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ABSTRACT

Matias Kanniainen: Relationship between QT and RR intervals in electrocardiogram
Bachelor of Science Thesis
Tampere University
Science and Engineering
May 2021

The electrical activity of the heart can be monitored with electrocardiography. An electrocar-
diogram is a graph of voltage as a function of time presenting the electrical activity in the heart
cells. From the electrocardiogram, it is possible to indentify the QT interval, which represents
the de- and repolarization of the heart ventricles, and the RR interval, which represents the time
between two subsequent heartbeats. It has been proved that between the two intervals there is
a relationship. There are several heart conditions related to the QT interval, for example the long
QT syndrome, which can even lead to death. The quantitative measurement of QT interval is im-
portant to be able to diagnose different QT-related conditions. Therefore the relationship between
QT and RR needs to be understood in detail.

In this thesis, the relationship between QT and RR is examined. The purpose of the thesis is to
prove the existence of the relationship, present the tools to remove the relationship and underline
the importance of measuring the QT interval precisely. Also, the physiology of the heart and fun-
damentals of the electrocardiography are discussed. The most common methods to remove the
relationship are Bazett’s, Fridericia’s, Hodges’ and Framingham’s QT correction methods. The
methods are however shown to be inefficient and universally incompetent computational sim-
plifications of a complex phenomenon. In the thesis, the methods are presented and they are
analyzed and visualized. The main objective of the QT correction methods is to remove the rela-
tionship between the QT and RR, and the success of the objective is analyzed in the thesis.

In the experimental part of the thesis, the relationship between QT and RR is examined with
several methods. Time series analysis is used to visually verify the relationship, and also the
dynamical behaviour of the intervals is analyzed. Polynomial fitting is applied to point clouds, and
the results are analyzed with respect to the relationship. Finally, the QT correction methods are
analyzed with the help of density plots, with which the behaviour of the QT correction methods
can be visualized clearly. The effects of the QT correction methods are shown on both healthy
and long QT syndrome subjects.

This thesis shows, both qualitatively and quantitatively, that the QT and RR intervals are in-
terdependent. The deficiencies of the different QT correction methods are demonstrated, and
especially the Bazett’s formula was shown to overcorrect QT values, often indicating abnormally
long QT values for a healthy subject. Because of the unreliability of the conventional QT correc-
tion methods, a principle of a new QT correction method based on transfer entropy is presented
as a promising novel tool.

Keywords: electrocardiogram, QT correction, time series analysis, computational cardiology, trans-
fer entropy

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.
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TIIVISTELMÄ

Matias Kanniainen: QT- ja RR-intervallien välinen riippuvuus sydänsähkökäyrässä
Kandidaatintyö
Tampereen yliopisto
Teknis-luonnontieteellinen, TkK
Toukokuu 2021

Sydämen sähköistä toimintaa voidaan seurata elektrokardiografian avulla. Sydänsähkökäyrä
on sydänsolujen potentiaalin muutoksen kuvaaja ajan funktiona. Sydänsähkökäyrästä on mah-
dollista tunnistaa QT-intervalli, joka kuvaa sydämen kammioiden de- ja repolarisaatiota, sekä RR-
intervalli, joka kuvaa peräkkäisten sydämenlyöntien välillä kulunutta aikaa. Näiden välillä on ha-
vaittu olevan riippuvuus, joka on osoitettu keskinäiseksi riippuvuudeksi. QT-intervalliin liittyy sy-
dänsairauksia, esimerkiksi pitkä QT -oireyhtymä (eng. Long QT syndrome), joka aiheuttaa pa-
himmillaan kuoleman. QT-intervallin eksakti mittaaminen on tärkeää sydänsairauksien diagnosoi-
miseksi, joten QT-intervallin ja RR-intervallin välinen keskinäinen riippuvuus on poistettava las-
kennallisin keinoin.

Tässä työssä käsitellään QT- ja RR-intervallien välistä riippuvuutta. Työn tarkoituksena on to-
dentaa riippuvuuden olemassaolo, esittää työkalut riippuvuuden poistoon ja korostaa QT-intervallin
mittaamisen tärkeyttä. Sydämen fysiologiaa sekä elektrokardiografian perusteita käsitellään li-
säksi pohjustuksena työlle. Yleisimmät menetelmät riippuvuuden poistoon, QT-korjaukseen, ovat
Bazettin, Friderician, Hodgesin ja Framinghamin kaavat. Kaavojen on useiden tutkimusten pe-
rusteella kuitenkin osoitettu olevan epäluotettavia ja universaalisti pätemättömiä laskennallisia
yksinkertaistuksia monimutkaisesta ilmiöstä. Työssä esitellään yllä mainitut kaavat ja niitä ana-
lysoidaan sekä visualisoidaan. QT-korjausmenetelmien ainoa tavoite on poistaa QT-intervallin ja
RR-intervallin välinen riippuvuus, minkä onnistumista työssä analysoidaan.

Työn kokeellisessa osassa QT-intervallin ja RR-intervallin välistä riippuvuutta tarkastellaan
useamman menetelmän avulla. Aikasarja-analyysin avulla riippuvuus todennetaan visuaalises-
ti, ja intervallien dynaamista käyttäytymistä analysoidaan. Myös pistepilviin sijoitettuja polyno-
misovitteita tarkastellaan, ja tuloksia analysoidaan. Lopuksi QT-korjausmenetelmiä mallinnetaan
tiheyskartoilla, joiden avulla QT-korjausmenetelmien toimintaa voidaan visualisoida hyvin. QT-
korjausmenetelmien vaikutusta havainnollistetaan sekä terveille että pitkä QT -syndroomaa sai-
rastaville koehenkilöille.

Tässä työssä osoitettiin, kvantitatiivisesti ja kvalitatiivisesti, että QT- ja RR-intervallit ovat kes-
kenään riippuvaisia. Erilaisten QT-korjausmenetelmien heikkoudet tulivat esiin, ja erityisesti Bazet-
tin kaavan todettiin olevan hyvin epätarkka terveen koehenkilön diagnosoimisessa. Perinteis-
ten QT-korjausmenetelmien epäluotettavuudesta johtuen uuden siirtoentropiaan perustuvan QT-
korjausmenetelmän periaate esiteltiin ja tarpeellisuus todettiin.

