
The final formatted version can be downloaded from IEEE ITS website at https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6979

1

Abstract—Autonomous vehicles rely on sophisticated hardware

and software technologies for acquiring holistic awareness of their

immediate surroundings. Deep learning methods have effectively

equipped modern self-driving cars with high levels of such

awareness. However, their application requires high-end

computational hardware, which makes utilization infeasible for

the legacy vehicles that constitute most of today’s automotive

industry. Hence, it becomes inherently challenging to achieve high

performance while at the same time maintaining adequate

computational complexity. In this paper, a monocular vision and

scalar sensor-based model car is designed and implemented to

accomplish autonomous driving on a specified track by employing

a lightweight deep learning model. It can identify various traffic

signs based on a vision sensor as well as avoid obstacles by using

an ultrasonic sensor. The developed car utilizes a single Raspberry

Pi as its computational unit. In addition, our work investigates the

behavior of economical hardware used to deploy deep learning

models. In particular, we herein propose a novel, computationally

efficient, and cost-effective approach. The proposed system can

serve as a platform to facilitate the development of economical

technologies for autonomous vehicles that can be used as part of

intelligent transportation or advanced driver assistance systems.

The experimental results indicate that this model can achieve real-

time response on a resource-constrained device without significant

overheads, thus making it a suitable candidate for autonomous

driving in current intelligent transportation systems.

Index Terms—Autonomous Driving, Raspberry Pi, Scalar-Visual

Sensor, Intelligent Transportation Systems

I. INTRODUCTION

vehicle capable of perceiving its surrounding environment

and driving by itself safely without human intervention is

known as an autonomous vehicle (also referred to as self-

driving, driverless, or robotic vehicle) [1, 2]. Autonomous cars

are constantly making headline news over the last few years.

Different manufacturing companies and startups are targeting

to develop safer, more responsive, and reliable cars for

consumers of the next generation [3]. There is a growing

competition among the biggest car manufacturing companies,

each making their own version of a self-driving car. Companies

like Google, Apple, Honda, Porsche, and Tesla have also

established labs for developing self-driving cars. Baidu [4],

which is a Chinese web services corporation, has also focused

their attention on improving different factors involved in self-

driving cars. Other companies and research labs are also

working on individual layers involved in autonomous vehicles,

such as sensor, communication, operating system, infotainment

system, and computational hardware to enhance their

performance. As autonomous vehicles rely on several

capabilities, these individual factors can be further fused in

them to reliably resolve different challenges in the field of self-

driving cars.

More than 1.25 million people die in car accidents around

the globe each year. According to a report of the World Health

Organization [5], over 50 million people suffer from non-fatal

injuries, while many acquire a disability. Car crashes cause

extensive financial losses to individuals, their relatives, and the

nation. These losses include the cost of treatment, time taken

off from jobs, and effort to care for the injured. The cause of

these road crashes and accidents is distracted driving, which

takes lives of innocent people. Considering these losses of

precious human beings, a system is needed, which is totally free

of human intervention or partially assist humans to minimize

these fatalities, thus advancing autonomous driving industry.

Researchers from different parts of the globe are

contributing to different aspects of autonomous vehicles [6-11].

To motivate research community toward autonomous driving

technology, the DEFENSE Advanced Research Projects

Agency (DARPA) arranged the Grand and Urban challenge

competitions in the USA [12, 13]. The purpose of the challenge

was the development of autonomous vehicles that can traverse

off-road terrain by themselves [14]. Urban challenge

competitors focused on improvement of autonomous vehicles

with urban driving technology. As a result of these competitions,

several IT companies and automakers including General

Motors, Volkswagen, Google, and Toyota have invested into

commercializing the concept of autonomous cars. Similarly,

another competition in autonomous vehicles was held by the

Hyundai Motor Group in the years of 2010 and 2012 in South

Korea for establishing the foundation for autonomous driving

technology.

An Efficient and Scalable Simulation Model for

Autonomous Vehicles with Economical Hardware
Muhammad Sajjad, Muhammad Irfan, Khan Muhammad, Member, IEEE, Javier Del Ser, Senior Member,

IEEE, Javier Sanchez-Medina, Member, IEEE, Sergey Andreev, Senior Member, Weiping Ding, Senior

Member, IEEE, Jong Weon Lee

A

Manuscript received August 15, 2018; Accepted: January 24, 2020,
Published: XXXX. This work was supported by the National Research

Foundation of Korea (NRF) grant funded by the Korea government (MSIP)

(No.2016R1A2B4011712), and sponsored by Qing Lan Project of Jiangsu
Province, China as well as RADIANT project, Academy of Finland.

(Corresponding author: Khan Muhammad)

Muhammad Sajjad is with Digital Image Processing Laboratory, Islamia

College Peshawar, 25000, Pakistan (Email: Muhammad.sajjad@icp.edu.pk)

Muhammad Irfan, Khan Muhammad, and Jong Weon Lee are with

Department of Software, Sejong University, Seoul 143-747, Republic of Korea
(Email: irfantahir301@gmail.com, khan.muhammad@ieee.org,

jwlee@sejong.ac.kr)
Javier Del Ser is with TECNALIA Research and Innovation and University

of the Basque Country, Spain (Email: javier.delser@tecnalia.com)

J. Sánchez-Medina is with the Centro de Innovación para la Sociedad de la
Información, University of Las Palmas de Gran Canaria, 35001 Las Palmas,

Spain (e-mail: javier.sanchez.medina@ieee.org)

S. Andreev is with Tampere University, 33720 Tampere, Finland (e-mail:
sergey.andreev@tuni.fi)

Weiping Ding is with the School of Information Science and Technology,

Nantong University, Nantong 226019, China, (e-mail: dwp9988@163.com).

https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6979

The final formatted version can be downloaded from IEEE ITS website at https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6979

2

IntelliDrive, also known as Connected Vehicle (CV),

enables [15] double-way wireless communication for vehicle-

to-vehicle (V2V) and vehicle-to-infrastructure (V2I)

communications. Within the CV environment, vehicles with

communication devices and roadside infrastructure share the

previously exclusive traffic including the vehicle maneuvers,

trajectories, and origins/destinations. Hence, the environment

of CV will allow for better control of urban intersections

cooperatively for other vehicles and infrastructure. This CV

environment for collaboration among vehicles has attracted

significant attention because of its potential benefits. A

prominent development of cooperation among the CV vehicles

is a Cooperative Adaptive Cruise Control system [16, 17]

intended to optimally operate vehicle tactics in various

situations. Furthermore, the vision of a Cooperative Vehicle

Intersection Control (CVIC) system is that an intersection

controller and a vehicle may work together to expand traffic

maneuvers for fully automated cars.

In this paper, we outline an efficient and economical

solution for autonomous driving in the form of a lightweight

deep learning model running over a resource-constrained

device in real time. The model car is equipped with scalar and

vision sensors using Raspberry Pi as ground processing unit for

autonomous driving on a pre-defined track. The proposed

solution can be used as part of intelligent transportation or

advance driver assistance system to improve traffic

management. A Raspberry Pi camera sensor is utilized for

capturing a video stream in real time. Preprocessing is applied

to the data collected from the vision and scalar sensors. A

computationally efficient deep neural network is then trained

for making decisions to go straight, stop, and turn left or right

autonomously. Ultrasonic sensors are needed for detecting and

avoiding obstacles along the path of the car. The following are

the major contributions of this work:

1. A Raspberry Pi based framework for a self-driving model

car is proposed, which can handle four tasks:

a. Self-driving car model moves on a pre-defined track

autonomously, being capable of driving in three

directions: straight, left, or right.

b. The model car detects and recognizes various traffic

signs and takes action accordingly.

c. The distance to a traffic sign is calculated by using a

vision sensor. Obstacles are detected by processing

ultrasonic data and are then avoided by the self-driving

model car.

d. Different HAAR Cascade based classifiers for the

traffic signs and a deep learning model are trained for

the track; they are loaded by Raspberry Pi in real-time.

2. Raspberry Pi is used as an independent processing unit to

handle visual and scalar data in real time, without reliance

on a centralized server for model loading and processing.

