,66 / 0,07 0,37 / 0,04
HTTP 0,65 / 0,74 0,82 / 1,02 1,36 / 1,65 1,08 / 0,96 0,31 / 0,08 0,61 / 0,08 0,63 / 0,09 0,41 / 0,07

Table III: Number of theoretical exchanges and lifetime for 2000mAh battery for 10s (left) and 1s intervals (right).

Protocol 2G 2G 3G 3G 4G w/o DRX 4G w/o DRX 4G with DRX 4G with DRX
exchanges lifetime exchanges lifetime exchanges lifetime exchanges lifetime

CoAP 6,6k / 52k 18h / 14h 6,6k / 31k 18h / 9h 3,2k / 35k 9h / 10h 6,0k / 44k 17h / 12h
CoAP+WS 5,8k / 39k 16h / 11h 6,7k / 33k 19h / 9h 3,3k / 28k 9h / 8h 6,4k / 44k 18h / 12h
CoAP+WSS 6,8k / 38k 19h / 11h 6,0k / 32k 17h /9h 3,0k / 29k 8h / 8h 5,3l / 50k 15h / 14h
HTTP 6,4k / 24k 18h / 7h 3,2k / 25k 9h / 7h 3,2k / 23k 9h / 6h 4,9k / 28k 13h / 8h

of IP-level packets and bytes exchanged for both requests
and responses. This breakdown shows a general distribution
of the number of packets needed for various stages, such
as session setup (data exchanged prior to sending resource
updates), resource update and its acknowledgement, as well
as connection closure.

The table can be also used as a guide to understanding
setup and teardown overheads when multiple transactions are
sent using each REST protocol. Using CoAP as a protocol
with our app incurs the overhead of three packets to set
up the Observe relationship, and two packets for the update
transaction. Because CoAP uses UDP, no overhead is present
for session teardown when Observe cancellations are not used.
HTTP needs four packets for each RESTful update: An HTTP
POST packet, a TCP ACK, an HTTP OK packet and its
corresponding TCP ACK packet.

With CoAP+WSS, while the number of setup and RESTful
packets can be determined accurately, the actual number of
bytes per packet exhibited slight variations across several runs
of our measurements. This can be attributed to the usage of
variable length padding by the TLS record layer, to frustrate
attacks based on the analysis of the length of exchanged
messages [26]. Closure figures are also an estimation due
to TLS interleaving the final transaction and session closure
messages.

C. Energy Costs
From the measurements taken, Table II contains the energy

cost for one transaction, including setup and closure, and cost
for additional transaction during the same session. In each
row, results are displayed in the form x/y where x is the cost
incurred for 10s transmission intervals, while y is that for 1s
intervals. In the case of HTTP, CoAP+WS and CoAP+WSS,
the follow-up exchanges occur over the established transport

layer connection. In the case of CoAP, in this measurement,
the initial transaction is the CoAP GET with Observe from
CoAP client to server and one notification, and the follow-up
exchanges are additional notifications.

Table III further illustrates how the energy consumption
differences can affect battery lifetimes for an IoT node doing
REST transactions. In this case, the measured values have been
extrapolated for a 2000mAh battery with the assumption that
all (or a very significant amount of) the power is available for
message exchanges.

VI. MEASUREMENTS AND FINDINGS

Based on our measurements, both Figure 3 as well as Tables
II and III indicate that the best protocol and radio combination
allowed approximately 60% more power savings compared
to the worst. This highlights that the selection of which
RESTful protocol to use, and particularly which radio access
network to use, is an important decision for power constrained
nodes. Measurements from the DAQ device are presented in
Figures 4-8 and 11, in which horizontal axes represent time in
seconds (s) while vertical axes represent current consumption
in milliamperes (mA). As an example, Figure 4 graphically
depicts an overview of what power consumption patterns look
like for CoAP+WSS transactions, in this case highlighting
the differences in 2G, 3G, and 4G (with and without DRX)
networks.

A. 2G Networks

In 2G measurements, the setup and teardown of the TBFs
cause significant overhead per transaction, if transactions hap-
pen seldom enough. This can be seen when comparing the
power consumption profiles we gathered, in Figures 5 and 6
and Tables II and III. In the case of ten second intervals,
the TBFs are opened and closed for every transaction, which

Figure 4: Energy consumption profiles of the same
CoAP+WSS transactions over 2G, 3G, 4G without DRX and
4G with DRX (from top to bottom).

causes significant power consumption when compared to the
RESTful interaction itself. This is why additional transaction
costs for ten second intervals are roughly equal for all REST
protocols in 2G. However, in one second interval scenario
TBFs are continuously active and hence the amount of data
to be transmitted for RESTful interactions becomes dominant.
Thus, in the one second interval case, additional transactions
with HTTP are significantly more expensive than with other
REST protocols.

B. 3G Networks

As mentioned in Section III-C, the CELL_DCH state
consumes substantially more energy than the CELL_FACH
state. Figure 7 illustrates how HTTP pushes the radio to the
CELL_DCH state in every transaction, while CoAP seldom
does so. Compared to other REST protocols as shown in the
Table II, HTTP fared significantly worse in ten second interval
cases, the main reason being that HTTP always pushed the
radio to CELL_DCH. In one second interval measurements
however, HTTP fared better, as for such fast intervals all REST
protocols caused the 3G radio to stay in the CELL_DCH state
throughout.

Figure 5: Transactions from the middle of long lived session
using 10s intervals on 2G. CoAP above and HTTP below.

Figure 6: Transactions from the middle of long lived session
using 1s intervals on 2G. CoAP left and HTTP right.

C. 4G networks

Some observations can be made by looking at the results
shown in Table II. First of all, 4G with DRX is significantly
less energy consuming than without DRX. The effect of DRX
is further illustrated in Figure 8. The 80ms DRX cycle used
in the access networks helps power consumption to drop
significantly. A longer DRX cycle would have pushed power
consumption down even further.

D. Findings

Setting up the CoAP Observe relationship with the first
resource update occurring ten seconds after observation es-
tablishment, as well as the TCP session idle timeout closure
for HTTP after ten seconds of inactivity, cause additional
connectivity events for CoAP and HTTP scenarios, which are
not present in CoAP+WS tests. This causes visible spikes in
power consumption in some one-time transaction measure-
ments, such as with 4G without DRX. This difference could be
minimized by implementations providing the CoAP resource
immediately, and closing the TCP socket right after the final
HTTP transaction. The impact of this extra session diminishes
as transactions increase within the same connection.

Assuming CoAP provides energy savings when compared
to HTTP is easy, as significantly less bytes are transmitted.
However we discovered this not to always be the case. CoAP
does save energy whenever the cellular radio is operating on

Figure 7: Nine transmissions over 3G with CoAP (above) and
HTTP (below).

