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Abstract
Efficient usage of heterogeneous computing architectures requires distribution of the work-
load on available processing elements. Traditionally, the mapping is based on information
acquired from application profiling and utilized in architecture exploration. To reduce the
amount of manual work required, statistical application modeling and architecture model-
ing can be combined with exploration heuristics. While the application modeling side of
the problem has been studied extensively, architecture modeling has received less attention.
Linear System Level Architecture (LSLA) is a Model of Architecture that aims at separating
the architectural concerns from algorithmic ones when predicting performance. This work
builds on the LSLA model and introduces non-linear semantics, specifically to support GPU
performance and power modeling, by modeling also the degree of parallelism. The model is
evaluated with three signal processing applications with various workload distributions on a
desktop GPU and mobile GPU. The measured average fidelity of the new model is 93% for
performance, and 84% for power, which can fit design space exploration purposes.

Keywords Modeling · Model of architecture · Design space exploration · Signal processing
systems

1 Introduction

Heterogeneous platforms that contain GPUs and DSPs alongside general-purpose processors
have become the mainstream for many signal processing applications, such as image, video
and audio processing. One of the design decisions that should be made in the early stage is
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mapping of the application to the platform i.e. resource allocation for processing elements.
Unfortunately, the exploration of mapping alternatives is still mostly performed case by case,
which is a work-intensive and time consuming task. An approach that considerably reduces
the effort is building models of the target platform and the application, and exploiting them
with automatic tools. There are different approaches to the system modeling and workload
mapping. For example, the Distributed Operation Layer (DOL) [21] is a framework for
automatically optimizing parallel algorithm mapping on heterogeneous platforms. ArchC
[19] is an architecture description language (ADL) for architecture design which provides
early stage systemverification. In contrast, rather than jointly designing optimizationmethods
and architecture representations, this paper concentrates on learning a model from structure
hypotheses and platform measurements, with the objective to obtain an abstract, repeatable
and application decorrelated model usable in a wide set of optimization contexts.

In statistical system modeling, the application and the architecture are often considered
together. Originally introduced for modeling of signal processing systems [14], the Linear
System Level Architecture (LSLA) [15], Model of Architecture (MoA) separates the under-
lying architecture from the algorithmic aspects following a Y-chart approach [8]. LSLA
specifically models the architecture and distinguishes the concepts of Model of Computation
(MoC) from the MoA. The MoA and MoC separation reduces the modeling effort by formu-
lating the system modeling as mapping of MoC activity to the MoA, so that the MoA and
the MoC can be treated independently when needed. In LSLA it is possible to map different
types of MoC to the LSLA, such as Synchronous Data Flow (SDF) [9] that is popular in
signal processing.

In LSLA, an application described by a MoC is mapped to the architecture modeled by
the LSLA MoA. Considering the activity of the application, a cost function is computed for
each processing element in the platform. For estimating the performance of various mapping
alternatives, the cost functions of the processing elements are summed up while varying the
mapping parameters. For example, the energy consumption of the Odroid XU3 platform was
modeled in [15]. In this particular case, eight processing elements interconnected by three
communication nodes model the asymmetric eight-core CPU of the platform. The LSLA
experiments model the energy consumption of a Stereo Matching application that computes
a depth map from a pair of views of a single scene, while the GSLA experiments in this paper
cover the execution time and the power consumption costs of matrix multiplication, digital
predistortion and Gaussian filtering applications.

LSLA provides a model for linear Key Performance Indicators (KPIs). However, most
contemporary platforms include a GPU, in which the performance with respect to the appli-
cation activity is non-linear. This is the key motivation to extend the LSLAmodel. Our initial
work was presented in [13] with a GPU performance model. Consequently, in this work we
introduce power modeling and collect all the results for an LSLA model extended to GPU
modeling.

The key contributions of this work are:

– An extension of the LSLAmodelwith non-linearGPUprocessingmodeling calledGSLA
(GPU-oriented System-Level Architecture). The model includes both performance and
power.

– Prototype tooling implemented as shell scripts andMatlab code for both execution of the
application for model creation and costs prediction in exploration use.