3. Deep Neural Network (DNN) models require a high-end

processing unit for execution in real time. Therefore, a

lightweight deep model has been proposed for resource-

constrained devices, which is executed in real time for

autonomous maneuvering.

The rest of the paper is organized as follows: Section II

conducts a literature review. In Section III, the proposed

framework and the methodology offered for the development

of the autonomous car are discussed. Experimental results and

challenges faced during the development of this project are

summarized in Section IV. Section V concludes the paper with

the future directions of work.

II. RELATED WORK

In this section, we discuss some of the existing research

already completed on autonomous driving generally or on the

individual factor involved in autonomous cars, either as a safety

tool for public or as a financial source for industries. This

section further incorporates the traditional and deep learning

approaches, limitations of the existing systems, and current

challenges encountered in the domain of autonomous driving.

a) Conventional Approaches

Various car manufacturing and IT-related companies

including General Motors, Waymo, Daimler-Bosch,

Volkswagen Group, and Groupe Peugeot S.A. (Groupe PSA)

are aiming to contribute in the field of autonomous cars. Human

error can be minimized by making the concept commercial,

which will provide a means of safe transport for public. As

autonomous cars are equipped with many sensors, these

produce lots of data. The latter is analyzed by various

companies including Google and Facebook and researchers for

many purposes and applications. For instance, Chen et al. [18]

constructed high-quality 3D objects in images for autonomous

cars. Objects from high-fidelity imagery are constructed in the

form of 3D bounding boxes. The problem has been formulated

using the Markov field encoding, ground plane, and various

depth structures. Their technique performs well on the KITTI

training set leading to 25% higher recall than other existing

techniques. Similarly, Guidolini et al. [19] proposed an

automatic obstacle avoidance mechanism for autonomous cars

using the IARA dataset. The technology works effectively by

avoiding obstacles that appear suddenly in the frame of view as

well as when they appear normally as expected. The response

time for obstacle avoidance is nearly 3 milliseconds. Choi et al.

[20] studied obstacle detection using LIDARs. The algorithm

designed for obstacle detection generates the obstacle position

map from LIDARs data. With the help of six LIDARs fitted on

a passenger car, it can successfully detect obstacles by reaching

its targets.

Lenoard et al. [21] developed a software architecture for a

perception-driven autonomous car. In the proposed work, they

feed all the sensor data into a Kino-dynamic motion planning

algorithm to accomplish the autonomous tactics. They have

achieved autonomous driving of 55 miles over 6 hours without

a mishap. In contrast with the current trends in autonomous car,

Kalra et al. [22] carried out a study on how safe the journey of

the autonomous car will be when driving up to hundreds of

billions miles. Their study suggests that autonomous cars must

be driven for billions of miles to check the reliability of

autonomous driving. Their study claims that due to safety

reasons it may not be possible to make it available for public

use. Another study conducted by Petrovskaya et al. [23]

developed a module to detect a moving vehicle and track the

detected vehicle for their autonomous robot named “Junior”. To

estimate the position of the tracked vehicle, they used geometric

and dynamic properties of the detected vehicles. For position

tracking, a Bayes filter is used for each vehicle and a Red-

https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6979

The final formatted version can be downloaded from IEEE ITS website at https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6979

3

Blackwellised Particle Filter (RBPF) is applied to eliminate

separate data segmentation. “Junior” can find the position,

shape, and velocity of the vehicles tracked.

b) Deep Learning Approaches

DNN, which is a part of artificial intelligence, is widely

used in different fields including computer vision [24, 25],

natural language processing [26], speech recognition [27],

machine translation [28], social networks filtering [29], and

bioinformatics [30]. In computer vision, DNN is utilized for

image classification [31, 32] and object detection [33]. Deep

Learning is also employed for object segmentation and several

other applications [34]. For instance, Behrendt et al. [35]

carried out a study on detection of traffic lights for autonomous

cars in real time using DNNs. The information for the traffic

lights in the early system was map-based. A neutral network is

trained on a thousand images to achieve high accuracy. In

experimental analysis, a video sequence of more than 8,000

frames was used. The contribution of the proposed system is

traffic light detection, tracker, and classification of light (red,

yellow, green, or off). The proposed approach achieved high

accuracy in challenging environments. Using artificial

intelligence for vehicle and lane detection in real time is another

important task, to which several works are dedicated. For

example, Huval et al. [36] studied the problem of vehicle and

lane detection with the help of DNNs. This study mainly

focused on vehicle detection in real-time scenarios. A large

amount of data is usually required for training a neural network,

which includes data on different road scenarios and highways.

The proposed algorithm reported to produce high accuracy

during practical scenarios in challenging environments. Instead

of mediated perception and behavior reflex approaches, Chen

et al. [37] proposed another paradigm – a direct perception

approach for the estimation of afford driving. In the proposed

method, an input image is resolved into small key points. This

representation offers a description of the scene for autonomous

driving. A deep Convolutional Neural Network was trained for

this purpose, whose details are given in Section III.

c) Limitations and Major Challenges

One of the biggest problems for autonomous cars is finding

the track and following it for the rest of the journey. Sun et al.

[38] carried a brief study on lane detection for autonomous cars.

In their work, images are converted into the binary form by

adaptive thresholding, and then edges of the road are extracted.

Lanes are extracted from the edges followed by their detection.

They used different road images of various weather conditions,

basic thresholds, and proportional coefficients. The same

problem is also discussed by Saha et al. [39] suggesting a

similar algorithm. An RGB image is taken from the

autonomous car and converted into a grayscale image. A flood-

fill algorithm labels the largest components that are connected

in the grayscale image. After applying the flood-fill algorithm,

extraction of the largest connected component is completed.

Unwanted regions in the image are skipped and ROI is filtered

for lane and road edge detection. Hong et al. [40] studied the

problem of detecting solid and dashed lanes in the road.

Existing techniques only detect the central lanes in the road and

are unable to detect the solid and dashed lanes. The proposed

algorithm overcomes these limitations and can differentiate

between dashed and solid lanes.

The privacy of autonomous cars in vehicular networks is

paramount in all aspects, same as privacy of other domains,

such as industrial and surveillance environments [41]. For self-

driving cars, a secure channel is needed for exchanging data. M.

Ali Alheeti et al. [42] proposed a scheme for intrusion detection

based on Integrated Circuit Metric (ICM). Authors claim that

the features extracted by the ICM can be used for many

purposes including security and identification with the efficient

use of time, speed, and memory. The study focused on

enhancing the authentication in autonomous driving and

building an IDS as well as making them intelligent by using the

features of autonomous vehicles. The main theme of the study

was proposing a scheme mainly based on MEMS gyroscope

and constructing a system for identifying the car as an ICM

vehicle. The authors argue for satisfactory results while using

FFNN-IDS and k-NN-IDS in blocking malevolent vehicles. M.

Ali et al. [43] proposed a scheme for detecting a malicious car

in an urban transport scenario. The detection system was mainly

based on a Fuzzy Petri Net (FPN). The FPN was used for

detecting dropped packets in vehicular ad-hoc networks. By

finding the number of received and dropped packets, IDS

showed satisfactory results in terms of vehicular network

security.

Self-driving cars use V2V or V2I technology for exchanging

information in a vehicular network. Gora et al. [44] built a

microscopic module to arrange the traffic and exchange

information with other autonomous car in vehicular networks.

They developed simulation software to reduce the chances of

collision in autonomous cars, while envisioning the flow of

traffic. They included traffic lights, road lane junctions, and a

specific route for the car to reach a random point. Speed and

other properties of autonomous cars are adjusted according to

the information received from other vehicles for safer driving.

