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Abstract—Autonomous vehicles rely on sophisticated hardware 

and software technologies for acquiring holistic awareness of their 

immediate surroundings. Deep learning methods have effectively 

equipped modern self-driving cars with high levels of such 

awareness. However, their application requires high-end 

computational hardware, which makes utilization infeasible for 

the legacy vehicles that constitute most of today’s automotive 

industry. Hence, it becomes inherently challenging to achieve high 

performance while at the same time maintaining adequate 

computational complexity. In this paper, a monocular vision and 

scalar sensor-based model car is designed and implemented to 

accomplish autonomous driving on a specified track by employing 

a lightweight deep learning model. It can identify various traffic 

signs based on a vision sensor as well as avoid obstacles by using 

an ultrasonic sensor. The developed car utilizes a single Raspberry 

Pi as its computational unit. In addition, our work investigates the 

behavior of economical hardware used to deploy deep learning 

models. In particular, we herein propose a novel, computationally 

efficient, and cost-effective approach. The proposed system can 

serve as a platform to facilitate the development of economical 

technologies for autonomous vehicles that can be used as part of 

intelligent transportation or advanced driver assistance systems. 

The experimental results indicate that this model can achieve real-

time response on a resource-constrained device without significant 

overheads, thus making it a suitable candidate for autonomous 

driving in current intelligent transportation systems. 

Index Terms—Autonomous Driving, Raspberry Pi, Scalar-Visual 

Sensor, Intelligent Transportation Systems 

I. INTRODUCTION 

vehicle capable of perceiving its surrounding environment 

and driving by itself safely without human intervention is 

known as an autonomous vehicle (also referred to as self-

driving, driverless, or robotic vehicle) [1, 2]. Autonomous cars 

are constantly making headline news over the last few years. 

Different manufacturing companies and startups are targeting 

to develop safer, more responsive, and reliable cars for 

consumers of the next generation [3]. There is a growing 

competition among the biggest car manufacturing companies, 

each making their own version of a self-driving car. Companies 

like Google, Apple, Honda, Porsche, and Tesla have also 

established labs for developing self-driving cars. Baidu [4], 

which is a Chinese web services corporation, has also focused 

their attention on improving different factors involved in self-

driving cars. Other companies and research labs are also 

working on individual layers involved in autonomous vehicles, 

such as sensor, communication, operating system, infotainment 

system, and computational hardware to enhance their 

performance. As autonomous vehicles rely on several 

capabilities, these individual factors can be further fused in 

them to reliably resolve different challenges in the field of self-

driving cars.  

More than 1.25 million people die in car accidents around 

the globe each year. According to a report of the World Health 

Organization [5], over 50 million people suffer from non-fatal 

injuries, while many acquire a disability. Car crashes cause 

extensive financial losses to individuals, their relatives, and the 

nation. These losses include the cost of treatment, time taken 

off from jobs, and effort to care for the injured. The cause of 

these road crashes and accidents is distracted driving, which 

takes lives of innocent people. Considering these losses of 

precious human beings, a system is needed, which is totally free 

of human intervention or partially assist humans to minimize 

these fatalities, thus advancing autonomous driving industry.  

Researchers from different parts of the globe are 

contributing to different aspects of autonomous vehicles [6-11]. 

To motivate research community toward autonomous driving 

technology, the DEFENSE Advanced Research Projects 

Agency (DARPA) arranged the Grand and Urban challenge 

competitions in the USA [12, 13]. The purpose of the challenge 

was the development of autonomous vehicles that can traverse 

off-road terrain by themselves [14]. Urban challenge 

competitors focused on improvement of autonomous vehicles 

with urban driving technology. As a result of these competitions, 

several IT companies and automakers including General 

Motors, Volkswagen, Google, and Toyota have invested into 

commercializing the concept of autonomous cars. Similarly, 

another competition in autonomous vehicles was held by the 

Hyundai Motor Group in the years of 2010 and 2012 in South 

Korea for establishing the foundation for autonomous driving 

technology. 
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IntelliDrive, also known as Connected Vehicle (CV), 

enables [15] double-way wireless communication for vehicle-

to-vehicle (V2V) and vehicle-to-infrastructure (V2I) 

communications. Within the CV environment, vehicles with 

communication devices and roadside infrastructure share the 

previously exclusive traffic including the vehicle maneuvers, 

trajectories, and origins/destinations. Hence, the environment 

of CV will allow for better control of urban intersections 

cooperatively for other vehicles and infrastructure. This CV 

environment for collaboration among vehicles has attracted 

significant attention because of its potential benefits. A 

prominent development of cooperation among the CV vehicles 

is a Cooperative Adaptive Cruise Control system [16, 17] 

intended to optimally operate vehicle tactics in various 

situations. Furthermore, the vision of a Cooperative Vehicle 

Intersection Control (CVIC) system is that an intersection 

controller and a vehicle may work together to expand traffic 

maneuvers for fully automated cars.  

In this paper, we outline an efficient and economical 

solution for autonomous driving in the form of a lightweight 

deep learning model running over a resource-constrained 

device in real time. The model car is equipped with scalar and 

vision sensors using Raspberry Pi as ground processing unit for 

autonomous driving on a pre-defined track. The proposed 

solution can be used as part of intelligent transportation or 

advance driver assistance system to improve traffic 

management. A Raspberry Pi camera sensor is utilized for 

capturing a video stream in real time. Preprocessing is applied 

to the data collected from the vision and scalar sensors. A 

computationally efficient deep neural network is then trained 

for making decisions to go straight, stop, and turn left or right 

autonomously. Ultrasonic sensors are needed for detecting and 

avoiding obstacles along the path of the car. The following are 

the major contributions of this work: 

1. A Raspberry Pi based framework for a self-driving model 

car is proposed, which can handle four tasks: 

a. Self-driving car model moves on a pre-defined track 

autonomously, being capable of driving in three 

directions: straight, left, or right. 

b. The model car detects and recognizes various traffic 

signs and takes action accordingly. 

c. The distance to a traffic sign is calculated by using a 

vision sensor. Obstacles are detected by processing 

ultrasonic data and are then avoided by the self-driving 

model car. 

d. Different HAAR Cascade based classifiers for the 

traffic signs and a deep learning model are trained for 

the track; they are loaded by Raspberry Pi in real-time.  