– Proof-of-Concept with three representative applications that are implemented in OpenCL
and executed on two different GPU-equipped platforms for setting the model parameters
and comparing the measured and predicted values for fidelity.
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Experimental results show that the proposed GSLA model can help predicting with low
complexity the performance and the power consumption of an application with varying
parameters. On the other hand, modeling the key performance indicators of strongly differing
applications or platform configurations is shown to require model parameter recalculation.
Even in cases where parameters cannot be reused, experimental results show that the model
lightweight structure can be kept, and retrained through a lightweight procedure and with
good accuracy. Two different utilization examples of GSLA are discussed in Sect. 2 to clarify
the intended usage of the MoA.

This paper is structured as follows: Sect. 2 introduces related work and provides a com-
parison to the proposed work. Sect. 3 introduces the MoA concept. Section 4 explains the
proposed LSLA extension. Section 5 explains the parameters. Section 6 elaborates the per-
formed experiments. Section 7 presents the novel powermodel for GPUs. Section 8 compares
the fitness of the models. Finally, Sect. 9 explains the conclusions.

2 Model creation and potential usage

The design and usage of the proposed performance and power models in practice are repre-
sented in Fig. 1. The blue stages depict the steps of the model construction while the green
steps show two examples of using the models. Here the dashed lines demonstrate the manual
estimations while the continuous lines present the flow of the work.

Model development starts by selecting the test data and a target parallelizable algorithm
i.e. matrix multiplication, Gaussian filtering and predistortion for execution on Mali and
Baffin GPUs. Then, the algorithms are coded with OpenCL function calls and receive two
command line argument inputs named S and γ which impact the size of the input data and
the number of their parallel executions, offering variations in their structure. Later, two value
sets for these parameters are defined where the S values set is inferred from the test data and
the algorithm input data size and the γ values set is extracted from the platforms number
of processing elements and memory sizes. In addition, the values for both S and γ sets
were checked for feasibility e.g. execution of the OpenCL implementation of the parallel
algorithm with a large S and a small γ values could take up to some days while multiple S
and γ combinations are executed for profiling which makes it impractical. Shell scripts are
used for passing the values of the S and γ parameters as command line arguments for each
iteration of the execution and storing the execution time and power consumption values in
files while the memory overflow errors are monitored. Linear regression is used to fit the
GSLA model. The MoC and MoA for OpenCL application on GPU is then developed for
showing the application mapping on the platform. The results of this paper show the suitable
parameters of the models equations for Mali and Baffin platforms i.e. α,β or a, b, c. These
values in conjunction with the model equations could be used to estimate the power and
performance of similar applications on Mali and Baffin GPUs.

The produced models could be used with or without the presented parameters which are
shown as two utilization cases in Fig. 1. In the first case, a similar algorithm to the selected
three algorithms is executed on Mali or Baffin platforms while in the second case a different
algorithm is executed on a platform X. The first case does not require any compilation or
execution of a training code and the performance and the power estimations are done merely
by simple equation calculations using the reported parameters values. The S and γ values
of an algorithm implemented in OpenCL are computed by checking the code files for the
global work size and number of kernel calls which is usually defined as constant values in
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a header file and considering the input data of the application. In the second case where the
algorithm or the platform vary much from the presented training, values of parameters shall
be determined by the execution of a representative algorithm on the platform and measuring
the execution time or power consumption and using the presented models equations for the
parameters calculations. Later, the calculated parameters could be reused for performance and
power estimations of similar cases. These equations reduces the manual work of a researcher
using the OpenCL for parallelizing where the appropriate values are typically determined by
trial and error i.e. editing the code and benchmarking the application.

3 Related work

There are different methodologies in performance modeling studies. One of them, which
provides a general model is the statistical analysis method. For example, Moren, et al. [11]
present a statistical approach for work load scheduling on heterogeneous platforms consisting
of CPU and GPU. Authors have modified the OpenCL API code for dynamic code feature
collection which is used for performance prediction. In modeling methods, it is common
to use a graph to present a software or a hardware system, or a system of systems. These
methods are divided into two different categories: data flow graphs and non data flow graphs.
In a data flow graph, a vertex is used to model a run-to-completion block of computation
called an actor. Edges are used to model data token communications between actors, realized
by FIFO queues (First In First Out). In addition, weights on FIFOs, called delays, are used
to represent initial data present on edges. The execution of a data flow actor is called firing
and is triggered when an actor has sufficient data on each input edge. Table 1 lists modeling
approaches and the graph semantics used in related works.