Path planning, vehicle sensing, and navigation of autonomous

cars are challenging tasks. It is crucial for the autonomous car

to safely maneuver in different environments. This problem is

discussed by Huy et al. [45] who propose a path-planning

algorithm. The latter follows a probabilistic method while

filtering particles for dynamic obstacles. Obstacle points are

detected by using a support vector machine to generate a

smooth path via a Bezier curves algorithm. They tested the

algorithm in simulation software and claimed that it obtained

acceptable results in complicated scenarios with multiple

moving objects. Road, vehicle, and obstacle recognition on the

road using a vision sensor is another challenging task in the

field of moving robotics. Birdal et al. [46] proposed algorithms,

which help overcome the aforementioned problems while

driving in vehicular networks. Images from the vision sensor

are converted into gray values and then different techniques

including texture analysis, geometric transformation,

background modeling, and contour algorithms are applied for

extracting different ROIs. The latter are tested using different

road images, thus achieving significant results.

d) Advance of State-of-the-Art

The perspectives of autonomous vehicles cannot be easily

predicted. However, such prediction enables planning possible

https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6979

The final formatted version can be downloaded from IEEE ITS website at https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6979

4

future conditions. Many practitioners and analysts are worried

about the future of self-driving cars in terms of their effect on

parking, traffic problems, and public transportation [47]. In this

line of reasoning, the Society of Automobile Engineers (SAE)

claims that by 2030 autonomous cars will be safe and reliable

enough to replace human driving, thereby minimizing driver

stress and tediousness [48]. Advancement in technologies for

autonomous vehicles will also reduce accidents, congestion,

and pollution problems. Some analysts also foresee that the

total cost of shared passenger travel in autonomous vehicles

will be lower than in human operated vehicles [48].

Despite many benefits of autonomous cars, they do impose

extra cost by adopting different equipment and tools for

processing and sensing the external environment. For instance,

the introduction of a simple electronic device, such as an

adaptive cruise, an active lane assist, a high beam assist, or a

top-view camera, will cost thousands of dollars. Similarly, the

processing unit of autonomous vehicles is even more expensive,

thus increasing the overall price as well as requiring extra costs

[48]. By analyzing the current trends in autonomous cars, we

conclude that their focus is mainly on autonomous decision-

making technologies. Even though there exist variations in such

technologies, their common attribute is an autonomous driver

system for the vehicle.

III PROPOSED METHODOLOGY

For a better understanding of the proposed system, this

section is broadly divided into two sections: A) System Design

and B) Methodology. Subsection A is structured as: i) input

units, which relate to vision and ultrasonic sensors, ii) camera

calibration and distance measurements, and iii) output units,

which include DC motors, a buzzer, and a LED. Subsection B

is further divided into: i) preprocessing module, where

morphological operations are applied on the input frame, ii)

classification module, which includes DNN units, traffic sign

detection, and distance calculation using a vision sensor, and iii)

decision module for driving the autonomous car.

A. System Design

This subsection provides a detailed description of how the

input units (vision and ultrasonic sensors) are connected and the

information inferring is elaborated. The system design for our

proposed method consists of three main parts: inputs units,

camera calibration for distance measurements, and output units.

i. Input Units

The input components are composed of a vision sensor with

an ultrasonic sensor working together to collect data from the

environment in real time. A stream of video frames is supplied

to Raspberry Pi from camera, which are processed by the

processing unit. Ultrasonic HC-SR04 unit is used for obstacle

detection and measurements of distance to the obstacle. Table I

shows the specification of hardware modules used in this

prototype car. The specified ultrasonic unit has four pins,

Trigger pulse unit (TRIG), Echo unit (ECHO), Ground unit

(GND), and Power supply unit (VCC). The power was supplied

to the unit from 5 volts General Purpose Input Output (GPIO)

pins of Raspberry Pi. Fig. 1 shows the assembly of all hardware

sensors in detail. The ultrasonic sensor works by the principle

that a pulse is sent from the sensor using TRIG. This pulse is

Fig. 1. Hardware assembly of our self-driving car. Raspberry Pi

GPIO pins are extended through extension board, where to

physical units are connected.

bounced by the nearby objects and received by the ECHO.

Distance is calculated from the difference of the transmitted

pulse and the received pulse using a speed formula. The speed

of sound is 343 (34300 centimeter) meters per second in the air.

Time is divided by 2 because the pulse travels to the object and

back again:

𝑑 = 𝑠𝑝𝑒𝑒𝑑 × 𝑡𝑖𝑚𝑒 , (1)

𝑑 =
34300×𝑒𝑐ℎ𝑜

2
 , (2)

𝑑 = 17150 × 𝑒𝑐ℎ𝑜 . (3)

In equation (3), echo is the return pulse time and d is the

distance to the object. A threshold value of 15 inches is set for

the distance. The obtained distance is passed from the threshold

for controlling the motor’s Pulse Width Modulation (PWM).

For instance, if the distance is greater than the threshold value,

PWM is set to 100 Hertz, and if the distance is less than the

threshold value, PWM is set to zero. The returned value from

the ultrasonic sensor is also used for the buzzer as a horn. When

the car reaches an obstacle, the buzzer is turned on after the car

stops and warns on the obstacle next to it. A message Obstacle

Detected is displayed on the LED. Fig. 2 captures images of the

self-driving car on a pre-defined track.

TABLE I
SPECIFICATION OF HARDWARE MODULES

Module Specification

Camera 8 megapixels,1080p30,780p60

Ultrasonic-SR04 5v, 15mA, Ranging distance 6inches-156inches

DC-motor 5v, 20mA, 2000RPM

2x16 LED 5v, 20mA

Buzzer 5v, 12mA

ii. Camera Calibration and Distance Measurements

Radial and tangential types of distortion are commonly

introduced by a camera to the images, due to which some of the

meaningful information is lost. Straight lines in the images will

appear curved in radial distortion. This effect can be easily

observed while moving away from the center of the image. In

Fig. 3, a checkered board is marked with red lines at the edges.

https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6979

The final formatted version can be downloaded from IEEE ITS website at https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6979

5

It can be seen that the border is not a straight line and does not

match with the red line.

Fig. 2. Self-driving car on pre-designed track with traffic signs.

To assess the efficiency of the system, several experiments are

performed for each traffic sign.

The method proposed by [49] is used for the calibration of the

Raspberry Pi camera. The distortion is resolved using equations

(4) and (5).

𝑈𝑑𝑖𝑠𝑡 = 𝑈(1 + 𝑘1𝑟2 + 𝑘2𝑟4 + 𝑘3𝑟6) , (4)

𝑉𝑑𝑖𝑠𝑡 = 𝑉(1 + 𝑘1𝑟2 + 𝑘2𝑟4 + 𝑘3𝑟6) , (5)

Fig. 3. Checkered-board is used for camera calibration using

OpenCV

where Udist and Vdist are the undistorted pixel location and U and

V are the normalized image coordinates. Tangential distortion

occurs because the lenses that capture images are not aligned

perfectly parallel to the plane of the image. Due to this, some

regions in the image appear closer than expected. This can be

resolved with the help of equations (6) and (7). OpenCV library

has built-in tools to calibrate the camera and reduce the

distortions based on (6) and (7).

𝑈𝑑𝑖𝑠𝑡 = 𝑈 + (2𝑃1𝑈𝑉 + 𝑃2(𝑅2 + 2𝑈2)), (6)

𝑉𝑑𝑖𝑠𝑡 = 𝑉 + (𝑃1(𝑅2 + 2𝑉2) + 2𝑃2𝑈𝑉). (7)

There are five parameters, which are known as distortion

coefficients and are given below:

𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = (𝑘1 𝑘2 𝑃1 𝑃2 𝑘3) , (8)

where k1, k2, and k3 are the radial distortion, while P1 and P2

are the tangential distortion coefficient of lens. Along with

these parameters, the information like intrinsic and extrinsic

parameters of the camera is also required. Intrinsic information

includes focal length (fx, fy) and optical centers (cx, cy). All

these parameters are camera-specific and only depend on the

model and focal length of the camera. Expression (9) is used for

the camera calibration.

Camera Matrix = |
fx 0 cx
0 fy cy
0 0 1

| . (9)

Extrinsic parameters are related to the translation and rotation

vectors, which translate into the coordinates of a three-

dimensional point. All these distortions must be corrected to

obtain optimized results. Sample images, in which the patterns

are well defined, are provided for correction. Checker board

images are suitable in this case.