Figure 8: Single WebSocket transaction in 4G with 80ms DRX
cycle (above) and without DRX (below).

a mode where the difference in packet size has significant
importance, i.e. when other radio signaling related properties
are not dominating. These scenarios, from those we tested,
include 4G when DRX is supported as illustrated in Figure 9,
3G when smaller data allows staying in CELL_FACH channel,
and in 2G if transmission frequency allows avoiding TBF
setup and teardown costs. From this it follows that CoAP does
not bring savings when packet size difference between these
RESTful protocols does not play a major role, as illustrated
in Figure 10. Such networks are 4G without DRX, 3G with a
transmission rate high enough to always push the radio to the
CELL_DCH state, and 2G with low transmission rates causing
TBF signaling to become a dominant factor.

As data was acquired over several weeks, radio conditions
in live networks used varied. Readings were obtained from
approximately the same location, preserving the physical dis-
tance to cell phone towers and minimising variations in net-
work coverage and latency. All measurements were observed
and remeasured in cases where very significant disturbances
were present, such as excess retransmissions. The phone’s
UI registered excellent field strength throughout, between

Figure 9: Power consumption in 4G DRX for 1s intervals.

Figure 10: Power consumption in 2G for 10s intervals.

80-100%. The biggest variation measured was for CoAP in
the 2G network, at about 13% for one time transactions
between one second and ten second interval measurements.
These two particular measurements are shown in Figure 11,
showing almost identical energy patterns, but with different
power consumption peak levels (1000mA versus 800mA).
This registered a consumption of 0,83mAh for one test and
0,63mAh in the other.

Figure 11: CoAP observe with one notification, measurements
for 1s (below) and 10s interval (above) cases. This illustrates
how modem power consumption levels can vary at different
measurement dates and radio conditions.

VII. CONCLUSIONS AND FUTURE WORK

We studied the energy consumption on an endpoint perform-
ing RESTful interactions in various kinds of cellular networks
prevalent today. Our measurements employed a Lumia smart-
phone, but eliminated all other factors such as display and
background tasks, to focus on the relative power consumption
of REST protocols in cellular networks. Measurements were
discarded which indicated unrelated smartphone background
activity. Consequently, we believe the measurements are pro-
portionately indicative of cellular communication patterns of
most IoT nodes that perform constant, periodic data transmis-
sions of just a few bytes. Nevertheless, because no previous
data on the subject exists, the measurements we amassed were
extensive, and only the main findings can be presented here.

In the right network conditions, CoAP potentially allows
RESTful operations with less energy costs in 3GPP cellular
networks, when compared to HTTP. In no case does CoAP
consume more energy than HTTP, visibly providing solid
performance by being essentially either superior or on par
with HTTP. We were positively surprised how feasible energy
consumption-wise CoAP+WS and even CoAP+WSS (using a
strong cipher and variable length padding) were, as highlighted
for CoAP+WSS in Figure 3. These REST protocols were on
par, or fared better than HTTP, with most scenarios indicating
a closer correlation to energy profiles for CoAP, than HTTP.
Based on this, we expect the energy consumption of DTLS-
based CoAP (coaps://) to equal or better CoAP+WSS. HTTP,
on the other hand, at best is equal to CoAP, but at its worst
is significantly poor as highlighted in Figure 3. This indicates
to us that for implementations which have no control of the
radio technology used but wish to conserve battery, the use
of CoAP, even with WebSockets if needed, is a safe bet. That
said, if the deployment scenario is known well-enough, HTTP
might be a better option as it would not consume significantly
more, but would otherwise be more proven and ubiquitious.

2G cellular networks proved to be most efficient for trans-
porting small messages, at the location of our tests. Almost
ubiquitous availability and good energy consumption of 2G,
when compared to 3G or especially to 4G, would seem to make
2G the best choice for energy constrained nodes. That said,
CoAP’s performance in 4G networks having DRX enabled was
very good. With the used DRX cycle of 80ms the consumption
figures were already close to that of 2G. With a longer DRX
cycle the consumption could be even better, and could actually
make 4G with DRX the least power consuming option.

It would be useful to test 3G Fast Dormancy and E-
DCH improvements, which should significantly improve 3G’s
performance. Those improvements could bring 3G closer to
2G and 4G with DRX, and also smoothen differences between
HTTP and CoAP by making the entry to CELL_DCH less
common, and allowing quicker transitions back to idle mode.

VIII. ACKNOWLEDGEMENTS

We thank our employers, Nokia and Tampere University of
Technology, for the opportunity to work on this topic. Jukka
Kujala, Jonne Siren, and Hannu Bergius from Nokia aided in

getting us started with measurements and understanding some
of the measurement results. The C# CoAP implementation on
the phone relied on code written by Klaus Hartke.

REFERENCES

[1] 3GPP. "Technical Specification Group GSM/EDGE Radio Access Net-
work;Overall description;Stage 2", TS, 43.051, V11.0.0, Sep 2012

[2] 3GPP. "High Speed Downlink Packet Access (HSDPA);Overall descrip-
tion;Stage 2", TS, 25.308, V11.7.0, Dec 2013

[3] 3GPP. "Evolved Universal Terrestrial Radio Access (E-UTRA) and
Evolved Universal Terrestrial Radio Access Network (E-UTRAN);Overall
description;Stage 2", TS, 36.300, V11.8.0, Dec 2013

[4] ITU, "The Internet of Things", International Telecommunication Union
Internet Reports, 2005.

[5] D. Guinard, V. Trifa, and E. Wilde. "A resource oriented architecture for
the web of things." Internet of Things (IOT), 2010, pp. 1-8. IEEE, 2010.

[6] R. Fielding. "Architectural Styles and the Design of Network-based
Software Architectures". Doctoral dissertation, Univ. of California, 2000.

[7] Z. Shelby, K. Hartke, and C. Bormann. "Constrained Application Protocol
(CoAP)", IETF draft-ietf-core-coap-18, Work-in-Progress, Jun 2013.

[8] T. Savolainen, K. Hartke, and B. Silverajan. "CoAP over WebSockets",
IETF Internet-Draft draft-savolainen-core-coap-websockets-01, Work-in-
Progress, Oct. 2013.

[9] Wan Jung; Sang Il Kim; Hwa Sung Kim, "Ontology modeling for REST
Open APIs and web service mash-up method," 2013 Int’l Conference on
Information Networking, vol., no., pp.523,528, 28-30 Jan. 2013

[10] Supermechanical, "Twine: Listen to your world, talk to the Web",
http://supermechanical.com/twine/features.html, 2013

[11] K. Au-Yeung, T. Robertson, H. Hafezi, G. Moon, L. DiCarlo, M.
Zdeblick, and G. Savage. "Networked system for self-management of
drug therapy and wellness." Wireless Health 2010, pp. 1-9. ACM, 2010.