2. Raspberry Pi is used as an independent processing unit to 

handle visual and scalar data in real time, without reliance 

on a centralized server for model loading and processing. 

3. Deep Neural Network (DNN) models require a high-end 

processing unit for execution in real time. Therefore, a 

lightweight deep model has been proposed for resource-

constrained devices, which is executed in real time for 

autonomous maneuvering. 

The rest of the paper is organized as follows: Section II 

conducts a literature review. In Section III, the proposed 

framework and the methodology offered for the development 

of the autonomous car are discussed. Experimental results and 

challenges faced during the development of this project are 

summarized in Section IV. Section V concludes the paper with 

the future directions of work. 

II. RELATED WORK 

In this section, we discuss some of the existing research 

already completed on autonomous driving generally or on the 

individual factor involved in autonomous cars, either as a safety 

tool for public or as a financial source for industries. This 

section further incorporates the traditional and deep learning 

approaches, limitations of the existing systems, and current 

challenges encountered in the domain of autonomous driving. 

a) Conventional Approaches 

Various car manufacturing and IT-related companies 

including General Motors, Waymo, Daimler-Bosch, 

Volkswagen Group, and Groupe Peugeot S.A. (Groupe PSA) 

are aiming to contribute in the field of autonomous cars. Human 

error can be minimized by making the concept commercial, 

which will provide a means of safe transport for public. As 

autonomous cars are equipped with many sensors, these 

produce lots of data. The latter is analyzed by various 

companies including Google and Facebook and researchers for 

many purposes and applications. For instance, Chen et al. [18] 

constructed high-quality 3D objects in images for autonomous 

cars. Objects from high-fidelity imagery are constructed in the 

form of 3D bounding boxes. The problem has been formulated 

using the Markov field encoding, ground plane, and various 

depth structures. Their technique performs well on the KITTI 

training set leading to 25% higher recall than other existing 

techniques. Similarly, Guidolini et al. [19] proposed an 

automatic obstacle avoidance mechanism for autonomous cars 

using the IARA dataset. The technology works effectively by 

avoiding obstacles that appear suddenly in the frame of view as 

well as when they appear normally as expected. The response 

time for obstacle avoidance is nearly 3 milliseconds. Choi et al. 

[20] studied obstacle detection using LIDARs. The algorithm 

designed for obstacle detection generates the obstacle position 

map from LIDARs data. With the help of six LIDARs fitted on 

a passenger car, it can successfully detect obstacles by reaching 

its targets.  

Lenoard et al. [21] developed a software architecture for a 

perception-driven autonomous car. In the proposed work, they 

feed all the sensor data into a Kino-dynamic motion planning 

algorithm to accomplish the autonomous tactics. They have 

achieved autonomous driving of 55 miles over 6 hours without 

a mishap. In contrast with the current trends in autonomous car, 

Kalra et al. [22] carried out a study on how safe the journey of 

the autonomous car will be when driving up to hundreds of 

billions miles. Their study suggests that autonomous cars must 

be driven for billions of miles to check the reliability of 

autonomous driving. Their study claims that due to safety 

reasons it may not be possible to make it available for public 

use. Another study conducted by Petrovskaya et al. [23] 

developed a module to detect a moving vehicle and track the 

detected vehicle for their autonomous robot named “Junior”. To 

estimate the position of the tracked vehicle, they used geometric 

and dynamic properties of the detected vehicles. For position 

tracking, a Bayes filter is used for each vehicle and a Red-
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Blackwellised Particle Filter (RBPF) is applied to eliminate 

separate data segmentation. “Junior” can find the position, 

shape, and velocity of the vehicles tracked. 

 

b) Deep Learning Approaches 

DNN, which is a part of artificial intelligence, is widely 

used in different fields including computer vision [24, 25], 

natural language processing [26], speech recognition [27], 

machine translation [28], social networks filtering [29], and 

bioinformatics [30]. In computer vision, DNN is utilized for 

image classification [31, 32] and object detection [33]. Deep 

Learning is also employed for object segmentation and several 

other applications [34]. For instance, Behrendt et al. [35] 

carried out a study on detection of traffic lights for autonomous 

cars in real time using DNNs. The information for the traffic 

lights in the early system was map-based. A neutral network is 

trained on a thousand images to achieve high accuracy. In 

experimental analysis, a video sequence of more than 8,000 

frames was used. The contribution of the proposed system is 

traffic light detection, tracker, and classification of light (red, 

yellow, green, or off). The proposed approach achieved high 

accuracy in challenging environments. Using artificial 

intelligence for vehicle and lane detection in real time is another 

important task, to which several works are dedicated. For 

example, Huval et al. [36] studied the problem of vehicle and 

lane detection with the help of DNNs. This study mainly 

focused on vehicle detection in real-time scenarios. A large 

amount of data is usually required for training a neural network, 

which includes data on different road scenarios and highways. 

The proposed algorithm reported to produce high accuracy 

during practical scenarios in challenging environments. Instead 

of mediated perception and behavior reflex approaches, Chen 

et al. [37] proposed another paradigm – a direct perception 

approach for the estimation of afford driving. In the proposed 

method, an input image is resolved into small key points. This 

representation offers a description of the scene for autonomous 

driving. A deep Convolutional Neural Network was trained for 

this purpose, whose details are given in Section III. 

 

c) Limitations and Major Challenges 

One of the biggest problems for autonomous cars is finding 

the track and following it for the rest of the journey. Sun et al. 

[38] carried a brief study on lane detection for autonomous cars. 

In their work, images are converted into the binary form by 

adaptive thresholding, and then edges of the road are extracted. 

Lanes are extracted from the edges followed by their detection. 

They used different road images of various weather conditions, 

basic thresholds, and proportional coefficients. The same 

problem is also discussed by Saha et al. [39] suggesting a 

similar algorithm. An RGB image is taken from the 

autonomous car and converted into a grayscale image. A flood-

fill algorithm labels the largest components that are connected 

in the grayscale image. After applying the flood-fill algorithm, 

extraction of the largest connected component is completed. 

Unwanted regions in the image are skipped and ROI is filtered 

for lane and road edge detection. Hong et al. [40] studied the 

problem of detecting solid and dashed lanes in the road. 

Existing techniques only detect the central lanes in the road and 

are unable to detect the solid and dashed lanes. The proposed 

algorithm overcomes these limitations and can differentiate 

between dashed and solid lanes. 