SDF (Synchronous Data Flow) [9] is a well-known static MoC. In SDF, a system is
modeled with a data flow graph where the firing rules specify the constant token consumption
and production rates for all actors. These constant rates introduce limitations in terms of
algorithmic behavior representation.

CFDF (Core Functional Data Flow) [17] is a form of EIDF (Enable Invoke Data Flow)
[18] where a limited set of modes influence token consumptions and productions. CFDF
limits mode transitions to only one alternative, making the model deterministic.

BSP (Bulk Synchronous Parallel) [22], unlike SDF or CFDF, is a systemmodelingmethod
rather than an application modeling method, and it has its own graph representation. In BSP,
there are processing units with local memories connected over a router. Processing elements
access each other’s memories by remote access messages.

DAL (Distributed Application Layer) [20] has a dynamic mapping methodology. It
employs Kahn process networks to explore application mappings and a finite state machine
to represent execution scenarios. Multiple scenarios are precomputed at design-time and the
suitable one is selected at run-time.

Bezati et al. [4] present a data flow modeling method according to the CAL language
[5]. Their method has six steps. First, two different models for application and architecture
are designed. Second, simulation and profiling results are collected. Third, the application is
mapped to the architecture. Fourth, C++ and HDL codes are generated from CAL. Fifth, the
code is compiled and synthesized. Finally, compiled code is executed.

LSLA [15] is a MoA, modeling hardware architecture separately from the MoC. The
LSLA MoA includes Processing Elements (PE) and Communication Nodes (CN). PEs and
CNs of the LSLAMoA have cost functions including parameters that may be retrieved from

123



48 S. Payvar et al.

Table 1 Modeling approaches Method Target Application graph

SDF Application Dataflow

CFDF Application Dataflow

BSP System Non Dataflow

DAL System Non Dataflow

[4] System Dataflow

LSLA Architecture Not restricted to dataflow

GSLA Architecture Non dataflow

representative platform benchmarking. In that case, the calculated cost functions are obtained
frommeasured application executions and the cost function parameters can be used to predict
system efficiency for a set of comparable applications.

Holmbacka et al. [7] studied the energy consumption of different phases of the applications
on multi-core CPUs. For utilizing the Dynamic Voltage and Frequency Scaling (DVFS) and
Dynamic Power Management (DPM) of parallel platforms, they ran the parallel phases with
as low as possible clock frequency on multiple cores without missing any deadline and
sequential phases with higher clock frequency on a single core. For controlling the hardware
features, they introduced two parameters including the level of parallelism and the quality of
service and call it QP-aware (QoS and Parallel) strategy. Running a programwith lower clock
frequency instead of a race-to-idle strategy provides an energy efficient solution by reducing
the frequent frequency switching overhead. Authors used PREESM [16] for compiling the
applications and extracting the level of parallelism and deployed a non linear programming
solver for the QoS handling. In addition, they presented a platform specific power model as
a function of DVFS and DPM usage.

The energy efficiency survey [10] classifies the utilized techniques for improving GPU
energy efficiency and compares them with methods applied to other computing units
such as FPGAs. Authors use five categories including dynamic voltage frequency scaling
(DVFS), division-based CPU-GPU, architectural techniques, dynamic workload variation
and application-specific programming-level approaches. A conclusion to this work is that
the power consumption of the GPU should be considered at multiple design phases with
several techniques to achieve desirable efficiency. The proposed GSLA model falls under
this objective, as it aims at making power estimates available early during the design phase.

The proposed work on the GSLA model provides a system modeling approach as an
extension to LSLA. It has the benefits of a reduced modeling effort due to its re-usability.
Table 1 summarizes the modeling approaches in order to compare to this work. As can be
seen, our work is focusing on the architecture and supports wide range of applications.