Avainsanat: sydänsähkökäyrä, QT-korjaus, aikasarja-analyysi, laskennallinen kardiologia, siirtoent-
ropia

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.
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1 INTRODUCTION

Electrocardiography is a fundamental tool in modern cardiology. It is often used alongside
other testing methods to diagnose and monitor different conditions of heart. An electro-
cardiogram (ECG) is a graph of voltage as a function of time presenting the electrical
activity of the heart. It produces important clinical information about the heart rate and
other mechanical and electrical activities present in different parts of the heart. Various
clinical conditions, such as high blood pressure and acute heart attack can also be diag-
nosed from the electrocardiogram. [1]

It is clinically important to make quantitative measurements of the different components
in the ECG. The ECG consists of five different waves and four different intervals that have
particular physiological relevance. The RR interval (RR) is a reciprocal of the heart rate
(HR), and it corresponds to the normal sinus rhythm of the heart. The QT interval (QT)
of the ECG represents the electrical activity of the heart’s ventricles, which play essential
role in blood circulation. Many clinical conditions, such as severe abnormal heart rhythms
(arrhythmias) are diagnosed based on the duration of the QT . [1] However, the length of
the QT is dependent on the HR and accordingly on the length of the RR [2]. Therefore,
to be able to make precise measurements of the QT independent of the HR, the depen-
dency must be removed or at least reduced. Several formulas have been proposed to
remove the dependency, but they are often criticised for their simplicity and lack of uni-
versal ability to present the relationship between QT and RR [3].

In this thesis, the relationship between QT and RR is examined. The different formu-
las to remove the dependency are presented and analyzed. The clinical importance of
precise QT correction is emphasized, and different conditions involving QT abnormalities
are presented. Also a principle of a new transfer entropy -based QT correction method is
introduced as a possible solution to effectively remove the QT-RR relationship.

In Ch. 2 the heart physiology is presented, necessary physiological phenomena behind
electrical activity of the heart are described and an ECG is analyzed in more detail. In
Ch. 3 the practices of ECG measurements are described, and the different methods for
removing QT-RR dependency are examined in more detail. Chapter 4 is the experimen-
tal part of the thesis, and the relations between QT and RR are examined. The different
methods are visualized and analyzed, and the methods are compared. Finally, in Ch. 5
the results are discussed and the needs for new QT correction methods are highlighted.
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2 HEART PHYSIOLOGY

The human heart is a muscular organ which has four chambers. The right side of the
heart consists of the right atrium and ventricle, the right atrioventricular valve, and the
pulmonary valve. Respectively, the left side of the heart consists of the left atrium and
ventricle, the mitral valve, and the aortic valve. [4] The simplified anatomy of the heart is
displayed in Fig 2.1.

Figure 2.1. Simplified anatomy of the heart [5].

The heart is responsible of the blood circulation in the body. The right side of the heart
pumps blood to the pulmonary circulation, while the left side pumps blood to the systemic
circulation [4]. The pulmonary circulation takes care of the oxygenation of the blood, and
the systemic circulation carries the oxygenated blood to the rest of the body. In addition,
the systemic circulation is responsible for delivering hormones and nutrients to the tissues
and transporting the waste products away from the tissues [6, pp. 113–126].
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2.1 Electrical conduction system of the heart

The heart pumps blood by rhythmic contraction controlled by the electrical conduction
system of the heart. The cardiac action potential causes the heart cells to contract, and
blood is pumped rhythmically throughout the body. Also, the cells in the ventricles con-
tract almost simultaneously, which generates the most effective pressure in the ventricular
chambers, leading blood to effectively enter the circulatory system [7, pp. 141-172].

Most of the cells in the human body have electrically polarized membranes. There is
a potential difference between the inside and the outside of the membrane, which is
caused by electrically charged ions, such as Na+, K+, Ca2+, and Cl− [7, pp. 141–172].
Some cells, such as heart cells, can use the membrane potential for signaling purposes.
Such signals in the cells are brief electrical impulses, which are called action potentials
[6, pp. 127–133]. When an action potential occurs, the depolarization of the cell mem-
brane takes place and the Na+-ions flood inside the cell [7, pp. 141–172]. Respectively,
a process called repolarization occurs as the ions are moved back to the cellular equilib-
rium.

The action potential required for electrical conduction is achieved through a specialized
muscle tissue in the heart itself [7, pp. 141–172]. The electrical conduction system
starts at the sinoatrial node, which is in the right atrium [4]. There a contraction signal is
generated and the signal travels through the internodal pathways to the atrioventricular
node (A–V node), while stimulating the right atrium to contract. [8, pp. 159–161] The left
atrium contracts when the signal spreads through the Bachmann bundle. The A-V node
delays the signal after the contraction of the atria and transmits the signal to the bundle
of His. After leaving the bundle of His, the signal travels to both left and right side of the
heart through the Purkinje fibres, and the ventricular depolarization spreads contracting
the ventricles. [8, p. 161]

2.2 Electrocardiography

In electrocardiography, an ECG is produced by recording the electrical conduction of the
heart. The ECG is determined by measuring the small electrical changes in the heart
cells, since the electrical changes are a result of the de- and repolarization of the cardiac
muscle [4]. The signals of de- and repolarization of the cardiac cells are collected in each
heartbeat and they form the ECG as a voltage curve, i.e. voltage as a function of time.
The ECG is often measured with 12 leads [9, p. 55]. The clinical measurement procedure
is described in more detail in the Ch. 3. A normal pattern of an ECG is shown in Fig. 2.2.
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Figure 2.2. Electrocardiogram representing the voltage of de- and repolarization in the
heart cells as a function of time [10]. The same pattern repeats periodically over time.

The ECG consists of three different main components: P wave, QRS complex and T
wave. These components are described in more detail in Secs. 2.2.1 – 2.2.2.

2.2.1 P wave and T wave

The first part of the ECG is the P wave, which arises from the depolarization of the atria.
The P wave is sometimes divided into two parts, where the first part expresses the de-
polarization of the right atrium, and the second part expresses the depolarization of the
left atrium. The P wave is usually about 100 ms long, which is the normal time of atrial
depolarization. [1]

The T wave is the final component of an ECG, and it represents the ventricular repo-
larization. The T wave follows the direction of the QRS complex, meaning that when the
QRS complex is positive on the graph, the T wave is also positive [11, p. 40]. Sometimes
an extra wave called the U wave, can follow the T wave. The origin of the U wave is still
unknown [1]. Because the repolarization is a slower event compared to the depolariza-
tion, the duration of the T wave is longer than that of the P wave, around 160 ms. It is
noteworthy, that the repolarization of the atria is not visible, since it is overwhelmed by
the QRS complex [4].