The privacy of autonomous cars in vehicular networks is 

paramount in all aspects, same as privacy of other domains, 

such as industrial and surveillance environments [41]. For self-

driving cars, a secure channel is needed for exchanging data. M. 

Ali Alheeti et al. [42] proposed a scheme for intrusion detection 

based on Integrated Circuit Metric (ICM). Authors claim that 

the features extracted by the ICM can be used for many 

purposes including security and identification with the efficient 

use of time, speed, and memory. The study focused on 

enhancing the authentication in autonomous driving and 

building an IDS as well as making them intelligent by using the 

features of autonomous vehicles. The main theme of the study 

was proposing a scheme mainly based on MEMS gyroscope 

and constructing a system for identifying the car as an ICM 

vehicle. The authors argue for satisfactory results while using 

FFNN-IDS and k-NN-IDS in blocking malevolent vehicles. M. 

Ali et al. [43] proposed a scheme for detecting a malicious car 

in an urban transport scenario. The detection system was mainly 

based on a Fuzzy Petri Net (FPN). The FPN was used for 

detecting dropped packets in vehicular ad-hoc networks. By 

finding the number of received and dropped packets, IDS 

showed satisfactory results in terms of vehicular network 

security. 

Self-driving cars use V2V or V2I technology for exchanging 

information in a vehicular network. Gora et al. [44] built a 

microscopic module to arrange the traffic and exchange 

information with other autonomous car in vehicular networks. 

They developed simulation software to reduce the chances of 

collision in autonomous cars, while envisioning the flow of 

traffic. They included traffic lights, road lane junctions, and a 

specific route for the car to reach a random point. Speed and 

other properties of autonomous cars are adjusted according to 

the information received from other vehicles for safer driving. 

Path planning, vehicle sensing, and navigation of autonomous 

cars are challenging tasks. It is crucial for the autonomous car 

to safely maneuver in different environments. This problem is 

discussed by Huy et al. [45] who propose a path-planning 

algorithm. The latter follows a probabilistic method while 

filtering particles for dynamic obstacles. Obstacle points are 

detected by using a support vector machine to generate a 

smooth path via a Bezier curves algorithm. They tested the 

algorithm in simulation software and claimed that it obtained 

acceptable results in complicated scenarios with multiple 

moving objects. Road, vehicle, and obstacle recognition on the 

road using a vision sensor is another challenging task in the 

field of moving robotics. Birdal et al. [46] proposed algorithms, 

which help overcome the aforementioned problems while 

driving in vehicular networks. Images from the vision sensor 

are converted into gray values and then different techniques 

including texture analysis, geometric transformation, 

background modeling, and contour algorithms are applied for 

extracting different ROIs. The latter are tested using different 

road images, thus achieving significant results. 

 

d) Advance of State-of-the-Art 

The perspectives of autonomous vehicles cannot be easily 

predicted. However, such prediction enables planning possible 
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future conditions. Many practitioners and analysts are worried 

about the future of self-driving cars in terms of their effect on 

parking, traffic problems, and public transportation [47]. In this 

line of reasoning, the Society of Automobile Engineers (SAE) 

claims that by 2030 autonomous cars will be safe and reliable 

enough to replace human driving, thereby minimizing driver 

stress and tediousness [48]. Advancement in technologies for 

autonomous vehicles will also reduce accidents, congestion, 

and pollution problems. Some analysts also foresee that the 

total cost of shared passenger travel in autonomous vehicles 

will be lower than in human operated vehicles [48]. 

Despite many benefits of autonomous cars, they do impose 

extra cost by adopting different equipment and tools for 

processing and sensing the external environment. For instance, 

the introduction of a simple electronic device, such as an 

adaptive cruise, an active lane assist, a high beam assist, or a 

top-view camera, will cost thousands of dollars. Similarly, the 

processing unit of autonomous vehicles is even more expensive, 

thus increasing the overall price as well as requiring extra costs 

[48]. By analyzing the current trends in autonomous cars, we 

conclude that their focus is mainly on autonomous decision-

making technologies. Even though there exist variations in such 

technologies, their common attribute is an autonomous driver 

system for the vehicle. 

III PROPOSED METHODOLOGY 

For a better understanding of the proposed system, this 

section is broadly divided into two sections:  A) System Design 

and B) Methodology. Subsection A is structured as: i) input 

units, which relate to vision and ultrasonic sensors, ii) camera 

calibration and distance measurements, and iii) output units, 

which include DC motors, a buzzer, and a LED. Subsection B 

is further divided into: i) preprocessing module, where 

morphological operations are applied on the input frame, ii) 

classification module, which includes DNN units, traffic sign 

detection, and distance calculation using a vision sensor, and iii) 

decision module for driving the autonomous car.  

A. System Design 

This subsection provides a detailed description of how the 

input units (vision and ultrasonic sensors) are connected and the 

information inferring is elaborated. The system design for our 

proposed method consists of three main parts: inputs units, 

camera calibration for distance measurements, and output units. 

i. Input Units 

The input components are composed of a vision sensor with 

an ultrasonic sensor working together to collect data from the 

environment in real time. A stream of video frames is supplied 

to Raspberry Pi from camera, which are processed by the 

processing unit. Ultrasonic HC-SR04 unit is used for obstacle 

detection and measurements of distance to the obstacle. Table I 

shows the specification of hardware modules used in this 

prototype car. The specified ultrasonic unit has four pins, 

Trigger pulse unit (TRIG), Echo unit (ECHO), Ground unit 

(GND), and Power supply unit (VCC). The power was supplied 

to the unit from 5 volts General Purpose Input Output (GPIO) 

pins of Raspberry Pi. Fig. 1 shows the assembly of all hardware 

sensors in detail. The ultrasonic sensor works by the principle 

that a pulse is sent from the sensor using TRIG. This pulse is  

 
Fig. 1. Hardware assembly of our self-driving car. Raspberry Pi 

GPIO pins are extended through extension board, where to 

physical units are connected. 

bounced by the nearby objects and received by the ECHO. 

Distance is calculated from the difference of the transmitted 

pulse and the received pulse using a speed formula. The speed 

of sound is 343 (34300 centimeter) meters per second in the air. 

