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ABSTRACT

Leevi Raivio: Visual metric-semantic 3D reconstruction
Master of Science Thesis
Tampere University
Degree Programme in Automation Engineering, MSc (Tech)
May 2021

While people and animals understand their surroundings almost effortlessly, the problem is really
hard to solve for machines. To understand their environment comprehensively, one needs to
capture both spatial relations and semantic meaning from their surroundings and incorporate them
into a coherent model of the environment. To apply this knowledge, one also needs to be able
to relate new information they sense to the model, and update it accordingly. Although there are
no complete answers to the problem, parts of it can already be solved and research on related
subjects seems to only accelerate. With recent advances in relevant research areas, machines
are able to generate increasingly general representations of the environment.

This master’s thesis studies metric-semantic reconstruction from the perspective of visual data,
using dense reconstruction of indoor environments as an example use-case. Related background
information and theory are studied, and a baseline end-to-end three-dimensional metric-semantic
reconstruction system is designed and evaluated. The purpose is to create a platform to base
future research on and to find interesting topics to study.

Simultaneous localisation and mapping (SLAM) methods are used in this work to track the de-
vice pose and make reconstruction also possible in environments where localisation infrastructure
or pre-existing maps are not available. On the other hand, panoptic segmentation is applied to
incorporate rich semantic meaning into metric reconstructions. A view-based segmentation ap-
proach is chosen to render the system more robust to uncertainties related to visual data. The
RTAB-Map library is applied for globally consistent three-dimensional metric SLAM, while Effi-
cientPS is chosen as the panoptic segmentation approach. Individual components of the system
are evaluated quantitatively, after which end-to-end results are generated with data captured from
two indoor campus environments and analysed qualitatively.

The essential building blocks of a metric-semantic reconstruction system are specified and
choices related to each are compared. Based on results, possible performance bottlenecks are
identified. Improvements to existing methods are discussed, and possible future research topics
are assessed as well. Although the approach is quite simple, and in some aspects can not match
the most recent works on the field, it provides a strong baseline for future research.

Keywords: Metric-semantic reconstruction, scene understanding, SLAM, panoptic segmentation

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.
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TIIVISTELMÄ

Leevi Raivio: Visuaalinen metrinen ja semanttinen 3D rekonstruktio
Diplomityö
Tampereen yliopisto
Automaatiotekniikan DI-ohjelma
Toukokuu 2021

Ihmiset ja eläimet kykenevät ymmärtämään ympäristöään lähes vaivattomasti. Koneille se on kui-
tenkin erittäin vaativa tehtävä. Ymmärtääkseen ympäristöään kokonaisvaltaisesti, täytyy havaitsi-
jan ymmärtää paitsi avaruudellisia suhteita myös semanttisia merkityksiä ja sisällyttää molempia
yhtenäiseen malliin. Jotta kerättyä tietoa voidaan hyödyntää, tarvitaan myös keinoja verrata sitä
luotuun malliin ja vastaavasti mallin päivittämiseen tiedon avulla. Vaikka kokonaisvaltaisia vas-
tauksia ongelmaan ei ole vielä keksitty, osia siitä pystytään jo ratkaisemaan. Relevanttien alojen
tutkimus näyttäisi olevan kiihtymisvaiheessa, ja viimeaikaisten edistysaskelien ansiosta koneet ky-
kenevät luomaan entistä yleisempiä malleja ympäristöistään.

Tämä diplomityö käsittelee metrisen ja semanttisen informaation yhdistämistä kolmiulotteises-
sa mallinnuksessa visuaalisen datan näkökulmasta. Esimerkkitapauksena käytetään sisätilojen
tiheää mallinnusta. Työssä esitellään aiheeseen liittyvää taustatietoa ja teoriaa, ja suunnitellaan
niiden pohjalta mallinnusjärjestelmä lähtökohdaksi jatkotutkimuksille. Tavoitteena on tuottaa alusta
tutkimustarkoituksiin, sekä löytää uusia mielenkiintoisia tutkimusaiheita.

Jotta mallinnus olisi mahdollista ilman olemassa olevaa infrastruktuuria tai valmiita malleja,
työssä seurataan kameran asentoa ja sijaintia samanaikaisen paikannuksen ja kartoituksen me-
netelmillä. Semanttista informaatiota sulautetaan metrisiin rekonstruktioihin panoptisen segmen-
toinnin menetelmillä. Järjestelmässä hyödynnetään kuvakohtaista segmentointia visuaaliseen da-
taan liittyvien epävarmuuksien vaikutusten minimoimiseksi. RTAB-Map -ohjelmakirjastoa käyte-
tään globaalisti yhtenäisten mallien luomiseen, ja panoptisen segmentoinnin menetelmäksi on va-
littu EfficientPS. Yksittäisiä komponentteja arvioidaan kvantitatiivisesti, jonka jälkeen koko järjes-
telmän lopputuloksia tutkitaan kvalitatiivisesti luomalla malleja kahdesta eri kampusympäristöstä.

Työssä esitellään vastaavaan järjestelmään tarvittavat olennaisimmat komponentit, ja vertail-
laan eri vaihtoehtoja. Suorituskykyyn liittyviä pullonkauloja selvitetään myös tuloksien pohjalta,
jonka jälkeen tutkitaan parannuksia olemassa oleviin menetelmiin ja tarkastellaan mahdollisia
uusia tutkimusaiheita. Vaikka työn lähestymistapa on melko yksinkertainen, ja suunniteltu järjes-
telmä ei joissain tapauksissa kykene saavuttamaan samaa tasoa alan uusimpien menetelmien
kanssa, tarjoaa se silti vahvan lähtökohdan jatkotutkimuksille.

Avainsanat: Ympäristön tulkinta, samanaikainen paikannus ja kartoitus, panoptinen segmentointi

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.
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1 INTRODUCTION

An intelligent agent acquires information of its surroundings through perception and ap-

plies it to interact with the environment. A person or an animal does this instinctively. For

example, a person could look for landmarks in the environment to infer their location, and

an animal looks for things in its surroundings that are edible. People can search for tools

useful for solving a specific task, based on the knowledge where they will most likely be

found. Artificial agents – machines – capable of understanding the environment at the

same level are not yet a reality, but have been envisioned extensively. A more sophis-

ticated understanding of the environment would give them the ability to operate with a

higher degree of autonomy more similar to people, to interact with their environment in

more complex ways and to communicate with us more effectively, through concepts we

understand more naturally.

Perception of the environment can be divided into spatial and semantic information. Spa-

tial information itself can be further divided into topological and metric information: relative

locations of parts of the environment and the things in it and the geometrical, measurable

relations and shapes. Semantic information is perhaps the more abstract of the two:

the meanings of things or their applications, for instance. Geometry and topology give a

machine the capability to autonomously navigate an environment, while a machine capa-

ble of understanding semantics as well would be able to infer more from its environment

and generate a more general understanding of its surroundings. Applications that would

greatly benefit from a semantic understanding of the environment include – for example

– augmented reality, autonomous driving and interactive robotics. Semantic information

is quite difficult to capture explicitly, and the nature of the information itself is dependent

on the perceiver. For example, people of different cultures could give different meanings

to things. Colour could give necessary information of the environment, which would be

completely lost if one could not perceive colour. The value of the information is also de-

pendent on the context: speed limits are crucial information for an autonomous car, while

for a pedestrian they are not as important.

This thesis explores the subject of three-dimensional metric-semantic reconstruction from

the perspective of visual perception. The presented use-cases concern mostly dense

reconstruction of static indoor environments and relatively closed spaces, but the methods

applied in this work could in principle be extended to outdoors use-cases and other larger
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open spaces as well. Visual data is especially interesting in this context because of

its rich representation of the environment. The vast amounts of information in complex

visual data bring about new challenges to the field, however. Even modern computers

cannot utilise all of the information available in high-resolution images and videos in real

time, and the details relevant to the task at hand might easily get lost among the huge

amount of data. To overcome these challenges, it is therefore essential to both extract

relevant information from the visual data, as well as to process it efficiently. Owing to

recent advances in camera technology, computers and smart devices, the hardware to

both acquire and process visual data has become quite affordable. In fact, the practical

examples presented in this thesis are produced with relatively cheap consumer-grade

cameras.

An end-to-end system for visual metric-semantic reconstruction is designed, evaluated

and applied to real-world use-cases in this work. The practical work is supported by a

study on the theoretical background and current research related to the task. The purpose

of this thesis is to be groundwork for research considering metric-semantic reconstruction.

With the knowledge of the current state of research, as well as practical knowledge gained

from the design process, we aim to gain more insight on open research questions and

possible research directions to take in the future. The key questions this work aims to

answer are:

• What are the basic building blocks of a metric-semantic reconstruction system?

• How to choose the best options for practical applications?

• What are the essential performance bottlenecks?

• To what possible directions could one take this research in the future?

The rest of this work is divided into following chapters. Chapter 2 discusses the the-

ory related to the system designed in this work, namely visual mapping in an unknown

environment and view-based scene segmentation. Chapter 3, on the other hand, intro-

duces the methods used in practical applications. In Chapter 4, the overall structure of

the system, as well as key design choices related to it are described. Subsequently, the

performance of the designed system is also evaluated quantitatively to justify the choices

and ensure the system works as intended. End-to-end results of practical applications of

the system are analysed qualitatively in Chapter 5 to assess its performance in real envi-

ronments. Based on the results of earlier chapters, possible changes and improvements

to the system are discussed in Chapter 6. Finally, Chapter 7 summarises key findings,

answers the questions posed above and concludes the thesis.
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2 VISUAL METRIC-SEMANTIC RECONSTRUCTION

An agent moving in an environment needs to know its location to reach a destination ef-

ficiently. The location itself is in relation to the environment, thus information about the

environment is needed to know one’s location in it. On the other hand, the environment

could be previously unknown to the agent, who therefore needs to be able to accumulate

information from it through perception. This is called the environment mapping prob-

lem. It has been defined as one of the key issues in navigation and mobile robotics. [1]

To navigate, the agent needs a spatial model – a map – of the environment and a way

to determine its location in it. Being able to localise and navigate without pre-existing

information gives it more freedom to explore: a person is not tied only to areas which they

know beforehand, and similarly, a robot capable of exploring on its own could be used in a

wider range of applications. Going forward, mapping is defined as generating a reference

for localisation, while reconstruction applies maps to produce the desired end result in the

context of this thesis: a detailed reconstruction of the environment.

In addition to spatial information, semantic information of the environment is also use-

ful in knowing one’s location. Humans use semantic information instinctively: a house of

certain shape and colour might tell you what street you are in, and familiar furniture might

suggest you are in an indoor environment you have been to before. In [2], the connection

between human cognition and robot navigation was studied, and the idea of cognitive

mapping for robots was discussed across different fields of research. The ability of robots

to understand their surroundings through both spatial and semantic information would

result in more robust localisation, as well as their ability to interact with the environment

better. Machines could also communicate with people about the environment in a more

efficient and familiar way to us, via semantic meaning in addition to spatial information.

This chapter is an introduction on how to acquire metric and semantic information through

visual perception. Because the topic is quite broad, discussion has to be kept quite gen-

eral. However, a large number of references are given to allow the interested reader to

study individual subjects more thoroughly. Section 2.1 studies the problem of generating

a spatial map of a previously unknown environment, especially from the perspective of vi-

sual perception, while Section 2.2 introduces ways to capture dense semantic information

from images and fuse it with metric data to form a metric-semantic reconstruction.
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2.1 Visual mapping in an unknown environment

The need to both generate a map and localise oneself in it simultaneously – called the

simultaneous localisation and mapping problem (SLAM) – renders exploring a pre-

viously unknown environment a really challenging task. The mathematical framework

behind SLAM is very well established, but there are still a lot of unanswered questions

regarding practical implementations. [3, 4, 5, 6] Complex multi-dimensional data from

sensors like cameras and laser scanners – while enabling more detailed representations

of the environment – also provide new challenges to solve. [7] This section aims to in-

troduce the most essential concepts related to mapping in an unknown environment in

general, as well as specific knowledge required to apply visual data for the task.

Considering visual data, SLAM is quite close to the Structure from Motion (SfM) problem.

[8, 9] However, while SfM is largely considered an offline task, SLAM approaches also

pursue incremental reconstruction and real-time localisation. To allow for a wider range

of possible applications, and to limit the scope of the thesis, this work focuses on visual

SLAM approaches.

The rest of this section is structured as follows. The mathematical premises behind si-

multaneous localisation and mapping are first introduced in 2.1.1, after which the most

prominent way to apply SLAM using visual data – graph-based nonlinear optimisation –

is introduced briefly in 2.1.2. Finally, these concepts are considered from the viewpoint of

visual data in 2.1.3.

2.1.1 The simultaneous localisation and mapping problem

From the perspective of an agent moving in an environment previously unknown to it,

simultaneous localisation and mapping can be defined as follows. The agent’s starting

position is known, but no pre-existing map nor localisation infrastructure is available to

determine its position going forward. Therefore, a map needs to be acquired in order

to have a reference of the agent’s position in the environment. [10, p. 982] Since the

mapping process itself needs the location of the agent, it needs to concurrently build the

map of the environment while localising itself in it at the same time. Usually, the agent

cannot directly sense its location, but has to estimate it in relation to its actions and

perception of the environment. The agent forms a map of its surroundings based on the

information perceived by it and expands it by exploring the environment. Later – when

revisiting previous locations – it can localise itself with the map.

The agent’s movement in an unknown environment can be described as a sequence of

poses, which form a path. Moreover, this can be modelled as a discrete time-series of

form [3]

XT = {x0, x1, x2, . . . , xT}, (2.1)
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Figure 2.1. Graphical model of an agent’s movement in the environment. [3] Odometry
u and measurements z are directly observable by the agent, who tries to infer their state
x and the map m. Arrows represent causal relationships between the agent’s states and
other nodes.

where xt defines the agents location and pose – or state – at time t, T being some

terminal time. The initial state x0 is assumed known, while further states cannot be

measured directly.

Odometry can be used to estimate where the agent is relative to an earlier state. [3]

An estimate of the path can then be acquired by concatenating the relative positions over

time. The integration of a path solely from an agent’s previous locations and actions is also

known as dead reckoning. [11] In a robotics case, predictions might be calculated from

wheel odometers, motor controls or inertial measurements, for example. In visual SLAM,

movement could be predicted from perceived camera movements. Similarly, humans use

their eyes, vestibular system and muscle feedback to estimate where they are going.

Odometry readings can be modelled as a discrete time-series [3]

UT = {u0, u1, u2, . . . , uT}, (2.2)

where the reading at time t is ut. The path can be incrementally predicted from odometry

with a motion model, which describes the relationship between odometry readings and

movement. [12, p. 91-118] If no uncertainties were involved, the predicted path would

be equal to the actual path of the agent. In the real world, however, some phenomena

are always left unexplained by the model. For example, measurement noise can only be

approximated and the outcomes of actions might differ from what was anticipated. Since

the path is predicted incrementally, errors are integrated into the process as well, and so
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Figure 2.2. An example on localisation uncertainty in a known environment. [3] The
ellipses illustrate probability distribution of a robot’s state at each timestep. As it moves
in the environment, state uncertainty grows because of odometry drift, until it senses a
known landmark and thus becomes more sure of its position.

the uncertainty of the state estimate grows with each step. A person walking blindfolded

becomes more uncertain of their position the further they walk, given no other feedback

is available. This phenomenon is called odometry drift. [12, p. 107-112][13, p. 27-46]

Measurements provide the agent information about the environment relative to its current

state. They can also be represented sequentially, as a discrete time-series

ZT = {z0, z1, z2, . . . , zT}, (2.3)

where the zt is the set of measurements at time t. [3] The set could be empty – if there are

no measurements at a certain time – or it might have an arbitrary number of measure-

ments depending on the perceptive capabilities of the agent and the complexity of the

environment. The relationship between measurements and the agent’s state is described

with a measurement model. [12, p. 121-154] Figure 2.1 visualises the relationships

between the agent’s state, odometry, measurements and the map.

Measurements are used to decrease the uncertainty of the agent’s state estimate. [12, p.

157-170][13, p. 27-46] While the agent’s estimate grows more uncertain with odometry

predictions, it becomes more sure of its location with measurements corresponding to

a location in the map. While walking in the woods, a person might look for landmarks

and locate them on a map to be more certain of their own location. The development

of uncertainty in a known environment is visualised in Figure 2.2. However – contrary to

localisation in a known environment – the uncertainties related to feature locations grow

with state uncertainty in an environment previously unknown to the agent until evidence

of their relative locations can be retrieved. This is because the agent only knows their

location in relation to itself. Figure 2.3 depicts uncertainty in a previously unknown en-

vironment. An agent’s uncertainty of its location in relation to its starting point grows

due to odometry drift, as well as its uncertainty of the perceived landmarks’ locations.

When a known landmark is perceived again, the agent gains knowledge of the amount of

drift by comparing the landmarks’ location in the map to its perceived location. This new
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(a) (b)

(c) (d)

Figure 2.3. Visualisation of localisation uncertainty in an unknown environment. [3] In
(a)-(c) an agent moves in the environment, predicting its and the landmarks’ position with
odometry. Uncertainty of the agent’ location as well as the landmarks grow, until in (d) the
agent senses a previous landmark, and thus becomes more sure of its current location
and the map.

information can then be applied to improve the current state estimate and the map.

If the dimensionality of raw measurements grows too high to manage in a reasonable time

with limited computational resources, they can be reduced to a lower-dimensional feature

space with feature extraction techniques. [12, p. 147-155] A lot of information will be

lost, but, on the other hand, the data becomes easier to process. This is usually the case

with visual applications, where e.g. corners, edges or local feature descriptors [14, 15]

are extracted from raw pixel data. However, feature extraction is not a straightforward

task, since it requires one to preserve as much valuable information as possible while

discarding enough data to reduce dimensions effectively.