3.1 Polynomial modeling comparisons

The power model developed in [7] uses Dynamic Voltage and Frequency Scaling (DVFS)
and Dynamic Power Management (DPM) platform variables. Authors use Levenberg-
Marquardt’s algorithm and aim at a high modeling precision which resulted in a third degree
polynomial with seven terms. As an MoA, GSLA is not specialized to power modeling and
has a lower complexity with three terms, keeping its complexity minimal. The usage of the
fidelitymetric for evaluation results in amodel with lower complexity differentiates this work
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Fig. 2 Model of architecture

from studies using similar methodology, as the objective is not to have an accurate model but
rather to take the right design decisions.

The energy model [6] presents the number of active cores and frequency as variables.
Authors have considered three possibilities for the workload processing and depict three
variations of their model. The variations of the terms number in their model is at least two
and is impacted by the number of active cores. The proposed model is designed for static
scheduling and requires timing data such deadlines and power consumption values of the
active cores for predicting energy consumption. Compared to this tailored model, GSLA
presents a simpler formula and we show that it still can capture several key performance
indicators.

The energy per cycle model introduced in [12] uses normalized frequency variable.
Authors use the Levenberg-Marquardt’s algorithm for calculating their model equations
which has three terms and it is in degree three. This model targets power and frequency
data for the energy computation while the experiments are depicted for a limited set of
measurements. On the other hand, GSLA with lower complexity is demonstrated as a two
dimensional model fitting thirty six average measurement points.

4 Models of architecture

TheMoAconcept [15] is used to distinguish the processing architecture from theMoC,which
should only address applications. Consequently, in this concept a system of an application
running on a platform is presented with a MoC mapping on a MoA. A MoA is defined as a
graph that in conjunction with the mapped MoC can be used for reproducible execution cost
(time, energy, etc.) calculations. AMoA is designed for each specific processing architecture
and it covers the processing elements and their interconnect. Figure 2 depicts an MoA which
contains two processing elements and one interconnection.

Each element in the MoA graph has a cost function whose parameters can be estimated
statistically according to measurement results of the mapped MoC element to the considered
MoA element. The calculated parameter values depend on the application and the application
configuration, but the search of the parameters is automated and requires only executable
application(s) and test data from profiling.

4.1 Linear system level architecture

LSLA is a specific type of MoA that uses linear cost functions for each MoA graph element.
The total cost of the modeled platform is calculated according to the Eq. 1, which depicts
the total cost of application activity A on the LSLA graph P . In this equation, the total cost
e.g. execution time cost is equal to the sum of the processing cost, and of the communication
cost, λ being a scaling coefficient between processing and communication cost units. T p
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Fig. 3 Mapping of the application to the architecture model

depicts set of all mapped tokens to the processing elements and T c shows set of all mapped
tokens to the communication nodes. The activity of the mapped MoC is calculated as tokens,
consisting of quanta, resulting in an affine cost model per communication and per processing.
The quanta are an application-independent unit of execution cost.

cost(A, P) =
∑

t∈T p
cost(t,map(t)) + λ

∑

t∈T c
cost(t,map(t)) (1)

In a system running an application with multiple dependent tasks on a platform with
multiple processing elements, parallel application mapping and scheduling are required.
While mapping refers to assigning tasks to processing elements, scheduling refers to ordering
task execution on each processing element. On the modeling side, mapping an activity to
a platform modeled with an MoA refers to the assignment of a unique processing element
or communication node to each token in the application activity. The activity abstracts the
pressure the application puts on hardware, resulting in physical ,properties such as time and
energy consumption. In our experiments, GPU and CPU tasks are mapped manually, but the
designed model can feed automated mapping processes.

In LSLA, the application and its activity (i.e. the pressure that it puts on hardware) are
mapped as activity tokens to the LSLA model of the platform. Activity of the application
includes processing tokens and communication tokens. These tokens are mapped to their
associated elements in the platform model: processing tokens are mapped to processing
elements and communication tokens are mapped to interconnection nodes that are used to
transfer data between PEs.