[12] A. Castellani, S. Loreto, A. Rahman, T. Fossati, and E. Dijk. "Guidelines
for HTTP-CoAP Mapping Implementations", IETF draft-ietf-core-http-
mapping-02, Work-in-Progress, Oct 2013.

[13] I. Fette, A.Melnikov. "WebSocket Protocol", IETF RFC 6455, Dec 2011.
[14] H. Haverinen, J. Siren, P. Eronen, "Energy Consumption of Always-On

Applications in WCDMA Networks," Vehicular Technology Conference,
2007. VTC2007-Spring. IEEE 65th , vol., no., pp.964,968, 22-25 April
2007 doi: 10.1109/VETECS.2007.207

[15] J.-H. Yeh, C.-C. Lee, and J.-C. Chen. "Performance analysis of energy
consumption in 3GPP networks", Wireless Telecommunications Sympo-
sium, 2004, pp. 67-72, 2004

[16] J.-H. Yeh, J.-C. Chen, and C.-C. Lee. "Comparative analysis of energy-
saving techniques in 3gpp and 3gpp2 systems," Vehicular Technology,
IEEE Transactions on, vol. 58, no. 1, pp. 432-448, 2009.

[17] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani. "En-
ergy Consumption in Mobile Phones: A Measurement Study and Impli-
cations for Network Applications", 9th ACM SIGCOMM Conference on
Internet Measurement Conference, IMC ’09, pp. 280–293, 2009

[18] GSMA. "Fast Dormancy Best Practises ", TS.18, Version 1.0, Jul 2011
[19] L. Costantino, N. Buonaccorsi, C. Cicconetti, and R. Mambrini. "Perfor-

mance analysis of an LTE gateway for the IoT," 2012 IEEE International
Symposium on World of Wireless, Mobile and Multimedia Networks
(WoWMoM), vol., no., pp.1,6, 25-28 June 2012

[20] 3GPP. "General Packet Radio Service (GPRS);Service description;Stage
2", TS, 23.060, V12.3.0, Dec 2013

[21] 3GPP. "General Packet Radio Service (GPRS);Mobile Station (MS)
- Base Station System (BSS) interface;Radio Link Control / Medium
Access Control (RLC/MAC) protocol", TS, 44.060, V11.7.0, Nov 2013

[22] F. Pauls, S. Krone, W. Nitzold, G. Fettweis, and C. Flores. "Evaluation
of Efficient Modes of Operation of GSM/GPRS Modules for M2M
Communications", Vehicular Technology Conference (VTC Fall), 2013
IEEE 78th, pp. 1-6, 2013

[23] 3GPP. "Radio Resource Control (RRC); Protocol specification", TS,
25.331, V11.8.0, Dec. 2013

[24] 3GPP. "Enhanced uplink; Overall description; Stage 2 (Release 11)",
TS, 25.319, V11.8.0, Dec 2013

[25] C.S. Bontu and E. Illidge. "DRX mechanism for power saving in LTE",
Communications Magazine, IEEE, vol 47, number 6, pp. 48-55, 2009

[26] A. Pironti. "Length Hiding Padding for TLS", IETF draft-pironti-tls-
length-hiding-02, Work-In-Progress, Sep 2013.

Publication IX

Home Network Security: Modelling Power Consumption to Detect and
Prevent Attacks on Homenet Routers

B. Silverajan, M. Vajaranta, and A. Kolehmainen

11th Asia Joint Conference on Information Security (AsiaJCIS 2016), pp. 9.16, IEEE.

DOI: 10.1109/AsiaJCIS.2016.10

Publication reprinted with the permission of the copyright holders.

Home Network Security: Modelling Power
Consumption to Detect and Prevent Attacks on

Homenet Routers
Bilhanan Silverajan, Markku Vajaranta, Antti Kolehmainen

Tampere University of Technology, Finland
Email: firstname.lastname@tut.fi

Abstract—Future home networks are expected to become
extremely sophisticated, yet only the most technically adept
persons are equipped with skills to secure them. In this paper, we
provide a novel solution to detect and prevent attacks on home
routers based on anomalous power consumption. We developed
a means of measuring power consumption that could be used in
a wide variety of home networks, although our primary focus
on is on profiling Homenet-based residential routers, specifically
to detect attacks against homenet routing infrastructure. Several
experimental results are presented when the infrastructure is
exposed to various types of attacks, which show strong evidence
of the feasibility of our approach.

Index Terms—IETF Homenet, Home Network Security, Power
Consumption.

I. INTRODUCTION

Networks in the home today consist of relatively simple
setups. In the majority of homes, a broadband router or cellular
gateway delivers connectivity to devices in the home, either
wirelessly over Wi-Fi, or using an Ethernet cable. In all these
instances, a single subnet is offered, usually behind a NAT
with private IPv4 addresses. Additional gateways are rarely
used, except as repeaters.

In recent years however, the home has rapidly emerged as
a natural convergence point for technological developments
and innovations. It is not only commonplace to have con-
nected homes contain smart consumer devices, sensors, remote
surveillance systems and home automation, but increasingly
having mobile devices and even vehicular networks joining
into a home network when needed. Additionally, better con-
nectivity options and more advanced networking possibilities,
such as support for IPv6 that provides end-to-end communi-
cation without the need for NATs, are now also made possible
from service providers and network operators.

The Home Networking Working Group (Homenet WG)
was subsequently chartered by the Internet Engineering Task
Force (IETF) as a response to the rapidly increasing arrays of
devices, computers, sensors and gateways that are constantly
being added into residential networks, as well as a means to
simplify end-to-end communication, service integration and
network management by the home network owner, network
operators and service providers. Among others, the Homenet
WG proposed that home networks need to adopt an architec-
ture that allows them to scale and evolve organically as the
complexity of the services and devices grow.

One of the most significant recommendations made is
that, with the introduction of IPv6 for home networking, a
Homenet-compliant residential network (simply referred to
from now on as “homenet”), should support multiple networks
and subnets. A homenet can therefore consist of multiple
routers forming a proper routing infrastructure complete with
its own routing protocol. The other is that, as the owners of a
homenet do not normally comprise technically adept persons,
minimal (and ideally zero) configuration of addressing and
networking needs to be performed: Users simply connect their
devices to their home subnet of choice, and the homenet in-
frastructure should automatically handle all the intrinsic details
for addressing, routing, service discovery and reachability.