A key question related to measurements and feature extraction is the data association

problem: does a measurement or perceived feature represent some feature already

found in the map, or a completely new one? [12, p. 152][10, p. 599] If the correspon-

dence between detected features is known, the task becomes simply to find the most

similar match for the feature from the map, and accept or reject it based in how similar it

is. With unknown correspondence, the problem becomes harder: the relative locations of
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features and the agent need to be used to determine the feature’s identities. If a feature

is perceived close to a known feature in the map, it could be the same one. If it is sensed

in the same location multiple times, the uncertainty of its location decreases. Both ap-

proaches are prone to generate wrong associations, which in turn appear as errors in the

map. Errors in the association make the problem quite hard to solve. [3]

In the example of Figure 2.3, the agent only updates the current state estimate, foregoing

the correction of its full path. This is the goal of online SLAM methods. [3] Online SLAM

requires less computation than maintaining the full history, and as such is useful if the use-

case only requires the current state to be known accurately, for example when navigating

from one point to another. However, if a detailed reconstruction of the environment is to

be generated, a full SLAM solution is more useful. By maintaining the full path estimate

and saving all measurements, the generated map – and in extension, the reconstruction

– is more accurate and consistent. In early research, full SLAM was largely considered

an offline problem, but lately – with ever-increasing computational resources and clever

memory management – many approaches are able to solve it in real time. [16, 17, 18]

Since this thesis is focused on reconstruction, the full SLAM problem is addressed in

more detail. The posterior probability distribution of full SLAM is defined as [12, p. 246]

p(XT ,m|Ut, Zt). (2.4)

It contains all the necessary information about the path XT and the map m. In theory,

the posterior distribution can be solved explicitly, since odometry UT and measurements

ZT are observable, but it is usually infeasible in practice even in online SLAM problems

where only the last state xt has to be solved. The dimensionality of the problem grows

fast with time, and so the distribution has to be approximated in any practical application.

In many environments – especially in larger scale – it could be possible to reach the

same location from multiple directions. Determining whether a previously visited location

is reached is essential for both topologically and metrically accurate mapping. Such an

event is called a loop closure, and the task to be solved is called the loop closing prob-

lem. [3] There is always some drift present in SLAM due to the measurements always

being relative to the estimated location, and so without loop closure the same location

reached from different directions could appear in different locations in the map. There-

fore, loop closure is necessary to retain topological consistency in the maps generated

by a SLAM algorithm. [6] Nowadays, a SLAM algorithm is only considered complete if

it contains a loop closing mechanism. [3, 6, 19] A visual example of a loop closure can

be seen in the example of Figure 2.3: an agent detects a previously sensed location and

corrects the map accordingly. Loop closure is also closely related to place recognition

techniques and the kidnapped robot problem, which address the problem of an agent

being placed in an unknown location in a possibly already familiar environment. This
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could happen, for example, when mapping is performed in multiple sessions or the agent

needs to recover from getting lost. They would then need to determine if they indeed are

in a previously known location to be able to utilise previous maps without outside help.

A key challenge in loop closure detection is how to handle false positives: erroneous

loop closures that the detection algorithm determines correct. Because false positives

cannot be directly detected, some form of belief distribution is usually generated to track

the probabilities of loop closure candidates. [20] An estimate of the probability of the loop

closure being correct is maintained based on previous detections and the state estimate

and a threshold for the probability of a detection being false is chosen based on the

application. The choice is a trade-off between precision – the ability to filter out false

positives – and recall – the ability to find more true positives. False positives generate

topological errors in the map, but on the other hand – if the algorithm is too restrictive – a

failure to detect a correct loop closure could result in errors as well.

2.1.2 Estimating full SLAM with graph-based nonlinear optimisation

There are three fundamental approaches to SLAM, on which most other approaches are

based: extended Kalman filters, particle filters and graph-based nonlinear optimisation

methods. Graph-based methods are the most popular solution to the full SLAM problem,

thus being most interesting in the scope of this thesis. The others are first introduced

briefly to understand the fundamental differences, after which graph optimisation methods

are discussed in more detail.

The earliest SLAM methods were based on Extended Kalman Filters (EKF), where the

state and map are estimated with a multivariate Gaussian distribution [3, 21, 22]

p(xt,m|Zt, Ut) ∼ N (µt,Σt). (2.5)

The estimated state, as well as map feature estimates, are contained in the state vector

µt ∈ Rn, while the covariance matrix Σt ∈ Rn×n contains their relative uncertainties.

The number of state variables n – i.e. number of states and map features – increases

when new features are discovered. Because the covariance matrix of a Kalman Filter

grows quadratically with additional states – and computational cost as well as memory

consumption along with it – EKF methods can only maintain relatively small maps. Mod-

ern EKF SLAM methods circumvent the issue by dividing a larger map into smaller local

portions [23, 24], which in several aspects resemble graph-based methods. [3]

Nowadays, particle filter (PF) methods have surpassed EKF in popularity for online ap-

proaches. Because each of the particles is estimated with their own independent, uncor-

related distributions, the dimensionality of the system only grows linearly and larger maps

can be formed. [3] Additionally, particle filters are capable of estimating multi-modal prob-
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ability distributions, which allows the algorithm to track multiple possible robot locations

at once. For example when there could be multiple similar locations in the map – and

more evidence would be needed to confidently determine the agent’s real location – a PF

maintains separate distributions for each location and only later favours the one with more

evidence. Even though they are more scalable, PF methods are still mostly limited to on-

line SLAM problems and – since their computational complexity grows with maps – the

scale of the map is limited. [3] The key discovery to applying particle filters efficiently to

the SLAM problem was the FastSLAM algorithm [25, 26], a Rao-Blackwellised PF which

is the basis of most PF works on the field ever since.

Graph-SLAM methods draw their inspiration from graphical representations such as the

one in Figure 2.1. Each state and map feature is represented by a node in a graph, while

correspondences between them are described with edges between the nodes. Edges

between each consecutive state are the transformations necessary to reach one state

from the other according to odometry and the motion model, and features are connected

to states where they were perceived with transformations according to the measurement

model. Given the perceived features can be distinguished from one another, data asso-

ciation becomes as simple as connecting each feature node to each of the state nodes

where it was sensed. Similarly, if a loop closure is detected, an edge is formed between

the corresponding states. Even though the graph can grow really large with time, it is

sparse: one node is only connected to few others. The number of constraints in it grows

linearly with time and the number of nodes.

Solving the SLAM problem becomes a task of finding the path XT and map m corre-

sponding to the state of minimal energy. [3] That is, by finding the path and map corre-

sponding to minimal errors according to the posterior distribution (2.4). The path X∗
T and

map m∗ corresponding to minimal energy can therefore be solved by finding the mode of

the log-posterior distribution:

X∗
T ,m

∗ = argmax
XT ,m

[︁
log

(︁
p(XT ,m|Ut, Zt)

)︁]︁
. (2.6)

If noise is assumed Gaussian, the log-likelihood can be maximised by minimising the

quadratic function [3, 27]

C +
∑︂
t

(︁
∆xTR−1

t ∆x
)︁
+
∑︂
t

(︁
∆zTQ−1

t ∆z
)︁
, (2.7)

where C is a constant and
∆x =xt − g(xt−1, ut),

∆z =zt − h(xt,m).
(2.8)

In other words, the task is to find the path and map which correspond to least errors,

given the estimates of motion model g and measurement model h. The graph is sparse,
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therefore the function can be solved with efficient quadratic optimisation methods. [3] The

matrices Rt and Qt contain covariances between different state errors ∆x and measure-

ment errors and ∆z. If errors are assumed uncorrelated, the covariance matrices become

diagonal and the problem is simplified further. Visual SLAM systems often apply a special

case of nonlinear optimisation, called bundle adjustment (BA). [28] BA methods aim to

jointly optimise both the estimated path and the 3D structure of the map by treating the

correspondence between a camera pose and map features as bundles of light rays con-

necting them. The cost function in this case isn’t necessarily quadratic, but many efficient

methods for solving it have been invented. [29, 30, 31]

Graph-based methods scale really well to large environments [3, 16], although with larger

graphs, global optimisation becomes impossible to perform in real time. However, many

modern approaches – e.g. [16] and [32] – only optimise smaller local portions in the

neighbourhood of the current node, which allows them to maintain a constant computation

time and function in real time even with large maps. Even without global optimisation, the

map is topologically correct, but if a metrically more accurate map is desired, the graph

can be optimised globally offline later. In [17], on the other hand, global bundle adjustment

is performed on the background separate from the rest of the SLAM algorithm, when

loop closures are detected. This makes global optimisation possible to compute without

affecting the performance of the rest of the algorithm but can impose severe delays in

loop closure updates if the map grows too large.

2.1.3 Visual simultaneous localisation and mapping

Visual simultaneous localisation and mapping (V-SLAM) is a relatively new research

field compared to other SLAM research. Although visual data has been used in motion

estimation since the 1980’s [33], it has only recently been applied to SLAM in general due

to high computational requirements. [7] Images contain a lot of useful information, but

the algorithms used for extraction of said information demand a lot of computational re-

sources, especially if the computation needs to be performed in real time. With advances

in computational power and computer vision algorithms, real-time implementations of V-

SLAM have been emerging since the early 2000’s [34]. Cameras and range sensors are

really affordable compared to laser scanners, therefore visual data provides a cheaper

alternative to LiDAR, the trade-off being the higher computational requirements.

A digital image is a two-dimensional projection of the three-dimensional environment.

However, for information in the image to be useful for localisation, it needs to be projected

back to a three-dimensional representation. The 3D points corresponding to image pixels

are also required for dense reconstruction of the environment. The third dimension miss-

ing from regular images is depth; the perpendicular distance to the respective 3D point

corresponding to a pixel in the image plane. Stereo cameras – similar to human eyes –
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acquire depth by finding the pixels corresponding to the same point in the environment

in two parallel images and triangulating the distance. On the other hand, range sen-

sors such as time-of-flight cameras can also be used to acquire depth directly. Camera

systems that capture both colour and depth are often referred to as RGB-D (red, green,

blue and depth) cameras. Sequences of monocular images can also be used similarly

to stereo cameras to infer depth if their relative transformations are known accurately

enough. However, depth estimation with monocular images is more prone to errors, and

therefore not preferable in cases where depth can be acquired in other ways. On the

other hand – because stereo and RGB-D imaging can only capture depth at quite a close

range – monocular approaches are interesting in cases where distances are longer, for

instance outdoors. [19, 35]

V-SLAM methods are separated to filter-based and keyframe-based approaches. Filter-

based methods process every frame captured by the camera – e.g. with EKF or PF –

while keyframe-based methods aim to only process the frames where significant changes

have occurred. [36] Keyframe approaches are usually implemented with graph-based

methods, in which case motion estimation can still be performed frame by frame to min-

imise drift and avoid errors caused by large viewpoint deviations while only keyframes are

saved in the map graph. [16, 35] Keyframes can be selected with various criterions, for

example based on changes in pose [37] or in visual appearance [35]. Keyframe-based

approaches scale significantly better compared to filter-based methods – and therefore

are the most common choice for full SLAM. [36]

Visual odometry (VO) is the process of estimating an agent’s egomotion from consec-

utive images. [38] It can be thought of as the motion estimation part of the full SLAM

algorithm. [19] The distinction between VO and V-SLAM is often drawn to loop closure:

a full SLAM algorithm has to maintain a globally consistent map – which requires loop

closure – while VO only considers the local consistency of the path. On the other hand,

many VO works also apply keyframe selection and local bundle adjustment [39, 40, 41],

thus they could also be considered as visual online SLAM in this regard. [6] Neverthe-

less, when applying VO as part of a full SLAM algorithm, keyframe selection and bundle

adjustment are easier to associate as part of the actual SLAM algorithm, while motion

estimation would then be separate from the rest of the system. [16] This separation al-

lows the SLAM algorithm to be more flexible with the choice of odometry approach. Many

works also utilise inertial measurement units (IMUs) as supplemental sensors to cam-

eras. They provide a cheap remedy to situations where odometry based on purely visual

data would fail, for example when there are occlusions or textureless surfaces. Inertial

measurements can also be used to acquire scale in monocular V-SLAM. [42, 43] The

sensor fusion of IMUs and cameras – commonly referred to as visual-inertial odometry

(VIO) – can also improve the overall motion estimate. [44, 45] Labbe and Michaud even

state that "Unless a long-range lidar is used, having odometry input from proprioceptive
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(a) VO with a sequence of stereo images. (b) A typical feature-based VO algorithm

Figure 2.4. An example of a visual odometry algorithm. [19] Local, relative, poses T
are computed from feature matches, which are then concatenated and transformed to a
global coordinate frame as absolute poses C.

sensors (e.g., IMU, wheelencoders) is mandatory for robust autonomous navigation." [16]

There are two distinct approaches to motion estimation. Direct methods [46, 47] aim

to solve camera motion and the three-dimensional structure of the environment simulta-

neously by utilising every pixel in each image. On the contrary, feature-based meth-

ods [16, 35] only concentrate on visual features, areas in the image where more reli-

able correspondences are can possibly be acquired. Direct methods inherently result in

a dense representation of the map, where each pixel corresponds to a point in space,

while feature-based methods generate a sparse representation. However – since cam-

era poses are known – feature-based methods can also generate a dense reconstruc-

tion separately if it is required by the application. Features like SIFT [14], SURF [15]

and ORB [48] are designed to be robust against photometric and geometric changes, i.e.

changes in lighting and viewpoint, while direct methods can only tolerate smaller changes

in viewpoint and need to model a photometric map between the images. Feature-based

approaches also advocate more efficient computation of camera motion and are more

suited to bundle adjustment, as errors between feature matches are uncorrelated unlike

in most motion models used with direct methods. [49] Direct methods are beneficial in

cases where an accurate three-dimensional reconstruction of the environment is required,

if relative motion between images is small, brightness changes are low and the scale of

the map remains relatively small. [49, 50] On the other hand, feature-based methods

should be applied if larger changes in viewpoints and lighting can occur, which is usually

the case in practical SLAM applications. [35, 49]

An example of visual feature-based odometry with a stereo camera is presented in Fig-

ure 2.4. The same steps are usually found in similar approaches, but the methods with

which they are implemented can vary. [19] The stereo camera is not a strict requirement:

depth could be acquired by other means as well without affecting the overall algorithm
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much. First, features are detected in each stereo image pair and triangulated to get their

representative location in three-dimensional space. The features are then matched – or

tracked – between viewpoints, after which the relative motion between views can be com-

puted. Finally, bundle adjustment is performed to reduce drift. The steps up to motion

estimation could be performed for each frame acquired from the camera, but to be able

to perform local bundle adjustment, keyframes need to be detected. In the case of direct

methods, instead of feature detection, matching and motion estimation, the task would be

to directly estimate motion based on changes in appearance and geometry.

Loop closure can be applied in three fundamental ways: image-to-image, image-to-map

or map-to-map. Image-to-image matching is performed by directly finding the closest

match to the current image from earlier keyframes, while the latter two maintain a sparse

map of visual features. Features in the two latter cases are matched either from the

current image or from a local feature map consisting of the most recent features. Image-

to-image methods are most suited to large-scale environments, since they scale really

well and provide good robustness and recall even with a large search space. [51, 52]

In this case, a keyframe-based approach is necessary since without it the search space

grows too fast to be feasible for practical applications. [7] Bag-of-Words (BoW) [53] tech-

niques are most commonly applied due to their high efficiency. [16, 35] BoW methods

generate quantised words for each image based on visual features, from which a vocabu-

lary is formed. Each image is represented by a signature: a collection of words. The task

of finding a possible loop closure then becomes simply to find the closest match based

on said signature, and determine if the signatures are similar enough. Once a match is

found, a transformation between images can be computed with the features to complete

the loop. A modern implementation of BoW loop closure is presented in Section 3.1.3.

Data association in V-SLAM can be considered from multiple standpoints. In feature-

based approaches, the features between images need to be associated with their coun-

terparts in other images. This is generally achieved by comparing descriptors based on

the features’ appearance. Wrong associations between feature descriptors are bound to

happen, which will greatly reduce estimation accuracy if not handled correctly. [54] The

random sample consensus (RANSAC) [55] is proven to be an effective method for remov-

ing these outliers. Additionally, features could be tracked between consecutive images,

if the framerate is high enough. This will limit the search space for matching, since only

a small portion of the image needs to be searched instead of comparing each descrip-

tor in the first image with every descriptor of the second one. In data-association terms,

descriptor matching has known correspondence, while tracking has unknown correspon-

dence. Consequently, image-to-image matching in the context of loop closure also has

known correspondence, while in the case of view-to-map or map-to-map matching the

correspondence is most often unknown, since matches are usually achieved by minimis-

ing a distance function between groups of features. [56]
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2.2 View-based scene segmentation

Scene segmentation methods can be divided into two categories: view-based and map-

based. View-based approaches combine image segmentation methods and multi-view

three-dimensional reconstruction. The goal of view-based methods is to segment each

camera view separately and fuse the individual views to a three-dimensional represen-

tation, while map-based approaches try to segment the already generated 3D recon-

struction – or in the case of large maps, a portion of it – at once. In theory, map-based

approaches are more efficient, since each point in the scene has to only be processed

once, while view-based methods will inevitably have some overlap between views. Addi-

tionally, map-based approaches will have more data available at once, from a larger area

of the environment, which will provide more context if the model is able to capture it. For

example, an object might be hard to classify from only one viewpoint, since it could be

only partially visible or there might be no distinctive features on the side it is viewed from,

while an accurate 3D representation of the object has no such limitations.

However, map-based approaches are more sensitive to noise in camera pose estimates.

[57] In most visual SLAM use-cases, pose errors are large enough to make the view-

based approaches the most appropriate choice. Sequential processing of views could

also be performed online – given enough computational resources are available – and

thus the gained semantic information could potentially be used to aid SLAM as well. [58,

59, 60] Because data is mainly acquired with RGB-D cameras and poses are estimated

with V-SLAM, this thesis will focus more on image segmentation methods and view-based

scene segmentation. Map-based approaches, utilising point cloud segmentation methods

like [61] or [62], would be the obvious choice if data would be captured e.g. with a LiDAR,

although they could also be a viable choice in the future for RGB-D cameras as well if

visual mapping is found accurate enough.

Image segmentation has been researched for quite some time, in many different appli-

cation fields. Early approaches were based on handcrafted features and methods like

thresholding [63], clustering [64] and probabilistic graphs [65], but recently – with the

ever-increasing amount of computational resources and data – research has focused

more around deep learning (DL). [66] Most modern image segmentation architectures

are based on Convolutional Neural Networks (CNNs) [67, 68]. Because image seg-

mentation with CNNs is a relatively new research field, research on the subject advances

quickly and applied methods deviate a lot from one another. Therefore, this section fo-

cuses more on general concepts and the current state of research. A brief introduction

to three-dimensional reconstruction of scenes from individual views is also presented.