5 GSLA: execution timemodeling

This work adds GPUs that can be present in a modern heterogeneous platform. Figure 3
shows a simple GSLA graph that includes a CPU core PE1, the GPU, and the interconnection
CN between the CPU core and the GPU. PE1 is assumed to act as the host processor that
communicates with the GPU. This simple GSLA model has three elements including two
processing elements and one communication node.
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Due to the very different characteristics of power and execution time modeling, we use
different parameters and a slightly different model for both; the power model is presented in
Sect. 8, whereas the execution time model is presented as follows: each element has its own
cost function (presented beneath the nodes) that has two variables named γ and S, as well as
two linear parameters α and β whose values are estimated for modeling purposes. One may
note that the γ and S symbols refer to variables while bold characters represent the sets of
values used during the profiling phase. The presented GSLA is used to model the execution
time of the platform, thus time samples are used in parameter calculations. As presented in
Equation 1, the total cost is a sum of all cost elements, i.e. the execution time of the GPU
(tk), the execution time of the host processor (t1) and the execution time of the interconnect
(tc). The model of Eq. 2 is justified by the consideration that times (tk), (t1) and (tc) do not
overlap in time, i.e. the kernels of the GPU application are managed by the host device, then
executed by the GPU during separate time intervals.

tw = tk + t1 + tc (2)

tk(γ, S) = (αg/γ + βg) × S (3)

t1(γ, S) = (α1/γ + β1) × S (4)

tc(γ, S) = (αc/γ + βc) × S (5)

In these equations γ and S are variables, where γ is the parallelism factor, and S is the
input data quantity. As it can be seen, increasing the parallelism factor γ decreases the total
execution cost asymptotically. Each Eqs. 3, 4 and 5 follows an Amdahl’s law [1] with β

representing the incompressible time cost of a sequential section and α representing the
compressible time cost of a perfectly parallel region. Conventionally, LSLA does not deal
with internal processing element parallelism, which limits its usage to cores with limited
concurrency. GSLA adds the parallelism factor γ that makes it possible to include parallel
processing elements. For each GPU-related MoA graph entity (i.e., the GPU itself, the host
PE and the interconnect) there are separate parameters α and β, where α can be regarded as
the reciprocal of slope, and β as intercept. The Sect. 6 describes the proposed approach of
estimating each α and β.

5.1 Usage of themethodology

Figure 4 depicts the tool flow steps for creating the cost prediction using the models either
for performance or power. Applications are characterized with the S and γ sets, written in
OpenCL source code and compiled for execution and measurements. The employment of
the models is provided by a shell script and a Matlab script which is depicted in Fig. 4.
First, the S and γ sets are selected and the shell script is edited accordingly. Then, the scripts
perform the mapping, compilation and execution of the OpenCL application. The application
receives S and γ as command line arguments. Pseudocode 1 presents an example of S and
γ implementation in the matrix multiplication. Later, the Matlab script is used to extract the
parameters α and β. Finally, the parameters are used to estimate the appropriate workload.

The parameters can be used for similar applications on equivalent platforms, or recalcu-
lated for other kind of platforms and applications.
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Pseudocode 1 The S and γ Implementation in Matrix Multiplication
INPUT: S, γ
OUTPUT: execution time print
int main(int argc, char ∗ argv[ ]) {
...

size_t globalWorkSize[3];
int parMtx = atoi(argv[1]);
int globalWorkSize[0] = MTX_SIDE;
int globalWorkSize[1] = MTX_SIDE;
int globalWorkSize[2] = parMtx;
...

int workSize = globalWorkSize[0] ∗ globalWorkSize[1] ∗ globalWorkSize[2];
int totalLen = (atoi(argv[2]) ∗ 256 ∗ 4)/4;
int iterations = totalLen/workSize;
...

for(int i = 0; i < iterations; i + +){
...

clEnqueueNDRangeKernel(commands, krnMatMul, 3,NULL, globalWorkSize, ...);
...

}
...

}

Fig. 4 Steps in the tool flow

6 Estimation of parameters

Acquiring an accurate execution time model for an application running on a GPU requires
reliable profiling data. The proposed estimation approach assumes three accurate terms that
can be profiled on the platform

– Application total wall-clock time tw ,
– Host code execution time t1, and
– GPU kernel execution time tk .