Time is divided by 2 because the pulse travels to the object and 

back again: 

𝑑 = 𝑠𝑝𝑒𝑒𝑑 × 𝑡𝑖𝑚𝑒  ,     (1) 

𝑑 =
34300×𝑒𝑐ℎ𝑜

2
  ,      (2) 

𝑑 = 17150 × 𝑒𝑐ℎ𝑜  .     (3) 

In equation (3), echo is the return pulse time and d is the 

distance to the object. A threshold value of 15 inches is set for 

the distance. The obtained distance is passed from the threshold 

for controlling the motor’s Pulse Width Modulation (PWM). 

For instance, if the distance is greater than the threshold value, 

PWM is set to 100 Hertz, and if the distance is less than the 

threshold value, PWM is set to zero. The returned value from 

the ultrasonic sensor is also used for the buzzer as a horn. When 

the car reaches an obstacle, the buzzer is turned on after the car 

stops and warns on the obstacle next to it. A message Obstacle 

Detected is displayed on the LED. Fig. 2 captures images of the 

self-driving car on a pre-defined track.  
 

TABLE I 
SPECIFICATION OF HARDWARE MODULES 

Module Specification 

Camera 8 megapixels,1080p30,780p60 

Ultrasonic-SR04 5v, 15mA, Ranging distance 6inches-156inches 

DC-motor 5v, 20mA, 2000RPM 

2x16 LED 5v, 20mA 

Buzzer 5v, 12mA 

ii. Camera Calibration and Distance Measurements 

Radial and tangential types of distortion are commonly 

introduced by a camera to the images, due to which some of the 

meaningful information is lost. Straight lines in the images will 

appear curved in radial distortion. This effect can be easily 

observed while moving away from the center of the image. In 

Fig. 3, a checkered board is marked with red lines at the edges. 
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It can be seen that the border is not a straight line and does not 

match with the red line. 

 
Fig. 2. Self-driving car on pre-designed track with traffic signs. 

To assess the efficiency of the system, several experiments are 

performed for each traffic sign. 

The method proposed by [49] is used for the calibration of the 

Raspberry Pi camera. The distortion is resolved using equations 

(4) and (5). 

𝑈𝑑𝑖𝑠𝑡 = 𝑈(1 + 𝑘1𝑟2 + 𝑘2𝑟4 + 𝑘3𝑟6) ,   (4) 

𝑉𝑑𝑖𝑠𝑡 = 𝑉(1 + 𝑘1𝑟2 + 𝑘2𝑟4 + 𝑘3𝑟6) ,   (5) 

 
Fig. 3. Checkered-board is used for camera calibration using 

OpenCV 

where Udist and Vdist are the undistorted pixel location and U and 

V are the normalized image coordinates. Tangential distortion 

occurs because the lenses that capture images are not aligned 

perfectly parallel to the plane of the image. Due to this, some 

regions in the image appear closer than expected. This can be 

resolved with the help of equations (6) and (7). OpenCV library 

has built-in tools to calibrate the camera and reduce the 

distortions based on (6) and (7). 

𝑈𝑑𝑖𝑠𝑡 = 𝑈 + (2𝑃1𝑈𝑉 + 𝑃2(𝑅2 + 2𝑈2)),   (6) 

𝑉𝑑𝑖𝑠𝑡 = 𝑉 + (𝑃1(𝑅2 + 2𝑉2) + 2𝑃2𝑈𝑉).   (7) 

There are five parameters, which are known as distortion 

coefficients and are given below: 

𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =  (𝑘1 𝑘2 𝑃1 𝑃2 𝑘3) , (8) 

where k1, k2, and k3 are the radial distortion, while P1 and P2 

are the tangential distortion coefficient of lens. Along with 

these parameters, the information like intrinsic and extrinsic 

parameters of the camera is also required. Intrinsic information 

includes focal length (fx, fy) and optical centers (cx, cy). All 

these parameters are camera-specific and only depend on the 

model and focal length of the camera. Expression (9) is used for 

the camera calibration. 

Camera Matrix = |
fx 0 cx
0 fy cy
0 0 1

| .    (9) 

Extrinsic parameters are related to the translation and rotation 

vectors, which translate into the coordinates of a three-

dimensional point. All these distortions must be corrected to 

obtain optimized results. Sample images, in which the patterns 

are well defined, are provided for correction. Checker board 

images are suitable in this case. 

OpenCV provides convenient functions to further facilitate 

the calibration process. The OpenCV method 

findChessboardCorner() returns corners when a 7×6 grid image 

is passed to it as shown in Fig. 4. The accuracy of the points is 

improved by using the cornerSubPix() method. The 

drawChessboardCorner() function is used for drawing patterns. 

 

 
Fig. 4. Calibrated output image of the Raspberry Pi Camera 

using OpenCV 

 
Fig. 5. Monocular-vision based distance measurement 

The calibration of the camera is now a one-step process 

calibrateCamera() by obtaining the image and the object points. 

This will return the camera matrix, the distortion coefficients, 

as well as the rotation and translation vectors. The 

measurements of distance for detecting a sign using a 
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monocular vision sensor is one of the most challenging tasks in 

this system. The method proposed by [50] to calculate the 

distance from traffic signs in real time is employed.  

 
Fig. 6. Detailed overview of the proposed framework. In Preprocessing module, input frame is passed from morphological 

operation to enhance the frame. In Classification module, input frame is further processed for traffic sign detection i.e., Go, Stop, 

Slow, “Right not turn” and “Left not turn”, and classification of frame i.e. straight, left, or right. Decision module stores information 

received from the second step into an array. Decision is taken on the array from left to right, in which the last column is the final 

decision for the input given conditions. 

From Fig. 5, we suppose that an object P is at the distance 

of D from the optical center. H is the height of the optical 

center, F is the focal length of the camera, (x0, y0) are the 

point of intersection for the image and the optical axis; while 

the projection of point P is given by (x, y). Consider further 

parameters, such as (u0, v0) for the camera coordination; then, 

the physical dimension of the pixel corresponding to x-axis 

and y-axis on the image plane are Dx and Dy. 