Since this thesis is more focused on what happens before reconstruction, the introduc-

tion is quite general and related mathematical discussion is kept at the minimum for the

sake of brevity. Nevertheless, these concepts help to understand the implementation and
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Figure 2.5. The structure of a multi-layer perceptron. [69]

practical applications of methods addressed in this work.

The rest of this section is structured as follows. The theoretical concepts necessary to

understand CNNs in the scope of this thesis are first introduced briefly in Section 2.2.1,

after which the segmentation scheme chosen for the thesis – panoptic segmentation –

is introduced and justified in 2.2.2. Third, methods for image segmentation in general as

well as specifically for panoptic segmentation are overviewed in 2.2.3. Finally, methods

for extending image segmentation to three-dimensional scenes are discussed in 2.2.4.

2.2.1 A brief introduction to convolutional neural networks

The most basic form of a deep neural network – the multi-layer perceptron (MLP) – is

presented in Figure 2.5. There are an arbitrary number of input and output units in their

respective layers depending on the application, and a number of hidden layers consisting

of hidden units. The number of hidden layers determines the networks depth, while the

number of units in each hidden layer determine their respective width. Each unit – a

perceptron – in the network is a function that takes a number of scalar inputs and outputs

a single scalar. Most common form of such a function is [70, p. 192]

f(x) = g(W Tx+ b), (2.9)

where x is a vector containing all inputs. The vector of weights W and bias b of the linear

inner function are trainable parameters. The nonlinear activation function g is applied

to introduce nonlinearity to the model. Rectified linear units (ReLUs) [70, p. 192]

ReLU(z) = max{0, z} (2.10)

and their variants are a common choice for activation function in the hidden layers, since

they make the network easy and consistent to train.

The softmax activation [70, p. 195]

softmax(zi) =
exp(zi)∑︁n−1
j=0 exp(zj)

(2.11)
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represents a probability distribution of a discrete variable across all its possible values,

which is why it is often applied in output layers. They can be used e.g. to represent

the model’s confidence on a certain input representing any of the output classes in a

classification task. MLPs are regularly employed as classifiers in larger deep learning

architectures, in which case they are often called fully connected layers.

Convolutional neural networks apply the convolution operation in place of the matrix mul-

tiplication performed in MLPs in at least some of their layers. In continuous space, con-

volution of a function x(t) with a weighting function w(t) is defined as [70, p. 327]

s(t) = (x ∗ w)(t) =
∫︂

x(a)w(t− a)da. (2.12)

However, CNNs generally operate in discrete space. The convolution over a discrete

function is defined as [70, p. 328]

s(t) = (x ∗ w)(t) =
∞∑︂

a=−∞

x(a)w(t− a), (2.13)

where x and w have discrete values at regular intervals of t. The weight w – also known

as the kernel – is often assumed to be zero outside a finite set of values, which means

that the infinite sum can be implemented as a sum over finite number of array elements.

To perform convolution over the full input, the operation is then simply repeated for every

step t and the outputs of each individual operation are concatenated to form the output,

often called the feature map in CNN literature.

In many applications of CNNs, the input is a multi-dimensional array: a tensor. To cap-

ture the relationships between neighbouring elements in all dimensions, the convolution

is performed over multiple axes simultaneously. For example, a greyscale image is a

two-dimensional array. To extract features from the image, a convolution with a two-

dimensional kernel K with fixed width w and height h for a pixel in image coordinates

(i, j) in image I can be defined as [70, p. 328]

S(i, j) = (K ∗ I)(i, j) =
w−1∑︂
m=0

h−1∑︂
n=0

I(i−m, j − n)K(m,n) (2.14)

Figure 2.6 presents an example of two-dimensional convolution over a small array. Notice

that because the kernel is larger than a single array element, the resulting feature map

is smaller than the input. This behaviour could be avoided by padding the outside of

the input with enough zeroes, which can make the tensor dimensions easier to grasp in

deeper networks where multiple convolutions follow each other.

Each convolutional layer of a CNN learns the weights for a multitude of kernels, with

which the convolution is performed over all input dimensions. The individual feature maps
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Figure 2.6. An example of two-dimensional convolution with a finite-sized kernel. [70, p.
330] Each element of the output array is a weighted sum of a window in the input array.

are then stacked atop each other, therefore the number of output channels is equal to

the number of kernels in the layer. For example, a colour image has three channels

representing the RGB values of each pixel. If we pass the image through a convolutional

layer with e.g. 32 kernels, the output will have similar width and height as the image

– assumed it is zero-padded to not reduce dimensions with the convolution – and 32

channels. Similarly, if the feature maps are passed through another layer with 64 kernels,

the result will have 64 channels. Similar to MLPs, the activation functions are simply

performed for each individual element of the feature map separately.

CNNs are especially useful when extracting information from structured, grid-like data like

images. Instead of operating on individual input value, the convolution kernel captures

features from a neighbourhood around each input location. This means convolutional

layers can utilise context efficiently, e.g. to associate cars with roads or boats with water.

They also offer sparser interactions than fully connected layers: there are fewer connec-

tions between units and therefore less trainable parameters, which make the networks

easier to train and reduce computational requirements. [70, p. 329-335]

The size of a region in the input image corresponding to output features – i.e. the re-

ceptive field – grows larger towards the deeper layers of the network, which allows the

network to extract features with varying degrees of detail and abstraction. The first layers

of the network can extract smaller details and relationships like texture or edges, while

the deeper layers can learn more abstract concepts like larger features and relationships

between them. For example, in a CNN tasked with identifying cats and dogs from im-

ages, the early layers could try to separate different variants of fur, while the deeper
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Figure 2.7. Visualisation of a simple CNN designed to classify different vehicles. [71]

layers might look for features like ears, tails or the general shape of the animal. While the

receptive field does grow with each successive convolution, it is often useful to acceler-

ate the growth with pooling layers. They are used to compress the feature maps to a

smaller representation, in which case a finite-size kernel will capture a larger area of the

input than without pooling. The most common pooling approaches are to simply take an

average or a maximum value over small neighbourhoods of feature map elements and

merge them to a new feature map. [70, p. 335-339] Pooling also renders the network

more robust against small translations of the input, which means – for example – that an

object’s predicted label is not as dependent on its location in the image.

Figure 2.7 presents a simple CNN of a classic form tasked with classifying vehicles from

images. A section consisting of convolutional layers and pooling operations is first applied

to extract features from the image. Then, the features are flattened to a vector and passed

through a number of fully connected layers to capture the essential information related to

the classification task, e.g. the existence of headlights or handlebars. Finally, the last fully

connected layer has a number of outputs equal to possible object classes and a softmax

activation function to acquire a confidence score respective to each class. The predicted

class of the object is then simply selected to be the one with the highest confidence.

The CNNs introduced in this thesis are trained with supervised learning methods, most

prominent of which in deep learning are the stochastic gradient descent (SGD) al-

gorithm and its derivatives. [70, p. 149-150] The basic principle is to pass a training

sample as an input through the network and compare the resulting output to a known

ground truth. The outputs are compared to the ground truth with a loss function: a

performance measure designed for the task at hand. The gradient of the loss function

is then computed in relation to each weight in the network, after which all the weights

of the network are then adjusted by a small step towards the opposite direction of their

respective gradients in a process called back-propagation. The goal is for the network to

eventually converge to a minimum with respect to the loss function, minimising the error

between training outputs and the ground truth.
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2.2.2 Panoptic segmentation

Panoptic segmentation, proposed in [72], combines the tasks of semantic segmenta-

tion and instance segmentation. The goal of semantic segmentation is to associate

every pixel of an image to a semantic class, while instance segmentation methods aim to

segment each individual object in the image, as well as determine its semantic class. Se-

mantic segmentation lacks information on individual instances: with the semantic labels,

one can discern where different types of objects are in the image, but cannot necessar-

ily separate them from one another. For example, one could tell that there are cars in

the image, but could not track each car individually. Instance segmentation takes care of

this problem, but the semantic knowledge of unquantifiable, amorphous areas – like sky,

road or pavement – in the image is lost. Therefore, by combining the two segmentation

approaches, a more complete representation of the scene can be formed. While both

tasks can be solved separately, the combined task helps to resolve inconsistencies be-

tween them. Estimating both in parallel with a unified model would also save resources,

and could even improve generalisation in comparison to learning them individually. [73]

Lately, research on semantic segmentation and instance segmentation has largely been

isolated, while research on panoptic segmentation strives to bring the two tasks closer

together again. [72] The intuition behind the three different segmentation formats is visu-

alised in Figure 2.8.

In addition to introducing the new task, Kirillov et. al. also propose a simple and general

output format, as well as a unified panoptic evaluation metric, coined Panoptic Quality

(PQ). [72] Pre-existing performance metrics are not suitable for the panoptic segmentation

task. In previous research on similar tasks, the performance on semantic- and instance

segmentation has been evaluated separately using independent metrics for both. In the

article, it is noted that this could make comparing different algorithms more difficult, while

a unified metric would make algorithm development and comparison easier, thus further

encouraging the study of the unified task.

The task format is proposed as follows. Given a set of n semantic class labels L =

[0, 1, . . . , n − 1], each pixel i of an image is to be assigned a label li ∈ L and an

instance id zi. Each pixel with the same zi belong to the same object instance. Pix-

els not belonging to any of the n classes can be assigned to an additional void label.

The set L is divided to two subsets: LSt and LTh, representing ’stuff’ and ’things’. A

class can only belong to one of the subsets. Stuff is defined as classes that can not be

quantified, while things are classes that can be quantified. The distinction might vary be-

tween applications: buildings – when viewed from the street – can be thought of as stuff,

while in the case of aerial images they could be assigned to a thing class. If no thing

classes are specified, the task is identical to semantic segmentation. On the other hand,

contrary to instance segmentation, overlaps between object segments are not permitted,
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(a) original image (b) semantic segmentation

(c) instance segmentation (d) panoptic segmentation

Figure 2.8. Intuition behind different image segmentation approaches. [72] In semantic
segmentation, each pixel is labelled with a semantic class, while in instance segmentation
each individual instance is segmented and labelled separately. Panoptic segmentation
generalises them to a unified task.

and confidence scores for each prediction are not required. The exclusion of confidence

scores makes the task symmetric between humans and machines, therefore the consis-

tency of both can be evaluated similarly. However, it is noted in the article that confidence

score could still be included in the algorithms, and might be beneficial in providing more

information to downstream systems. [72]

Three desirable qualities are set for the PQ metric. First, stuff and things should be of

uniform importance, and all aspects of the task should be evaluated. Second, the metric

should be easy to interpret, and third, it should be easy to define and implement to avoid

confusion and improve transparency. A prediction is compared against a ground truth

comparison. Image segments are matched between the ground truth and the prediction.

The segments can match only if their intersection over union (IoU) is strictly greater than

0.5. This – in addition to the requirement of no overlaps in the segmentation – results in a

unique match: only one predicted segment can match each segment in the ground truth.

The metric is computed independently for each class and averaged over the set of classes,

which makes it insensitive to class imbalance: some classes might be represented more

than others. Segment matches for each class belong to one of three categories: true
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positives (TP ), false positives (FP ) or false negatives (FN ). The metric is computed

as

PQ =

∑︁
(p,q)∈TP IoU(p, q)

|TP |+ 1
2
|FP |+ 1

2
|FN |

. (2.15)

A segment’s area therefore does not affect the evaluation. The PQ metric can also be

presented as

PQ =

∑︁
(p,q)∈TP IoU(p, q)

|TP |
× |TP |

|TP |+ 1
2
|FP |+ 1

2
|FN |

, (2.16)

which divides the metric to two parts: the left-hand side of the multiplication is called

segmentation quality (SQ), which is simply the mean IoU of correct matches, while the

right-hand side – called recognition quality (RQ) by the authors – is equal to the widely

used F1 metric [74]. However, Yang et. al. [75] criticise the PQ metric by arguing that

since the area of segments do not affect the PQ score, it might overemphasise smaller

objects. They also propose the Parsing Covering (PC) metric as an alternative for cases

like autonomous driving, where objects closer to the camera – thus appearing larger in

the image – are generally more important than ones further away.

Kirillov et. al. [72] also provide suggestions on how to handle void labels and group an-

notations. Since it is hard to differentiate between out-of-class pixels and ambiguous or

unknown areas of the image, void pixels are excluded from the evaluation: they should

not affect the IoU computation and unmatched void areas are not counted as false posi-

tives. In some datasets, adjacent objects are annotated as groups rather than separate

instances. They are not used in matching and the unmatched predicted segments where

group labels of a single class have over 0.5 IoU with the segment are omitted from false

positives.

Panoptic segmentation is a form of Multi-Task Learning (MTL) [73]. There has been re-

search on unified semantic- and instance segmentation before the term panoptic segmen-

tation was introduced, but since the publication of [72], it has gained a lot more popularity

and has already been adopted as a common term describing the task. However, some

MTL approaches on dense image prediction also include depth estimation [76], which

could also be beneficial to segmentation tasks [77], but has not been combined to a sim-

ilar unified task as panoptic segmentation. As this thesis considers cases where depth

information is already available, depth estimation is not necessarily required, although

depth completion [78] could be beneficial for accurate 3D reconstruction. Additionally,

depth could provide geometrical context to e.g. aid in situations where segments are

hard to interpret from colour images alone [79, 80] or to separate the image to areas rep-

resenting different scales, which has been proven to simplify the segmentation of scenes

with large variance in depth. [81]

Since the proposition of panoptic segmentation in 2018, there has been a lot of research
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in the area. Many datasets have been updated with panoptic annotations, most notable

of which are the COCO Panoptic Segmentation Challenge [82] and Cityscapes Panoptic

Benchmark [83]. Since June 2018, there have been 27 unique submissions in the COCO

challenge, while the Cityscapes benchmark – launched in June 2019 – has accumulated

20 entries in little over a year. For comparison, the instance segmentation task of COCO

Detection Challenge 2020 [84] – launched simultaneously with the panoptic challenge –

currently has 41 entries, while Cityscapes instance- and semantic segmentation tasks

have 64 and 249 entries since 2016, both having more than 20 entries since the launch of

the panoptic benchmark. The individual segmentation tasks seem to still be more popular

than panoptic segmentation – perhaps due to familiarity – but panoptic segmentation

seems to have gained a lot of popularity in just a few years and most likely will do so in

the future as well.

2.2.3 Image segmentation methods

One of the first deep-learning approaches to semantic image segmentation was the Fully

Convolutional Network (FCN) proposed by Long et. al. [85]. A simple illustration of

FCN is presented in Figure 2.9. The model – based on earlier CNN architectures such as

AlexNet [86], VGG16 [87] and GoogLeNet [88] – consists solely of convolutional layers,

enabling segmentation of inputs of arbitrary sizes. The FCN model also combines feature

maps from earlier layers of the network containing more detailed features with the deeper

final layers consisting of coarser features with more semantic meaning. This contributed

to a better fusion of appearance and semantic information. The model has influenced

many other works on the field since: most feature extractors – also known as backbones

– of segmentation models are fully convolutional networks. [66] Although FCN fuses

features of multiple scales together, it still struggles to capture large-scale context in an

image. This is clarified by an example in [89]: in Figure 2.10, a boat is misclassified as a

car, although a boat is much more likely to be found in a river.

Another fundamental technology behind most image segmentation models is the convo-

lutional encoder-decoder architecture. [66] An encoder is a model that compresses an

input to a feature representation capturing the input’s semantic information, while a de-

coder is used to predict the output from said features. Noh et. al. applied a VGG16 model

without the final classifier layer to encode input images and a symmetric decoder to pre-

dict a segmentation mask. [90] Deconvolution – also known as transpose convolution or

up-convolution – and unpooling layers are utilised in a decoder network to upsample the

features in a mirroring fashion to downsampling in the encoder. Badrinarayanan et. al.

[91] built on this idea and introduced SegNet, a fully convolutional network with a similar

structure. They also proposed a novel way of upsampling the lower resolution features

by reusing indices of the pooling layers of the encoder in non-linear upsampling. This
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Figure 2.9. Topology of a Fully Convolutional Network for semantic segmentation. [85]

Figure 2.10. An example in [89]. Left: original image, middle: ground-truth, right: FCN
prediction. A boat (labeled as light green) is misclassified as a car (blue) due to missing
the global context: a boat is much more likely to be found in a river.

way, upsampling does not need to be learned. The upsampled sparse features are then

passed through convolutional layers to produce dense feature maps. Because of the fully

convolutional structure and novel upsampling, SegNet had significantly fewer parameters

than other competing architectures at the time. The model is depicted in Figure 2.11.

Encoder-decoder models have also been popular in medical image segmentation. There

have been multiple models developed initially for this field – like U-Net [92] and V-Net [93]

– that have later made their way to other computer vision research as well.

Since the receptive field of FCN’s and other early encoder-decoders’ output is at a single

scale, the models need to make a trade-off between the ability to capture detail and con-

text. Details are easier to capture with a smaller receptive field, but larger-scale context is

lost and vice versa. Image pyramids – utilised in computer vision long before deep learn-

ing had gained popularity – are a way to avoid loss of detail and retain context in multiple

scales. [94] More recently, they have also been an inspiration for many deep learning

methods addressing the issue. Feature Pyramid Network (FPN) proposed by Lin et. al.

[95] was first introduced as a backbone for object detection, but has since gained a lot of

popularity in instance segmentation as well. It fuses features from the intermediate layers

of the decoder to preserve information from multiple scales. FPN outputs multiple feature

maps representing different scales, which can each be used independently for predic-

tion. At roughly the same time, Zhao et. al. [89] introduced the Pyramid Scene Parsing
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Figure 2.11. SegNet: a fully convolutional encoder-decoder network. [91]

(a) FPN [95] (b) PSPNet [89]

Figure 2.12. Visualisation of pyramid approaches to capture multi-scale context in im-
age segmentation. Feature Pyramid Network acquires multi-scale features from different
phases of the backbone, while Pyramid Scene Parsing Network pools the backbone’s
final representation in multiple scales.