2.2.2 QRS complex and RR interval

The QRS complex represents the depolarization of the ventricles. The depolarization oc-
curs rapidly, and the duration of the complex is only 60 – 100 ms [1]. It can be divided
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into three components: Q wave, R wave and S wave. The Q wave represents the depo-
larization of the wall between the vetricles. The R wave captures most of the ventricular
depolarization, and finally the S wave represents the depolarization of the Purkinje fibres.
[9, pp. 36–39]

Sometimes it is possible that not all of the waves of the QRS complex are visible on
the ECG [11, pp. 12–13]. The QRS complex can vary considerably between different
ECG graphs, for example, some of the waves could be significantly smaller than others.
In that case, the waves are denoted with small characters q, r and s. [1] Often any com-
bination of the three waves is registered as a QRS complex.

The R wave has a very high voltage because of the thickness of the ventricular mus-
cular walls. Therefore, the R wave is also the most recognizable component of the ECG,
and it is used in the heart rate detection. The interval between two adjacent R peaks is
called an RR interval and its inverse corresponds to the heart rate (HR). [11, pp. 9–13]
In other words, the HR is a reciprocal of the RR interval, and it is often presented as
beats per minute (bpm). The HR varies throughout the day depending on the activity
and stress, as the human circadian rhythm also affects the heart rate. The normal heart
rhythm, called sinus rhythm, is between 60 – 100 bpm. [9, p. 27]

The heart rate variability (HRV) can be analyzed based on the properties of the RR in-
terval time series. There are different time series analysis methods such as detrended
fluctuation analysis (DFA) [12] and its variants [13, 14]). The RR time series can also be
examined with other methods, such as time-domain methods, frequency-domain meth-
ods and geometrical methods [15]. The QT-RR relationship can be studied with, e.g.,
dynamical cross-correlation and transfer entropy [16] discussed above. [17, 18] The vari-
ations in the RR intervals have particular scaling properties that have been widely studied
(see, e.g. Ref [19]). In essence, the RR variations for a healthy person resemble the so
called pink noise, or flicker noise, which is often called as fractal. This long-range corre-
lated behavior also corresponds to the 1/f noise in the frequency space. [12, p. 75] The
detailed scaling properties of the RR variations can be determined by, e.g., DFA and its
variants.

HRV can be used in determining various physiological conditions, such as sleep cycles,
stress, and depression [20, pp. 185–189, 469–475]. HRV mirrors imbalances within the
autonomous nerve system and can be thought of a parameter of complex interaction be-
tween the brain and the cardiovascular system. The HRV measurement is becoming a
relevant tool for clinical purposes, even though its main applications are still in recreational
consumer markets. [21]
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2.3 QT Interval

The QT interval is a clinically important part of the ECG, and it is displayed in the bottom
part of Fig. 2.2. The QT interval includes the de- and repolarization of the ventricles, and
it starts from the beginning of the QRS complex and lasts up to the end of the T wave.
The normal duration of the QT is 360 – 400 ms. Female subjects have often longer QT
intervals than the male ones. Also, the QT interval length increases with the age. [22] The
importance of the QT interval is fundamental in determining different clinical conditions.
For example, severe arrhythmias and ventricular tachycardia are caused by abnormal QT
interval prolongation, and they can lead to sudden death [23]. Besides the RR interval,
the QT interval is also a well distinguishable component of the ECG. Therefore, a lot of
important information can be determined in qualitatively measuring the QT interval.

The QT intervals are influenced by the RR intervals. Therefore the RR intervals must
also be taken in account in the QT interval analysis. When the heart rate increases, the
QT shortens, and respectively the other way around. It is often desirable to compare QT
intervals regardless of the HR in the time of the measurement, so the QT-RR dependency
must be corrected. When the QT correction methods are applied to the measured QT
intervals, the dependency on the RR intervals is reduced. These QT values are regarded
as the corrected QT intervals (QTc). The QTc values can be then analyzed regardless of
the HR. [24] The uncorrected QT values are often referred as raw QT values.

Several QT correction methods have been introduced (see below). The methods are
often criticized, because they are not universally able to present the corrected relation-
ship between QT and RR, but instead overestimate the QTc in many cases [3]. The
different QT correction methods are presented and described in more detail in Sec. 3.4.

2.3.1 QT interval abnormalities

In some cases, the QTc can be either too long or too short [1]. If the QTc is abnormally
prolonged, the cause may be the long QT syndrome (LQTS), which is described in Sec.
2.3.2 in more detail. Respectively, if the QTc is too short, it may be due to the short QT
syndrome (SQTS). Both diseases may lead to abnormal heart rhythms which may lead
to death if untreated. A common type of arrhythmia caused by the prolongation of the QT
is torsades de pointes (TdP), which is often lethal. [9] Regarding the prevalence of the
QT interval abnormalities, Straus et al. conducted a study in 2006 investigating associa-
tions between the prolonged QTc and cardiovascular mortality [25]. The study shows that
two-thirds of sudden cardiac deaths are related to abnormal QTc interval prolongation in
patients aged 55 or older.

The SQTS is often diagnosed if QTc ≤ 320 ms. However, a unified diagnostic criteria
is still to be formalized [26]. The diagnosis of SQTS is complicated, and the presence of
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a short QT interval does not always indicate an increased arrhythmic risk [26]. Therefore,
the short QTc values should not always lead to a diagnosis of the SQTS.

There are also several commonly prescribed drugs, which can cause prolongation of
the corrected QT interval. Some antidepressants, such as imipramine and doxepin, as
well as some antiarrhythmic agents such as quinidine are studied to prolong the QTc, and
can lead to serious arrhythmia and even to death [27, 28]. Some antihistamines such as
astemizole and terfenadin are withdrawn from the US market, because they induce TdP
[23]. There are also some food ingredients which are shown to prolong the QT interval.
For example, grapefruit is reported to cause prolongation of the QTc [23, 29].

In drug development, the QT interval analysis is in a fundamental role, and it is a part
of the cardiotoxicology research in drug development protocols. As described previously,
some drugs may cause temporary QTc interval prolongation, hence leading to possible
death. It is therefore essential to address the effects of the drugs on the QT interval as
early as possible, in order to modify the clinical development process in time. [30, 31]

2.3.2 Long QT syndrome

The long QT syndrome (LQTS) is a genetic condition, where the repolarization of the
ventricles is delayed. The LQTS affects around 1 in 5000 people [32]. At worst, LQTS
can lead to potentially lethal dysrhythmia and TdP, and hence to seizures or even to a
sudden death, depending whether the heart rhythm either spontaneously reverts or is
defibrillated to normal rhythm [33].