𝐷 =
𝐻

𝑡𝑎𝑛(𝛼+𝑎𝑟𝑐𝑡𝑎𝑛(𝑦1−𝑦0 𝑓⁄ ))
 ,                  (10) 

𝑢 =
𝑥

𝐷𝑥
+ 𝑢0,    𝑣 =

𝑦

𝐷𝑦
+ 𝑣0,      (11) 

𝐷 =
𝐻

𝑡𝑎𝑛(𝛼+𝑎𝑟𝑐𝑡𝑎𝑛(𝑣1−𝑣0 𝑎𝑦⁄ ))
, 𝑎𝑦 =

𝑓

𝐷𝑦
.      (12) 

iii. Output Units 

The output components used in the development of the 

system include DC motors (wheels), a 2×16 led for showing 

the necessary information (i.e., IP address of the Raspberry 

Pi, “Ready”, “Obstacle detected”, “Left turn”, “Right turn”, 

“Going straight”, and “Stop”), and a buzzer as a horn. In the 

first stage, an ultrasonic sensor is measuring the distance to 

the obstacle (if any). If there is no obstacle in the track ahead, 

the car travels smoothly on it. If there is an obstacle on the 

track, the ultrasonic sensor measures the distance to this 

obstacle. When the distance reaches a minimum of 15 inches, 

https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6979


The final formatted version can be downloaded from IEEE ITS website at https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6979  

7 
 

voltage supply to the wheels is cut off and the car stops at a 

distance of 15 inches from the obstacle. In the second stage, 

the wheels are controlled from the vision sensor. Each frame 

is scanned for the detection of traffic signs. After that, the 

ROI is passed through the respective Haar cascade classifier 

for further action. Four Haar cascade classifiers are used, and 

in the identification of each traffic sign, the wheels are 

controlled according to the identified sign. 

 

B. Methodology  

This subsection offers a closer look at the proposed 

system where each module combines different units. The first 

module is composed of various morphological operations 

carried on the input frames for enhancement. Classification 

module consists of two units: DNN and traffic sign detection 

with distance calculation. The last module is an array where 

different predictions from the second module are stored. 

Operation on this array is carried from left to right where the 

last column is the final decision for given input conditions. 

The overall view of our methodology is shown in Fig. 6. 

i. Preprocessing Module 

Input frames from the vision sensor are passed from 

several modules in order to remove noise and crop the track 

region from the frame. In the first step of the preprocessing, 

an image is passed from Gaussian blur effect step to smoothen 

it. Due to different lighting conditions and motion of the car, 

input frames contain noise, which is removed by using a noise 

removal module. This is based on a morphological operation, 

such as opening followed by closing. In the last step of the 

preprocessing, extra regions from the frame are cropped to 

only the track region and resized to 640×480 resolution. This 

frame is supplied to the classification module for further 

operations. 

ii. Classification Module 

This module is composed of two parts: 1) neural network 

and 2) traffic sign detection with distance calculation units. 

Input frame from the preprocessing module is passed from 

each unit of the classification module for further predictions. 

 Neural Network for Prototype Model Car 

The performance of the DNN architecture is directly 

depended upon the total number of hidden layers inside the 

model. However, these hidden layers and the number of 

nodes do not interact with the outside environment directly, 

but they affect the output result. The DNN model with very 

few neurons in the hidden layers will cause underfitting. In 

this case, the number of neurons is insufficient to detect the 

signal accurately and transfer the output to the next hidden 

layer. On the other hand, using a larger number of neurons in 

the hidden layers will cause overfitting, which requires more 

information and training data. To overcome these problems, 

there should be a tradeoff among the numbers of hidden 

layers, neurons, and training data. For this reason, we started 

with a simple DNN containing 128 nodes in the first hidden 

layer and 16 nodes in the second hidden layer. The complete 

details of these nodes are given in Table II, where the first 

two columns represent the numbers of nodes in the first and 

the second hidden layer with their corresponding accuracy in 

the third column. The performance of the model is observed 

carefully, and the numbers of nodes are adjusted accordingly. 

After a node adjustment in the hidden layers, Hidden 

layers 1 and 2 contain 4800 and 64 nodes, respectively, while 

the output layer contains four nodes that are responsible for 

controlling the wheels for driving. The output of the model 

includes straight, left, right, and an optional layer “reverse” 

that is not used in the current system. The number of images 

used for training is ten thousand, where 80% of the images 

are used for training and the rest of 20% serve validation. The 

images used for training are cropped, and only the track 

portions of these images are supplied to the network for 

classification. The size of these images is fixed to 80 × 60 

(4800 nodes) for a performance optimization of the network. 

During the training process, the model is trained for more 

than six hundred epochs with a starting learning rate of 0.01, 

which is adjusted by the gradient descent optimizer according 

to the performance of the model. Fig. 7 shows a brief 

description of the neural network for the self-driving car. 

 
Fig. 7. Neural network for self-driving car maneuvering, 

where Hidden layer 1, Hidden layer 2, and final Output 

contain 4800, 64, and 4 nodes, respectively. 

TABLE II 

NUMBER OF NODES AND CORRESPONDING ACCURACY 

No. of nodes in 

Hidden layer 1 

No. of nodes in 

Hidden layer 2 
Accuracy (%) 

128 16 53 

512 32 62 

512 64 68 

512 128 62 

1024 64 72 

2048 64 86 

3072 64 92 

4800 64 97 

 

The processing of each frame is presented in Fig. 8. In the 

first step, an image is cropped and converted into a Numpy 

array. In the second step, labels for the training images are 

supplied in a separate labels file. After the DNN training, the 

trained model is saved to the local directory for future use. 

 Traffic Sign Detection and Distance Calculation 

An extraction of multiple ROIs from the supplied frames 

includes traffic sign detection and distance measurements to 

the detected signs. For an intelligent transportation system, 

the detection and recognition of traffic signs is an essential 

capability. Taking advantage of the “Haar based classifier” 

method by P. Viola [51], we conduct traffic sign detection 

and recognition. This algorithm requires a large number of 

positive and negatives images to train the cascade function.  

A separate Haar Cascade classifier is trained for each traffic 

sign. OpenCV provides libraries for both training and 
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detecting the Haar cascades. 2,000 negative images (other 

than the traffic sign images) and 50 positive images (Traffic 

sign images) were used for training the Haar cascade. Only 

regions of interest were supplied in the positive case. Five 

Haar cascades including “Go”, “Stop”, “No Left Turn”, “No 

Right Turn”, and “Slow” signs are used in this system. Fig. 9 

shows samples of positive and negative images, and Table III 

demonstrates traffic signs, numbers of positive and negative 

images, and size of the images. Each frame is given to a 

function for detecting the ROI, while only the contour region 

is extracted and passed from the distance calculation module 

for distance calculation. Decisions are taken after recognizing 

a specific sign.  

  

Fig. 8. Training a DNN-based classifier for a self-driving car. 