In terms of home network security, several aspects of
protecting home networks and devices, such as data pri-
vacy, access control and end device protection have been
investigated in current research publications. However, apart
from well-known administrative practices such as ensuring
the use of good passphrases and passwords for wireless
connectivity, employing firewalls and access control lists in
the gateway, little if any security research on home gateway
security actually exists. For example, Geon Woo Kim et
al. [1] discuss the need to protect home networks from a
variety of malware, Distributed Denial-of-Service (DDoS) and
eavesdropping attacks through the introduction of a framework
providing guarantees of authentication, authorisation and a
rule-based security policy engine for undertaking actions when
security infractions occur. Mohamed Abid [2] studies the use
of biometric authentication to enable and personalise user
access into a home network. Also, Shaojun Qu [3] discusses
remote authentication and authorisation to provide secure
access into the home environment.

On the other hand, Lucas Dicioccio et al. [4] reveals that,
while on the whole, even if the number of connected devices
in four out of five home networks amount to less than a
dozen, home gateways in particular are always active at any
given time. This is exacerbated in homenet-based residential
networks, when a proper routing infrastructure having multiple
routers remains active at any given time. Therefore, even if
the idea of an automatically configured routed network in
the home provides convenience and significant advantages to
various kinds of users and smart devices, the homenet routers
themselves can become highly susceptible to malicious activity

unknown to the network owner. This creates new security
challenges, as now home routers and gateways can be exposed
to attacks to intercept and subvert routing and traffic, or inject
malicious router into the home network.

Therefore, the role of security for the protection of a
homenet’s routing infrastructure is important, and can fall
into several considerations. Firstly, access control is needed
to prevent unauthorised eavesdropping, and permitting only
authorised routers to join the core network. This relies on
proper policies and credentials for channel security, such as
symmetric keys, strong passphrases or certificates. Secondly,
authentication and verification of routing messages must be
performed, which allows a router to distinguish and discard
malicious or spoofed packets, particularly when a shared
wireless medium is used. Related to authorisation as well
as authentication is the need to ensure the completeness,
correctness and integrity of routing information. This deters
attackers from being able to insert a malicious router into
the homenet and subsequently inject traffic or cause data
destruction to subvert the routing network.

In conjunction with these considerations, the requirement
of availability needs to also be addressed, particularly so for
routers that could be battery powered. Such routers can exist as
gateways to vehicular networks, or to extend the homenet over
a wider area for a limited period of time. Any sort of availabil-
ity requirements have typically referred to resilience against
Denial-of-Service (DoS) attacks intended at disabling services
and network infrastructure. When battery-operated routers are
taken into account, availability also refers to resilience against
attacks designed to drain energy, by extensive or prolonged
communication or computational activity [5]. As these can be
launched at virtually any layer of the communication protocol
stack, they can often go unnoticed until power states are
diminished to near critical levels.

While attacks on simple home gateways have been mounted
remotely over the Internet, wireless attacks on homenets can
be realistically compromised by an attacker physically nearby.
Also, residential networks are normally not managed by highly
technical users, who often lack the type of knowledge and
the sophisticated tools to cope with detecting and preventing
attacks on routers.

Hence, we propose a novel approach to protect and detect
malicious activity in a homenet, particularly with regards to
the routing infrastructure. Our approach relies on profiling
the power consumption of homenet routers. By studying the
energy patterns of the routers in various scenarios, such as
during normal activity or when various kinds of attacks are in
progress, unusual behaviour in the routers can be correlated
with spikes or elevated levels of the consumed energy. This
allows network owners to detect attacks in progress to be
detected with a high level of confidence.

Using anomalous power consumption as a means to detect
attacks is a promising area of research that is at the moment
still in its infancy. However, the idea has been applied in
several mobile and wireless domains. For example, research
has been successfully performed on anomalous battery drains

on mobile phone to detect malware as well as unknown
software bugs [6], [7]. Timothy K. Buennemeyer et al. [8]
describes a battery-sensing intrusion protection system which
detects irregular communication activity over IEEE 802.11
Wi-Fi and 802.15.1 Bluetooth. However, to the extent of
our knowledge, applying anomalous power consumption as
a metric for threat detection in routers and routing systems,
has not been performed yet.

Therefore, the aim of our paper is to detail our empirical
power measurements of homenet routers and findings under
different kinds of attack scenarios designed to disrupt network
routing or drain the power from a battery operated network.
In so doing, we attempt to provide evidence of the feasi-
bility of our approach, which can then be used to ensure
further resilience and robustness of homenets. Since password-
cracking brute-force attacks as well as DoS attacks on home
networks have been well documented, our focus is instead
on the securing the routing infrastructure of the homenet.
Therefore, our investigation centers around measuring the
power consumption of homenet routers when the wireless
channel security is being compromised, or when the routing
protocol used by a homenet, called Babel, is targeted.

Section II provides a brief background of the Homenet
architecture, relevant protocols as well as expected deployment
scenarios. Section III details the experimental setup for our
measurements. Section IV provides a detailed explanation of
each experiment and obtained measurements, while Section V
then discusses our findings. Our conclusions are subsequently
given in Section VI.

II. IETF HOMENET

In this section, we describe work of the IETF Homenet WG
to standardise home networks which is relevant to this paper.
An exhaustive discussion of the entire architecture, however,
is out of scope, and the interested reader is encouraged to refer
to the relevant working group documents.

The Homenet WG’s intent is to research and standardise
networking protocols and other mechanisms useful for residen-
tial home networks [9]. Supporting IPv6 natively, providing
automatic networking and service discovery as well as sur-
viving uplink disruptions were perceived as important goals.
The home network is also envisioned to grow large enough
to require multiple network segments and subnets within the
home, therefore a critical requirement of the architecture is to
allow the existence of several routers, which then need to be
orchestrated to perform actual routing in the network, using
one more more well-known interior gateway routing protocols.

For proper operation, ISPs supporting homenet-based resi-
dential networks are required to enable IPv6 and then support
DHCPv6-based prefix delegation, so that a requesting home
router would be supplied an IPv6 address prefix, instead of
a single IPv6 address. This roughly corresponds to an ISP
supplying an IPv6 address block to the home network, and
the router subsequently delegating IPv6 addresses and address
prefixes to other home devices and routers as necessary.