Genetically, the LQTS is thought to be a collection of different mutations in cardiac
potassium- and sodium-channel genes [33]. The LQTS can be divided into subtypes
depending on which gene causes the LQTS. Genes KVLQT1 (LQT1), HERG (LQT2) and
SCN5A (LQT3) account for about 66% of the LQTS cases. In total, hundreds of muta-
tions in the genes have been discovered, and LQTS can be caused by mutations in some
other gene. [32] A study by Zareba et al. in 1998 [34], shows that the genotype of the
LQTS patient also influences the probability and lethality of cardiac events independently
of QTc. The results indicate that there is a significantly higher risk of cardiac event if the
patient is in the LQT1 or LQT2 group. On the other hand, the patients of the LQT3 group
are more likely to die from a cardiac event if it occurs. [34]

Sauer et al. have shown in a study from 2007 [35] that patients in the LQT1 group
have the most significant risk of cardiac event compared to the other LQTS patients. The
study also suggests that beta-blockers can effectively reduce the risk of a cardiac event
in adult patients, whose LQTS is confirmed by mutation.

Schwartz et al. proposed a diagnostic criteria for the LQTS in 1993 [36]. The criteria still
serve as the best available criteria of diagnosing the LQTS clinically. Schwartz et al. state
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that a diagnosis of the LQTS based on values of QTc > 440 ms is untested for clinical
purposes, and therefore a difficult way to diagnose patients. Instead, the new criteria are
divided to three main categories, and the LQTS is diagnosed by combining the points of
different categories. The categories are ECG findings, clinical history related to cardio-
logical events and family history. [36] The diagnostic criteria are presented in Table 2.1.

Table 2.1. LQTS diagnostic criteria as presented by Schwartz et al. [36].

Points

ECG findings a

A. QTc b

≥ 480 ms 3

460 - 470 ms 2

450 ms 1

B. Torsade de Pointes c 2

C. T wave alternans 1

D. Notched T wave in three leads 1

E. Low heart rate for age d 0.5

Clinical history

A. Syncope c

With stress 2

Without stress 1

B. Congenital deafness 0.5

Family history e

A. Family members with definitive LQTS 1

B. Unexplained sudden cardiac death below age 30 among immediate

family members 0.5

Scoring: Low probability of LQTS ≤ 1

Intermediate probability of LQTS 2-3

High probability of LQTS ≥ 4

a In the absence of medications or disorders known to affect ECG
b Calculated by Bazett’s formula, QTc = QT/

√
RR

c Mutually exclusive
d Resting heart rate below the second percentile for age
e The same family member can not be counted in A and B
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In the table, it is evident that even the modern LQTS diagnosis criteria are not particularly
precise. Especially epilepsy and LQTS can be misdiagnosed as each other due to similar
symptoms [37]. In fact, with a possible combination of family history and clinical history
unrelated to the prolonged QTc, it is possible to get four points from the test and hence
be diagnosed with the LQTS, even though the patient’s QTc would be in normal limits,
i.e. < 450 ms. In conclusion, the prevalent diagnostic criteria can possibly lead to rising
misdiagnoses of the LQTS in fear of deadly cardiac events.
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3 METHODS AND DATA

3.1 Measuring the electrocardiogram

A clinical electrocardiogram is commonly measured with 12 leads. A fewer number of
electrodes is not sufficient to determine the ECG with a high precision due to the complex
three-dimensional structure of the heart. Therefore, the electrical activity must also be
understood in three dimensions. Each lead views the heart at a different and unique
angle, and together they provide sufficient information of the electric activity. [9, pp. 55-
56] The 12-lead placement is illustrated in Fig. 3.1.

Figure 3.1. Electrode placements for a 12-lead electrocardiogram [38].

A 12-lead ECG is produced with 10 electrodes. Two electrodes are placed in both hands
and legs (RA, LA, RL, LL in Fig. 3.1), and they comprise the so-called limb leads, which
are denoted as I, II, III, avR, avF, avL. Additional six electrodes are placed across the
chest, and they form the six precordial leads (V1-V6). [1] The precordial leads are ar-
ranged horizontally on the chest. Each precordial lead has its own line of sight, and each
of them has the best view on the certain region of the heart. [9, p. 65]

The ECG can be measured for 24 hours with the Holter monitoring. In that case, a small
box with the electrodes is carried by the patient on the belt. The patient can perform the
daily activities even from sleeping to working out while the monitor records the ECG. The
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complete recording of patient’s heart activity can then be analyzed. [9, p. 132] Usually
Holter recordings use two or three leads. The measurement can also be done with 12
leads, but since the purpose of Holter measurement is to track changes and patterns in
the ECG activity, only a few leads are sufficient for the measurement. [1] The QT inter-
val analysis can be effectively done with the Holter monitoring. The human heart beats
approximately 100 000 times a day, so the Holter monitoring can give a comprehensive
view of QT interval changes during the day. [1] The heart rate varies throughout the day
depending on activity levels, so a number of sufficiently long segments of the QT intervals
can be determined for further analysis.

3.2 Introduction of the data

The data used in this thesis is acquired from Telemetric and Holter ECG Warehouse
(THEW) data administrated by the University of Rochester Medical Center [39]. The data
can be accessed for free for non-profit organizations. In this thesis, the data have been
aquired by the Computational Physics laboratory at Tampere University.

The THEW data is gathered from subjects under different clinical conditions and grouped
accordingly. The information of the databases used in this thesis is displayed in Table
3.1.

Table 3.1. THEW databases used in the thesis [39].