OpenCV provides convenient functions to further facilitate

the calibration process. The OpenCV method

findChessboardCorner() returns corners when a 7×6 grid image

is passed to it as shown in Fig. 4. The accuracy of the points is

improved by using the cornerSubPix() method. The

drawChessboardCorner() function is used for drawing patterns.

Fig. 4. Calibrated output image of the Raspberry Pi Camera

using OpenCV

Fig. 5. Monocular-vision based distance measurement

The calibration of the camera is now a one-step process

calibrateCamera() by obtaining the image and the object points.

This will return the camera matrix, the distortion coefficients,

as well as the rotation and translation vectors. The

measurements of distance for detecting a sign using a

https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6979

The final formatted version can be downloaded from IEEE ITS website at https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6979

6

monocular vision sensor is one of the most challenging tasks in

this system. The method proposed by [50] to calculate the

distance from traffic signs in real time is employed.

Fig. 6. Detailed overview of the proposed framework. In Preprocessing module, input frame is passed from morphological

operation to enhance the frame. In Classification module, input frame is further processed for traffic sign detection i.e., Go, Stop,

Slow, “Right not turn” and “Left not turn”, and classification of frame i.e. straight, left, or right. Decision module stores information

received from the second step into an array. Decision is taken on the array from left to right, in which the last column is the final

decision for the input given conditions.

From Fig. 5, we suppose that an object P is at the distance

of D from the optical center. H is the height of the optical

center, F is the focal length of the camera, (x0, y0) are the

point of intersection for the image and the optical axis; while

the projection of point P is given by (x, y). Consider further

parameters, such as (u0, v0) for the camera coordination; then,

the physical dimension of the pixel corresponding to x-axis

and y-axis on the image plane are Dx and Dy.

𝐷 =
𝐻

𝑡𝑎𝑛(𝛼+𝑎𝑟𝑐𝑡𝑎𝑛(𝑦1−𝑦0 𝑓⁄))
 , (10)

𝑢 =
𝑥

𝐷𝑥
+ 𝑢0, 𝑣 =

𝑦

𝐷𝑦
+ 𝑣0, (11)

𝐷 =
𝐻

𝑡𝑎𝑛(𝛼+𝑎𝑟𝑐𝑡𝑎𝑛(𝑣1−𝑣0 𝑎𝑦⁄))
, 𝑎𝑦 =

𝑓

𝐷𝑦
. (12)

iii. Output Units

The output components used in the development of the

system include DC motors (wheels), a 2×16 led for showing

the necessary information (i.e., IP address of the Raspberry

Pi, “Ready”, “Obstacle detected”, “Left turn”, “Right turn”,

“Going straight”, and “Stop”), and a buzzer as a horn. In the

first stage, an ultrasonic sensor is measuring the distance to

the obstacle (if any). If there is no obstacle in the track ahead,

the car travels smoothly on it. If there is an obstacle on the

track, the ultrasonic sensor measures the distance to this

obstacle. When the distance reaches a minimum of 15 inches,

https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6979

The final formatted version can be downloaded from IEEE ITS website at https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6979

7

voltage supply to the wheels is cut off and the car stops at a

distance of 15 inches from the obstacle. In the second stage,

the wheels are controlled from the vision sensor. Each frame

is scanned for the detection of traffic signs. After that, the

ROI is passed through the respective Haar cascade classifier

for further action. Four Haar cascade classifiers are used, and

in the identification of each traffic sign, the wheels are

controlled according to the identified sign.

B. Methodology

This subsection offers a closer look at the proposed

system where each module combines different units. The first

module is composed of various morphological operations

carried on the input frames for enhancement. Classification

module consists of two units: DNN and traffic sign detection

with distance calculation. The last module is an array where

different predictions from the second module are stored.

Operation on this array is carried from left to right where the

last column is the final decision for given input conditions.

The overall view of our methodology is shown in Fig. 6.

i. Preprocessing Module

Input frames from the vision sensor are passed from

several modules in order to remove noise and crop the track

region from the frame. In the first step of the preprocessing,

an image is passed from Gaussian blur effect step to smoothen

it. Due to different lighting conditions and motion of the car,

input frames contain noise, which is removed by using a noise

removal module. This is based on a morphological operation,

such as opening followed by closing. In the last step of the

preprocessing, extra regions from the frame are cropped to

only the track region and resized to 640×480 resolution. This

frame is supplied to the classification module for further

operations.

ii. Classification Module

This module is composed of two parts: 1) neural network

and 2) traffic sign detection with distance calculation units.

Input frame from the preprocessing module is passed from

each unit of the classification module for further predictions.

 Neural Network for Prototype Model Car

The performance of the DNN architecture is directly

depended upon the total number of hidden layers inside the

model. However, these hidden layers and the number of

nodes do not interact with the outside environment directly,

but they affect the output result. The DNN model with very

few neurons in the hidden layers will cause underfitting. In

this case, the number of neurons is insufficient to detect the

signal accurately and transfer the output to the next hidden

layer. On the other hand, using a larger number of neurons in

the hidden layers will cause overfitting, which requires more

information and training data. To overcome these problems,

there should be a tradeoff among the numbers of hidden

layers, neurons, and training data. For this reason, we started

with a simple DNN containing 128 nodes in the first hidden

layer and 16 nodes in the second hidden layer. The complete

details of these nodes are given in Table II, where the first

two columns represent the numbers of nodes in the first and

the second hidden layer with their corresponding accuracy in

the third column. The performance of the model is observed

carefully, and the numbers of nodes are adjusted accordingly.

After a node adjustment in the hidden layers, Hidden

layers 1 and 2 contain 4800 and 64 nodes, respectively, while

the output layer contains four nodes that are responsible for

controlling the wheels for driving. The output of the model

includes straight, left, right, and an optional layer “reverse”

that is not used in the current system. The number of images

used for training is ten thousand, where 80% of the images

are used for training and the rest of 20% serve validation. The

images used for training are cropped, and only the track

portions of these images are supplied to the network for

classification. The size of these images is fixed to 80 × 60

(4800 nodes) for a performance optimization of the network.

During the training process, the model is trained for more

than six hundred epochs with a starting learning rate of 0.01,

which is adjusted by the gradient descent optimizer according

to the performance of the model. Fig. 7 shows a brief

description of the neural network for the self-driving car.

Fig. 7. Neural network for self-driving car maneuvering,

where Hidden layer 1, Hidden layer 2, and final Output

contain 4800, 64, and 4 nodes, respectively.

TABLE II

NUMBER OF NODES AND CORRESPONDING ACCURACY

No. of nodes in

Hidden layer 1

No. of nodes in

Hidden layer 2
Accuracy (%)

128 16 53

512 32 62

512 64 68

512 128 62

1024 64 72

2048 64 86

3072 64 92

4800 64 97

The processing of each frame is presented in Fig. 8. In the

first step, an image is cropped and converted into a Numpy

array. In the second step, labels for the training images are

supplied in a separate labels file. After the DNN training, the

trained model is saved to the local directory for future use.

 Traffic Sign Detection and Distance Calculation

An extraction of multiple ROIs from the supplied frames

includes traffic sign detection and distance measurements to

the detected signs. For an intelligent transportation system,

the detection and recognition of traffic signs is an essential

capability. Taking advantage of the “Haar based classifier”

method by P. Viola [51], we conduct traffic sign detection

and recognition. This algorithm requires a large number of

positive and negatives images to train the cascade function.

A separate Haar Cascade classifier is trained for each traffic

sign. OpenCV provides libraries for both training and

https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6979

The final formatted version can be downloaded from IEEE ITS website at https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6979

8

detecting the Haar cascades. 2,000 negative images (other

than the traffic sign images) and 50 positive images (Traffic

sign images) were used for training the Haar cascade. Only

regions of interest were supplied in the positive case. Five

Haar cascades including “Go”, “Stop”, “No Left Turn”, “No

Right Turn”, and “Slow” signs are used in this system. Fig. 9

shows samples of positive and negative images, and Table III

demonstrates traffic signs, numbers of positive and negative

images, and size of the images. Each frame is given to a

function for detecting the ROI, while only the contour region

is extracted and passed from the distance calculation module

for distance calculation. Decisions are taken after recognizing

a specific sign.