When more than 1 router is present in the homenet, an
interior routing protocol is used within the home. Currently
the routing protocol of choice in Homenet WG is Babel
[10], an ad-hoc multi-hop mesh networking distance vector
protocol. Babel possesses properties such as loop avoidance,
rapid convergence and high performance. A Babel-based mesh
network is resilient to link disruptions, as the protocol adapts
and repairs the mesh topology based on measured link quality,
ensuring a high level of end-to-end reachability. Babel also
has a low memory footprint, and works well over both fixed
Ethernet links as well as wireless 802.11-based radio. These
latter properties make Babel an ideal candidate for homenet,
since a residential gateway and routing infrastructure consists
of inexpensive off-the-shelf consumer-grade hardware which
are not as powerful as enterprise-level network equipment
and generally possess the ability to provide IP connectivity
over Wi-Fi and fixed Ethernet. In some cases, these can also
be resource-constrained or battery-powered routers, allowing
the homenet to encompass vehicular gateways and extend to
peripheral residential areas for limited periods of time.

Finally, homenet routers obtain and distribute information
about the capabilities, routing protocols and services in the
homenet using the Homenet Control Protocol (HNCP) [11] .

While homenet is designed to work with IPv6, the tech-
nology is IP agnostic to end-devices, and IPv4 connectivity
works just as well too. In a homenet deployment consisting
of multiple routers, it is envisioned that typical deployments
would rely on a border router communicating with an ISP
to obtain an IPv6 prefix for the homenet. Other internal
routers would communicate with the border router over fixed
Ethernet, or over Wi-Fi using ad-hoc mode and create a mesh-
based routing network running Babel. Devices in the home
then are supplied connectivity over Wi-Fi using infrastructure
mode over a different radio. Alternatively, depending on the
router hardware, if only one physical Wi-Fi radio interface is
available, it is also possible to advertise 2 different Service
Set Identifiers (SSIDs), and hence virtual wireless interfaces:
the first for joining into the babel routing mesh using ad-hoc
mode, and the second for supplying connectivity to devices
in the home using infrastructure mode. The border router also
periodically transmits router advertisement messages into the
home network, and therefore both end-devices and internal
routers can automatically configure their IPv6 addresses using
Stateless Address Autoconfiguration (SLAAC), in addition to
obtaining private IPv4 addresses using DHCP.

In default modes, neither Babel, nor the ad-hoc mesh net-
work running over Wi-Fi, require any security extensions for
proper interworking. Any router part of the same mesh is able
to communicate and exchange routing information with any
other existing router, while the entire Wi-Fi mesh network can
be set as an open ad-hoc network which broadcasts a common
SSID specifically for connecting access points. Nevertheless, it
is prudent to employ security measures in both Babel as well as
the wireless mesh network. For Babel, message authentication
can be enabled with a Hashed Message Authentication Code
(HMAC) cryptographic authentication [12]. When HMAC is

used, two compliant hash algorithms must be supported, both
having a 160-bit digest: RIPEMD-160 and SHA-1. Additional
hash algorithms may also be supported as described in RFC
7298. For Wi-Fi, WPA2-PSK authentication, which uses a
human-readable passphrase, can be employed.

III. EXPERIMENTAL SETUP

Our test environment consisted of several portions. Firstly,
we created an ISP capable of providing Internet connectivity
to various home networks via IPv4 and IPv6. A DHCP server
delivers a single IPv4 address to home border routers (as
most ISPs do today), while IPv6 prefix delegation consisting
of a /56 prefix is provided to supply the home network
with global IPv6 addresses. Secondly, we then deployed a
Homenet-compliant residential network with four wireless
TP-Link AC-1200 routers, which each have a Qualcomm
Atheros QCA9558 CPU, 16MB of flash and 128MB of flash
memory. Routers were positioned several meters apart from
each other approximately equidistant, in order to form a fully
connected mesh. Each router was capable of dual band Wi-Fi
on both 2.4Ghz and 5GHz radio interfaces. The stock firmware
was replaced with the latest OpenWRT ”Designated Driver”
distribution, based on Linux kernel version 4.1.16. The hnetd
(for HNCP) and mdnsd (for multicast service discovery) pack-
ages were installed. Because the babeld (for Babel routing)
provided as a package in OpenWRT does not support HMAC-
based authentication, we cross-compiled a custom babeld for
OpenWRT from the source code provided by the Quagga RE
project, in which HMAC authentication was supported. The
2.4 GHz radio interfaces were dedicated towards creating the
wireless mesh network in which the Babel routing protocol
was utilised. While the 5 GHz radio interfaces can advertise
Wi-Fi connectivity to client devices, for the purpose of our
measurements, we did not enable the interface to eliminate
any measurement bias from communication with end-devices.
Thus, the power consumption figures obtained corresponded
directly to traffic originated and exchanged among the routers
themselves within the Babel-based wireless mesh network.

Fig 1 depicts the test environment. In addition to the routers,
the setup also consisted of a commercial industrial-grade load
generating tool called Ruge [13] that is capable of crafting
forged and flooding packets and simulating DoS attack loads
to intended target networks or hosts. Ruge is a LAN-based tool
and hence used directly for attacks in the homenet in which
physical access to the router is possible. For wireless attacks,
a laptop was used as a relay together with Ruge.

In addition to these components, the setup also consisted of
three Energy Monitoring Modules (EMM), each of which were
connected to a homenet router. The EMMs were built in-house
and monitored the precise power being supplied (both voltage
and current) non-invasively to the routers. The design of the
EMM was adapted from the Energino energy consumption
monitoring toolkit [14], which provides real-time, precise,
energy consumption statistics for any DC appliance. Fig 2
shows the constructed EMM.

HOMENET

���

���

���

ISP

�

Figure 1: Setup for measuring power consumption. Routers are
interconnected in a full mesh topology. Blue arrows indicate
authentic Babel traffic. Red arrows depict forged traffic.

Figure 2: Energy Monitoring Module.

IV. MEASUREMENTS

This section presents our methodology and measurements
per experiment. Various kinds of attacks were targetted at
the homenet. In some cases, power measurements were taken
when Babel was used without HMAC authentication. In the
others, HMAC authentication was enabled, using the SHA1
algorithm. In IETF protocol design, HMAC-SHA-1 is the
preferred keyed-hash algorithm [15].

For each experiment, several sets of measurements were
taken to ensure data correlation. Each run was conducted once
the routers were in steady-state both before and after attacks,

and measurements were taken approximately for an hour.
Additionally, datasets for the three access points were verified
to ensure correct calibration of the EMMs. For each reading
taken from the serial interface of the EMM, the data consisted
of the average voltage, average current, an approximate sample
size of 800 voltage/current samples in the averaging window
of a single reading, each for an approximate time of 200ms
in the averaging window.

For each set, we start by describing the acquisition of our
dataset and then follow with an initial analysis of the results.
A deeper discussion of these results is presented in the next
section V.