Network (PSPNet) for semantic segmentation. It acquires features of multiple scales by

pooling sub-regions of different sizes from a backbone’s output and passing them through

additional convolutional layers. The resulting features are upsampled and concatenated

along with the original backbone output, after which the combined feature map is used

to predict the semantic segmentation. Both pyramid approaches are visualised in Figure

2.12. The High-Resolution Network (HRNet) [96] has a slightly different approach to the

issue. It maintains features of multiple scales with parallel convolution streams of different

resolutions that exchange information between them repeatedly. The backbone of HRNet

is depicted in Figure 2.13. Like FPN, it outputs multiple feature maps, which are used to

predict the semantic segmentation in a way similar to PSPNet.

The DeepLab model family [97, 98, 99, 100] is another popular group of segmentation

architectures, more focused on semantic segmentation. They utilise dilated – also known

as atrous – convolution to reduce the number of required parameters for upsampling in

relation to deconvolution. Atrous Spatial Pyramid Pooling (ASPP), a method of captur-

ing features in multiple scales more efficient than earlier approaches, was introduced

with DeepLabv2. [98] However ASPP – while substantially increasing the model’s perfor-

mance – also requires a large number of parameters. More recently proposed methods

based on ASPP – Dense Prediction Cells (DPC) [101] and Efficient Atrous Spatial Pool-
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Figure 2.13. Parallel convolution streams of High-Resolution Network. [96]

ing (eASPP) [102] – increase performance even further, while simultaneously reducing

the number of parameters needed to one tenth of the original. DeepLab models also

utilise a fully connected Conditional Random Field (CRF) [103] – a form of probabilistic

graphical model – on top of the convolutional network, which proved to improve the seg-

mentation at objects’ boundaries. CRF:s and other similar probabilistic graphical models

are known to capture large-scale context in the images as well. [66]

Regional Convolutional Neural Network (R-CNN) [104] and its extensions Fast R-CNN

[105] and Faster R-CNN [106] have been really popular in object detection tasks. Mask R-

CNN [107] further extends Faster R-CNN to instance segmentation by adding an instance

segmentation head parallel to bounding box regression and object classification. The key

paradigm that allowed R-CNN to surpass other object detection methods at the time was

a selective search method for Regions of Interest (RoI) in the input image. The method for

generating the rectangular proposals in R-CNN is quite slow, and thus RoI pooling was

introduced with Fast R-CNN. While RoI pooling made end-to-end training of the model

possible and significantly sped up training and inference speed, region proposals still had

to be acquired separately and fed to the network as an input. As a remedy, the Region

Proposal Network (RPN) – a network that generates the proposals for RoI Pooling from

the backbones output – was introduced with Faster R-CNN. Information flow in Faster

R-CNN is visualised in Figure 2.14a.

RoI pooling quantises features from the backbone network, which results in small mis-

alignments in the proposals. This is easily corrected with the following bounding box re-

gression but leads to noticeable errors in instance segmentation. Therefore, a new itera-

tion of the method – RoI Align – that does not quantise but rather interpolates the features

was introduced with Mask R-CNN. The structure of Mask R-CNN is depicted in Figure

2.14b. The backbone network is typically an FPN with a ResNet [108] encoder. Region

proposals are generated by RPN from the features generated by the backbone, which are

then fed to the RoI align module. The RoI:s are then fed to three output branches: the

object classifier, the bounding box regressor and the instance mask head. Many works

on instance segmentation, like Path Aggregation Network (PANet) [109], MaskLab [110]

and TensorMask [111], have since been based on Mask R-CNN.

When Kirillov et. al. introduced panoptic segmentation, they applied a combination of

PSPNet and Mask R-CNN as a baseline for the task. [72] Semantic and instance seg-
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(a) Faster R-CNN [106] (b) Mask R-CNN [107]

Figure 2.14. Topology of Faster R-CNN and its extension to instance segmentation, Mask
R-CNN.

mentations are predicted with the separate models, and then fused together by pasting

instance segmentations atop semantic masks in a naive manner. However, they note

in the article that they expect future approaches to address the task with more efficient

end-to-end models capable of solving both segmentation tasks simultaneously, as well

as more sophisticated fusion mechanisms. They also simultaneously published Panoptic

Feature Pyramid Network [112], visualised in Figure 2.15a, which added a lightweight se-

mantic segmentation head parallel to the output of Mask-RCNN. Similar to Panoptic FPN,

most panoptic segmentation models, like UPSNet [113] and Seamless [114], are pro-

posal based – also known as top-down – architectures. [115] TASCNet [116] is another

interesting top-down model based on the FPN architecture that learns both the fusion

mechanism and segmentation simultaneously.

While proposal-based architectures are most common in panoptic segmentation, proposal-

free – or bottom-up – models have been studied as well. The computational cost of

Mask-RCNN and models based on it increase with the number of generated proposals,

so by foregoing the proposals altogether the model should be more efficient. On the other

hand, naively fusing separate segmentation outputs favours instances over semantic seg-

mentation. The first of these approaches was DeeperLab [75]. It combines a semantic

segmentation model inspired by DeepLabV3+ [100] with a class agnostic keypoint-based

instance segmentation model. Stuff labels are determined directly from the semantic seg-

mentation predictions, while thing labels are determined by a majority vote from the se-

mantic segmentation results in the areas described by instance segmentation. Since both

stuff and thing labels originate from the same segmentation map and predicted instances

have no overlap, there is no bias towards either. Cheng et. al. built on this idea with

Panoptic-Deeplab [117]. They added separate ASPP decoders for semantic segmenta-

tion and the class agnostic instance segmentation after a shared encoder, the outputs of
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(a) Panoptic FPN [112] (b) Panoptic-Deeplab [117]

Figure 2.15. A proposal-based panoptic segmentation model, Panoptic FPN, and a
proposal-free model, Panoptic-Deeplab. Panoptic FPN segments object instances from
region proposals generated by the RoI align module, while Panoptic-Deeplab uses class-
agnostic segmentations to capture instance labels from the semantic mask.

which are fused similarly to the DeeperLab approach. Information flow in the model is

visualised in Figure 2.15b. While the two methods do not need proposals to determine

instances, the semantic and instance segmentations are largely learned separately, in-

creasing computational overhead. Additionally, the inference of instance segmentations

from the detected keypoints requires quite a lot of computation as well. To address these

issues, Gao et. al proposed the Single-Shot Instance Segmentation With Affinity Pyramid

(SSAP) [118] model, which jointly learns semantic segmentation and a pixel-pair affinity

pyramid describing the probability of neighbouring pixels belonging to the same object in-

stance. Instances are then inferred from the affinity pyramid with a computationally more

efficient cascaded graph partition module. For panoptic fusion, a similar voting scheme is

applied as in the previous bottom-up approaches.

One of the newest works in the field, EfficientPS [115], has extended the Panoptic FPN

by introducing a more efficient two-way FPN backbone, a novel semantic segmentation

head and a panoptic fusion module that integrates output logits of both segmentation

heads, outperforming all previous approaches. A top-down approach was chosen due to

Mask-RCNN:s robustness against large scale variation of instances. The two-way FPN

backbone utilises parallel top-down and bottom-up feature pyramids atop an EfficientNet

[119] encoder, which provides better segmentation with fewer parameters than earlier ap-

proaches. The novel semantic segmentation head utilises Dense Prediction Cells [101]

to capture long-range context and Large Scale Feature Extractor (LSFE) modules to cap-

ture features of larger scale efficiently. The misalignments between DPC:s and LSFE:s

are corrected with Mismatch Correction (MC) modules. Extensive ablation studies in

the article show that the proposed modules are indeed more efficient than their other

commonly used counterparts. Since EfficientPS has been applied in this thesis, a more

detailed description is provided in Section 3.2.
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Figure 2.16. A visualisation of the pinhole camera model. [120, p. 42]

2.2.4 Extending image segmentation to three-dimensional scenes

Images are two-dimensional projections of the three-dimensional environment. The im-

age only contains information on objects’ locations in the projection on a 2D plane, which

alone is not enough to project them back to a 3D representation of the environment. For

example – in the case of Figure 2.16 – if we imagine a light ray passing from a point in

space through the camera centre, the point is projected to the image in the intersection

of the image plane and the light ray. This is the perspective projection of the 3D point.

Correspondingly, we can back-project a point in the image as an infinite ray extending to

the environment. The location of the point along the ray cannot be determined from the

two-dimensional image alone, but if the point’s distance from the camera centre or the

image plane is known – acquired e.g. with a stereo camera or a range sensor – its 3D

location relative to the camera centre can be computed with simple geometry.

Figure 2.16 presents a simple way to describe a camera: the pinhole camera model. An

absolute – i.e. correct in both dimensions and scale – three-dimensional reconstruction

from images requires – corresponding to each image – both the intrinsic and extrinsic

parameters of the camera, as well as an aligned depth map or range image. [120, p.

72] Intrinsics are the camera’s internal parameters related to the task: the focal length,

i.e. the distance from the camera centre to the image plane along the principal axis; the

principal point, where the principal axis and the image plane intersect; pixel width and

height; and image skew. Most cameras also have lens distortion, which is not taken into

account by the pinhole model. The distortion therefore needs to be corrected for accu-

rate reconstruction with the model. [120, p. 47] The intrinsic parameters and distortion

can be automatically estimated with a calibration procedure, by capturing pictures of a

calibration target with known dimensions from multiple angles and comparing them to the

true shapes. Extrinsic parameters are the translation and rotation of the camera in world

coordinates, acquired e.g. with a visual SLAM algorithm.
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(a) Original (b) depth (c) point (d) voxel (e) mesh

Figure 2.17. An example of common 3D representations on the Stanford Bunny. [121]

A point cloud is a collection of 3D points, which in the case of RGB-D imaging are

back-projections of pixels in a digital image. If the Six-Degrees-of-Freedom (6-DoF) pose

of the camera is known, these points can also be transformed to the map’s coordinate

system, thus the clouds respective to each image can be fused together to represent the

whole environment. A point cloud in itself is not suitable for many applications outside

simple visualisation, but it can be refined further to generate more useful and efficient

representations [120, p. 139-182]. Since there are always noise and distortion that are

not explained by the camera model, the point cloud will not be an exact reconstruction.

Moreover, overlapping views result in redundant points, and errors in the 6-DoF poses

might result in objects warping and appearing in multiple locations. Therefore, the real

environment can only be approximated with the data.

Generally, representations generated from raw point clouds are divided to surfaces and

solids. [120, p. 139-182] Most common way to represent surfaces is a polygonal mesh,

which consists of vertices connected by edges. The edges form triangular faces. Each

face is two-dimensional, thus a 2D image could be projected to the surface as a texture.

For example, the images from which the point cloud was generated could be projected

to the surface to colour the reconstruction according to the real environment. The other

way to add colour to the mesh is to associate each vertex with a colour and interpolate

the texture of the face according to the vertex colours. Solids, on the other hand, are

a volumetric representation of the environment. The most common solid representation

is a voxel grid. Voxels – "volumetric pixels" – are the 3D analogy of pixels. An area of

3D space can be divided into a binary cubical grid, where ones and zeroes represent

occupied and unoccupied space. Alternatively, each voxel could be represented by a

scalar e.g. to represent different densities. Each occupied voxel could also be associated

with a colour. Examples of different 3D representations are presented in Figure 2.17.

Polygonal meshes are the most common 3D representation in computer graphics. They

are efficient to store compared to point clouds and voxel grids, and they are efficient to dis-

play on a computer screen. Mesh surfaces are also visually pleasing. With high enough

resolution the surface appears smooth, and textures can be applied to achieve a realis-

tic colouration. In addition to visualisation, meshes are often used, e.g., for navigation
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and obstacle avoidance by mobile robots [122], or interaction with the scene, for example

with augmented reality (AR) applications [123]. Solid representations, however, are better

suited to some applications. They can be used to efficiently approximate the volumes of

objects, or in efficient three-dimensional obstacle avoidance [124, 125]. Voxels can be vi-

sualised either directly – like an MRI scan, for example – or by first transforming them into

a surface representation. Solids are less efficient to store than surfaces though – since

unoccupied space is represented as well – therefore smaller portions of the environment

can be addressed at once at a similar resolution compared to them. [120, p. 151]

Semantic segmentation masks are fairly straightforward to apply to the 3D representa-

tion: since each pixel of each input image has been labelled, each point has its own label

as well. These could then be applied to the vertices of the generated mesh or voxels by

e.g. a majority vote over a number of nearby points. The labels can then be visualised

by associating each vertex or voxel with a colour. However, in the case of instance seg-

mentation, the task is not as simple. Because instance ids are only valid in the context of

a single image, additional methods need to be applied to track them over multiple views.

Video segmentation methods like [126, 127] could be applied to track the labels in 2D,

provided the views are captured in a sequence with a fast enough framerate. Another

interesting approach was presented in [128], where the video segmentation model was

taught to track the labels by itself. However, 2D tracking methods cannot necessarily

re-identify instances if they appear in the video again later, therefore some sort of three-

dimensional tracking method would be required regardless. For example, in [123] the

labels of an image are compared to a 2D projection of labels in the 3D representation

corresponding to the same view. Intersection over union is used to determine whether an

instance corresponds to one already in the partial reconstruction. The confidence scores

of each 2D instance segmentation corresponding to a 3D instance are integrated in a

Bayesian manner to determine the instance class. A ray-casting algorithm similar to [129]

is used to incrementally update a truncated signed distance field (TSDF) [130] volume,

from which a polygonal mesh is generated. Once the reconstruction is complete, a fully

connected CRF is employed to regularise the segmentation.
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3 APPLIED METHODS

The essential methods for metric-semantic reconstruction applied in this work are de-

scribed in this chapter. A SLAM method is utilised to render the system independent of

any external infrastructure or existing maps. On the other hand, since paths are acquired

with visual SLAM, a view-based segmentation method is the safest choice because of

its robustness to pose errors. Moreover, panoptic segmentation has been chosen as the

segmentation scheme since as it allows for the widest range of applications: both seman-

tic and instance segmentation can be captured from it separately, or fused together as

the full panoptic representation.

As determined earlier, a graph-based SLAM approach with image-to-image loop closure

is the most reasonable choice when scalability and global consistency are required. The

Real-time Appearance-based Mapping (RTAB-Map) library [16] has been chosen as

the graph-based V-SLAM approach in this work due to its efficiency, performance and

large selection of options. The library is introduced in detail in Section 3.1.

EfficientPS [115] is chosen as the panoptic segmentation method for this work because

of its exceptional performance on public benchmarks and relatively low computational

requirements. The authors of the original article have published a re-implementation of

the source code used to acquire the reported results, which has been re-purposed in this

work for view-based segmentation of indoor scenes. Although some modifications had

to be made to the original code for it to function in this work’s purposes, the underlying

neural network still remains the same. The EfficientPS panoptic segmentation model is

described in Section 3.2.

While the most essential methods are described here, their integration into the full re-

construction system is introduced in the next chapter, where their performance will also

be evaluated. Apart from assessments based on the background provided earlier, their

suitability for the task is evaluated and justified in the chapters following this one.
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3.1 RTAB-Map: Real-Time Appearance-Based Mapping

RTAB-Map first began as a loop closure algorithm in 2013 [131], and has since then

grown to be one of most complete open-source graph-based visual SLAM approaches

to date. [16] It has been developed to support various different use-cases and hardware

configurations, especially real-time computation and scalability in mind. It offers both

robust and accurate real-time localisation, as well as offline tools for generating detailed

maps from the SLAM graph. The maps can then also be used for localisation afterwards

with the same framework. Because of the open-source implementation – both in ROS

and as a standalone C++ library – and extensive options and tools, RTAB-Map is the

ideal choice for early-stage research and prototyping. There are some publicly available

V-SLAM implementations that seem to be more accurate based on results reported on

benchmark datasets, but none provide the flexibility that RTAB-Map has.

Figure 3.1. Block diagram of RTAB-Map [16].

The core algorithm has five fundamental parts: odometry, memory management, loop

closure, graph optimisation and map assembly. Each of these provides multiple options

to cater for different setups and purposes. Block diagram of the overall system is de-

picted in Figure 3.1. Messages from different sensors and the odometry node are first

synchronised and passed to Short Term Memory (STM), which generates nodes for the

map graph. Then, loop closures are detected. Possible new edges are added to the

map graph, and the graph is optimised. From the graph, a dense global map can be as-

sembled, either online or offline. Only nearby nodes are contained in Working Memory

(WM). If localisation becomes too slow, i.e. when map update time or occupied memory

exceeds a given threshold, less important nodes are transferred to Long Term Mem-

ory (LTM), and are no longer available to the nodes inside WM. When a loop closure is

detected, nodes near the recognised location are transferred back to WM from LTM.

3.1.1 Odometry options

Basic visual and LiDAR odometry approaches are provided with the library in case no

other options are available, but since the odometry node is independent of the rest of the
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algorithm, any kind of external odometry can be applied as well. In [16], the authors of

RTAB-Map find that while the provided odometry is already quite good, some other VO

approaches are can be more accurate. Notably, the VO implementation of ORB-SLAM2

[17] provides the best accuracy in their studies.

The methods provided with the library are standard approaches inspired by [19]. A

keyframe-based approach is applied with local bundle adjustment. Visual Odometry can

estimate motion either in relation to last keyframe, Frame-to-Frame (F2F), or in relation to

a local map of features, Frame-to-Map (F2M). The size of the local feature map is limited

to allow constant-time computation. Similarly, LiDAR odometry can also be performed

both in Scan-to-Scan (S2S) and Scan-to-Map (S2M) manner. Detected visual features

can be any of the ones supported by OpenCV [132], e.g. SIFT [14], SURF [15] or ORB

[48]. The features’ positions in the next frame are predicted with a motion model to limit

search windows when matching them with the new frame. Motion estimation is performed

with the Perspective-n-Point (PnP) RANSAC implementation in OpenCV. [132]

3.1.2 Visual vocabulary and node generation

Short-Term Memory is responsible for generating the nodes of the map graph. Nodes are

generated on fixed time intervals but can be fused later if they are found similar enough.

Following information is included in each node: [133]

• ID: a unique index for the node.

• Weight: an indicator of the importance of the node. Used to determine the order in

which nodes are saved to LTM.