The remaining term tc, in contrast, is derived using tw , t1 and tk . The proposed procedure
for acquiring accurate measurements for the terms are as follows: tw is measured using
the operating system clock, and tk is read from the profiling data available from the GPU
application programming interface. The measurement of t1 is performed by modifying the
application so that all GPU-related calls are disabled and the application only performs data
I/O. Finally, tc is derived from the other terms by subtracting t1 and tk from tw .

The Pseudocode 2 presents the Matlab script used for modeling the performance of the
applications according to the proposed Eqs. 2, 3, 4 and 5 . The S and γ sets have the same
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number of elements and their values are considered according to the input data size of the
applications and the memory of the platforms.

Pseudocode 2 Matlab Script of Performance Model
INPUT: tw = [...], tk = [...], t1 = [...]
OUTPUT: αg , βg , α1, β1, αc , βc
PerformanceModel {
S = [...];
γ = [...];
tc = tw − t1 − tk;
αg, βg = lsqlin(S, S/γ , tk );
αc, βc = lsqlin(S, S/γ , tc);
α1, β1 = lsqlin(S, S/γ , t1);

}

7 Experiments: execution timemodeling

The experiments presented below serve to illustrate the suitability of the proposed model
and Eqs. 2–5 for real-life GPU-equipped platforms. Typical signal processing applications
were used as case studies: matrix multiplication, digital predistortion and Gaussian image
filtering. The applications were written in OpenCL and were executed on two GPU-equipped
platforms: the Odroid XU3 containing a Mali T628 GPU and a desktop workstation with
the AMD RX 460 (Baffin) GPU. The test input data was randomly generated for matrix
multiplication and predistortion, and private data for Gaussian filtering.

The α and β parameters of the cost functions were obtained with a Matlab script that
invoked a least squares fitting algorithm (see Section 2 of [2]). In the Matlab script, the
lsqlin function was used with a positive solution constraint as a standard method to
perform linear regression.

Each application was profiled while varying two application variables, i.e., S and γ . For
setting parameters values, the applications input data sizes, the memory of the platform, and
the profiling duration have been considered. As the applications are simple, setting their
data parallelism γ is straightforward and corresponds to the number of parallel fired kernels.
Each obtained variable had six values where S ∈ { 512, 1024, 2048, 4096, 8192, 16384 }
and γ ∈ { 8, 16, 32, 64, 128, 256}. The global work size of OpenCL applications was set
application dependently. For matrix multiplication and predistortion, the work size set was
calculated by 256*γ , while for gaussian filtering, it is 1024*γ . The reason for this variation
is in the input data types i.e. gaussian filtering reads 1-byte data, while matrix multiplication
and predistortion read 4-byte data items. For each (γ , S) combination the execution time was
measured 10 times, giving a total of 360 samples per application/architecture combination.

7.1 Application-architecture mapping

In OpenCL, when computations are performed on a GPU, the CPU works as the host device
that reads data from I/O, sends it to the GPU for processing, receives the computed result
and stores it back to I/O. Based on the dataflow [9] MoC, a generic model for OpenCL
applications was created. Data reading and writing of the CPU is mapped to an I/O node (see
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Fig. 3). The Kernel node represents the computations performed on the GPU, whereas the
communication between the I/O and Kernel nodes is presented with a bidirectional arrow in
Fig. 3.

In each actor firing of the application graph, actors and the communication FIFO provide
a token, which is mapped to their associated PE or CN node of the model. In other words,
the tokens of the node I/O are mapped to the PE1 architecture node, the tokens of Kernel are
mapped to the GPU architecture node, and the communication FIFO tokens to the CN node.
The cost functions shown below the architecture nodes have two variables, thus two tokens
on the mapping lines in Fig. 3 are used to present the number of quanta for each variable.

7.2 Execution time results

This section shows how the proposed GPU execution time model fits with the measured
execution time samples. In Figs. 5, 6 and 7 the bottom axes depict the variables S and γ ,
whereas the vertical axis depicts execution time. The dots represent the average of individual
measured execution time samples.