A. Baseline Measurements

	�� ���� ���� ���� ���� ���� ����

���

���

���

���

���

	

	
	

	
�

	
�

	

�

� ��
� �	� ��� 	�� 	�� 	
�

��
�
��
���

�

��	���
�

�

���

��

���

���

�

�
� �� ��� ��� ��� �
� ���

��
�
��
���

�

��	���
�

Figure 3: Baseline graphs from top-down. a) Power consump-
tion with Babel, HMAC enabled. b) Power consumption with
Babel, no HMAC. c) mDNS traffic triggering peaks in energy
consumption. y-axis shows packet count, x-axis shows elapsed
time in seconds.

In this experiment, we took detailed power measurements
of access points in which no malicious traffic was introduced.
By default, Wi-Fi channel security was achieved by the use of
WPA2-PSK. Two types of power measurements were taken. In
the first instance, the energy was monitored when Babel was
used with HMAC authentication enabled, while in the second

Table I: Babel Protocol Messages and Sizes in a 4-router mesh

Babel Packet No HMAC With HMAC
Hello 74 106
IHU 122 154

Update 157 189

instance, Babel was used without HMAC. The aim of the
experiment was to firstly to study the impact of enabling Babel
message authentication on the overall power consumption,
and secondly, to establish a baseline measurement with which
subsequent experiments and power consumption levels can be
compared against.

Figs 3a and b show the power consumption levels for a
single router with and without HMAC enabled on Babel.
For a 300s duration of the experiment, the average power
consumption for running Babel with HMAC enabled, was
2193mW, while that of the same routing protocol without any
HMAC was 2192mW.

These two values show that there is virtually no difference,
if any, on a homenet router’s power consumption, when
HMAC authentication is enabled for Babel routing during
normal operation. This is so, even when accounted for slightly
larger packet sizes as well as computational time to check
message authenticity. Table I shows Babel packet types (Hello,
I-Heard-U, and Update) and their respective sizes in the mesh
network in which every router has 3 neighbours. For larger
numbers of routers in the mesh network, the size of the Update
packet would correspondingly increase. Consequently, should
Babel be running in a fixed Ethernet configuration, Update
packets would be smaller in size. As can be seen, with HMAC
enabled, the overhead is a constant 32-byte structure to every
Babel packet.

Periodic glitches and spikes can also be consistently ob-
served in both sets of measurements. From network traces
taken during the measurements, the cause was pinpointed to
be large bursts of packets transmitted and received at fixed
intervals over the radio interface, as shown in Figure 3c. A
specific investigation using Wireshark revealed that these were
multicast DNS (mDNS) traffic. mDNS is used in homenets
for automatic service discovery. Table II shows the relative
amount of traffic seen during a 300s interval corresponding
to measurement periods. It can be seen that in total, even if
it is bursty in nature, mDNS traffic is significant, accounting
for more than half of all traffic, having 232 packets with a
total of 84224 bytes. This is compared to 244 Babel packets
having a total of 50089 bytes (or 57897 bytes with HMAC
authentication enabled). By contrast, HNCP traffic is far less
noisy, accounting for a total of 93 packets and 12818 bytes
which accounts for between 8% to 9 % of the total traffic.

B. Wireless Channel Attacks on the Mesh Network

We undertook wireless online channel attacks to show the
power consumption of routers when Wi-Fi de-authentication
attacks are in progress. For Babel routing the homenet routers
used a WPA2-based mesh network protected with a strong
passphrase. Firstly the wireless traffic was passively monitored

Table II: Protocol, number and bytes sent and received in 300s

Protocol
Type

Bytes
Sent

Packets
Sent

Bytes
Received

Packets
Received

mDNS 16628 44 67596 188
Babel 18063 98 32026 146

Babel+HMAC 21199 98 36698 146
HNCP 1922 19 10896 74

using the airodump-ng packet capture tool in order to obtain
the Base Service Set Identifier (BSSID) of an already running
mesh network. During the same period, the BSSID of the
all communicating routers connected to the mesh were also
retrieved.

Subsequently two de-authentication attacks were mounted
simultaneously from a laptop using the aireplay-ng tool to
inject frames, for approximately 6 minutes.

• The first was aimed at disrupting the mesh network oper-
ation and causing the mesh network to become unstable,
with the routers constantly re-authenticating themselves
into the network. This attack was mounted by injecting
de-authentication messages using the BSSID of a specific
router (router 1) as the source and sending it to the BSSID
of the mesh network. The effect of this attack can be seen
in Figure 4.

�

���

��

���

���

�

�
� �� ��� ��� ��� �
� ���

��
�
��
���

�

��	���
�

Figure 4: Power consumption of Router 1 during WPA2 de-
auth attack.

• In the second attack, in addition to sending the de-
authentication messages to the BSSID of the mesh net-
work, they were also sent to the BSSID of a second router
(router 2) communicating with router 1. This directly tar-
geted the link and connectivity between the two routers,
the aim being to cause an existing connected router to
keep rejecting connection attempts from a targeted victim.
The effects were then observed on router 2 as seen in
Figure 5.

In both cases, routers reflected a higher level of power con-
sumption compared to baseline levels. The average power con-
sumption seen in Router 1 during the Wi-Fi De-authentication
attack, was 2216mW, an increase of about 23 mW for each
300s period of the attack. When Router 2 was additionally
targetted in the second attack, it exhibited a notably higher
increase in consumption of 183mW. This is clearly visible in

���

��

��

���

�

���

��

� �� ��� ��� ��� ��� ��� ���
��
�� ���

��
�
��
���

�

��	���
�

Figure 5: Power consumption of Router 2 during WPA2 de-
auth attack.

Figure 5 which shows the energy profile of the router before,
during and after the attack.

C. Traffic Injection Attack in Babel Network with HMAC
enabled

In this experiment, it is firstly assumed that an attacker
has penetrated the mesh network itself, either via physical
access and tampering with a router, or as an outcome of a
successful offline dictionary attack on a weak WPA2-PSK
passphrase. We look at the impact to the power consumption
of an existing router when an attacker attempts to infiltrate
a network in which the Babel routing has been enabled with
HMAC authentication, with the HMAC-SHA1 key assumed
to be unknown to the attacker. We look at how the response
of existing routers can be exhibited in our measurements,
when either a malicious router is attempted to be introduced
or malformed Babel routing messages are injected into the
network.

In order to facilitate our testing and measurement, we used
Ruge to craft Babel routing messages. Babel employs Type-
Length-Value (TLV) encoding in its packets to exchange rout-
ing information. Babel nodes can also solicit Acknowledge-
ment requests for any transmitted packets. For this scenario,
Babel Hello and I-Heard-U (IHU) messages were used for the
injection attacks. As Ruge is a wireline tool, injecting Babel
routing messages wirelessly into the mesh network required
the assistance of a laptop to capture generated messages from
Ruge over an Ethernet link and save the packet capure traces
into a file. The laptop was subsequently used to joining the
homenet wireless mesh network. The packETH command-
line tool wirelessly replayed these generated Hello and IHU
messages every 4 seconds in an infinite loop. Fig 6 shows 3
power consumption traces of the same router for three kinds
of activity for 300 seconds.