• Signature: a unique signature used to determine similarity between images.

• Sensor data: odometry pose, RGB image, depth image and laser scan.

An image’s signature is generated with the Bag-of-Words (BoW) approach. Each time

an image is acquired by STM, it extracts visual features from it. These can be any type

of feature supported by OpenCV [132], e.g. SIFT [14], SURF [15] or ORB [48]. They

are then quantised to visual words and appended to a vocabulary to limit the size of

the search space. The features are compared with the Nearest neighbour Distance Ratio

(NNDR), a commonly used distance metric in feature matching. A feature is considered to

match a visual word if their distance is less than the distance to the second-nearest word

multiplied by a given parameter TNNDR, i.e. if its NNDR is low enough. If a feature does

not match any visual word, it is appended to the vocabulary as a new one. Otherwise,

it is associated with one already found in the vocabulary. The signature is then simply

the collection of words associated with the image. Because of a large search space and

high-dimensional words, the vocabulary is a randomised forest of k-dimensional trees,

implemented in FLANN [134].
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The similarity between signatures of consecutive nodes STM is defined as [131]

S(zt, zt−1) =

⎧⎨⎩Npair/Nzt , ifNzt ≥ Nzt−1

Npair/Nzt−1 , ifNzt < Nzt−1

, (3.1)

where Npair is the number of matching words between the pair, zt the new node and

zt−1 the previous one, while Nzt and Nzt−1 are the number of words in their respective

signatures. If S(zt, zt−1) is higher than a given threshold, then zt is merged to zt−1,

otherwise the weight of zt is initialised to zero and a bidirectional neighbour link is formed

between the two. If the two nodes are merged, the signature of zt−1 is retained, while the

newly added words in zt are removed from the vocabulary. Neighbour- and loop closure

links to zt−1 are redirected to the merged node and zt−1 is deleted from STM. The weight

of the merged node is set as the sum of the two plus one, thus each node gains more

weight the longer they remain as the newest one.

3.1.3 Loop closure tracking with a discrete Bayesian filter

Loop closure hypotheses are tracked by a discrete Bayesian filter. It estimates the prob-

ability of the current node matching a previously visited location stored in WM. The nodes

in STM are not considered in loop-closure detection, since they are very similar to the

current node, thus the hypotheses would be biased towards them. Instead, the number

of nodes in STM is limited by a threshold determined by the estimated velocity of the

camera and the rate at which nodes are updated. When the threshold is reached, oldest

nodes are moved to WM. If St represents the states of all loop closure hypotheses at time

t, p(St = i|Zt) is the probability of zt and zi representing the same location given the set

of nodes Zt = {z0, . . . , zt} in WM and p(St = −1) is the probability of zt representing a

new location, then

p(St|Zt) = η p(zt|St)
n∑︂

i=−1

p(St|St−1 = i) p(St−1 = i|Zt−1) (3.2)

is the full posterior probability of loop closure in the current node with respect to all other

nodes in WM. The probability distribution is normalised to [0, 1] by η. The observation

model p(zt|St) is evaluated element-wise with the likelihood function

p(zt|St = j) = L(St = j|zt) =

⎧⎨⎩
sj−σ

µ
, if sj ≥ µ+ σ

1, otherwise
(3.3)

where sj is the similarity (3.1) between zt and zj , while µ is the mean of all non-null scores

and σ their standard deviation.
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The transition model is evaluated by [131, 135]

p(St|St−1) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0.9, if St = St−1 = −1

0.1/NWM , if St = i ∧ St−1 = −1

0.1, if St = −1 ∧ St−1 = j

Ni(j, σ), if St = i ∧ St−1 = j

(3.4)

The number of nodes in WM is denoted as NWM . If a loop closure was found in a

neighbour node – i.e. cases when St−1 = j applies – there is a high chance of finding

a loop closure nearby in the next one as well since the nodes are close to each other.

Therefore, the probability of a new loop closure after a previous one is given by Ni(j, σ).

It is the value at i in a discretised normal distribution with mean j and standard deviation

σ = 1.6. Values of the distribution are set to null outside the range [j − 16, j + 16], and

normalised to sum 0.9, so that the full distribution of the case St−1 = j would sum to one.

On the other hand, St−1 = −1 means there was no loop closure in the previous node.

When the posterior probability p(St|zt) has been updated, the hypothesis in St with the

highest probability is chosen. If the probability of a new location p(St = −1|Zt) is lower

than a given threshold, the loop closure is accepted and a bidirectional loop closure link is

formed between the corresponding nodes. However, the old node zi is not deleted: rather,

its weight is copied to the new node zt and then set to zero. This keeps the two different

signatures of the same location, which helps further loop closure tracking, especially in

dynamic environments. [131] If a loop closure is achieved, the transformation between

the two views is computed with the PnP RANSAC algorithm in OpenCV. [132]

3.1.4 Memory management and graph optimisation

Following loop closure detection, the neighbours of the loop closure hypothesis with the

highest probability not already in WM are retrieved from LTM, regardless of whether a

loop closure was accepted or not. Simultaneously, the visual vocabulary is updated with

the words in signatures of the retrieved nodes with the same process that new nodes’

descriptors are quantised. Because the operation is quite time-consuming, a maximum

of two nodes are retrieved each iteration. If more than two neighbours could be retrieved,

the ones closer in time (direct neighbours) are prioritised over the ones closer in space

(linked through loop closure) since they are more trustworthy. After staying still for a while,

all neighbouring nodes would be retrieved.

When the time or memory constraints are reached, some of the nodes in WM need to

be transferred back to LTM. The order in which they are moved to LTM depends first on

their weight and – in the case of equal weights – older nodes are transferred first. For the

sake of robust loop closure evaluation, the hypothesis with the highest probability and its
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neighbours are not allowed to be moved to LTM. However, the neighbouring nodes are

limited by a time range threshold to avoid accidentally accumulating many nodes to the

same small area, which would render detection of larger loops impossible.

Whenever a loop closure is detected, or nodes are transferred between WM and LTM,

the local map graph in WM is optimised. The RTAB-Map library includes three popular

graph optimisation approaches: TORO [31], g2o [30] and GTSAM [136]. The authors

of RTAB-Map state that TORO converges slower than the other two, but is more robust

and less sensitive to odometry noise. On the other hand, GTSAM and g2o are reported

to be more accurate in single session mapping, particularly with poses with six degrees

of freedom. GTSAM is deemed slightly more robust than g2o and therefore chosen as

the default approach. [16] Loop closure might sometimes result in invalid detections,

which would add errors to the map when optimising the graph. If a link’s transformation

after optimisation has changed more than a certain threshold, all links added by the most

recent node are rejected.

3.1.5 Reconstruction

Along with node generation, STM is also tasked with generating a local occupancy grid.

The occupancy grid can be either in 2D (pixel) or in 3D (voxel), depending on parameters

and hardware configuration. While 2D laser scans can naturally only be converted to 2D

grids, depth images and 3D scans can be converted to 3D grids or projected to 2D if

three-dimensional information is not necessary. Depth images can be from an RGB-D

camera, or they can be computed from stereo images with the tools in the library. Using

the poses from the map graph, the local occupancy grids can be fused into a global grid.

The global occupancy grid can also be generated online, but it has to be re-assembled

every time a loop closure happens. Moreover, since global graph optimisation can only

be performed offline because of intense computational requirements, the online grid is

less accurate than one reconstructed offline. The global grid is not needed by the SLAM

algorithm and local grids are sufficient for the purpose of obstacle avoidance, thus in most

use-cases it is only used for visualisation purposes. The map is topologically consistent

without global optimisation and thus suitable for navigation as well.

The 3D occupancy grid is a volumetric reconstruction of the environment, which could

be further processed into a surface representation. However, since the camera poses

corresponding to each keyframe are available, a more detailed point cloud reconstruction

can also be generated from the images or scans associated with the keyframe. The library

provides offline tools for further cleaning and optimising the point clouds, as well as for

generating detailed polygonal mesh surfaces out of them. The tools are convenient for

visualisation and debugging purposes, but higher quality 3D meshes could be achieved

with more recent tools specialised in that specific task.
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3.2 EfficientPS: Efficient Panoptic Segmentation

EfficientPS [115] is a recent panoptic segmentation architecture that reaches top of the

line accuracies in many 2D datasets more efficiently than earlier approaches with similar

results. The overall incentive of the architecture is efficiency: a better trade-off between

accuracy and the number of trainable parameters. It is an end-to-end top-down approach

with a shared feature extractor and separate segmentation heads, and thus shares many

similarities with Panoptic FPN [112]. However, the feature extractor and segmentation

heads have been reworked to gain much higher accuracies with minimal increases in net-

work size. A novel panoptic fusion method is also introduced. EfficientPS outperformed

all the earlier approaches in the Cityscapes [137] panoptic segmentation benchmark and

reached second places in Cityscapes semantic- and instance segmentation tasks as well.

Additionally, it is also one of the most accurate methods on Mapillary Vistas [138] and

Indian Driving Dataset (IDD) [139], as well as on the panoptic segmentation dataset com-

posed from KITTI [140] by its authors. A comprehensive ablation study is performed in

the article to verify the performance gains of individual parts.

Semantic
Segmentation

Head

Instance
Segmentation

Head

Panoptic
Fusion

Input
Image

Panoptic
Mask

Semantic logits

Classes

Bounding boxes

Instance logits

Two-way FPN Features

Figure 3.2. Topology of the EfficientPS panoptic segmentation architecture. Input im-
ages are first fed through a shared feature extractor, after which semantic- and instance
segmentation tasks are solved in separate heads. The segmentation heads’ outputs are
finally fused together in the panoptic fusion module.

Figure 3.2 presents the overall structure of the EfficientPS architecture. First, input im-

ages are passed through a shared feature extractor composed of an encoder and a novel

two-way Feature Pyramid Network, after which the extracted features are passed on to

two different segmentation heads. The semantic segmentation head solves the semantic

segmentation task, while the instance segmentation head similarly solves instance seg-

mentations. These two outputs are then finally combined to a panoptic segmentation

mask in the panoptic fusion module. Standard convolution layers are substituted with

separable convolutions [141] throughout the model, which significantly reduces the num-

ber of trainable parameters with minimal effect on accuracy. Instead of commonly used

Rectified Linear Unit activation function (ReLU) [142], Leaky ReLU – which is proven to
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outperform the original ReLU [143] – is applied. Additionally, regular batch normalisation

layers are also replaced by synchronised Inplace Activated Batch Normalisation (iABN)

[144] for more efficient training with multiple GPUs.

3.2.1 Two-way FPN feature extractor

The two-way FPN feature extractor is visualised in Figure 3.3. The encoder isn’t re-

stricted to a single model, but the authors of the architecture utilise a modified version

of the encoder part of EfficientNet-B5 [119]. Because of EfficientNets’ compound scaling

approach, they provide a better trade-off between the number of parameters and accu-

racy than earlier encoder architectures. The two-way FPN builds upon original Feature

Pyramid Networks [95]: features of multiple scales are aggregated by capturing outputs –

which are downsampled by different factors – from different phases of the encoder. The

channel dimensions in each of the encoder outputs are first increased or decreased to

the same size with 1 × 1 convolution layers, after which the features are transformed to

a uniform shape and added together. In the top-down branch, the encoders’ outputs are

upsampled, interpolated and passed on further to 3× 3 convolution layers. Similarly, the
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Figure 3.3. The two-way FPN feature extractor Image is first passed through an encoder
(red), from which four outputs representing different scales of features are captured. The
outputs are passed through top-down (yellow) and bottom-up (blue) feature pyramids and
combined to to four separate feature maps (green).
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outputs are downsampled to the same shape with average pooling and passed through

3×3 convolution layers in the bottom-up branch. Finally, the branch outputs are summed

together and passed through final 3× 3 convolution layers to generate four output feature

maps of different scales.

An ablation study by the authors shows that the modified EfficientNet-B5 encoder out-

performs other common encoder choices, including ResNeXt-101 [145] which has almost

three times the number of trainable parameters. Similarly, the 2-way FPN was tested and

found to provide better results than either bottom-up or top-down pyramid approaches

alone, as well as the PANet FPN [109], where the bottom-up path follows the top-down

path instead of being parallel. The authors deliberate that performance is increased be-

cause the unidirectional flow of information limits the fusion of multi-scale features, while

bidirectional flow makes the fusion more effective.

3.2.2 Semantic segmentation head

The structure of the semantic segmentation head is presented in Figure 3.4. The four

outputs of the feature extractor are processed by four different branches, which are later

concatenated to fuse features of different scales together. The outputs of each branch

are interpolated to a uniform shape and concatenated to a single tensor, which is then fed

through a convolutional layer, upsampled to the shape of the input images and fed through
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a softmax function to yield the semantic logits. A semantic mask can then be acquired

with the argmax operation, i.e. by finding the channel from the logits corresponding to the

highest confidence score for each pixel of the image.

The head has three distinct components, each targeting different requirements. The first

requirement is the ability to detect large-scale features efficiently. Large Scale Feature

Extractors (LSFE) are applied for this purpose: each module consists of two 3 × 3

separable convolution layers, with 128 output filters. Second, the segmentation head

should be able to capture small-scale features’ context in a large range of scales. For

this, Dense Prediction Cells (DPC) [101] are employed. They encode information in

parallel branches and different scales, to capture features of varying proportions. The

third requirement is the ability to attenuate mismatch between different scales, thus Mis-

match Correction (MC) modules are placed between LSFE and DPC branches so that

the model learns to align them properly. During training, the weights of the semantic seg-

mentation head are back-propagated according to the per-pixel log-loss function [146]

averaged over each batch. The proposed semantic head is shown to outperform other

recent approaches in the ablation study. [115]

3.2.3 Instance segmentation head

The instance segmentation head – depicted in Figure 3.5 – is a modified version of the

Mask-RCNN head [107]. It comprises a shared pipeline consisting of two stages followed

by three output branches, which give the predicted class, bounding box and mask logits

for each detected object instance. The first shared stage is the Region Proposal Network

(RPN) [106]. It is a fully convolutional network that outputs several rectangular object pro-

posals and an objectness score for each of them, in relation to each of the FPN outputs.

The output features of the backbone network are passed to RPN sequentially in a sliding

window manner and the resulting region proposals are then accumulated in a list. The

maximum number of proposals for each window location is denoted as k. Each of the k

proposals is parametrised in relation to a set of reference bounding boxes centered on

the window location, called anchors. The scales and aspect ratios of the anchors are

chosen depending on the application. The generated proposals tend to overlap, thus they

are filtered with Non-Maxima Suppression (NMS).

The second shared stage of the instance segmentation head is the RoI Align module. It

converts the region proposals from RPN to uniform dimensions to make them easier to

process with the following output branches. It uses the proposal boxes to extract Regions

of Interest from the backbone outputs, divides the RoI’s into spatial bins, extracts features

from said bins and aggregates them to an output. Unlike the original RoIPool module

deployed with Fast RCNN [105], RoI Align – introduced with Mask-RCNN [107] – does

not perform quantisation to avoid misalignments between the features and the input. It



42

Separable
convolution

nxn
s

nxn
s

ConvolutionKernel size: nxn
Stride: s
Number of perceptrons: k

Fully
connected

k

RPN

ROI Align 1024

3x3
1

n_classes + 1

1024

4 x n_classes

2x2
2

1x1
1

nxn
s

Transpose
convolution

3x3
1

3x3
1

3x3
1 Sigmoid

Softmax
Class

Bounding box

Instance
logits

256 x 14 x 14

256 x 14 x 14 256 x 28 x 28
n_classes x

28 x 28

P32, P16, P8, P4

1024 x 1

Figure 3.5. Instance segmentation head. RPN provides region proposals to RoI Align,
which extracts features from FPN output. Objects’ classes, bounding boxes and masks
are inferred from the features.

instead biliearly interpolates the feature values at four regularly sampled locations inside

each RoI bin.

The object classification and bounding box regression branches share two consecutive

fully connected layers and then separate to different branches. The bounding box re-

gressor learns to align the bounding boxes specific to each class, while the classification

branch outputs logits representing the confidence of the object belonging to different ob-

ject classes, including a void class to catch out-of-dataset objects. The mask segmenta-

tion branch employs a fully convolutional network to predict mask logits for the area inside

the bounding box. Different loss functions have been assigned to the separate parts of

the head: objectness score loss and object proposal loss for RPN; and classification

loss, bounding box loss and mask segmentation loss for the output branches. The total

instance segmentation loss passed to the backbone in training is the sum of the five.

3.2.4 Panoptic fusion

The panoptic fusion module – visualised in Figure 3.6 – functions as follows. First, a

set of object instances are retrieved from the instance segmentation head with object

class, confidence score, bounding box and mask logits. Next, the instances are filtered

by discarding the ones with confidence score lower than a given threshold. They are then

sorted by their corresponding scores, padded with zeroes to retain the original aspect

ratio and scaled to match the input image. Overlaps between instances are checked in

the order of confidence and the overlapping instances with lower scores are discarded

if the overlap is higher than a given threshold. Simultaneously, semantic logits inside

each instance bounding box are extracted from the semantic segmentation head’s output.
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Figure 3.6. The panoptic fusion module of EfficientPS. [115] Object instances are fused
with semantic segmentation data and pasted to a blank canvas, after which the rest is
filled with semantic segmentation results.

Since the masks need to be the same size as the input image, the logits are set zero

outside the area given by the bounding box. The logits from the two heads are then fused

pairwise by

FL = (σ(MLA) + σ(MLB))⊙ (MLA +MLB), (3.5)

where FL are the fused logits, MLA instance mask logits and MLB their corresponding

semantic mask logits. The element-wise sigmoid function of M is defined as σ(M), while

⊙ is the Hadamard – i.e. element-wise – matrix product. Argmax operation along the

class dimension is used to get the intermediate instance prediction. Finally, the instance

class predictions are copied to a mask template filled with void labels from the intermedi-

ate prediction and the rest of the template is completed with information from the semantic

mask, ignoring areas smaller than a certain minimum threshold. This approach is shown

to be significantly more accurate with respect to the Panoptic Quality metric (2.15) than

simply pasting instances over semantic information.
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4 SYSTEM DESIGN AND PERFORMANCE EVALUATION

In this chapter, the structure of the reconstruction system and related key design choices

are described. The system is also evaluated quantitatively to justify the choices and to

ensure it performs as intended. The objective is to design a baseline for future research,

therefore the system needs to be flexible and easily extendable. It is designed specifically

to be used with a handheld camera rig introduced below, but a wide range of sensors

should be supported nevertheless to enable testing of different setups and applications

as needed. Producing a ground-truth comparison for the whole end-to-end system would

not be practical – since it would require the design and implementation of another system

altogether – therefore quantitative evaluation of the system as a whole is considered out of

scope for this thesis. Instead, individual components critical to the system’s performance

are evaluated separately. The end-to-end results are analysed qualitatively in Chapter 5.