In the first step, a multi-dimension frame is converted into the 

1×4800 array. In the next step, the associated labels are 

concatenated at the end of each frame array. After training the 

DNN, the trained model is saved for future use. 

TABLE III 

DIMENSIONS AND NUMBERS OF POSITIVE/NEGATIVE IMAGES 
FOR HAAR CASCADE TRAINING 

Sign Positive Negative Size (pixel) 

Go 50 2000 30×30 

Stop 50 2000 30×30 

Slow 50 2000 30×30 

No Left  50 2000 30×30 

No Right  50 2000 30×30 

 
Fig. 9. Training of Haar cascades with Positive (left) and 

Negative (right) images for a traffic signs detection. 

iii. Output Decision Module 

Processed data from the processing module are passed to 

the output decision module for maneuvering the model car on 

the track. Return data from the processing module are put into 

an array. The returned array contains information about the 

frame classification (straight, right, left), traffic sign detection 

(go, stop, left not turn, right not turn, slow), distance to the 

detected traffic sign, distance to the obstacle detected by an 

ultrasonic sensor, and decision i.e., stop, go, turn left or right. 

For instance, if the frame is classified as ‘right’, the detected 

sign is Go, the distance to the traffic sign is greater than the 

threshold, and there is no obstacle on the track, then the final 

decision for this type of information is “turn right”. These 

decisions are forwarded to the output units in system design 

where voltage to certain motors is controlled depending upon 

the decision. 

IV. EXPERIMENTAL RESULTS 

All the experiments are carried out on optimized OpenCV 

version 3.3.0 compiled on Raspberry Pi 3 Model B+, 4x ARM 

Cortex-A53 1.2GH processor using Python version 3.6 and 

Tensorflow version 1.4.0. Other dependencies include 

Numpy, Scipy, and Matplotlib for visualizing and processing 

of output data. The Raspberry Pi has limited resources in 

terms of the computational capacity and memory [52]. ARM 

processor comes with ARM NEON optimization architecture 

and VFPV3 extension for the purposes of faster image, video, 

and speech processing, machine learning techniques, and 

floating-point optimization. ARM NEON supports the use of 

Single Instruction Multiple Data (SIMD), where multiple 

processing elements in the pipeline perform on multiple data 

points, all executed with a single instruction. VFPV3 comes 

with configurable rounding modes and customizable default 

Not a Number (NaN) mode. Enabling all these special modes 

of Raspberry Pi while compiling OpenCV results in running 

our neural network faster, while the compiled OpenCV can 

be referred as Optimized OpenCV. Taking advantage of these 

features (ARM NEON, SIMD, VFPV3, and NaN) in the 

Raspberry Pi, OpenCV is a built-in optimized mode. Further, 

tensorflow provides a possibility to use a number of processor 

cores for a task. Leveraging this feature, deep experiments are 

set on multiple cores and different versions of OpenCV. Fig. 

10 shows the average execution time of the normal OpenCV, 

optimized OpenCV, and Optimized OpenCV with the support 

of Movidius Intel Computing Stick. Fig. 11 demonstrates the 

average temperature of the core during frame processing. A 

high increase in temperature on cores 3 and 4 is because the 

load shifting probability is decreased among the CPU cores. 

TABLE IV 

DESCRIPTION OF PARAMETERS 

Parameter Description 

↑ Straight 

→ Right 

← Left 

↔ Not straight 

↖ Not right 

↗ Not left 
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In order to achieve the maximum possible accuracy and to 

reduce the computational cost, the number of frames per 

second were decreased, thus generating a prediction 5x faster 

i.e., 5 frames/s. The parameters used in this work are 

described in Table IV. For evaluating the model car, different 

types of tests were conducted using various track scenarios. 

A total number of 158 frames (31.6 seconds video) were 

evaluated under different track scenarios. 

 
Fig. 10. Time complexity. Number of CPU Cores vs. different 

versions of OpenCV, i.e., Normal, Optimized, and Optimized 

+ Movidius confirming that the number of available resources 

and the use of Movidius improve performance of the system. 

 
Fig. 11. Average temperature of different CPU cores on 

various versions of OpenCV, i.e., Normal, Optimized, and 

Optimized + Movidius. Average temperature of Raspberry Pi 

increases as DNN process is distributed among several cores. 

Two versions of videos from the model car were obtained: 

the first version was converted into frames and categorized 

into three groups including straight, left, and right. Each 

group is further divided into two classes: (straight and non-

straight), (right and non-right), and (left and non-left). Each 

frame obtained from the first version is placed in their 

respective class as a ground truth for prediction and training. 

The second version video was predicted by the model car and 

was compared with the ground truth. The overall accuracy of 

the model is presented in Table V. The results are also color 

coded for the ease of interpretation. Green columns represent 

tests for the class “straight”; the ground truth for this class 

includes 60 “straight” frames and 98 “non-straight” frames. 

During the validation, the model car has predicted all the 60 

frames as “straight” and 98 as “non-straight” frames, thus 

reaching its destination without any error. Yellow columns 

show the ground truth for the class “right”. In this class, 55 

are “right” frames and 103 are “non-right” frames. The model 

car has identified 52 as “right” frames and 106 frames as 

“non-right” frames. The fifth and sixth columns of Table 5 

are colored blue; they are the ground truth for the class “left”. 

There are 103 frames for “left” and 55 frames for “non-left”. 

The model car identified 107 frames as “left” and 51 frames 

as “non-left”, thus attaining an overall accuracy of 98.5%. 

Distance calculations with monocular vision sensors became 

a challenging task. A shorter distance to the sign gives nearly 

the actual distance, but when the distance from the sign was 

increased, error in the distance calculations also increased as 

shown in Fig. 12.  

Fig. 12. Distance calculated by a vision sensor. As model car 

moves toward the detected traffic sign, the difference 

between the actual and the predicted values decreases. 

Fig. 13 shows a sample image of the distance calculated 

by a vision sensor. The difference between the actual distance 

and the distance calculated by the vision sensor may be due 

to the following reasons: 

1) Error in the measurements of the actual values. 

2) Error in the camera calibration. 

3) Variation in the object bounding box while detecting the 

signs. 

4) Non-linear relationships between distance and camera 

coordinates. With greater distance, the coordinates of the 

camera change rapidly, thus resulting in higher error. 