Fig. 8. Training a DNN-based classifier for a self-driving car.

In the first step, a multi-dimension frame is converted into the

1×4800 array. In the next step, the associated labels are

concatenated at the end of each frame array. After training the

DNN, the trained model is saved for future use.

TABLE III

DIMENSIONS AND NUMBERS OF POSITIVE/NEGATIVE IMAGES
FOR HAAR CASCADE TRAINING

Sign Positive Negative Size (pixel)

Go 50 2000 30×30

Stop 50 2000 30×30

Slow 50 2000 30×30

No Left 50 2000 30×30

No Right 50 2000 30×30

Fig. 9. Training of Haar cascades with Positive (left) and

Negative (right) images for a traffic signs detection.

iii. Output Decision Module

Processed data from the processing module are passed to

the output decision module for maneuvering the model car on

the track. Return data from the processing module are put into

an array. The returned array contains information about the

frame classification (straight, right, left), traffic sign detection

(go, stop, left not turn, right not turn, slow), distance to the

detected traffic sign, distance to the obstacle detected by an

ultrasonic sensor, and decision i.e., stop, go, turn left or right.

For instance, if the frame is classified as ‘right’, the detected

sign is Go, the distance to the traffic sign is greater than the

threshold, and there is no obstacle on the track, then the final

decision for this type of information is “turn right”. These

decisions are forwarded to the output units in system design

where voltage to certain motors is controlled depending upon

the decision.

IV. EXPERIMENTAL RESULTS

All the experiments are carried out on optimized OpenCV

version 3.3.0 compiled on Raspberry Pi 3 Model B+, 4x ARM

Cortex-A53 1.2GH processor using Python version 3.6 and

Tensorflow version 1.4.0. Other dependencies include

Numpy, Scipy, and Matplotlib for visualizing and processing

of output data. The Raspberry Pi has limited resources in

terms of the computational capacity and memory [52]. ARM

processor comes with ARM NEON optimization architecture

and VFPV3 extension for the purposes of faster image, video,

and speech processing, machine learning techniques, and

floating-point optimization. ARM NEON supports the use of

Single Instruction Multiple Data (SIMD), where multiple

processing elements in the pipeline perform on multiple data

points, all executed with a single instruction. VFPV3 comes

with configurable rounding modes and customizable default

Not a Number (NaN) mode. Enabling all these special modes

of Raspberry Pi while compiling OpenCV results in running

our neural network faster, while the compiled OpenCV can

be referred as Optimized OpenCV. Taking advantage of these

features (ARM NEON, SIMD, VFPV3, and NaN) in the

Raspberry Pi, OpenCV is a built-in optimized mode. Further,

tensorflow provides a possibility to use a number of processor

cores for a task. Leveraging this feature, deep experiments are

set on multiple cores and different versions of OpenCV. Fig.

10 shows the average execution time of the normal OpenCV,

optimized OpenCV, and Optimized OpenCV with the support

of Movidius Intel Computing Stick. Fig. 11 demonstrates the

average temperature of the core during frame processing. A

high increase in temperature on cores 3 and 4 is because the

load shifting probability is decreased among the CPU cores.

TABLE IV

DESCRIPTION OF PARAMETERS

Parameter Description

↑ Straight

→ Right

← Left

↔ Not straight

↖ Not right

↗ Not left

https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6979

The final formatted version can be downloaded from IEEE ITS website at https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6979

9

In order to achieve the maximum possible accuracy and to

reduce the computational cost, the number of frames per

second were decreased, thus generating a prediction 5x faster

i.e., 5 frames/s. The parameters used in this work are

described in Table IV. For evaluating the model car, different

types of tests were conducted using various track scenarios.

A total number of 158 frames (31.6 seconds video) were

evaluated under different track scenarios.

Fig. 10. Time complexity. Number of CPU Cores vs. different

versions of OpenCV, i.e., Normal, Optimized, and Optimized

+ Movidius confirming that the number of available resources

and the use of Movidius improve performance of the system.

Fig. 11. Average temperature of different CPU cores on

various versions of OpenCV, i.e., Normal, Optimized, and

Optimized + Movidius. Average temperature of Raspberry Pi

increases as DNN process is distributed among several cores.

Two versions of videos from the model car were obtained:

the first version was converted into frames and categorized

into three groups including straight, left, and right. Each

group is further divided into two classes: (straight and non-

straight), (right and non-right), and (left and non-left). Each

frame obtained from the first version is placed in their

respective class as a ground truth for prediction and training.

The second version video was predicted by the model car and

was compared with the ground truth. The overall accuracy of

the model is presented in Table V. The results are also color

coded for the ease of interpretation. Green columns represent

tests for the class “straight”; the ground truth for this class

includes 60 “straight” frames and 98 “non-straight” frames.

During the validation, the model car has predicted all the 60

frames as “straight” and 98 as “non-straight” frames, thus

reaching its destination without any error. Yellow columns

show the ground truth for the class “right”. In this class, 55

are “right” frames and 103 are “non-right” frames. The model

car has identified 52 as “right” frames and 106 frames as

“non-right” frames. The fifth and sixth columns of Table 5

are colored blue; they are the ground truth for the class “left”.

There are 103 frames for “left” and 55 frames for “non-left”.

The model car identified 107 frames as “left” and 51 frames

as “non-left”, thus attaining an overall accuracy of 98.5%.

Distance calculations with monocular vision sensors became

a challenging task. A shorter distance to the sign gives nearly

the actual distance, but when the distance from the sign was

increased, error in the distance calculations also increased as

shown in Fig. 12.

Fig. 12. Distance calculated by a vision sensor. As model car

moves toward the detected traffic sign, the difference

between the actual and the predicted values decreases.

Fig. 13 shows a sample image of the distance calculated

by a vision sensor. The difference between the actual distance

and the distance calculated by the vision sensor may be due

to the following reasons:

1) Error in the measurements of the actual values.

2) Error in the camera calibration.

3) Variation in the object bounding box while detecting the

signs.

4) Non-linear relationships between distance and camera

coordinates. With greater distance, the coordinates of the

camera change rapidly, thus resulting in higher error.

5) Raspberry Pi camera is general-purpose camera and has

average image quality.

Ultrasonic sensors have only been used for detecting

objects and distances from the car. An ultrasonic sensor uses

sound waves to calculate the distance. Due to this, some

errors were experienced in calculating the distance during our

demonstrations. Fig. 14 shows the actual distance and the

distance calculated by the ultrasonic sensor. The difference

between the actual and the measured values may be due to the

following reasons:

1 Sound waves easily strike larger objects as compared to

smaller objects. The farther the distance is, the greater

the error is since few pulses are returned from the object.

https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6979

The final formatted version can be downloaded from IEEE ITS website at https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6979

10

TABLE V
OVERALL ACCURACY OF MODEL CAR

No. of Tests
Ground Truth Proposed System

Overall Accuracy
↑ ↔ → ↖ ← ↗ ↑ ↔ → ↖ ← ↗

Test 1 60 98 55 103 103 55 60 98 52 106 107 51 98.5 %

Test 2 79 79 71 87 98 60 79 79 73 85 99 59 99.1 %

Test 3 87 71 118 40 40 118 88 70 116 42 39 119 98.9 %

Test 4 50 108 90 68 100 108 53 105 87 71 99 59 98.8 %

Fig. 13. Sample images showing distance to the traffic sign by using a vision sensor. Each sign is detected (green rectangle),

recognized, and the distance is calculated between the traffic sign and the model car.

Fig.

14. Distance measurements: actual vs. predicted by an

ultrasonic sensor. The actual and predicted distances are nearly

equal as the model car moves towards the obstacle.

2 Ultrasonic waves are greatly influenced by the air

temperature. The sensor calculates the distance to the

object using the speed of sound. The speed of ultrasonic

waves alters as the air temperature changes [53].