Database Leads ECGs Subjects

Healthy 3 202 202

Genotyped Long QT Syndrome 2-3 480 307

The ECGs in databases are 24h recordings. The subjects in Healthy database are se-
lected with a strict criteria including: zero cardiovascular disease history, no disorders
or strokes, no high blood pressure, no medication or chronic illness, no pregnancy, nor-
mal physical examination and exercise testing, normal ECGs [39, 40]. In the Genotyped
LQTS set there are 171 subjects with 246 recordings of the LQT1 subtype, and 89 sub-
jects with 145 recordings of the LQT2 subtype. Also 14 subjects with 35 recordings are of
the LQT3 subtype, and 33 subjects with 54 recordings are of other LQTS types. The data
is accumulated for over 25 years. The long QT syndrome in the database is confirmed
with genetic tests. The database consists of a set of subjects between ages 1-88. In
total, 168 subjects are females and 139 are males. Also, 132 subjects are treated with
beta-blockers, while 175 subjects have either no treatment, or some other treatment. [39,
40]

In this thesis, the distributions of the QT and RR values for both Healthy and LQTS
data sets are examined. Other than that, individual subjects are analyzed instead of the
whole data set, because the further analysis based on the complete data sets goes be-
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yond the topic of this thesis. The subjects in the data sets are classified, and the subject
ID’s can be found in the metadata of the THEW data set. The individual subjects from
Healthy data set in this thesis are subjects 6021, 6088 and 6115, by ID. The individual
subjects examined from LQTS data set are subjects 6, 196 and 350 by ID. The subjects
are carefully selected typical examples of the respective data sets.

3.3 Data preprocessing

The THEW data set contains raw ECG data, which must be preprocessed in order to do
further analysis regarding the QT and RR intervals. The preprocessing of the ECG data
to extract the QT and RR intervals is a standard procedure on the field, but it is a non-
trivial problem. There are also many companies that are specialized in QT-RR extraction
from the ECG data.

The QT intervals have to be extracted from the raw data in parts, since the QT inter-
vals consist of two separate components: the QRS complex and T wave. To compute the
QRS complex, the QRS detection signals from each lead are computed and combined.
The dominant QRS component is found, for which the succeeding and preceding peaks
are located. Finally, the Q, R and S waves are computed based on the morphology of the
peaks. From there, the RR intervals and QRS complexes can be determined. [41]

The T wave is also extracted in the procedure. The T waves are detected with the
help of morphological filtering. Then a caricature of the T wave locations is built. The
T wave peaks are detected from both the caricature and its morphological derivative dif-
ference. The detected peaks are organized, and the end of the T wave is computed from
the peaks. [41] With these methods, the majority of the QT and RR intervals are well
detected and extracted.

3.4 QT correction methods

Several methods have been proposed to remove the RR dependency from QT in the
ECG. Most of the methods in use are computationally extremely simple (see below). The
methods are not universally able to normalize the QT-RR relationship. Instead, they tend
under- or overestimate QTc values with high or low HR. In addition, drug-induced QT
prolongation is often under- or overcorrected [3, 42]. Even though they are criticized of
their simplicity, the methods are still in clinical use [43].

3.4.1 Conventional methods

The most prominent method to reduce the QT-RR relationship is the formula of Bazett
[44]. The formula was proposed by Henry Bazett in 1920, and it is still widely used in
clinical practice, education and research [43]. Bazett deduced the model through simple
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fitting procedures with various sets of data. Bazett’s formula for the corrected QT interval
QTcB is presented as

QTcB =
QT√︂
RR

1 000 ms

, (3.1)

where QTcB is returned in same units with QT, usually milliseconds. The reference RR
interval is 1 000 milliseconds (or 60 bpm), where QTcB = QT.
Generally, Bazett’s formula is not considered as an accurate model to reduce the QT-RR
relationship. The formula is known to overcorrect the QTc at high HR and undercorrect
the QTc at low HR, respectively. [42] This can result in misdiagnosis of the LQTS [43].

Another frequently used formula is the one by L.S. Fridericia from 1920 [45]. Such as
Bazett, Fridericia derived his relation by examining a set of patients and deducing a for-
mula from the results. The QTcFri proposed by Fridericia is presented as

QTcFri =
QT

3

√︂
RR

1 000 ms

, (3.2)

where the reference RR interval (where QTcFri = QT) is also 1 000 milliseconds. Frid-
ericia’s formula also faces the same kind of criticism for its extreme simplicity and for its
inability to correct the QT precisely with all values of the HR [43].

A more recent clinically significant QT correction method was derived from the Framing-
ham study in 1992 [46]. The QT intervals were measured from 5 108 subjects from the
city of Framingham in Massachusetts. A linear regression model was developed from the
results in order to correct the QT according to the RR cycle length. The linear regression
model led to a form

QTcFra = QT+ 0.154

(︃
1 000− RR

1 ms

)︃
, (3.3)

where the reference RR interval is again 1 000 milliseconds. The Framingham equation
improves the QT correction in comparison to Bazett. The linear model avoids the over-
and under-correction with the high and low HR typical for Bazett. [46]

Another QT correction formula based on linear regression was introduced by Morrison
Hodges in 1983 (see Ref. [12] in Ref. [47]). The formula is given by

QTcH = QT+ 1.75

(︃
60 000 ms

RR
− 60

)︃
, (3.4)

where the reference RR interval is 1 000 ms. The formula was originally developed based
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on the HR, but for a clear interpretation, it is presented here as an explicit function of QT
and RR.

Bazett’s method is the most used QT correction method, even though some approaches
perform better. Vandenberk et al. conducted a vast study in 2016 on QT correction for-
mulas in ECG monitoring [47]. The study confirmed the inferiority of Bazett’s formula for
the QTcB compared to other clinical methods. Authors also state that the current use of
the Bazett’s formula in clinical practice should be questioned. The other QT correction
methods perform better compared to QTcB, and therefore could replace it in hospital-
based QT monitoring. [47]

Luo et al. also conducted a study in 2004 comparing different commonly used QT cor-
rection methods [43]. In the study, 10 303 ECG records were evaluated. The results
showed that Hodges’ formula for the QTcH gives the best results. The study also shows
that Bazett’s formula suggests around 30% of the patients having abnormal QT interval if
the normal limit is considered as QT < 440ms. In comparison, Hodges’ and Fridericia’s
formulas suggest that < 2% of the patients have abnormal QT intervals. [43] There is
alarming difference in the Bazett’s method compared to other conventional methods, and
it indicates that either the QTcB overcorrects the QT values resulting in relatively large
amount of false positive LQTS diagnoses, or that the QTcFri or QTcH do not sufficiently
correct the QT values resulting in false negative diagnoses. In any case, the conventional
correction methods do not agree with each other in absence of a universal and unbiased
QT correction method.