Metric consistency of a reconstruction is mostly dependent on localisation accuracy. Fur-

thermore, topological consistency mostly depends on how accurately the SLAM algorithm

can detect loop closures. Therefore, the most critical components in that regard are mo-

tion estimation – in this work, a device performing visual-inertial odometry introduced

next – and the SLAM algorithm. Since the ground truth for testing these methods has

not been generated, they are evaluated by reviewing results from other works. While

there are many benchmark datasets available for offline evaluation of SLAM algorithms,

RTAB-Map has already been extensively evaluated with multiple such datasets. There-

fore, results already reported by its authors are referred instead and compared to similar

studies of other SLAM algorithms to avoid excessive work. The level of detail in maps is

also affected by the quality of depth images, but they cannot be easily evaluated quanti-

tatively. Therefore, the evaluation of the level of detail in the reconstructions is also left to

the qualitative analysis of the next chapter.

EfficientPS’s performance is first evaluated by comparing the results reported by its au-

thors on the Cityscapes dataset [137] to other top performing works. Since there are no

publicly available EfficientPS models that are trained with a dataset relevant to indoor re-

construction, the model is also trained and evaluated with the ScanNet [147] dataset. Be-

cause ground-truth poses and depth images are also provided with ScanNet – along with

ground-truth labels for both individual views and reconstructed scenes – segmentation

performance can be evaluated both in 2D and 3D separate from the mapping approach.
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Figure 4.1. The camera system used for indoor reconstruction. From top to bottom: Intel
Realsense D435i RGB-D camera, Intel Realsense T265 tracking camera, Microsoft Azure
Kinect RGB-D camera.

The rest of this chapter continues as follows. The first section presents the hardware used

in a practical application of this system, while the second section introduces the overall

structure and important design choices. Odometry performance is evaluated Section 4.3,

after which RTAB-Map is evaluated in Section 4.4. Finally, the accuracy of EfficientPS’s

segmentation is evaluated in Section 4.5.

4.1 Hardware

Figure 4.1 presents the camera setup used in the practical applications presented in this

thesis. Three different RGB-D cameras are available, two of which are present in the

image: Intel Realsense D435i [148] and Microsoft Azure Kinect [149]. The third camera

is the Intel Realsense D455 [150], which is a newer version of D435i with a wider stereo

baseline. When connected to a laptop, the handheld camera rig can be used as a portable

3D reconstruction device.

The Intel Realsense T265 tracking camera [151] – the middle one in Figure 4.1 – is

employed as an external odometry device for RTAB-Map algorithm. Its stereo camera,

wide field of view and inertial sensor help provide a robust local track. However, since

the underlying SLAM algorithm only maintains a small local map, it cannot close larger

loops and thus is not suitable for large-scale mapping by itself. Because of its dedicated

hardware, VIO is computed on the camera itself, which reduces computational load on

the host system. The camera’s internal loop closure is turned off to not interfere with
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RTAB-Map. Research on the performance of the T265 tracking camera is reviewed in

Section 4.3 to justify its usage in lieu of other options.

The camera rig is mostly limited to indoor use-cases because of the cameras’ limited

range of depth perception. However, because the cameras capture images at a high

resolution, detailed three-dimensional reconstructions can be created when longer ranges

are not required. Because of the inertial sensor of T265, the local track is not immediately

lost even if there are not enough visual features in the effective range of the camera, but

the RGB-D cameras’ depth perception is limited to only a few meters.

4.2 Design choices and general structure

A flow diagram of the system is presented in Figure 4.2. As declared in 2.1.3, for the map

to be applicable in real-world use-cases, the scale of the environment has to be captured.

On the other hand, colour images are required for panoptic segmentation. Therefore,

the minimal required inputs are colour- and depth images. Odometry is provided as an

additional input, although it could be inferred from the sequences of colour- and depth

images as well. Depth can either be given as an already processed range image or com-

puted from stereo images. If stereo cameras are used, the image of the left camera is

chosen for colour input. Depth images are aligned with colour, after which both images

and possible odometry messages are synchronised according to their timestamps. Cor-

responding to each map node generated by SLAM, the views – including colour, depth

and pose – are saved to a database with a unique id and a timestamp. The individual

views can then afterwards be retrieved from the database in chronological order, seg-

mented and reconstructed to the desired representation. This design separates sensors,

SLAM, segmentation and reconstruction into separate modules, which allows different

implementations of single modules to be tested without the need to modify others. RTAB-

Map is employed as the visual SLAM approach in the applications of this thesis, while

EfficientPS is the preferred segmentation model. Offline reconstruction is performed with

tools provided in the RTAB-Map library.

Robot Operating System (ROS) [152] is chosen as middleware, since it is specifically

designed for prototyping robotics and machine perception. With ROS, each individual

task can be separated into its own topic, making them interchangeable with other topics,

given their interface is the same. The communication interface between ROS topics is

highly efficient and flexible. The manufacturers of the cameras introduced in the previous

section – as well as most other manufacturers of robotics hardware – provide ROS drivers,

which transform the images and tracking camera’s output to ROS messages. Basic tools

for robotics and machine vision are also provided with the library, and many widely used

open-source third-party tools are available as well. Each individual module is separated

into their own Docker [153] container, which reduces dependency issues and allows each
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Figure 4.2. Block diagram of the end-to-end system. Individual views – including colour
images, depth and pose – are captured online, after which they are segmented offline
and reconstructed to a dense 3D metric-semantic reconstruction.

of them to be developed separately in their own environment.

Because the SLAM algorithm has to maintain a global map to keep the path globally con-

sistent, online global optimisation is not possible with large maps. However – since a

graph-based approach has been chosen – the map can be optimised offline preceding

reconstruction. Given enough computational resources are available, both segmentation

and reconstruction could be performed online as well if a globally optimised reconstruc-

tion is not necessary. While real-time reconstruction is not needed for the use-cases in

this thesis, the option of online segmentation and reconstruction is still provided for the

purposes of successive research. Segmentation could be performed every time a node is

generated and – if a sequential reconstruction method is used – the views could be fused

together as well. Distributed computing could provide enough computational resources

for the system to operate in real time. If end-to-end real-time operation would be required,

the system would be fairly straightforward to separate to different machines because of

its implementation in ROS and Docker.

4.3 Odometry performance

In [44], the Intel Realsense T265 tracking camera and ORB-SLAM2 [17] are evaluated

from a person tracking standpoint, while in [45], they are compared – in addition to the

ZED Mini [154] stereo camera – in a mobile robotics use-case. In the former case, the

ground truth is acquired with a VICON [155] motion capture system, while in the latter they

are compared against a similar OptiTrack [156] system. Both conclude that the Realsense

camera is the best choice for their use case.

In [44], the performance of T265 and ORB-SLAM2 in both localisation and pose tracking

are found to be almost equivalent, but the T265 is deemed more reliable by the authors

because of its higher framerate and its noise distribution being closer to Gaussian. On the

other hand, in [45] ORB-SLAM2 localisation is found to be clearly inferior to both T265 and
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ZED cameras, which both had similar accuracies over all test sequences. This difference

is the result of large computational load of the odometry approach of ORB-SLAM2 on

the host system: while the authors of [44] were able to run the algorithm in a stereo

setup with an average output rate of 20 Hz, in [45] it could only be run in monocular

configuration with an average rate of 5.5 Hz because of hardware restrictions in the

mobile robot platform. Additionally, the T265 and ZED cameras fuse IMU readings with

the visual data, while ORB-SLAM2 used purely visual data, rendering it less robust when

there are fewer visual features available or there are moving objects in the environment.

Notably, because the T265 runs its SLAM algorithm on-board with dedicated hardware,

it does not require computation on the host system and has less delay between mea-

surements and pose estimation. In [45], the T265 could be connected directly to the

robots Raspberry Pi board, while the ZED camera and ORB-SLAM2 required an addi-

tional Nvidia Jetson TX2 board, because in their case computation had to be performed

on the host computer. Moreover, ORB-SLAM2 had to be run on monocular images, since

stereo setup resulted in too low framerate to operate in real time. The T265 is capa-

ble of maintaining a stable rate of 200 Hz, while ZED averaged at around 20 Hz and

ORB-SLAM2 at 5.5 Hz. Performing the computations onboard with dedicated hardware

is clearly preferable to computing on the host system, at least when computational re-

sources are scarce and real-time positioning is required.

Based on the results referred above, the Realsense T265 -camera seems to be a good

choice for odometry. However, it is mostly intended for indoor use-cases, thus the odom-

etry method might need to be updated if the system is applied to an outdoors scenario.

Since the odometry of T265 is computed entirely on its own dedicated hardware, the

computational requirements for the host machine are significantly lower, which is advan-

tageous especially for handheld operation.

4.4 SLAM performance

RTAB-Map’s performance in different configurations on the EuRoC MAV dataset [157]

is reported in [16]. The dataset is a popular benchmark for visual SLAM systems, thus

RTAB-Map’s performance can be evaluated against many other similar approaches. It

contains stereo images and IMU measurements collected with a Micro Aerial Vehicle and

ground-truth trajectories estimated within one millimeter precision. It contains three dis-

tinct datasets: Vicon Room 1 and 2 (V1 and V2) both contain three sequences collected in

a room with a VICON motion capture system with different obstacle configurations, while

The Machine Hall (MH) dataset has five sequences collected in a machine hall at ETH

Zurich. The ground truth poses in Vicon Room sequences have six degrees of freedom,

while the ones in Machine Hall sequences have only their 3D position captured with a

Leica MS50 laser scanner. The sequences of each set are ordered by increasing diffi-
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Table 4.1. SLAM accuracy comparison on the EuRoC MAV dataset. Comparison metric
is Absolute Trajectory Error (ATE) in centimeters in relation to ground-truth estimate. The
results are combined from [16] and [158].

EuRoC V1 EuRoC V2 EuRoC MH

Method 01 02 03 01 02 03 01 02 03 04 05 µ 1

ORB2 3.5 2.0 4.8 3.7 3.5 - 3.5 1.8 2.8 12 6.0 4.36

ORB3 3.5 2.1 4.9 3.2 2.7 36 2.5 2.2 2.7 8.9 5.8 3.85

ORB3 + IMU 3.7 1.4 2.3 3.7 1.4 2.9 3.7 3.1 2.6 5.9 8.6 3.64

Kimera 5.0 11 12 7.0 10 19 8.0 9.0 11 15 24 11.2

ORB2-RTAB 7.8 2.4 18 11 5.5 - 1.8 1.5 2.6 11 5.3 5.69
1 Mean error, sequence V2_03 is excluded for fair comparison.

culty: in MH_01 the drone moves slowly and lighting is bright, while in later sequences

the drones move faster and the lighting is darker, for example. An accurate point cloud

reconstruction of the Vicon Room is also provided in both V1 and V2.

Of all visual SLAM approaches, ORB-SLAM2 [17] is perhaps the closest to RTAB-Map in

its implementation. Furthermore, ORB-SLAM3 [158] improves upon ORB-SLAM2 with a

more sophisticated loop closure mechanism and IMU fusion. They are also among the

top performers on the EuRoC MAV dataset, and thus a good reference for RTAB-Map’s

performance. Kimera [159] is a metric-semantic reconstruction system quite similar to

the one designed in this thesis. It similarly performs visual-inertial odometry and loop-

closures based on graph optimisation, but its segmentation is performed online. Since it

has been tested on EuRoC MAV in the above paper as well, it is added to the comparison.

In [16], RTAB-Map is reported to have the best performance when utilising the visual

odometry of ORB-SLAM2 as an odometry input for RTAB-Map. This configuration is

also interesting in the sense that odometry is the same as in the full ORB-SLAM2, thus

differences between the two should only result from the differences outside the odometry

approach, which in our case is evaluated separately. Therefore, the performance of RTAB-

Map is reported with the ORB-SLAM2 odometry configuration.

The Absolute Trajectory Errors (ATE) [160] of the SLAM systems on the EuRoC MAV

dataset are listed in Table 4.1. ORB-SLAM3 with IMU fusion is clearly the most accurate

of the algorithms tested, with both the lowest mean error as well as most top accuracies

in the sequences. Surprisingly, ORB-SLAM2 isn’t that far behind ORB-SLAM3 – when no

IMU readings are used – and in some cases even surpasses the newer method. RTAB-

Map seems to be less accurate compared to the two in Vicon Room sequences but wins in

most of the Machine Hall sets. Since Machine Hall ground truth only has the 3D position

of the drone while Vicon Room has the full 6-DOF pose, it seems that RTAB-Map is

quite good at tracking the location of the camera, but orientation tracking might be slightly

worse. Its performance is still quite good compared to Kimera, which for some reason
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performs relatively poorly even with IMU fusion.

The last sequence of V2 seems to be quite hard for visual odometry: the methods with

ORB2 odometry get lost and cannot finish the sequence, while ORB3 also has much

larger errors compared to its results on other sequences. On the other hand, IMU fusion

seems to help with the sequence a lot. This is the only occurrence where Kimera wins

all the purely visual approaches, while in the case of ORB3 with IMU there isn’t much

difference to the rest of the sequences. This supports the claim that IMU fusion makes

visual odometry more robust. The test sequence in question has dynamic objects, fast

movements and motion blur, which can cause problems for VO, while inertial sensors are

less sensitive to such phenomena.

Based on the results presented above, RTAB-Map is a solid choice for a baseline SLAM

algorithm, at least when external odometry is provided. It provides quite good perfor-

mance – which is in line with other modern approaches – and is also highly scalable and

flexible as mentioned in Section 3.1. The advantages of using both visual and inertial

sensors are evident in the test results as well. If more accurate mapping is required,

the update of loop-closure method or bundle adjustment – for instance to ORB-SLAM3 –

would most likely gain most results.

4.5 Segmentation performance

Table 4.2 presents a comparison of results reported in the original EfficientPS work

[115] and other top-performing panoptic segmentation methods on the Cityscapes [137]

dataset. The set consists of annotated video frames captured from a moving vehicle in

50 different cities. The training set contains 3475 images with detailed annotations, called

the Cityscapes fine dataset, and 20000 images with coarser annotations. Every model in

the comparison is trained with the fine training set. Some models are also pre-trained with

additional data, in which case the dataset in question is also mentioned in the table. The

models are evaluated on a test set with a hidden ground-truth – comprising 1525 images

– by uploading predictions to an evaluation server. Panoptic annotations in both train

and test sets contain 11 stuff classes and 8 thing classes. Inference speed can not be

evaluated accurately without running all the models on the exact same hardware setup,

thus the efficiency of each model is estimated by the number of trainable parameters and

floating-point operations (FLOPs) performed on each forward pass.

EfficientPS outperforms all the other top-performing proposal-based models – SSAP

[118], TASCNet [116] and Seamless [114] – in the comparison, as well as Panoptic

Deeplab [117], the most accurate proposal-free method as of the end of 2020. However,

Panoptic Deeplab seems to be significantly more accurate in predicting thing classes. In

[161] – submitted in January of 2021 – the Panoptic Deeplab [117] model was extended

with scalable wide residual network backbones [162]. The newly submitted results are the
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Table 4.2. Panoptic segmentation performance comparison on the Cityscapes test set.

PQ (%)1 SQ RQ Param.2 FLOPs2

Model PT3 St Th All (%) (%) (M) (B)

SSAP [118] - 66.5 48.4 58.9 82.4 70.6 - -

TASCNet [116] CO 66.0 53.4 60.7 81.0 73.8 51.43 514.00

Seamless [114] MV 67.5 56.0 62.6 82.1 75.3 51.43 514.00

Panoptic-Deeplab [117] - 52.1 69.7 62.3 82.4 74.8 46.73 547.49

Panoptic-Deeplab [117] MV 58.8 72.0 67.0 83.5 78.8 46.73 547.49

P-DL+SWideRNet [161] - - - 60.8 - - 37.19 576.83

P-DL+SWideRNet [161] - - - 61.8 - - 77.97 1199.85

P-DL+SWideRNet [161] MV 72.8 60.9 67.8 83.8 80.2 >569.464 >1997.734

EfficientPS [115] - 60.4 56.7 64.1 82.6 76.8 40.89 433.94

EfficientPS [115] MV 71.6 60.9 67.1 83.4 79.6 40.89 433.94
1 St and Th refers to mean PQ of stuff and things, All to the mean PQ of all classes.
2 Floating point operations in one forward pass of the network. Input image size is 1024× 2048.
3 Data used to pre-train the model before training on Cityscapes fine dataset.

CO: MS COCO [82], MV: Mapillary Vistas [138]
4 Not specified for applied model, lower limit is chosen based on closest model parameters.

most accurate of all Cityscapes submissions, but only when the backbone is scaled to in-

crease the model’s size over ten times the size of EfficientPS. Consequently, EfficientPS

is the second smallest models in terms of trainable parameters, as well as the fastest

when comparing the number of floating-point operations per input image. Pre-training a

model on a similar task seems to improve its performance significantly, probably because

the number of images in the Cityscapes fine training set is relatively small. On larger

datasets, the effect on accuracy would most likely be less significant, but the pre-trained

models would learn the task in question faster because of prior knowledge. [163]

It is not practical to evaluate the segmentation model on the actual use-cases of this thesis

since a large number of images would have to be annotated by hand and other models

would have to be trained on the set as well to get a reference to compare EfficientPS to.