3 The ultrasonic waves are also influenced by air pressure.

A. Energy Consumption

The total expenditures used by a system during completing

a specific task are known as energy consumption. To evaluate

the total energy consumption by our system with deep learning

model, 5 frames have been processed in one second. The

parameters have been calculated using a Keweisi device while

estimating the total power consumption of our system.

Fig. 15 shows sample images of power consumption. The

unit power and the energy consumption of the Raspberry Pi can

be observed in Table VI when the system is idle and no task is

in progress. The total ampere, voltage, time, power, and energy

drain by Raspberry Pi during processing a single frame with

deep learning can be seen in Table VII.

B. Comparison with Other Computing Platforms

To compare the performance of Raspberry Pi with other

computing platforms in terms of the energy, power, and average

processing time of a frame, we used Intel CPU and GPU with

NVIDIA graphics card. The specification of each system is

https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6979

The final formatted version can be downloaded from IEEE ITS website at https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6979

11

presented in Table VIII. In order to evaluate the performance of

the deep model on CPU and GPU, a multi-thread TCP server is

used for receiving the video stream and the ultrasonic data from

Raspberry Pi on the computer. Data from the Raspberry Pi is

processed on the computer and only the decisions reached by

the deep model are sent to the Raspberry Pi to take the necessary

actions.
TABLE VI

POWER AND ENERGY CONSUMPTION OF RASPBEERY PI IN IDLE

STATE

No. of

tests
Current (A) Voltage (V) Power (W) Energy (J)

1 0.12 5.25 0.63 0.63
2 0.19 5.24 0.99 0.99
3 0.16 5.24 0.83 0.83
4 0.21 5.25 1.10 1.10
5 0.17 5.25 0.89 0.89
6 0.22 5.23 1.15 1.15
7 0.18 5.25 0.94 0.94

Fig. 15. Power consumption for on-board execution of deep

learning model on Raspberry Pi. The upper value shows current

while the second value shows voltage consumed by the

Raspberry Pi during execution of the DNN model.

TABLE VII

ENERGY AND POWER CONSUMPTION DURING NEURAL NETWORK
EXECUTION

No. of

tests

Current

(A)

Voltage

(V)

Time

(T)

Power

(W)

Energy

(J)

1 0.82 5.25 0.23 4.30 0.98

2 0.99 5.23 0.25 5.17 1.29

3 0.99 5.26 0.30 5.20 1.56

4 1.0 5.23 0.26 5.25 1.36

5 1.2 5.22 0.23 6.30 1.44

6 0.99 5.25 0.28 5.19 1.45

7 0.89 5.22 0.29 4.64 1.34

8 0.87 5.26 0.25 4.57 1.14

TABLE VIII

SPECIFICATION OF COMPUTING SYSTEM
Hardware

platform
Raspberry Pi Intel CPU GPU

Processor 4x ARM Cortex-

A53 1.2GH
Intel Core i3-

40 1.70GHz
Intel Core i5-50

3.32GHz
RAM 1GB-LPDDR2 8GB-DDR3 8GB-DDR4

GPU-use No No 8GB-NVIDIA
GeForce-GTX-1070

Cost $35 $280 $3300

In Fig. 16, the red bar shows the average power consumption

of the GPU during processing the deep model. The total average

power consumed by the GPU on the frame processing is 440

Watts, as the normal current increases from 1.5 to 2amps on the

execution of the neural network. The power consumption of the

GPU is 330 Watts in the idle state. Yellow bar shows the

average power consumption of the CPU on the execution of the

deep model. The total average power consumed by the CPU on

executing the deep model is 224.4 Watts. A small amount of

power of 6 Watts is consumed by the Raspberry Pi, as shown in

green color in Fig. 16, while attaining the same accuracy as

obtained by the GPU and CPU.

The energy consumption of different computing platforms

is presented in Fig. 17. The average energy consumption of the

GPU is 4.4 Joule on a single frame execution. The CPU

consumes higher energy than the GPU since the former is not

Graphics card enabled. Raspberry Pi, in contrast to GPU and

CPU, consumes less energy, which is on average 1.38

Joule/frame.

Fig. 16. Average power consumption of different multicores

computing platforms.

Fig. 17. Average energy consumption on different platforms

Fig. 18 shows the time complexity of a single frame on

different hardware platforms. A total of 1,000 frames are

executed on each platform. The time complexity of the GPU on

a single frame is 0.01 seconds. The average time consumed by

the CPU to execute a single frame is 0.06 seconds. Raspberry

Pi did not perform well as it had limited resources and took an

average of 0.23 seconds to execute a single frame. Summarizing

all the conducted experiments, we conclude that Raspberry Pi,

an economical computing platform, is powerful enough and

capable of running a DNN for real-time applications with low

power and energy consumption. GPU and CPU perform well in

terms of the execution time, but as evident from our

experimental results, these platforms consume excessive energy

and power while attaining a similar accuracy with Raspberry Pi.

https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6979

The final formatted version can be downloaded from IEEE ITS website at https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6979

12

C. Speed Test

Speed of an object can be referred to as the total distance

covered by a body over a unit time. To analyze the speed of our

model car on the track, we have conducted a total of seven tests

to assess the average speed of the car. Details of each test are

offered in Table IX. The length of the track was kept to 132

inches (11 feet). The speed of the model car is directly related

to the voltage; i.e., greater voltage increases the speed of the

vehicle. During each test, the voltage and current supplied to

the car are kept constant. Due to the energy consumption of the

different units in the model car, the voltage is dropped after each

test thus resulting in a decrease in the speed of the model car.

Further, with increased voltage supply to the motors of the

model car, it covers the distance in less time, while decreasing

supplied voltage increases the time. For 3000mah battery, this

model car works for an average of 45 minutes, in which 85% of

the battery is drained by the motors of the model car, and 15%

is consumed by Raspberry Pi.

TABLE IX

VOLTAGE DROP OF MODEL CAR AFTER EACH TEST

No. Voltage Speed (inches/sec)

01 5.16 13.1

02 5.03 12.5

03 4.96 12

04 4.92 11.13

05 4.86 11.14

06 4.79 10.86

07 4.71 9.67

Fig. 18. Average time complexity of frame/sec execution on

different platforms.

D. Comparison with Other State-of-the-Art Methods

With advancements in technology, the performance of

resource-constrained devices, such as Raspberry Pi, have been

left behind. Today’s autonomous industry mainly focuses on

the development of autonomous decision-making capabilities

by deferring as the second design driver the optimization of

efficiency in terms of the hardware costs. This subsection

elaborates on the performance and accuracy of our prototype

with respect to the related more expensive technologies.

For comparison with other methods, several experiments

were carried out on traffic sign detection using Raspberry Pi. A

total of 100 images of different traffic signs are used for testing.

Table X presents the traffic sign, the number of test images

correctly classified, and the accuracy of our system. In the first

test, a total of 25 images of the stop sign are passed from the

trained Haar based classifier. The system recognized all the 25

images correctly. In the second test, a total of 25 images of the

go sign are tested on the trained Haar classifier, which detects

24 signs correctly. Results for other traffic signs can be seen in

Table X.

TABLE X

PERFORMANCE OF HAAR-BASED CLASSIFIER.
Sign No. of images Correctly Classified Accuracy

Stop 25 25 100%

Go 25 24 99.9%

Left not turn 25 25 100%

Right not turn 25 25 100%

Crosswalk 25 25 100%

These results are compared with the existing techniques to

assess the performance of the trained Haar-based classifier.

Table XI compares the proposed system with other two existing

methods in terms of the accuracy and the execution time for

frame processing. The state-of-the-art methods contain several

RC-car based self-driving car test-beds. For instance, a study

conducted by MIT [54] is based on NVIDIA jetson computing

platform and Shim [55]. Both works are based on LIDAR and

many other sensors. However, such systems consume excessive

energy and power. Also, the employed sensors cost more than

$4,000, thus requiring much investments. Compared to these

solutions, we propose a CNN-based workload in real time on a

resource-constrained and low-cost computing platform, thus

providing a cheaper solution for real-time applications.