Both of these studies mentioned above show that QTcB is clearly outdated, and it gives
a considerate number of false-positive values. The other methods are better compared
to QTcB, but most of them also tend to fail at high and low HR. All the methods only
result from fitting procedures against studied data sets. A first-principles model for cal-
culating the QTc has not yet been successfully developed. Instead, all the results have
been derived from global trends. At present, the QT-RR dependency cannot be removed
universally and precisely. Considering the huge investments in clinical practice, the waste
of resources and time in erroneous QTc’s is considerable.

3.4.2 Utilizing transfer entropy in QT correction

Potapov et al. have recently suggested an information theory approach to the QT correc-
tion [16]. The QT-RR relationship is studied with transfer entropy (TE) methods, and the
information transfer affecting the QT values is calculated from the preceding k QT beats
and n RR beats. The relation between the preceding samples and the next sample is cal-
culated for the QT series, and the information transfer for both QT→RR and RR→QT
is calculated. Importantly, the information theory provides a quantitative tool to evaluate
the relationship between the QT and RR. The transfer entropy TERR→QT for QT and RR
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with histories n and k is presented as

TERR→QT =
∑︂
i

p(QTi,QT
(k)
i−1,RR

(n)
i−1)log2

p(QTi|QT
(k)
i−1,RR

(n)
i−1)

p(QTi|QT
(k)
i−1)

, (3.5)

where QT
(k)
i−1) and RR

(n)
i−1 are the preceding values of k QT beats and n RR beats, p(x) is

a probability distribution and p(x|y) is a conditional probability [48]. The QT history k and
RR history n can be varied to get different results for TERR→QT. The result units for TE
are bits of information. [16]

The results [16] show that the information transfer from RR→QT is larger than the op-
posite QT→RR transfer. The inequality between RR→QT and QT→RR indicates that
the subprocesses are asymmetric. Therefore, the results suggest that the RR history af-
fects the upcoming QT values more than the QT history affects the upcoming RR values.
When the history length was raised, TEQT→RR(n) was found to reach zero after 20 to
25 heartbeats. This means that there is no more influence of QT on RR with sufficiently
long history. On the other hand, TEQT→RR(k) never reached zero with a history of over
50 heartbeats. [16] The results are important in showing quantitatively, with the help of
information theory, that there is an dependency between the QT and RR. Also, the results
show that the RR history influences on the QT values significantly more than vice versa.

As described, the fundamental purpose of the QT correction methods is to remove the
dependency so that the QT values can be evaluated precisely and independently of the
RR and HR. From the point of view of information theory, then the transfer entropy TE
should then be equal to zero. However, the results show that using the conventional QT
correction methods, the interdependency is not properly reduced. Instead, TERR→QT

and TEQT→RR get non-zero values when analyzing both RR history n and QT history
k. [16] The results mean that the conventional QT correction methods can not reduce
the interdependency of the QT and RR. Even though some methods like QTcFri perform
better than others such as QTcB, none of the methods in clinical use are precise from the
point of view of information theory.

The influence of RR to QT is correctly removed, when TERR→QT = 0. Therefore, the
QT correction can be approached in a new way based on the transfer entropy. Taking the
QT and RR history in account and combining the time series of the QT and RR for each
time point, it would be possible to find the QT values for which TERR→QT = 0. These
QT values should be considered as the QTc values. [16] This new approach can be very
important considering the QT correction methods, as it completely removes the interde-
pendency. Potapov et al. have patented a novel method in 2020 [49]. The purpose is to
provide a new QT correction method based on transfer entropy. The method is a topic of
further study.
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4 RESULTS

4.1 Distributions of RR and QT intervals

The Healthy data set consists of 202 samples, and the LQTS data set consists of 480
samples. The QT and RR distributions of both the Healthy and LQTS data sets are
presented in Fig. 4.1.

Figure 4.1. QT and RR distributions for (a) Healthy (b) LQTS data set

The mean value of QT intervals in the Healthy data set is about 403 ms, whereas the
mean value of QT intervals in the LQTS data set is about 463 ms. The difference of the
means with standard deviations of 59 and 85 ms is significant, but also expected con-
sidering the definition of the LQTS condition. Despite the differences of the QT interval
distributions the RR distributions are relatively similar in both data sets. The mean values
correspond to each other with a difference of below 54 ms. The standard deviations are
181 and 214 ms, so the difference in the mean values is relatively small. It is indeed
expected that the RR distribution looks similar in both cases, since LQTS presumably
affects only on the QT values. However, the possible effects of LQTS on the RR intervals
deserve further studies.

It is noteworthy that the standard deviation has a significantly larger value in the RR
distribution compared to the QT distribution. This is due to the fact that RR measures the
distance between two full ECG cycles. This distance, i.e., the heart rhythm (or the pulse)
varies significantly depending on the daily activities that vary between full rest and heavy
exercise. The QT interval, on the other hand, measures a distance within a single ECG
cycle, and therefore its variations are limited compared to those of the RR intervals.
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There are several methods to analyze RR time series, as discussed in Sec. 2.2.2. How-
ever, in this thesis, we refrain from a detailed time series analysis with the methods men-
tioned above, since this goes beyond the scope of the work. Instead, we focus now on
the qualitative nature of QT and RR intervals, respectively.

Figure 4.2. Example of time series for QT and RR intervals over five minutes.

Figure 4.2 shows five-minute excerpts of RR and QT time series of an LQTS subject
(ID 6). There is quite a lot of variation in both QT and RR data, which is typical for
physiological time series. Those variations appear on different scales, which indicates
that the series may have fractal properties. A time series can be considered as a fractal,
if it can be scaled in smaller and smaller parts while it qualitatively preserves its shape.
The scaling properties of the ECG time intervals are beyond the scope of this thesis, but
it is noteworthy, that a lot of research has been conducted regarding the topic (see Refs.
[50, 51]). The quantitative analysis of the scaling properties or the fractal nature of the
RR time series can serve as a great tool for diagnosing clinical conditions (see Refs. [52,
53]).

4.2 Relationship between RR and QT

Next we proceed on studying the explicit relationship between the RR and QT intervals.
First, we take another look onto Fig. 4.2 to qualitatively assess the possible interdepen-
dencies. Despite of the apparent randomness of the QT and RR signals in Fig. 4.2, re-
spectively, it is possible to observe clear correlations between them. A few distinguishable
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sequences can be found in the series. At around 150 s the RR values get considerably
high, and the corresponding QT values show similar behavior. Also, the RR values be-
tween 200 - 250 s reach considerably higher values compared to the RR mean value µRR.
The corresponding QT sequence shifts also up as a result. It is easy to see that when
the RR peaks are above the RR mean value µRR, also the QT peaks tend to be above
the QT mean value µQT. The same effect occurs when the QT and RR peaks are below
the mean value, respectively. Therefore, by examining the time series, a relationship can
be visually verified. In other words, the QT and RR intervals seem to be clearly correlated.