The measured execution time samples are tw (wall-clock time) values, and the mesh depicts
the model-based sum of tk + t1+ tc. For clarity, the measured time samples depict the average
of the 10 measurements for each (γ , S) coordinate.

Table 2 depicts the calculated α and β parameter values for each application on Baffin and
Mali GPUs. These parameters are used in the Eq. 2 for calculating tw . The α value represents
the cost of a token and equals to the slope of the mesh. The β value represents the constant
time offset of the relevant GSLA element and is the tw intercept of the mesh graph. Due to
technical difficulties, values for the digital predistortion application were not acquired on the
Mali platform. App 1 is matrix multiplication, App 2 is digital predistortion and App 3 is
Gaussian filtering. M stands for Mali and B for Baffin platforms.

Table 3 demonstrates the fitting error between the model and measured samples for each
application/platform combination as fidelity values. To highlight the improvement of the
proposed GSLA model over conventional LSLA for GPU targets, Table 3 also shows the
fidelity value for LSLA. Fidelity is computed similarly to [3] with theKendall TauCoefficient
value, as calculated by the corr function of Matlab when configured for it. Fidelity assesses
the capacity of the model to correctly order samples, 1 corresponding to a perfect order and
−1 a perfectly reverse order. Indeed, a good model is a model that feeds good decisions more
than a model with good absolute accuracy. A value of zero, as a worst case, would suggest
independence in ranking between model and measurements. For computing the fidelity, the
360 execution time samples were randomly divided into a training set of 288 samples, and a
test set of 72 samples.

In the Table 3 results, it can be seen that conventional LSLA yields considerably worse
fidelity than the proposed GSLA for GPU architectures. The reason for this is evident: LSLA
does not capture parallelism (γ ), which is an integral part of GPU processing. An exception
to this is the predistortion application on the Baffin GPU, where LSLA and GSLA yield
almost identical fidelity. The reason for this is that on this platform, communication time
dominates over parallelized kernel execution, making the whole application behave almost
similar to a sequential application. Dominance of communication can be seen in Table 2 as
the high value of coefficient αc for application B2.

The measured fidelity values also show that the proposed non-linear GSLA model fits
better the Mali platform than the Baffin platform. The difference is likely related to the
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Table 2 Calculated cost function
parameters

App. αg βg α1 β1 αc βc

B1 0.001 0.008 0.000 0.004 0.005 0.068

M1 0.003 0.009 0.000 0.009 0.016 1.554

B2 0.005 0.049 0.002 0.003 0.060 0.000

B3 0.000 0.051 0.002 0.000 0.004 1.074

M3 0.003 0.023 0.022 0.000 0.082 0.460

Table 3 Fidelity of the test sets on execution platforms (Kendall tau coefficient between −1 and 1, 1 is the
best)

Application Platform Fidelity GSLA (proposed) Fidelity LSLA

1 Baffin 0.88 0.75

1 Mali 1.00 0.70

2 Baffin 0.90 0.92

3 Baffin 0.91 0.62

3 Mali 1.00 0.92

different memory architectures; Mali uses a shared memory between the CPU and the GPU,
whereas the Baffin GPU is connected over PCI Express.

8 GPU powermodeling

Besides GSLA for performance modeling, a power model is proposed for predicting the
average power consumption of an OpenCL applications. The same Odroid XU3 platform
is used for power profiling as it includes power sensors for CPU, GPU and memory. In
our measurements we noticed almost constant CPU power which is expected from OpenCL
applications running on GPU. Also, we ignored memory power consumption. Consequently,
we only considered the GPU power dissipation as seen in Eq. 6. In this equation the pt is the
total power of the GPU.

In our experiments, we recognized that power consumption modeling with reasonable
accuracy requires a third constant term in comparison to execution time modeling. In order
to keep the complexity at reasonable levels, we tried to come up with the simplest possible
model for capturing the GPU power. Consequently, the proposed power model has three
parameters.

pt (γ, S) = aGPU + bGPU S + cGPU S/γ (6)

As experiments, matrix multiplication and the Gaussian filtering are executed on the Mali
platform and power values are read from the sensors. Profiling was similar to performance
model i.e. with two application variables S and γ with the same values where S ∈ { 512, 1024,
2048, 4096, 8192, 16384 } andγ ∈{8, 16, 32, 64, 128, 256}. Figure 8 presents powermodeling
of matrix multiplication and Fig. 9 for Gaussian filtering. In both of these figures pt axis
demonstrates only GPU power consumption. Table 4 shows the power model’s parameters
of these applications on the Mali GPUs. The values of the bGPU and cGPU are very small in
comparison to other parameters. The aGPU is almost constant at 0.12 representing a static
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power consumption of 120 mW i.e. the intercept of equation and its larger values effect the
total power consumption.