TABLE XI

COMPARISON OF TRAINED HAAR CASCADE CLASSIFIER WITH

EXISTING TECHNIQUES

Method [56] [57] Our Trained Haar-based Classifier

Accuracy 97.75% 97.20% 99.9%

Time 0.003 - 0.02

V. CONCLUSION AND FUTURE WORK

This paper presents a cost-effective and computationally

efficient solution for autonomous maneuvering based on

resource-constrained devices and a lightweight deep learning

model that can be used to facilitate vehicular perception and

autonomous guidance in intelligent transportation systems. The

proposed system achieves attractive performance scores in

terms of the detection and avoidance of obstacles, traffic sign

recognition, and intelligently following a smooth trajectory.

The assembly of different hardware components, scalar, and

vision sensors have their role in the overall output of the system.

When compared to other more expensive solutions, our

economical and computationally efficient prototype car is

capable of autonomously driving on a specified track by

avoiding obstacles as well as detecting and recognizing five

different traffic signs based on Artificial Intelligence methods.

An ultrasonic sensor is used for obstacle detection, which helps

avoid collisions, thereby preventing the car from accidents. A

Haar cascade classifier is used for traffic sign detection. The car

can identify a traffic sign and adjust its speed of wheel motors

by using these cascades. An algorithm capable of calculating

the distance by using only a monocular vision sensor is used to

detect and measure the distance to the traffic signs. Rich

https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6979

The final formatted version can be downloaded from IEEE ITS website at https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6979

13

experimental results show that our prototype model car

achieves autonomous driving with an overall accuracy of 95.5%

Future research will be devoted to enhancing our algorithm

further in order to increase the admissible number of frames per

second and accommodate higher car speeds. Specifically,

studies in the short term will elaborate on the distance

calculation, the consideration of the vehicle sensing capability

and overtaking other vehicles, the detection and recognition of

traffic lights, and ultimately the optimization of the overall

perception results. Moreover, instead of a single Raspberry Pi

node, we will scale up the number and the heterogeneity of

sensing devices for handling more realistic scenarios of

inherently higher complexity. To this end, other input devices

like LIDAR sensors will be under consideration in order to scan

the surrounding environment for other obstacles. Similarly, an

addition of vision sensors on the back of the car model may

equip the vehicle with the capability of reverse function and,

eventually, make it turn around to avoid possible detected

obstacles by harnessing artificial intelligence and computer

vision capabilities similar to the ones presented in this work.

REFERENCES

[1] S. K. Gehrig and F. J. Stein, "Dead reckoning and

cartography using stereo vision for an autonomous

car," in Intelligent Robots and Systems, 1999. IROS'99.

Proceedings. 1999 IEEE/RSJ International

Conference on, 1999, pp. 1507-1512.

[2] S. Thrun, "Toward robotic cars," Communications of

the ACM, vol. 53, pp. 99-106, 2010.

[3] B. Schoettle and M. Sivak, "A survey of public

opinion about autonomous and self-driving vehicles in

the US, the UK, and Australia," 2014.

[4] C. W. Company, "Baidu just made its 100th

autonomous bus ahead of commercial launch in

China".

[5] H. Woo, Y. Ji, H. Kono, Y. Tamura, Y. Kuroda, T.

Sugano, et al., "Lane-change detection based on

vehicle-trajectory prediction," IEEE Robotics and

Automation Letters, vol. 2, pp. 1109-1116, 2017.

[6] K. Jo and M. Sunwoo, "Generation of a precise

roadway map for autonomous cars," IEEE

Transactions on Intelligent Transportation Systems,

vol. 15, pp. 925-937, 2014.

[7] M. Althoff and A. Mergel, "Comparison of Markov

chain abstraction and Monte Carlo simulation for the

safety assessment of autonomous cars," IEEE

Transactions on Intelligent Transportation Systems,

vol. 12, pp. 1237-1247, 2011.

[8] Q. Li, L. Chen, M. Li, S.-L. Shaw, and A. Nüchter, "A

sensor-fusion drivable-region and lane-detection

system for autonomous vehicle navigation in

challenging road scenarios," IEEE Transactions on

Vehicular Technology, vol. 63, pp. 540-555, 2014.

[9] A. Borkar, M. Hayes, and M. T. Smith, "A novel lane

detection system with efficient ground truth

generation," IEEE Transactions on Intelligent

Transportation Systems, vol. 13, pp. 365-374, 2012.

[10] H. Yoo, U. Yang, and K. Sohn, "Gradient-enhancing

conversion for illumination-robust lane detection,"

IEEE Transactions on Intelligent Transportation

Systems, vol. 14, pp. 1083-1094, 2013.

[11] S. Sivaraman and M. M. Trivedi, "Integrated lane and

vehicle detection, localization, and tracking: A

synergistic approach," IEEE Transactions on

Intelligent Transportation Systems, vol. 14, pp. 906-

917, 2013.

[12] M. Buehler, K. Iagnemma, and S. Singh, The DARPA

urban challenge: autonomous vehicles in city traffic

vol. 56: springer, 2009.

[13] J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held,

S. Kammel, et al., "Towards fully autonomous driving:

Systems and algorithms," in Intelligent Vehicles

Symposium (IV), 2011 IEEE, 2011, pp. 163-168.

[14] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens,

A. Aron, J. Diebel, et al., "Stanley: The robot that won

the DARPA Grand Challenge," Journal of field

Robotics, vol. 23, pp. 661-692, 2006.

[15] C.-Y. Lee, C.-T. Lin, C.-T. Hong, and M.-T. Su,

"Smoke detection using spatial and temporal

analyses," International Journal of Innovative

Computing, Information and Control, vol. 8, pp. 4749-

4770, 2012.

[16] W. J. Schakel, B. Van Arem, and B. D. Netten,

"Effects of cooperative adaptive cruise control on

traffic flow stability," in Intelligent Transportation

Systems (ITSC), 2010 13th International IEEE

Conference on, 2010, pp. 759-764.

[17] B. v. Arem, C. J. G. v. Driel, and R. Visser, "The

Impact of Cooperative Adaptive Cruise Control on

Traffic-Flow Characteristics," IEEE Transactions on

Intelligent Transportation Systems, vol. 7, pp. 429-436,

2006.

[18] X. Chen, K. Kundu, Y. Zhu, A. G. Berneshawi, H. Ma,

S. Fidler, et al., "3D object proposals for accurate

object class detection," in Advances in Neural

Information Processing Systems, 2015, pp. 424-432.

[19] R. Guidolini, C. Badue, M. Berger, L. de Paula

Veronese, and A. F. De Souza, "A simple yet effective

obstacle avoider for the IARA autonomous car," in

Intelligent Transportation Systems (ITSC), 2016 IEEE

19th International Conference on, 2016, pp. 1914-

1919.

[20] J. Choi, J. Lee, D. Kim, G. Soprani, P. Cerri, A. Broggi,

et al., "Environment-detection-and-mapping

algorithm for autonomous driving in rural or off-road

environment," IEEE Transactions on Intelligent

Transportation Systems, vol. 13, pp. 974-982, 2012.

[21] J. Leonard, J. How, S. Teller, M. Berger, S. Campbell,

G. Fiore, et al., "A perception‐driven autonomous

urban vehicle," Journal of Field Robotics, vol. 25, pp.

727-774, 2008.

[22] N. Kalra and S. M. Paddock, "Driving to safety: How

many miles of driving would it take to demonstrate

autonomous vehicle reliability?," Transportation

Research Part A: Policy and Practice, vol. 94, pp.

182-193, 2016.

https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6979

The final formatted version can be downloaded from IEEE ITS website at https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6979

14

[23] A. Petrovskaya and S. Thrun, "Model based vehicle

detection and tracking for autonomous urban driving,"

Autonomous Robots, vol. 26, pp. 123-139, 2009.

[24] A. Sharif Razavian, H. Azizpour, J. Sullivan, and S.

Carlsson, "CNN features off-the-shelf: an astounding

baseline for recognition," in Proceedings of the IEEE

conference on computer vision and pattern

recognition workshops, 2014, pp. 806-813.