The lowest blue line in this Figure indicates the baseline
power measurement of 2193mW, which corresponds directly
to Fig 3a. The green line is the obtained measurement when
invalid Babel messages without a HMAC have been used in
an injection attack. These packets are received but discarded
immediately by the router. Here the power consumption is
calculated to be 2283mW, an increase of 90mW over non

malicious traffic. The red line obtained in the measurement
indicate the power consumed by a router receiving, processing
and subsequently discarding Babel messages which possess a
forged HMAC. Injected Babel packets appended with a forged
HMAC TLV structure induce recipients to act on the incom-
ing malicious traffic on a per-packet basis before discarding
the forged packets, thereby introducing a packet processing
overload onto the existing routers. Consequently, the power
consumed on average for this duration was calculated to be
2318mW, an increase of 125mW from the baseline reading,
and a slight increase of 35mW caused by the computational
overhead from the green line.

���

���

���

��

���

�
� �� ��� �
� ��� �
� ���

��
�
��
���

�

��	���
�

Figure 6: Differences in power consumption in an HMAC-
enabled Babel network. Blue line indicates baseline power
consumption. Green line indicates malicious Babel traffic with
no HMAC packet structure, Red line indicates malicious Babel
traffic with forged but invalid HMAC.

D. Route Flooding Attack in a Babel Network with no HMAC

In this experiment we explore the worst case scenario of a
homenet which becomes subjected to a flooding attack. This
can occur if both the wireless channel security as well as
the routing infrastructure become compromised. This scenario
is an extension of the previous scenario from subsection
IV-C. This could occur, for example, if the home network
owner did not secure the Babel routing protocol with HMAC
authentication and relied purely on protecting the network
using WPA2-PSK. In this sequence of attack, it is assumed that
the attacker has penetrated the mesh network itself, either via
physical access and tampering with a router, or as an outcome
of a successful offline dictionary attack on a weak WPA2-PSK
passphrase.

In addition to the Babel Hello and I-Heard-U (IHU) mes-
sages from the previous subsection, Update messages were
also generated from Ruge and used in this attack to flood
the network. The messages which were generated in Ruge for
flooding into the mesh were used in the following sequence
of events:

1) When the attack commences, a Babel Hello packet is
sent into the network

2) After a 4 second wait, an IHU packet is sent.

3) After a 1 second wait, steps 1 and 2 are repeated in an
endless loop.

4) After an initial 12 second wait from step 1, Update
messages are constantly flooded into the network every 3
ms. Each message updates current routes for the IPv4 /24
network by increasing the network address by a single
bit for each transmission. Updates start at 10.0.0.0/24.
One network advertisement is done every 3ms.

5) Sending route update messages for the entire /24 IPv4
network takes 15 seconds after which sending Updates
starts anew.

With the above steps, routing tables and information for
the entire homenet mesh was updated constantly, inducing
a heavy stress and CPU load onto the routers.This forces
routers to consider between 200 and 650 routes, depending
on the router load status. As before, a laptop was used as
a wireless relay injecting malicious traffic into the network.
Hello and IHU messages were transmitted using packETH
while Update messages were wirelessly replayed using the
tcpreplay tool. Because the malicious Babel traffic was in-
jected into the homenet where routing was not secured using
HMAC authentication, all the existing homenet routers were
unaware that the traffic was forged. Fig 7 graphically depicts
the resulting router’s energy consumption profile. From its
baseline power consumption of 2192 mW, the router begins
consuming an average of 2802 mW during the attack. The
graph also shows an interval during the sequence of events
where there is a momentary pause before the flooding attack
replay loop resumes, and reaches a similarly consistent state of
high power consumption for a second time during the attack.

�

���

�

���

��

�
�

�
��

�

�

�

�

�
��

�
��

��

��
��

��
�

�

�

��

��
��

��
��

�

��

��
�

��

��
�
��
���

�

��	���
�

Figure 7: Power consumption during route injection attack, no
HMAC enabled

V. FINDINGS

Based on our measurements and observations, the obtained
results remained consistent across all our experimental runs.
The experiments conducted focused solely on the power con-
sumption profiles of the routers working with Babel in wireless
ad-hoc mode. However, we wanted to ensure that mandatory
features of the Homenet Architecture, and the components
which implemented them were not disabled at any stage of our
experiments. One such component was mDNS, which imple-
ments service discovery. From our findings, mDNS consumed

a significant portion of energy, even when minimal services
existed in the homenet.

Additionally, because all homenet routers participate in
multicast-based packet transmission and reception, it is highly
likely that as more routers are added to a mesh-based homenet,
the increase of multicast traffic could be in the order of O(n).
Implementation optimisations, protocol improvements, tuning
of mDNS advertisements and broadcast intervals may yield
better energy efficiency. However, investigation of such aspects
are out of scope of this paper.

The approach of using power consumption as a metric for
attack detection in homenet appeared promising and feasible. It
can be seen that various kinds of attacks had a definite impact
on the energy consumed by a homenet router. With flooding
attacks, significant differences were seen, compared to the base
level measured. However, even for Wi-Fi based authentication
attacks, while the measured levels of additional power con-
sumed were relatively small, it was noticeable that because
of the nature of the mesh topology, the power consumption
pattern of more than 1 router was normally affected by attacks
targetting even a single homenet router. Consequently, it would
be possible to observe the power consumption patterns and
perform correlation across several routers to detect an attack
in progress, even if individual power consumption levels by
themselves may not give a clear indication. Particularly for
covert attacks, using power consumption anamolies can be
quite effective. On the other hand, our findings note that a
homenet cannot only rely on homenet routers enabling HMAC
authentication for Babel routing, without having a proper
wireless channel security, for example by having a WPA2-PSK
wireless network with a weak passphrase. When energy is an
asset that needs to be conserved, then such a practice would be
counter-productive and exposes an additional attack surface, as
in addition to injecting malicious Babel traffic, an adversary
can append a forged HMAC to each injected packet, forcing a
router to both process the injected message as well as perform
computations on the forged HMAC. An additional point of
input is that homenet-based configurations are also suitable for
deploying ad-hoc mesh and wireless sensor networks where
gateways are more resource constrained in terms of com-
putational ability as well as power. Using energy footprints,
power draining attacks, which force a battery-operated router
into consuming significantly more energy thereby reducing its
viable performance and lifetime, can be similarly detected.