Table 5 depicts the fidelity of the proposed power model. These values could improve
slightly with the cost of increasing the complexity of themodel. For example, Eq. 7was tested
and rejected for the power model with R-squared value of 0.862 for matrix multiplication
and 0.917 for Gaussian application, which does not justify the increased complexity.

pt (γ, S) = aGPU + bGPU S + cGPU/γ + dGPU S/γ (7)

The S and γ variables depicted in Eq. 6 show the input data quantity and parallelism factor.
From the observations we noticed similar variable relations like the performance cost for the
measured power samples. We observed that, logically, the input data quantity increases the
power consumption while an increase of the parallelism reduces the power consumption. In
addition, the Pseudocode 3 depicts the Matlab script of the power modeling according to the
proposed Eq. 6. The values of the S and the γ sets are considered according to the memory
capacity of the targeted hardware and the input data size of the applications.

Pseudocode 3 Matlab Script of Power Model
INPUT: pt = [...]
OUTPUT: aGPU , bGPU , cGPU
PowerModel {
S = [...];
γ = [...];
aGPU, bGPU, cGPU = lsqlin(pt, [ones(S), S, S/]);

}

9 Fitness of themodels

The proposed LSLA extension aims tomodel parallel execution on theGPUof the considered
platform.With the following fitness study,we show that the createdGSLAmodel is capable of
fitting both GPU performance and GPU power consumption. The performance model shown
inEq. 8 and the powermodel presented in Eq. 6 have the same termswith exception of an extra
constant term for Eq. 6. This constant logically models the static power of the platform while
timing is null when no computation is requested. The fitness of the performance model and
the presented power model are compared using the R-squared for the power measurements
calculated withMatlab regress function. Table 6 depicts the fitness comparison of themodels.

The R-squared values of 0.850 and 0.916 for Eq. 6 in comparison to values for the Eq. 8
justifies the selection of the Eq. 6 as the power model. The horizontal line has a better fit
than Eq. 8 for power samples of the matrix multiplication application so the R-squared value.
This suggests the requirement to add a constant value in Eq. 6.

The conclusion is that GSLA as defined by a sum of contributions obtained with Eq. 6, is
capable of modelling both GPU power and performance with only 3 parameters.

tw(γ, S) = α S/γ + β S (8)
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Table 4 Cost function parameters
of power modeling

Application aGPU bGPU cGPU

M1 0.121747 0.000003 0.000055

M3 0.121422 0.000052 0.000191

Table 5 Fidelity of the power model (Kendall tau coefficient between -1 and 1,1 is the best)

Application Platform Fidelity power model (proposed) Fidelity LSLA

1 Mali 0.740 0.628

3 Mali 0.943 0.916

Table 6 Fitness of Models Application Equation R-squared

1 8 -5.415

1 6 0.850

3 8 0.854

3 6 0.916

10 Conclusion

Wepresented a newModel ofArchitecture calledGSLA (GPU-oriented System-LevelArchi-
tecture). GLSA is tailored to GPU modeling but is capable of modeling both performance
and average power of the targeted GPU. Contrary to the preexisting LSLA model, GSLA
includes non-linear constructs, but reasonably fits the power consumption of a complex GPU
with only 3 parameters. The validity of the proposed model is evaluated by profiling three
OpenCL applications on two GPU-equipped platforms. The achieved model fidelity is 93%
for execution latency and 84% for power. Such performances can be considered sufficient
for design space exploration purposes.

In future, other lightweight machine learning techniques will be investigated for building
models from platform measurements, expecially in more heterogeneous contexts combining
e.g. CPU and GPU.
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