5) Raspberry Pi camera is general-purpose camera and has 

average image quality. 

Ultrasonic sensors have only been used for detecting 

objects and distances from the car. An ultrasonic sensor uses 

sound waves to calculate the distance. Due to this, some 

errors were experienced in calculating the distance during our 

demonstrations. Fig. 14 shows the actual distance and the 

distance calculated by the ultrasonic sensor. The difference 

between the actual and the measured values may be due to the 

following reasons: 

1 Sound waves easily strike larger objects as compared to 

smaller objects. The farther the distance is, the greater 

the error is since few pulses are returned from the object. 
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TABLE V 
OVERALL ACCURACY OF MODEL CAR 

No. of Tests 
Ground Truth Proposed System 

Overall Accuracy 
↑ ↔ → ↖ ← ↗ ↑ ↔ → ↖ ← ↗ 

Test 1 60 98 55 103 103 55 60 98 52 106 107 51 98.5 % 

Test 2 79 79 71 87 98 60 79 79 73 85 99 59 99.1 % 

Test 3 87 71 118 40 40 118 88 70 116 42 39 119 98.9 % 

Test 4 50 108 90 68 100 108 53 105 87 71 99 59 98.8 % 

 
Fig. 13. Sample images showing distance to the traffic sign by using a vision sensor. Each sign is detected (green rectangle), 

recognized, and the distance is calculated between the traffic sign and the model car.

Fig. 

14. Distance measurements: actual vs. predicted by an 

ultrasonic sensor. The actual and predicted distances are nearly 

equal as the model car moves towards the obstacle. 

 

2 Ultrasonic waves are greatly influenced by the air 

temperature. The sensor calculates the distance to the 

object using the speed of sound. The speed of ultrasonic 

waves alters as the air temperature changes [53]. 

3 The ultrasonic waves are also influenced by air pressure. 

A. Energy Consumption 

The total expenditures used by a system during completing 

a specific task are known as energy consumption. To evaluate 

the total energy consumption by our system with deep learning 

model, 5 frames have been processed in one second. The 

parameters have been calculated using a Keweisi device while 

estimating the total power consumption of our system. 

Fig. 15 shows sample images of power consumption. The 

unit power and the energy consumption of the Raspberry Pi can 

be observed in Table VI when the system is idle and no task is 

in progress. The total ampere, voltage, time, power, and energy 

drain by Raspberry Pi during processing a single frame with 

deep learning can be seen in Table VII. 

B. Comparison with Other Computing Platforms 

To compare the performance of Raspberry Pi with other 

computing platforms in terms of the energy, power, and average 

processing time of a frame, we used Intel CPU and GPU with 

NVIDIA graphics card. The specification of each system is 

https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6979


The final formatted version can be downloaded from IEEE ITS website at https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6979 

11 
 

presented in Table VIII. In order to evaluate the performance of 

the deep model on CPU and GPU, a multi-thread TCP server is 

used for receiving the video stream and the ultrasonic data from 

Raspberry Pi on the computer. Data from the Raspberry Pi is 

processed on the computer and only the decisions reached by 

the deep model are sent to the Raspberry Pi to take the necessary 

actions. 
TABLE VI 

POWER AND ENERGY CONSUMPTION OF RASPBEERY PI IN IDLE 

STATE 

No. of 

tests 
Current (A) Voltage (V) Power (W) Energy (J) 

1 0.12 5.25 0.63 0.63 
2 0.19 5.24 0.99 0.99 
3 0.16 5.24 0.83 0.83 
4 0.21 5.25 1.10 1.10 
5 0.17 5.25 0.89 0.89 
6 0.22 5.23 1.15 1.15 
7 0.18 5.25 0.94 0.94 

 
Fig. 15. Power consumption for on-board execution of deep 

learning model on Raspberry Pi. The upper value shows current 

while the second value shows voltage consumed by the 

Raspberry Pi during execution of the DNN model. 

TABLE VII 

ENERGY AND POWER CONSUMPTION DURING NEURAL NETWORK 
EXECUTION 

No. of 

tests 

Current 

(A) 

Voltage 

(V) 

Time 

(T) 

Power 

(W) 

Energy 

(J) 

1 0.82 5.25 0.23 4.30 0.98 

2 0.99 5.23 0.25 5.17 1.29 

3 0.99 5.26 0.30 5.20 1.56 

4 1.0 5.23 0.26 5.25 1.36 

5 1.2 5.22 0.23 6.30 1.44 

6 0.99 5.25 0.28 5.19 1.45 

7 0.89 5.22 0.29 4.64 1.34 

8 0.87 5.26 0.25 4.57 1.14 

 
TABLE VIII 

SPECIFICATION OF COMPUTING SYSTEM 
Hardware 

platform 
Raspberry Pi Intel CPU GPU 

Processor 4x ARM Cortex-

A53 1.2GH 
Intel Core i3-

40 1.70GHz 
Intel Core i5-50 

3.32GHz 
RAM 1GB-LPDDR2 8GB-DDR3 8GB-DDR4 

GPU-use No No 8GB-NVIDIA 
GeForce-GTX-1070 

Cost $35 $280 $3300 

In Fig. 16, the red bar shows the average power consumption 

of the GPU during processing the deep model. The total average 

power consumed by the GPU on the frame processing is 440 

Watts, as the normal current increases from 1.5 to 2amps on the 

execution of the neural network. The power consumption of the 

GPU is 330 Watts in the idle state. Yellow bar shows the 

average power consumption of the CPU on the execution of the 

deep model. The total average power consumed by the CPU on 

executing the deep model is 224.4 Watts. A small amount of 

power of 6 Watts is consumed by the Raspberry Pi, as shown in 

green color in Fig. 16, while attaining the same accuracy as 

obtained by the GPU and CPU. 

The energy consumption of different computing platforms 

is presented in Fig. 17. The average energy consumption of the 

GPU is 4.4 Joule on a single frame execution. The CPU 

consumes higher energy than the GPU since the former is not 

Graphics card enabled. Raspberry Pi, in contrast to GPU and 

CPU, consumes less energy, which is on average 1.38 

Joule/frame. 

 
Fig. 16. Average power consumption of different multicores 

computing platforms. 