The correlation can also be confirmed computationally by calculating the correlation co-
efficients, such as the Pearson correlation coefficient ρQT,RR and the cross-correlation
CC. When the coefficient has a value of 0, there is no correlation. If the value is ±1, the
correlation is ideal either negatively or positively. The rest of the values fall between 0
and ±1. The coefficient is calculated by dividing covariance of the QT and RR by the
product of the standard deviations of the QT and RR.

In the QT-RR time series of Fig. 4.2, Pearson’s correlation coefficient ρQT,RR = 0.32.
The cross-correlation for the time series is also calculated. It measures the similarity
between the two series, when the one is moved forward relative to the other. The normal-
ized cross correlation coefficient NCC in Fig. 4.2 equals NCC = 0.99, which means that
there is a strong cross-correlation between the series. These results confirm that there is
a correlation between QT and RR, as discussed above.

The data can also be plotted in large point clouds. In a point cloud, an ECG record-
ing is plotted to a diagram, where the x-axis is the duration of the RR interval between
cardiac cycles n-1 and n, and the y-axis is the duration of the corresponding QT interval
within cycle n. In this way, it is easy to capture the main trends of the QT-RR relationship.
A polynomial function can be fitted in the data set to detect a general trend.

The point clouds are effective in examining the QT-RR distribution over a longer period of
time. In the plots (see below), the data are complete recordings of 24h ECGs. Therefore,
a large number of QT and RR intervals of different lengths are acquired, typically of order
100 000. Since the HR varies a great deal throughout the day, it is possible to combine a
comprehensive visualization of the relation between the QT and RR.

Point clouds of a healthy male subject of age 29 and a male LQTS subject of age 7
are displayed in Figs. 4.3(a) and (b), respectively. A second-order polynomial is fitted to
the point clouds, and a trend is observed by examining the slope of the polynomial.
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Figure 4.3. Point clouds of corresponding RR and QT intervals with polynomial fits of
second order for a (a) healthy subject and (b) LQTS subject.

In both figures, the least squares polynomial fit has a non-zero slope, indicating depen-
dence. The polynomial fit shows that the QT values become higher when the RR values
become higher. This result confirms the previously known relationship between QT and
RR. It can also be observed in Fig. 4.3 that the LQTS case consists of higher QT val-
ues compared to the healthy case. In Fig. 4.3(a) the highest QT values are around 550
ms, but in (b) the highest QT values are almost 650 ms. Even though the LQTS is diag-
nosed from the corrected QT values instead of the raw QT values seen in the figures, it
is obvious that the LQTS yields higher QT values than the healthy case regardless of the
possible QT correction. The results are well in line with the literature, where the QT-RR
dependency is assessed (see Fig. 3 in Ref. [54])

4.3 Performance of QT correction methods

In this chapter, the QT correction methods presented in 3.4 are analyzed in more detail.
The results of the Bazett’s formula for the QTcB [see. Eq. (3.1)] compared to the raw QT
values of a 8-year-old male LQTS subject are shown in Fig. 4.4.

Figure 4.4. Point clouds of corresponding RR and QT(c) intervals with polynomial fits
of second order for an LQTS subject when using (a) uncorrected QT values (b) Bazett’s
QTc values.

The data are from the same subject, so the performance of the Bazett’s formula is easily
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observable. In (b) the polynomial fit has still a non-zero slope, so the dependency is not
completely removed, but it is clearly reduced. However, a fit with a single polynomial func-
tion does not provide considerable insight, since here the RR-QTc point cloud appears
as two separate (sub)clouds: one horizontal cloud and one cloud with an almost linear
slope. In fact, similar behavior but with two linear slopes can be seen in the uncorrected
QT values in Fig. 4.4(a). There could be a physiological origin of this behaviour, but it
is unknown at the time of this study. Nevertheless, the QT values corresponding to RR
values at 600 - 700 ms differ considerably between Figs. 4.4(a) and (b). This is due to
the fact that Bazett’s formula tends to overcorrect the QT values at low RR (high HR),
as noted above. The main purpose of the QT correction is to remove the relationship
between the QT and RR. Based on the results above focused on individual subjects it
is evident that the QTcB has limited performance due to its extreme simplicity. Despite
this deficiency the Bazett’s method is still the most widely used QT correction method, as
discussed above.

Density plots of the QT-RR distribution are useful to illustrate the concentration of the
data points. The density estimation is calculated with Gaussian kernel density estimation
in Python, and the pixels are stacked above each other based on the relative density of
the points. The results for RR-QT relationship and the corresponding RR-QTc relation-
ship with Bazett’s formula for a 36-year-old healthy male subject and a LQTS subject are
shown in Fig. 4.5.

Figure 4.5. Density plots of (a) Uncorrected QT values for a healthy subject, (b) Bazett’s
QTc values for the healthy subject, (c) Uncorrected QT values for an LQTS subject, (d)
Bazett’s QTc values for the LQTS subject
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In Fig. 4.5 the limits of the normal QTc values are drawn for reference. The minimum
healthy QTc is considered to be at 320 ms and the maximum healthy QTc is considered to
be at 450 ms. Points above and below these boundaries are indicated as LQT (long QT)
and SQT (short QT), respectively, and their relative proportions are given in the figure.
However, these lines are only plotted for visualization and they are not clinically valid for
diagnosing the QT abnormalities. Also, applying the region of healthy QTc values is not
valid for the raw QT values of plots (a) and (c). However, they serve as a good referential
standpoint in comparing the shapes and values of two distributions.

In Fig. 4.5 it is clear that the QTcB causes the distribution shift upwards in the QT axis.
Almost 40% of the QT values are shifted up from the normal QTc region when applying
the Bazett’s formula for the healthy subject. However, most of the RR interval values are
relatively low in Fig. 4.5(a) of the healthy subject, so the Bazett’s formula tends to over-
correct the values, as discussed before. In the case of an LQTS patient in Fig. 4.5(c-d),
Bazett’s formula seems to produce plausible results, since a large fraction (86%) of the
QTc values are located above the upper threshold. However, the problem here focuses
on possible misdiagnosis of the healthy subject due to a large fraction (50%) of "false
positives" in the QTc values in Fig. 4.5(b).