Therefore, the ScanNet [147] dataset is used. It consists of video sequences containing

2.5 million RGB-D images with camera poses and ground-truth segmentations collected

in different indoor scenes. The ground truth of a test partition of the dataset is hidden to

assure fair evaluation. The results on the test set are evaluated by sending predictions

to an evaluation server hosted by the authors of the dataset. A subset of 25 thousand

images – frames sub-sampled from video sequences approximately every 100 frames –

are provided with ground truth for training image segmentation models. Training with the

intermediate frames most likely would not improve results much, since they are most often

really similar to ones already in the subset. There are only two stuff classes in the dataset

– wall and floor – which are relatively easy to segment. However, there are also 18 thing
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Table 4.3. Panoptic quality of individual classes on the ScanNet validation set.

w
all

floor

cabinet

bed

chair

sofa

table

door

w
indow

bookshelf

picture

counter

desk

curtain

refrigerator

show
ercurtain

toilet

sink

bathtub

other

PQ 58 74 24 29 17 38 35 22 39 4 34 21 25 24 33 48 53 31 53 44

SQ 79 84 74 75 67 82 72 70 75 76 82 64 70 75 77 80 81 66 82 78

RQ 73 88 32 39 25 47 49 31 51 6 41 33 35 33 43 60 65 47 64 56

Table 4.4. Average panoptic quality on ScanNet the validation set.

PQ SQ RQ #classes

Stuff 66.1 81.9 80.5 2

Things 31.8 74.8 42.0 18

All 35.3 75.5 45.9 20

classes related to objects that can be found from indoor environments, segmentation of

which is significantly harder.

The dataset is divided into scenes from which the sequences are captured. To get a

truthful estimate of the model’s performance on the test set – and to evaluate panoptic

quality – a subset of these scenes comprising roughly five percent of the 25 thousand

frames in of the training set is separated from training data and only used for validation of

trained models. From here on, the subset used for validation is denoted as the validation

set, while the rest of the 25 thousand images are called the training set. The test data

with hidden ground truth is called the test set.

Although the ScanNet dataset can be converted to a panoptic format for training, there

is no panoptic benchmark provided for test data. Therefore, the performance of panoptic

segmentation is only evaluated on the validation set and performance on the test set is

evaluated on semantic segmentation, both in 2D and 3D. To transform the segmentation

into the 3D evaluation format, scenes are reconstructed from individual segmented views

in addition to depth images and ground truth poses provided with the dataset. Because

the evaluation format requires vertices to be labelled in the original mesh provided with

the dataset, their labels are inferred from the reconstruction with an approximate nearest

neighbour search implemented with the Annoy [164] library. The label of the vertex is

determined by a majority vote over a number of nearest points in the reconstruction.

Table 4.3 presents panoptic quality on the validation set on each individual class, while

Table 4.4 provides a more concise summary of the results. Panoptic quality seems to be

on par with Cityscapes results on stuff classes, but considerably lower on thing classes.
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Table 4.5. Semantic segmentation performance on the ScanNet test set.

2D IoU1 3D IoU2

Model stuff things all stuff things all

ScanNet Baseline [147] 0.632 0.296 0.330 0.612 0.272 0.306

MSeg1080_RVC [165] 0.793 0.451 0.485 - - -

RFBNet [166] 0.869 0.561 0.592 - - -

SSMA [167] 0.837 0.548 0.577 - - -

AdaptNet++ [167] 0.814 0.469 0.503 - - -

MCA-Net [168] 0.837 0.569 0.595 - - -

PanopticFusion [123] - - - 0.709 0.509 0.529

OccuSeg [169] - - - 0.932 0.745 0.764

EfficientPS (ours) 0.785 0.440 0.475 0.623 0.394 0.417
1 Average intersection over union of images compared to 2D ground truth.
2 Average intersection over union of reconstruction compared to 3D ground truth.

Segmentation quality is quite uniform across the set of labels, but recognition quality is a

lot lower, which generates the difference in PQ.

There seems to be a lot of variance between different thing classes. There could be

many reasons for this, which are hard to determine explicitly because of the black-box

nature of neural networks. Some classes are undoubtedly easier to mix with one another:

for example, upon inspecting a confusion matrix on semantic segmentation results on

the validation set – provided in Appendix A due to its large size – the ’cabinet’ class

is often mistaken for ’bookshelf’ or ’door’, which is understandable since most cabinets

have doors and are also often really similar to bookshelves. Similarly, desks, tables and

counters can appear visually really similar, as well as shower curtains compared to other

curtains. The problem could also be amplified by the uneven distribution of classes. For

example, since there are much fewer shower curtains than regular ones in training data –

0.04% versus 0.7% of all labelled points according to [147] – the model could be biased

towards the latter, generating false-positive regular curtain detections and missing most

shower curtains. These mistakes are easy to make if the larger context is missed, e.g.

that the curtain in question is located in a bathroom. Based on these findings, these

effects are also investigated visually in the next chapter for further proof.

Table 4.5 presents a comparison of segmentation performance on the ScanNet test set.

The 3D baseline is generated with the volumetric CNN introduced in [170], which has

been projected to the original views to generate the 2D baseline. EfficientPS clearly out-

performs the baseline provided with the original paper in 2017, both in segmentation of

individual views and reconstructed 3D scenes. An HRNet trained with MSEG [165] –

MSeg1080_RVC; the only other model in the comparison trained with purely 2D visual

data – is a bit more accurate than EfficientPS. Its performance is quite remarkable con-
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sidering that it isn’t trained on ScanNet data. However, the HRNet in question is also

a significantly larger model: it contains 65.8 Million trainable parameters and requires

696.2 GFLOPs per image. [96] When running the models on ScanNet data, panoptic

segmentation with EfficientPS takes 0.22 seconds on average per image on an Nvidia

Tesla V100 graphics card, while HRNet segments one image in around 1.60 seconds on

the same exact hardware. Furthermore, the results on HRNet presented in this thesis are

generated by passing images through the model in multiple scales, which takes around

12 seconds per image. Also, since it is focused solely on the semantic segmentation task

it might learn it more effectively. The combination of datasets in MSEG also helps the

model to generalise better for multitude of tasks – as is demonstrated in the next chapter

– the downside being an extremely long training process.

RFBNet [166], SSMA [167], AdaptNet++ [167] and MCA-Net [168] are semantic segmen-

tation models that also utilise depth information in different ways. They are significantly

more accurate than the models not applying depth in addition to colour images. Panop-

ticFusion [123] – which was already introduced earlier in Section 2.2.4 – is a views-based

panoptic 3D segmentation approach with a sophisticated instance tracking method. It

also regularises reconstructed scenes with a fully connected CRF. Similar to the original

panoptic segmentation paper [72], it applies PSPNet [89] and Mask RCNN [107] sepa-

rately with a naive panoptic fusion for 2D segmentation. Therefore, superiority over Effi-

cientPS is most likely the result of the 3D tracking approach and regularisation. Occuseg

[169] – a volumetric map-based segmentation method – is currently the most accurate

method on the ScanNet semantic segmentation benchmark. Map-based methods seem

to perform much better than view-based segmentation when the point clouds are as ac-

curate as the ones in ScanNet data. However, with lower quality point clouds, view-based

methods could be more robust. If point clouds are deemed accurate enough, map-based

methods could also be considered to be used with the system in the future.
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5 APPLICATION IN PRACTICE

This Chapter presents results from practical applications of the system and analyses them

quantitatively. The purpose is to visually identify the causes to – and effects of – results

in the previous quantitative study, assess how well the system works as a whole and

evaluate it’s value in practical applications. Together with the qualitative evaluation of the

previous chapter, bottlenecks can be identified to find which parts of the system should

be improved for greatest performance gains.

First, the quality and level of detail of segmentation are assessed by visually inspecting

segmentation results on the ScanNet dataset with known camera poses. This way, lo-

calisation performance does not affect the results. Next, the system is evaluated on data

collected with our handheld camera rig on two indoor locations in university campus envi-

ronments. The localisation configuration remains the same in both cases: the Realsense

T265 tracking camera is applied for odometry and RTAB-Map is used for global position-

ing. However, different RGB-D cameras and segmentation approaches are tested. The

first dataset is collected with a Realsense D455 camera, while the second is captured

with an Azure Kinect.

In addition to the EfficientPS model trained on ScanNet data, an HRNet [96] model trained

with the MSEG [165] dataset is also applied to both cases. Models trained on MSEG tend

to generalise really well to many different tasks, thus it provides a good comparison for

the ability of the ScanNet-trained EfficientPS to generalise outside of training data. The

authors of MSEG have publicly provided HRNet models trained on the dataset, thus it is

chosen to avoid the additional work of training a model with MSEG, which – given the

size of the dataset – would take a really long time. Unfortunately, although the authors

have also announced a Panoptic FPN [112] model to be trained on MSEG data it has not

yet been published as of writing this thesis. Panoptic results are visualised as semantic

segmentation to avoid having to track instance ID’s – which is not necessary in the scope

of this thesis – and to compare them against the semantic segmentation of HRNet.

Each class in both datasets is associated with a unique colour for visualisation. Figure 5.1

lists colours associated with ScanNet evaluation classes. They are a subset of 20 classes

out of the 40 total in the dataset that are used for evaluating the hidden test set. The 2D

training data also only contains these classes, thus they are the ones that our EfficientPS
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0 : void
1 : wall
2 : floor
3 : cabinet
4 : bed
5 : chair

6 : sofa
7 : table
8 : door
9 : window
10 : bookshelf
11 : picture

12 : counter
14 : desk
16 : curtain
24 : refrigerator
28 : shower curtain
33 : toilet

34 : sink
36 : bathtub
39 : otherfurniture

Figure 5.1. Colours associated with ScanNet evaluation classes.

(a) Original 3D reconstruction (b) Ground-truth annotations

Figure 5.2. A scene from ScanNet training set.

model can predict. Due to the large number of classes in MSEG, their associated colours

are listed in appendix B. Also – because of the number of classes – some of the randomly

assigned MSEG colours are also quite close to each other in appearance, thus these

classes can sometimes be quite hard to differentiate visually. The class labels in MSEG

that match ScanNet evaluation classes have been associated with the same colours as

presented in Figure 5.1.

5.1 3D segmentation of the ScanNet Dataset

For the sake of brevity, only two ScanNet scenes are inspected in this section. Additional

examples are provided in Appendix C. Because ground truth annotations are only pro-

vided for the training set, a scene of training data is inspected first. Afterwards, a scene

from the test set is analysed to see the difference in performance on scenes the model

has not seen before. Figure 5.2 presents an overall view of the training set scene. The

mesh is the one provided with the dataset, and ground-truth labels are projected to it with

the official ScanNet toolset. The 3D ground-truth also contains other classes not present

in the evaluation set.

Figure 5.3 presents the EfficientPS segmentation projected to the mesh, while 5.4 simi-

larly shows segmentations from the HRNet trained with MSEG. In both cases, segmen-

tation quality seems quite good: stuff classes are segmented quite accurately, and most

things are labelled correctly. Naturally, some objects are also labelled wrong, and there
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Figure 5.3. The ScanNet training scene segmented with EfficientPS trained on ScanNet.

Figure 5.4. The ScanNet training scene segmented with HRNet trained on MSEG.

is some segmentation noise. As mentioned earlier, some classes are quite close to each

other, which is pretty apparent in these images: for example, tables and counters get

confused with one another often and some parts of cabinet doors are labelled as doors,

not cabinets. Like in all datasets captured in the real world, there are some erroneous

and confusing ground-truth annotations as well. For example, none of the pictures seen

on walls are annotated in ground truth, and the footstool next to the sofa – made of similar

cloth – is annotated as a table. Due to view-based segmentation, some labels are also

projected behind the segmented objects, if edges of the segmentation are spread outside
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(a) Original 3D reconstruction (b) Semantic segmentation with EfficienPS

(c) Semantic segmentation with HRNet (d) Semantic labels of panoptic segmentation

Figure 5.5. A scene from ScanNet test set.

the object in question. For example, chair labels are projected past the office chair – of

which only the base visible due to errors in reconstruction – into the desk in the right side

of Figure 5.3. HRNet seems to be able to generate more precise edges, thus the effect

is less apparent in Figure 5.4. The huge number of classes in MSEG clearly has both

benefits and downsides: many objects not found in ScanNet – like carpets and pillows –

are labelled, but on the other hand, segmentations are quite noisy in some cases and the

model confuses labels more often.

The quality of test scenes seems roughly similar to training scenes. Results on a scene

from ScanNet test set have been collected in Figure 5.5. There is a bit more confusion

of labels present in this scene, especially in the EfficicentPS’s semantic segmentation

head’s output. Even though instances cannot be tracked in 3D with the current sys-

tem, converting panoptic segmentation to semantic segmentation format helped in cases
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(a) Original view (b) Semantic segmentation with EfficientPS

(c) Semantic segmentation with HRNet (d) Semantic labels of panoptic segmentation

Figure 5.6. An individual view from the ScanNet test scene.

where segmentations were noisier. The noise in the semantic segmentation head’s out-

put is most likely because it does not predict a ’void’ label – a class where it could place

regions of the image it is unsure of. While the instance segmentation head generates a

single label for each object instance, the semantic head can generate multiple labels to

different areas of an object. Panoptic segmentation, however, seems to also place some

objects correctly predicted by the semantic segmentation head to the void class. There-

fore, the choice between the two is a trade-off between precision – the ability to filter out

false positives – and recall – the ability to find more true positives. The degree to which

false positives – and some true positives with them – are filtered can be adjusted with the

confidence threshold in the panoptic fusion module of EfficientPS. Thus using the panop-

tic output even in cases where only semantic labels are applied to the reconstruction

could be beneficial.

Figure 5.6 presents 2D results on a single view of the scene presented in Figure 5.5. The

segmentation quality of HRNet is significantly better: edges are a lot smoother and follow

outlines of objects more closely than in either of the EfficientPS outputs. As mentioned

earlier, labels outside of an object’s boundaries will be projected to areas behind them in

the reconstruction, thus HRNet’s segmentations are a lot cleaner in 3D as well. Also, al-
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though labelling in EfficientPS’s panoptic output is more coherent, its segmentation quality

seems to be worse than the semantic segmentation head’s.

5.2 Indoor reconstruction of campus environments

In this section, metric-semantic 3D reconstructions are generated from scratch with data

collected from two campus environments with two different RGB-D cameras. The first

dataset contains one floor of a campus building captured with the Realsense D455 cam-

era, while the second is a smaller set captured with Azure Kinect in a lobby of another

building. The Realsense T265 tracking camera is used in both cases for local motion

estimation and RTAB-Map is applied for global positioning. The areas are segmented

both with EfficientPS trained on ScanNet and HRNet trained on MSEG. Reconstruction

is performed with tools included in RTAB-Map. Similar to the earlier section, only a small

portion of the data can be reviewed, while more examples are provided in Appendix C.

Two-dimensional reconstructions of both environments are presented in Figure 5.7, while

Figure 5.8 presents a 3D view from the first dataset reconstructed from D455 images and

Figure 5.10 shows a view from the second dataset reconstructed from Kinect images.

The mesh generated from images captured with D455 is clearly less detailed than the

one generated from Kinect data: while individual objects are clearly recognisable and

fairly detailed in the latter, in the former most objects are unrecognisable without prior

knowledge of the location. The differences are also apparent in 2D: the reconstruction of

the first dataset is much noisier. The reason to the large difference in quality becomes

obvious when comparing depth images generated by the two sensors. Examples of both

cases are provided in Figure 5.9. Kinect is the clear winner in terms of depth quality:

objects boundaries are more well-defined, the image in general is less noisy and its post-

processing also seems to filter errors more effectively.

(a) A floor of a university building reconstructed
with Realsense D455

(b) An indoor scene reconstructed with Azure
Kinect

Figure 5.7. 2D Occupancy grids generated with the indoor reconstruction system. Black
pixels represent occupied space, while grey represents traversable areas.
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Figure 5.8. A three-dimensional view from a floor of a university building reconstructed
with Realsense D455. Top: reconstruction from original RGB-D images, middle: Effi-
cientPS segmentation, bottom: HRNet segmentation.
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(a) Realsense D455 (b) Azure Kinect

Figure 5.9. Comparison of depth image quality of cameras applied in indoor reconstruc-
tion. The further an object is from the camera, the lighter it appears. Black pixels are
sections filtered out by the cameras’ post-processing, e.g. because of noisy readings or
reflections.

Localisation is accurate enough to generate metrically consistent reconstructions of the

environment both in 2D and 3D. There are no large discontinuities in the examples, thus

they seem topologically consistent in both cases. Since every keyframe is placed ap-

proximately to its corresponding real-world coordinate, global positioning has to be quite

accurate. Metric quality seems to mostly be limited by the quality of depth images, al-

though small ripples can be seen in the mesh generated from Azure Kinect images in

Figure 5.10. These are most likely generated by small misalignments between images.

These effects become more severe the further away from camera objects are. When col-

lecting data with the Kinect camera, it was found necessary to limit the range of the depth

sensor to reduce geometrical errors caused by errors in camera pose.

Examples of 3D segmentations generated with both models are shown in Figures 5.8 and

5.10, while some 2D segmentations are shown in Figures 5.11 and 5.12. Although Effi-

cientPS performed quite well on the ScanNet dataset, it does less so on data outside the

dataset. Segmentation with the HRNet trained on the MSEG dataset seems to generalise

a lot better. This is to be expected, since MSEG has a lot more data from a larger range

of environments and image sources, while images in ScanNet are focused on a smaller

set of environments and all captured with the same camera model. HRNet segmentations

seem to be of similar quality to ScanNet results on most occasions.
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Figure 5.10. A lobby of of a university building reconstructed with Azure Kinect. Top:
reconstruction from original RGB-D images, middle: EfficientPS segmentation, bottom:
HRNet segmentation.
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EfficientPS seems to mix labels quite easily, and the edges of segmentations are often

spread far from actual objects. However, the reconstruction process seems to have a

regularising effect on these errors: because 3D reconstructions result from many frames

that often overlap, and most of the time segmentations are correct, the resulting 3D seg-

mentation is roughly correct, although quite noisy. The outputs of semantic segmentation

head alone were too noisy to extract any useful information, thus EfficientPS’s results

in this section are semantic labels from the panoptic output of the model, similar to Fig-

ures 5.5d and 5.6d. With some post-processing, useful information could still likely be

extracted from the reconstruction. For example, it would be possible to fit planes to points

labelled as floors and walls, and object labels could be averaged across a certain radius

around them to reduce noise. If object instances detected by the instance segmentation

head were tracked in 3D, it would also most likely reduce confusion similarly to Figure

5.6d. HRNet’s segmentations are also far from perfect, although some variance in ob-

ject colours is explained by the large number of classes in MSEG: for example, there are

six different classes for seats, which could easily be confused with one another, while

ScanNet only has two.