 
Fig. 17. Average energy consumption on different platforms 

Fig. 18 shows the time complexity of a single frame on 

different hardware platforms. A total of 1,000 frames are 

executed on each platform. The time complexity of the GPU on 

a single frame is 0.01 seconds. The average time consumed by 

the CPU to execute a single frame is 0.06 seconds. Raspberry 

Pi did not perform well as it had limited resources and took an 

average of 0.23 seconds to execute a single frame. Summarizing 

all the conducted experiments, we conclude that Raspberry Pi, 

an economical computing platform, is powerful enough and 

capable of running a DNN for real-time applications with low 

power and energy consumption. GPU and CPU perform well in 

terms of the execution time, but as evident from our 

experimental results, these platforms consume excessive energy 

and power while attaining a similar accuracy with Raspberry Pi. 
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C. Speed Test 

Speed of an object can be referred to as the total distance 

covered by a body over a unit time. To analyze the speed of our 

model car on the track, we have conducted a total of seven tests 

to assess the average speed of the car. Details of each test are 

offered in Table IX. The length of the track was kept to 132 

inches (11 feet). The speed of the model car is directly related 

to the voltage; i.e., greater voltage increases the speed of the 

vehicle. During each test, the voltage and current supplied to 

the car are kept constant. Due to the energy consumption of the 

different units in the model car, the voltage is dropped after each 

test thus resulting in a decrease in the speed of the model car. 

Further, with increased voltage supply to the motors of the 

model car, it covers the distance in less time, while decreasing 

supplied voltage increases the time. For 3000mah battery, this 

model car works for an average of 45 minutes, in which 85% of 

the battery is drained by the motors of the model car, and 15% 

is consumed by Raspberry Pi.  

TABLE IX 

VOLTAGE DROP OF MODEL CAR AFTER EACH TEST 

No. Voltage Speed (inches/sec) 

01 5.16 13.1 

02 5.03 12.5 

03 4.96 12 

04 4.92 11.13 

05 4.86 11.14 

06 4.79 10.86 

07 4.71 9.67 

 

 
Fig. 18. Average time complexity of frame/sec execution on 

different platforms. 

D. Comparison with Other State-of-the-Art Methods 

With advancements in technology, the performance of 

resource-constrained devices, such as Raspberry Pi, have been 

left behind. Today’s autonomous industry mainly focuses on 

the development of autonomous decision-making capabilities 

by deferring as the second design driver the optimization of 

efficiency in terms of the hardware costs. This subsection 

elaborates on the performance and accuracy of our prototype 

with respect to the related more expensive technologies. 

For comparison with other methods, several experiments 

were carried out on traffic sign detection using Raspberry Pi. A 

total of 100 images of different traffic signs are used for testing. 

Table X presents the traffic sign, the number of test images 

correctly classified, and the accuracy of our system. In the first 

test, a total of 25 images of the stop sign are passed from the 

trained Haar based classifier. The system recognized all the 25 

images correctly. In the second test, a total of 25 images of the 

go sign are tested on the trained Haar classifier, which detects 

24 signs correctly. Results for other traffic signs can be seen in 

Table X. 

TABLE X 

PERFORMANCE OF HAAR-BASED CLASSIFIER. 
Sign No. of images Correctly Classified Accuracy 

Stop 25 25 100% 

Go 25 24 99.9% 

Left not turn 25 25 100% 

Right not turn 25 25 100% 

Crosswalk 25 25 100% 

These results are compared with the existing techniques to 

assess the performance of the trained Haar-based classifier. 

Table XI compares the proposed system with other two existing 

methods in terms of the accuracy and the execution time for 

frame processing. The state-of-the-art methods contain several 

RC-car based self-driving car test-beds. For instance, a study 

conducted by MIT [54] is based on NVIDIA jetson computing 

platform and Shim [55]. Both works are based on LIDAR and 

many other sensors. However, such systems consume excessive 

energy and power. Also, the employed sensors cost more than 

$4,000, thus requiring much investments. Compared to these 

solutions, we propose a CNN-based workload in real time on a 

resource-constrained and low-cost computing platform, thus 

providing a cheaper solution for real-time applications.  

TABLE XI 

COMPARISON OF TRAINED HAAR CASCADE CLASSIFIER WITH 

EXISTING TECHNIQUES 

Method [56] [57] Our Trained Haar-based Classifier 

Accuracy 97.75% 97.20% 99.9% 

Time 0.003 - 0.02 

V. CONCLUSION AND FUTURE WORK 

This paper presents a cost-effective and computationally 

efficient solution for autonomous maneuvering based on 

resource-constrained devices and a lightweight deep learning 

model that can be used to facilitate vehicular perception and 

autonomous guidance in intelligent transportation systems. The 

proposed system achieves attractive performance scores in 

terms of the detection and avoidance of obstacles, traffic sign 

recognition, and intelligently following a smooth trajectory. 

The assembly of different hardware components, scalar, and 

vision sensors have their role in the overall output of the system. 

When compared to other more expensive solutions, our 

economical and computationally efficient prototype car is 

capable of autonomously driving on a specified track by 

avoiding obstacles as well as detecting and recognizing five 

different traffic signs based on Artificial Intelligence methods. 

An ultrasonic sensor is used for obstacle detection, which helps 

avoid collisions, thereby preventing the car from accidents. A 

Haar cascade classifier is used for traffic sign detection. The car 

can identify a traffic sign and adjust its speed of wheel motors 

by using these cascades. An algorithm capable of calculating 

the distance by using only a monocular vision sensor is used to 

detect and measure the distance to the traffic signs. Rich 
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experimental results show that our prototype model car 

achieves autonomous driving with an overall accuracy of 95.5% 

Future research will be devoted to enhancing our algorithm 

further in order to increase the admissible number of frames per 

second and accommodate higher car speeds. Specifically, 

studies in the short term will elaborate on the distance 

calculation, the consideration of the vehicle sensing capability 

and overtaking other vehicles, the detection and recognition of 

traffic lights, and ultimately the optimization of the overall 

perception results. Moreover, instead of a single Raspberry Pi 

node, we will scale up the number and the heterogeneity of 

sensing devices for handling more realistic scenarios of 

inherently higher complexity. To this end, other input devices 

like LIDAR sensors will be under consideration in order to scan 

the surrounding environment for other obstacles. Similarly, an 

addition of vision sensors on the back of the car model may 

equip the vehicle with the capability of reverse function and, 

eventually, make it turn around to avoid possible detected 

obstacles by harnessing artificial intelligence and computer 

vision capabilities similar to the ones presented in this work. 
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