Next in Fig 4.6 we examine the performance of four of the most widely used conven-
tional methods presented in Sec. 3.4, i.e., Bazett, Fridericia, Framingham and Hodges.
Here, we consider a 49-year-old female healthy subject as an example.

Figure 4.6. Different QT correction methods for a healthy subject: a) Bazett, b) Fridericia,
c) Framingham, d) Hodges
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It can be seen in 4.6(a) that Bazett’s formula shows 48% of the QT values to be abnor-
mally long, whereas the other methods in Figs. 4.6(b-d) show that about 25% of the QT
values are abnormally long. This underlines the inferiority to Bazett’s method compared
to the other methods. As discussed before, this kind of behavior is also typical for the
Bazett’s method, and the rest of the methods are performing better in this regard. How-
ever, the fact that all the methods yield at least 25% of "false positives" for abnormally
long QTc values is alarming in view of the wide use of the conventional methods.

Fig. 4.7 presents similar analysis for a 7-year-old male LQTS patient.

Figure 4.7. Different QT correction methods for an LQTS subject: a) Bazett, b) Fridericia,
c) Framingham, d) Hodges

In Fig. 4.7(a) Bazett’s formula shows clearly that most of the data points (94%) are in
the LQT area. Actually, now Bazett’s formula performs "better" in terms of "correct posi-
tives" compared to the other three methods, for which the proportion of LQT values vary
between 79% and 82%. The behavior of Bazett’s formula is plausible due to its obvious
overcorrection of the QT intervals that affects both healthy and LQTS subjects. Neverthe-
less, the shapes of all the density concentrations indicate that the relationship between
QT and RR is not reduced, since the densities follow a clear trend with a positive slope.

Finally we briefly examine the performance of the new QT correction [55] method based
on transfer entropy in Eq. (3.5) We compare the method against Bazett’s formula for a
72-year-old female subject.
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Figure 4.8. RR-QTc relationship for a healthy subject with (a) transfer entropy -based QT
correction method and (b) Bazett’s correction method.

In the Fig. 4.8 the superiority of the TE-based method over Bazett’s method becomes
obvious. Almost 95% of the QT values are in referential normal region after the TE-
based correction, whereas Bazett’s formula corrects over 93% of the QT values to be
abnormally long. The difference is significant, and based on the Bazett’s correction in
Fig. 4.8(b) the misplaced suspicion of the LQTS is extremely likely. The RR distribution
in the sample is relatively low compared to the reference RR value of 1 000 ms, so the
already discussed overcorrection of Bazett’s formula is pronounced. It is noteworthy,
that the TE method does not overcorrect the QT values. On the other hand, the shape
of the density is relatively horizontal. This shows that the new method has potential in
significantly removing the RR influence on QT values, which is the principal objective of
QT correction. However, this aspect still requires thorough validation with the full data
set, which is currently ongoing.

It is noteworthy, that none of the figures above serve as a clinically significant method
to diagnose the LQTS. Most commonly, the diagnosis is done by manually measuring a
few QT intervals from the ECG recordings, applying a QT correction formula to measured
intervals, and combining these results with the other indicators presented in Table 2.1.
Hence, instead of trying to diagnose the conditions, the figures above show the general
statistical patterns of both the QT-RR relationship, and overall performance of the QT
correction methods. Most importantly, Figs. 4.5 – 4.7 demonstrate the weaknesses of
Bazett’s QT correction formula, as well as the deficiencies of the other conventional QT
correction methods. Finally, in Fig. 4.8 exemplifies the high potential of the TE-based QT
correction method compared to the clinically used Bazett’s method in a case of a low RR
distribution.
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5 DISCUSSION AND CONCLUSIONS

In this thesis, the relationship between the QT and RR intervals in the electrocardio-
gram (ECG) was examined. The clinical and physiological importance of the QT interval
measurement was underlined. The most common correction formulas to remove the re-
lationship were presented and analyzed. Finally, a new approach to reduce the QT-RR
relationship using the information theory and transfer entropy was presented.

The relationship between the QT and RR intervals was visualized and it became evi-
dent, that the intervals are interdependent. Longer or shorter RR intervals correspond to
longer or shorter QT intervals, respectively. Physiologically, the results were as expected.
When the heart rate is lower, the beats are more infrequent and therefore the intervals
are longer. Then the heart pumps blood more slowly, so that the de- and repolarization
of the ventricles last longer, leading to longer QT intervals. The same principle applies to
short intervals as well. Summarizing, the mechanical and electrical behavior of the heart
are interconnected in a natural way.

The QT interval is clinically a fundamental segment of the ECG, and many clinical condi-
tions can be diagnosed with quantitatively measuring the QT interval. The QT correction
methods to reduce the dependence on RR intervals are therefore essential in order to
examine the normalized (or corrected) QT intervals independent of the heart rate during
the measurement. However, the conventional QT correction methods were shown to be
inefficient and imprecise in reducing the relationship.

The performance of different QT correction methods was visualized for long ECG record-
ings of both healthy subjects and for long QT syndrome (LQTS) subjects. It was shown
that the widely used Bazett’s QT correction formula is inefficient and can lead to wrong
conclusions due to a large relative fraction of false positives for healthy subjects. In par-
ticular, it was shown that the Bazett’s formula severely over- and undercorrects the QT
intervals. Also the other QT correction methods of Fridericia, Framingham and Hodges
were shown to be inefficient in reducing the RR dependency. Hence, these results under-
line that there are severe challenges in clinical cardiology to reliable utilize the corrected
QT values. In essence, there is an strong need for better QT correction methods that
minimize the RR dependence.

Importantly, not only the present QT correction methods are inefficient, but also the diag-
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nostic criteria themselves may need substantial revision. This is due to the fact that the
critical limits for corrected QT values have been composed based on the results procuded
by the often erroneous conventional methods. Thus, the present criteria may be consid-
ered misleading.

Finally, a principle of a new QT correction method based on the transfer entropy was
presented. It has been previously shown that the RR history has a considerable effect
on the upcoming QT values. In other words, there is information transfer from RR to QT,
and much less vice versa. In the new method, the properties of the transfer entropy are
employed to significantly reduce the RR dependence. Therefore, the approach is viable
in examining the QT intervals independent of the heart rate. As shown here, the results
of the new method are very promising in comparison with the conventional QT correction.
However, further demonstration and validation of the method are needed. This is a topic
for a further study.
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