For the EMMs, we saw several advantages in develop-
ing our own implementations based on low-cost but highly
accurate current and voltage sensors. For example, our ap-
proach allowed the ability to non-invasively monitor the power
consumption of the routers without having to install any
special hardware or software on the router itself. Additionally,
EMMs can be colocated in multiple locations without being
physically encumbered in a specific location, as each setup is
portable and can be easily powered using an external battery
supply. However, significant amount of time was necessary
for sensor calibration, and ensuring consistency by double-
checking measurements across the several homenet routers

Table III: Theoretical lifetime values for routers in operation
on batteries

Router Model
Voltage

Battery Capacity

TP-Link AC1200
12V

20000 mAh

TP-Link MR3020
5V

12000 mAh

Babel + WPA2-PSK
(No Attacks) 1389 h 1200 h

Wi-Fi De-authentication 1370 h 822 h

Packet Injection
no HMAC appended 1333 h 800 h

Packet Injection
Forged HMAC appended 1316 h 790 h

Routing Flood Attack 1087 h 652 h

equipped with EMMs in our setup. As an EMM is based on
a Hall-Effect current sensor, it was suspectible to magnetic
influence that had an effect on the output values and as such
could introduce some variation to the measurements. The other
issue effecting the measurement accuracy is the electrical
noise. The RC-filter added to the module lowered the noise
on the ACS712 output/ADC input and stabilised the readings.

Finally, even though the measured power consumption lev-
els were based on a specific hardware model, we performed
quick verifications that these results could be extrapolated and
applied in other router platforms as well. As an example, we
measured the base power consumption of a TP-Link MR-
3020 homenet router. This is based on a resource-constrained
design, having a very small form-factor, 32MB of RAM and
4 MB of flash memory, whose main purpose is to serve as a
personal temporary hotspot or a wireless repeater. The router
was then connected to an external 12000 mAh battery pack,
flashed with OpenWRT and extended for use as a battery
operated homenet router. Using the values derived from our
measurements, we were able to calculate theoretical lifetime
values for both the AC1200 router used throughout this paper,
as well as that of the MR3020, if the entire power was solely
battery-based and all the energy from the external batteries
were used in keeping a similar-sized homenet mesh network
up and connected without any clients connected. This is shown
in Table III. The expected lifetime of these routers when under
attack are also calculated, based on figures obtained from
our power measurements. Real figures however would be far
lower, owing particularly to home network traffic and Internet
usage patterns from end devices and services. Additionally,
our assumption is that commonly used home routers would
lack dedicated hardware support for cryptographic functions.

VI. CONCLUSIONS

Anomalous power consumption is an emerging research
area, aimed at highlighting unusual ongoing activity which can
escape detection from conventional methods. Our hypothesis
is that by calibrating and profiling the power consumption of a
homenet router during normal operations, a higher than likely
possibility of an intrusion in progress (such as a brute force

attack) can be detected resulting from high radio or CPU
activity, or higher-than-normal gateway activity during quiet
hours. The work done in this paper shows that using power
measurement as a metric for attack detection is feasible for
both novice and professional technical network users.

In future, we intend to continue developing our Energy
Monitoring Modules so that sensors with higher accuracy
could be incorporated and obtained measurements can be-
come more precise. At the same time, sensitivity could be
increased to detect malicious behaviour which do not consume
significant amounts of power. We intend to profile additional
attacks on the homenet infrastructure with a wider variety
of router hardware thereby corroborating theoretical lifetime
values of constrained routers. Future work would consider
other mesh topologies with regards to security in homenets.
User generated traffic in the homenet and its impact on
detecting malicious activity on the routing also remains an
area for future work.

VII. ACKNOWLEDGEMENTS

This work is funded by the EIT Digital HII Active Project.

REFERENCES

[1] G-W. Kim, D-G. Lee, J-W. Han, S-C. Kim, and S-W Kim. "Security
framework for home network: Authentication, authorization, and security
policy." In Emerging Technologies in Knowledge Discovery and Data
Mining, Springer LNCS Vol 4819, pp. 621-628, May 2007.

[2] M. Abid. “User identity based authentication mechanisms for network
security enhancement”. Ph.D. Dissertation, Institut National des Telecom-
munications, 2011.

[3] S. Qu, and H. Liu. "Security Research on the Interfaces of Information
Appliances Described by XML." In Network Computing and Information
Security, Springer Vol 345, pp. 661-668, 2012.

[4] L. DiCioccio, R. Teixeira, and C. Rosenberg. "Measuring home networks
with homenet profiler." In Passive and Active Measurement, Springer
LNCS Vol 7799, pp. 176-186, 2013.

[5] T. Martin, M. Hsiao, Dong Ha and J. Krishnaswami, "Denial-of-service
attacks on battery-powered mobile computers," Pervasive Computing and
Communications, 2004. PerCom 2004. Proceedings of the Second IEEE
Annual Conference on, 2004, pp. 309-318.

[6] H. Kim, J. Smith, and K. G. Shin. "Detecting energy-greedy anomalies
and mobile malware variants." In Proceedings of the 6th ACM inter-
national conference on Mobile systems, applications, and services, pp.
239-252. 2008.

[7] X. Ma, P. Huang, X. Jin, P. Wang, S. Park, D. Shen, Y. Zhou, L. K. Saul,
and G. M. Voelker. "eDoctor: Automatically diagnosing abnormal battery
drain issues on smartphones." In Presented as part of the 10th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
13), pp. 57-70. 2013.

[8] T. K. Buennemeyer, M. Gora, R. C. Marchany and J. G. Tront, "Battery
Exhaustion Attack Detection with Small Handheld Mobile Computers,"
Portable Information Devices, 2007. PORTABLE07. IEEE International
Conference on, Orlando, FL, 2007, pp. 1-5.

[9] T. Chown, Ed., J. Arkko, A. Brandt, O. Troan and J. Weil, "IPv6 Home
Networking Architecture", IETF RFC 6126, Oct. 2014.

[10] J. Chroboczek, The Babel Routing Protocol, IETF RFC 6126, Apr. 2011.
[11] M. Stenberg, S. Barth, and P. Pfister. "Home Networking Control

Protocol", IETF RFC 7788, Apr 2016.
[12] D. Ovsienko.”Babel Hashed Message Authentication Code (HMAC)

Cryptographic Authentication”, IETF RFC 7298, Jul 2014.
[13] Ruge. Rugged IP load generator, Rugged Tooling.

http://www.ruggedtooling.com
[14] The Energino project. http://www.energino-project.org
[15] T. Polk, L. Chen, S.Turner, and P. Hoffman. “Security Considerations

for the SHA-0 and SHA-1 Message-Digest Algorithms”, IETF RFC 6194,
Mar. 2011.