Reconstructions generated with either cameras could most likely be used for robot nav-

igation, although the ones produced from Kinect images could allow for more detailed

trajectory planning and navigation in tighter spaces. RTAB-Map computes local occu-

pancy grids in real time, thus obstacle avoidance does not need to rely on the global map,

which cannot be optimised online in large environments. Localisation could be utilised

in augmented reality applications, which could also employ semantic labels to generate

content or provide information about the environment. For example, virtual objects could

be placed on tables, and the application could help the user to find certain objects. If

object instances were to be tracked in 3D, they could also be replaced with more detailed

3D models for easier interaction and prettier visualisations.

Naturally, the system isn’t only limited to detecting floors, walls and furniture, although

with current hardware, large open spaces like factories or outdoors environments could

be hard to reconstruct. If annotated data is available, the segmentation model could be

trained for many different segmentation tasks. For instance, it could be used to remove

errors generated from dynamic objects – like people walking past the camera – by re-

moving points associated with them from the cloud. It could also be used to automatically

label certain important static objects to a reconstruction, like fire extinguishers, exit signs

or exits themselves. Real-time segmentation would extend the possible range of applica-

tions immensely: robots and AR devices could perform segmentation online, which would

allow them to compare their results to the reconstruction. This would also allow for more

robust localisation, as semantics could also be used in addition to spatial information.
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(a) EfficientPS panoptic segmentation (b) HRNet semantic segmentation

Figure 5.11. 2D segmentation of two views from the first dataset

(a) EfficientPS panoptic segmentation (b) HRNet semantic segmentation

Figure 5.12. 2D segmentation of two views from the second dataset
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6 POSSIBLE IMPROVEMENTS BASED ON RESULTS

The system seems to perform quite well already, but there is still a lot of room for improve-

ment. The baseline system could already be used in some basic indoor applications, at

least when mapping with Azure Kinect and HRNet. Some areas have already been stud-

ied in other works, while others could provide entirely new research topics. Based on

the results presented earlier, possible improvements and directions to take the research

further are discussed here from three perspectives. Improvements on hardware and lo-

calisation software are analysed first, after which the effects of training data on end results

are assessed. Finally, possible upgrades to segmentation models are discussed.

6.1 Hardware and localisation

Based on results presented in Section 4, global positioning could still be made a bit more

accurate by employing a more accurate loop-closure approach. In the previous chapter,

it was also mentioned that pose errors limited the range at which depth could be acquired

before severely affecting metric quality. From the results of Table 4.1 it seems that RTAB-

Map isn’t as good at tracking camera rotation as the ORB-SLAM variants, even if visual

odometry is the same in both systems. Thus an upgrade to the loop closure detection or

bundle adjustment could improve map quality. However, the effect of Realsense T265 on

pose accuracy compared to the one in RTAB-Map is still unclear. With the current range

limits in place, however, metric quality would likely be improved most with more accurate

depth images. If more accurate – and therefore heavier or more expensive – devices

are not available, depth completion methods [171] could also be applied to acquire more

consistent depth images, which could in turn also improve localisation.

Operation in larger open spaces or outdoor environments most likely would not be possi-

ble with hardware used in this thesis. A stereo camera with a wider baseline – or a LiDAR

– could be necessary for applications that require longer range. Although it is really ac-

curate in small indoor environments, the local tracking of T265 could be less accurate

in environments where visual features are further away, because of the narrow stereo

baseline. With larger distances, quality would also be more affected by errors in pose

estimates. However, mapping would most likely not be performed with handheld devices

in these scenarios, in which case camera movement could be much more predictable.
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6.2 Training data

Models that rely on learning their intended task from examples are only as good as the

data they are trained on. [172] Sophisticated model architectures and effective training

algorithms can reduce the required level of quality and amount of data, but the data is

still needed regardless. [173] If training data does not represent the application domain

well enough, even the most sophisticated segmentation models will fail. This fact can

be observed in the results of this thesis as well: although training on ScanNet data will

provide good results on that specific dataset, the model could fail to provide satisfactory

results on other tasks. The MSEG dataset has a larger variety of data that has been

collected from many different sources, thus models trained on it generalise to a wider

variety of tasks than ones trained on ScanNet. Even though the task and environments in

question are quite close to original ScanNet data, the model trained on MSEG performs

better than EfficientPS trained on ScanNet by a large margin.

The authors of MSEG have announced a panoptic version of their dataset, thus Effi-

cientPS could be trained on it when it is released. This would provide a fairer comparison

between the two models, and could enable EfficientPS to generalise as well as HRNet

does in this work. However, the large variety of labels in MSEG can cause problems as

well: on many occasions, objects are labelled to multiple similar classes. This could be

avoided by re-mapping some of the classes in the dataset based on the application. Some

classes can be considered out of context for the task at hand, thus they would be best to

ignore completely. For example, since the examples in this thesis is consider indoor re-

construction of campus buildings, many classes most often not found in the environment

– like ’road’, ’car’ or ’giraffe’ – could be mapped to ’void’ class, and some classes similar

to each other could be combined. For example, most applications would not likely need

to separate different kinds of seats from one another, thus the six different seat classes in

MSEG could be fused as one.

Beyond simply adding more data, the model can be fit better to a task by fine-tuning it

with task-specific data. If the model is pre-trained on a relevant larger dataset, the amount

of data required for fine-tuning gets lower. The method of pre-training on more general

data and fine-tuning to a more specific task is called transfer learning [174], and has been

proven to be a really effective way of training neural networks for specific tasks. For ex-

ample – as is seen in Table 4.2 – models pre-trained with other relevant data seem to

perform a lot better on Cityscapes than ones trained only on the relatively limited train-

ing set. The effect of pre-training on accuracy will, however, get smaller the larger the

fine-tuning dataset is. [163] If the system designed in this thesis was to be applied to a

specific task, best results would most likely be achieved by first pre-training a segmen-

tation model with MSEG, and then fine-tuning it with a small dataset captured from the

intended environment and purposefully annotated with its application in mind.
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6.3 Segmentation models

From the results of Table 4.2 it seems that proposal-free panoptic segmentation methods

could be more accurate on thing classes. A proposal free method would also potentially

be more efficient since the generation of proposals is a pretty complex task. On the

other hand, proposal-free panoptic fusion is computationally more demanding, although

the efficiency of such algorithms seems to be getting better. [118] Panoptic fusion in

proposal-free methods also does not generate bias to either things or stuff. It might be

beneficial to combine ideas introduced in EfficientPS [115] with proposal-free methods

like [118] and [117].

Since depth is often available in reconstruction tasks, it could be used to provide spatial

context to segmentation. As seen in the results of Table 4.5, utilising depth images in

segmentation increases accuracy significantly. The RGB-D segmentation methods pre-

sented in the table all adopt the popular approach of middle-fusion: two separate feature

extractors are trained for RGB and depth and their features are fused within the model.

This seems to be effective, but also leads to significantly larger models because of the

additional feature extractor. Augmenting convolution operations in the extractor with depth

data seems to provide similar results to middle-fusion methods without adding more pa-

rameters to the model [79], although the approach hasn’t been tested as much and hasn’t

seen much use. Another interesting idea is introduced in [175], where the scene is split

into regions of different scales based on range information.

In [123] it was shown that regularising the reconstructed 3D segmentation with a Con-

ditional Random Field – results of which are also presented in Table 4.5 – could also

improve segmentation quality. Although the model applied in the work by itself should

perform worse than EfficientPS, the approach has a lot higher accuracy on ScanNet test

data. The instance tracking method introduced in the same work would also enable the

use of panoptic segmentation in 3D.

Applications that require interaction with the environment could benefit from real-time

segmentation as well. Semantic information could also be useful in localisation. [59, 176,

177] The system itself would be easily modified to run all computation in real time, but

since the segmentation model requires quite a lot of computation, it most likely would

not meet real-time requirements in its current stage. However, a system capable of real-

time panoptic segmentation of videos was introduced in [127]. Moreover, unlike [127],

segmentation could only be performed to keyframes in the SLAM graph – which would re-

duce computational requirements if a high framerate isn’t really needed. A Bayesian filter

could also be applied to estimate tracks of detected objects between frames. Distributed

computing is also quite easy to set up with ROS, thus segmentation could also be done

on a separate machine if a fast enough wireless network connection is available.
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7 CONCLUSION

Metric-semantic 3D reconstruction with visual data was studied in this thesis – especially

in the context of indoor environments. Based on the theory and history of the research

field presented in the beginning of the work, a baseline system was designed. The system

was evaluated both quantitatively and qualitatively and applied in real-world scenarios.

Although there are many areas that could be improved, results are already quite promising

and the reconstructions produced by the system were already estimated to be accurate

enough for basic applications. Four research questions were posed in the beginning of

this thesis, answers to which will be summarised next. References to chapters with more

details are provided.

What are the basic building blocks of a metric-semantic reconstruction system? Firstly, to

acquire a map of a previously unknown environment, one needs a method for solving the

simultaneous localisation and mapping problem. In turn, a solution to SLAM contains at

least means for motion estimation and a loop closure method. Ways to perceive the envi-

ronment, as well as ways to process the information are also essential. SLAM methods in

the context of this thesis are covered in Section 2.1. There are many ways to capture se-

mantic meaning from the environment and incorporate it into the reconstruction, but from

the perspective of dense visual reconstruction, a method for processing RGB-D images

to a 3D representation is required, as well as either a method for segmenting images or

the reconstruction itself. This thesis focuses more on the view-based approach of scene

segmentation, methods to which are described in Section 2.2.

How to choose the best options for practical applications? Regarding SLAM, the first

choice is between filtering methods and approaches based on nonlinear graph optimi-

sation. Graph-based methods are the most popular solution to full SLAM – since they

scale really well – while filtering methods can be advantageous in motion estimation be-

cause of their low drift. Motion estimation in visual SLAM is usually performed with visual

odometry. However, sensor fusion with proprioceptive sensors should also be applied

when available to increase robustness. Feature-based VO is usually the better choice

over direct methods because of its larger tolerance for changes in viewpoint and light-

ing. Image-to-image loop closure methods have been shown to scale really well, thus

they are the most common choice. For visual scene segmentation, the view-based ap-

proach is the safer choice over map-based methods – since it is not affected by camera
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misalignments as much – although with accurate enough reconstructions, a map-based

approach could potentially be more accurate and efficient. There are many approaches

to image segmentation, and the best choice depends on the application. If only semantic-

or instance segmentation is required, a method focused on either could be more efficient,

while panoptic segmentation can provide both. Both proposal-based and proposal-free

methods for instance- and panoptic segmentation have their advantages, thus no clear

winner can be found. However, because proposal-based methods have been studied

more and applied more frequently, they could be the safer choice right now. Choosing

the right training data is also crucial for learning models: one has to assess how well

the training data represents the intended task, and how well a model trained on it could

extrapolate in cases outside training examples. A large part of Chapter 2 is dedicated to

comparing different options, some of which are evaluated in Chapter 4.

What are the essential performance bottlenecks? While there are various aspects of

SLAM algorithms that still could be improved upon, the quality and applications of visual

metric mapping in this work seems to be mostly limited by the hardware. However – since

the choice of hardware is a trade-off between cost, weight and accuracy – it could not be

exactly considered a bottleneck. With good enough sensors, the most limiting factors in

SLAM would likely be graph optimisation in terms of computational cost, motion estima-

tion for local metric consistency and loop closure for topological consistency. However,

in the context of this work, the segmentation model is clearly the part limiting practical

applications the most. There is a lot to be improved upon regarding segmentation accu-

racy, and because of intense computational requirements, end-to-end real-time operation

is also quite hard to achieve. The systems performance is evaluated in Chapters 4 and 5.

To what possible directions could one take this research in the future? In general, the

most obvious research subjects are the ones improving upon existing work. Some im-

provements and changes to the system are discussed in Chapter 6. Ways to achieve

more synergy between individual parts could also be researched: topology and geometry

could improve semantics, and on the other hand, effective utilisation of semantic informa-

tion could result in both topologically and metrically more accurate maps and more robust

localisation. Apart from technology demonstrations, there haven’t been many practical

applications of machines using metric-semantic reconstructions, but – owing to huge in-

terest and fast advances in the field – we might also get to see more practical applications

in the near future. However, there are still many problems to solve – like safety considera-

tions and operation in dynamic environments – before the techniques could be applied to

real use-cases in areas like industry [178], autonomous driving [179, 180] or robot naviga-

tion [181, 182]. Many of these problems are also related to the black-box nature of deep

neural networks and how to render them more robust considering real-world applications.

[183] With advances in relevant research fields and emergence of new technologies, en-

tirely new kinds of applications and research subjects could arise in the future as well.
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A A CONFUSION MATRIX OF SCANNET RESULTS

Figure A.1. Confusion matrix of 3D evaluation on the ScanNet validation set. Rows rep-
resent class predictions, while columns present the ground-truth labels of mesh vertices.
True positives are represented by light green cells, while false positives for a class are
represented by red cells in its corresponding row. False negatives are found from the
red cells of the corresponding column. An empty cell means there are no predictions
matching the corresponding case. For instance, 10.63% of vertices labelled as ’table’ be-
longed actually to a ’desk’, 85.75% of ground-truth ’wall’ vertices were labelled correctly,
and 10.00% of predicted ’floor’ vertices actually belonged to the ’wall’ class.
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B MSEG DATASET CLASSES

0 : backpack
1 : umbrella
2 : bag
3 : tie
4 : suitcase
5 : case
6 : bird
7 : cat
8 : dog
9 : horse
10 : sheep
11 : cow
12 : elephant
13 : bear
14 : zebra
15 : giraffe
16 : animal_other
17 : microwave
18 : radiator
19 : oven
20 : toaster
21 : storage_tank
22 : conveyor_belt
23 : sink
24 : refrigerator
25 : washer_dryer
26 : fan
27 : dishwasher
28 : toilet
29 : bathtub
30 : shower
31 : tunnel
32 : bridge
33 : pier_wharf
34 : tent
35 : building
36 : ceiling
37 : laptop
38 : keyboard
39 : mouse
40 : remote
41 : cell phone
42 : television
43 : floor
44 : stage
45 : banana
46 : apple
47 : sandwich
48 : orange

49 : broccoli
50 : carrot
51 : hot_dog
52 : pizza
53 : donut
54 : cake
55 : fruit_other
56 : food_other
57 : chair_other
58 : armchair
59 : swivel_chair
60 : stool
61 : seat
62 : couch
63 : trash_can
64 : potted_plant
65 : nightstand
66 : bed
67 : table
68 : pool_table
69 : barrel
70 : desk
71 : ottoman
72 : wardrobe
73 : crib
74 : basket
75 : chest_of_drawers
76 : bookshelf
77 : counter_other
78 : bathroom_counter
79 : kitchen_island
80 : door
81 : light_other
82 : lamp
83 : sconce
84 : chandelier
85 : mirror
86 : whiteboard
87 : shelf
88 : stairs
89 : escalator
90 : cabinet
91 : fireplace
92 : stove
93 : arcade_machine
94 : gravel
95 : platform
96 : playingfield
97 : railroad

98 : road
99 : snow
100 : sidewalk_pavement
101 : runway
102 : terrain
103 : book
104 : box
105 : clock
106 : vase
107 : scissors
108 : plaything_other
109 : teddy_bear
110 : hair_dryer
111 : toothbrush
112 : painting
113 : poster
114 : bulletin_board
115 : bottle
116 : cup
117 : wine_glass
118 : knife
119 : fork
120 : spoon
121 : bowl
122 : tray
123 : range_hood
124 : plate
125 : person
126 : rider_other
127 : bicyclist
128 : motorcyclist
129 : paper
130 : streetlight
131 : road_barrier
132 : mailbox
133 : cctv_camera
134 : junction_box
135 : traffic_sign
136 : traffic_light
137 : fire_hydrant
138 : parking_meter
139 : bench
140 : bike_rack
141 : billboard
142 : sky
143 : pole
144 : fence
145 : railing_banister
146 : guard_rail

147 : mountain_hill
148 : rock
149 : frisbee
150 : skis
151 : snowboard
152 : sports_ball
153 : kite
154 : baseball_bat
155 : baseball_glove
156 : skateboard
157 : surfboard
158 : tennis_racket
159 : net
160 : base
161 : sculpture
162 : column
163 : fountain
164 : awning
165 : apparel
166 : banner
167 : flag
168 : blanket
169 : curtain_other
170 : shower_curtain
171 : pillow
172 : towel
173 : rug_floormat
174 : vegetation
175 : bicycle
176 : car
177 : autorickshaw
178 : motorcycle
179 : airplane
180 : bus
181 : train
182 : truck
183 : trailer
184 : boat_ship
185 : slow_wheeled_object
186 : river_lake
187 : sea
188 : water_other
189 : swimming_pool
190 : waterfall
191 : wall
192 : window
193 : window_blind
255 : void

Figure B.1. Colours associated with the MSEG dataset in this work. Void is defined as
anything not belonging to other classes.
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C MORE IMAGES FROM PRACTICAL APPLICATIONS

(a) Original 3D reconstruction (b) Ground truth labels

(c) Semantic segmentation with EfficienPS (d) Semantic segmentation with MSEG-HRNet

Figure C.1. Scene 0317_01 from ScanNet validation set.
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(a) Original 3D reconstruction (b) Ground truth labels

(c) Semantic segmentation with EfficienPS (d) Semantic segmentation with MSEG-HRNet

Figure C.2. Scene 0362_00 from ScanNet validation set.
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Figure C.3. Another three-dimensional view from the floor of a university building recon-
structed with Realsense D455. Top: reconstruction from original RGB-D images, middle:
EfficientPS segmentation, bottom: HRNet segmentation.
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Figure C.4. Another view from the lobby of a university building reconstructed with Azure
Kinect. Top: reconstruction from original RGB-D images, middle: EfficientPS segmenta-
tion, bottom: HRNet segmentation.
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(a) EfficientPS semantic segmentation (b) HRNet semantic segmentation

Figure C.5. More 2D comparisons on the ScanNet validation set.
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