[25] S. Khan, K. Muhammad, S. Mumtaz, S. W. Baik, and

V. H. C. de Albuquerque, "Energy-efficient deep CNN

for smoke detection in foggy IoT environment," IEEE

Internet of Things Journal, 2019.

[26] Y. Kim, "Convolutional neural networks for sentence

classification," arXiv preprint arXiv:1408.5882, 2014.

[27] O. Abdel-Hamid, A.-r. Mohamed, H. Jiang, L. Deng,

G. Penn, and D. Yu, "Convolutional neural networks

for speech recognition," IEEE/ACM Transactions on

audio, speech, and language processing, vol. 22, pp.

1533-1545, 2014.

[28] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi,

W. Macherey, et al., "Google's neural machine

translation system: Bridging the gap between human

and machine translation," arXiv preprint

arXiv:1609.08144, 2016.

[29] M. Defferrard, X. Bresson, and P. Vandergheynst,

"Convolutional neural networks on graphs with fast

localized spectral filtering," in Advances in Neural

Information Processing Systems, 2016, pp. 3844-3852.

[30] Y. S. Wong, N. K. Lee, and N. Omar, "GMFR-CNN:

an integration of gapped motif feature representation

and deep learning approach for enhancer prediction,"

in Proceedings of the 7th International Conference on

Computational Systems-Biology and Bioinformatics,

2016, pp. 41-47.

[31] A. Krizhevsky, I. Sutskever, and G. E. Hinton,

"Imagenet classification with deep convolutional

neural networks," in Advances in neural information

processing systems, 2012, pp. 1097-1105.

[32] M. Sajjad, S. Khan, K. Muhammad, W. Wu, A. Ullah,

and S. W. Baik, "Multi-grade brain tumor

classification using deep CNN with extensive data

augmentation," Journal of computational science, vol.

30, pp. 174-182, 2019.

[33] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi,

"You only look once: Unified, real-time object

detection," in Proceedings of the IEEE conference on

computer vision and pattern recognition, 2016, pp.

779-788.

[34] E. Shelhamer, J. Long, and T. Darrell, "Fully

convolutional networks for semantic segmentation,"

IEEE transactions on pattern analysis and machine

intelligence, vol. 39, pp. 640-651, 2017.

[35] K. Behrendt, L. Novak, and R. Botros, "A deep

learning approach to traffic lights: Detection, tracking,

and classification," in Robotics and Automation

(ICRA), 2017 IEEE International Conference on, 2017,

pp. 1370-1377.

[36] B. Huval, T. Wang, S. Tandon, J. Kiske, W. Song, J.

Pazhayampallil, et al., "An empirical evaluation of

deep learning on highway driving," arXiv preprint

arXiv:1504.01716, 2015.

[37] C. Chen, A. Seff, A. Kornhauser, and J. Xiao,

"Deepdriving: Learning affordance for direct

perception in autonomous driving," in Proceedings of

the IEEE International Conference on Computer

Vision, 2015, pp. 2722-2730.

[38] T. Sun, S. Tang, J. Wang, and W. Zhang, "A robust

lane detection method for autonomous car-like robot,"

in Intelligent Control and Information Processing

(ICICIP), 2013 Fourth International Conference on,

2013, pp. 373-378.

[39] A. Saha, D. D. Roy, T. Alam, and K. Deb, "Automated

road lane detection for intelligent vehicles," Global

Journal of Computer Science and Technology, 2012.

[40] T. M. Hoang, H. G. Hong, H. Vokhidov, and K. R.

Park, "Road lane detection by discriminating dashed

and solid road lanes using a visible light camera

sensor," Sensors, vol. 16, p. 1313, 2016.

[41] M. Sajjad, I. U. Haq, J. Lloret, W. Ding, and K.

Muhammad, "Robust Image Hashing based Efficient

Authentication for Smart Industrial Environment,"

IEEE Transactions on Industrial Informatics, pp. 1-1,

2019.

[42] K. M. A. Alheeti, R. Al-Zaidi, J. Woods, and K.

McDonald-Maier, "An intrusion detection scheme for

driverless vehicles based gyroscope sensor profiling,"

in Consumer Electronics (ICCE), 2017 IEEE

International Conference on, 2017, pp. 448-449.

[43] K. M. A. Alheeti, A. Gruebler, K. D. McDonald-Maier,

and A. Fernando, "Prediction of DoS attacks in

external communication for self-driving vehicles

using a fuzzy petri net model," in Consumer

Electronics (ICCE), 2016 IEEE International

Conference on, 2016, pp. 502-503.

[44] P. Gora and I. Rüb, "Traffic models for self-driving

connected cars," Transportation Research Procedia,

vol. 14, pp. 2207-2216, 2016.

[45] Q. Huy, S. Mita, H. T. N. Nejad, and L. Han,

"Dynamic and safe path planning based on support

vector machine among multi moving obstacles for

autonomous vehicles," IEICE TRANSACTIONS on

Information and Systems, vol. 96, pp. 314-328, 2013.

[46] T. Birdal and A. Erçil, "Real-time automated road,

lane and car detection for autonomous driving," 2007.

[47] B. Grush and J. Niles, The end of driving:

transportation systems and public policy planning for

autonomous vehicles: Elsevier, 2018.

[48] T. Litman, Autonomous vehicle implementation

predictions: Victoria Transport Policy Institute

Victoria, Canada, 2017.

[49] Z. Zhang, "A flexible new technique for camera

calibration," IEEE Transactions on pattern analysis

and machine intelligence, vol. 22, 2000.

[50] J. Chu, L. Ji, L. Guo, Libibing, and R. Wang, "Study

on method of detecting preceding vehicle based on

monocular camera," in IEEE Intelligent Vehicles

Symposium, 2004, 2004, pp. 750-755.

https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6979

The final formatted version can be downloaded from IEEE ITS website at https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6979

15

[51] P. Viola and M. Jones, "Rapid object detection using a

boosted cascade of simple features," in Computer

Vision and Pattern Recognition, 2001. CVPR 2001.

Proceedings of the 2001 IEEE Computer Society

Conference on, 2001, pp. I-I.

[52] M. Sajjad, M. Nasir, K. Muhammad, S. Khan, Z. Jan,

A. K. Sangaiah, et al., "Raspberry Pi assisted face

recognition framework for enhanced law-enforcement

services in smart cities," Future Generation Computer

Systems, 2017.

[53] A. Vladišauskas and L. Jakevičius, "Absorption of

ultrasonic waves in air," Ultragarsas, vol. 50, pp. 46-

49, 2004.

[54] S. Karaman, A. Anders, M. Boulet, J. Connor, K.

Gregson, W. Guerra, et al., "Project-based,

collaborative, algorithmic robotics for high school

students: Programming self-driving race cars at MIT,"

in Integrated STEM Education Conference (ISEC),

2017 IEEE, 2017, pp. 195-203.

[55] I. Shim, J. Choi, S. Shin, T.-H. Oh, U. Lee, B. Ahn, et

al., "An autonomous driving system for unknown

environments using a unified map," IEEE

Transactions on Intelligent Transportation Systems,

vol. 16, pp. 1999-2013, 2015.

[56] Y. Yang, H. Luo, H. Xu, and F. Wu, "Towards real-

time traffic sign detection and classification," IEEE

Transactions on Intelligent Transportation Systems,

vol. 17, pp. 2022-2031, 2016.

[57] F. Zaklouta, B. Stanciulescu, and O. Hamdoun,

"Traffic sign classification using kd trees and random

forests," in Neural Networks (IJCNN), The 2011

International Joint Conference on, 2011, pp. 2151-

2155.

Muhammad Sajjad received his Master degree from

Department of Computer Science, College of Signals,

National University of Sciences and Technology,
Rawalpindi, Pakistan. He received his PhD degree in

Digital Contents from Sejong University, Seoul,

Republic of Korea. He is now working as an associate
professor at Department of Computer Science, Islamia

College Peshawar, Pakistan. He is also head of “Digital
Image Processing Laboratory (DIP Lab)” at the same university. His research

interests include digital image super-resolution and reconstruction, medical

image analysis, video summarization and prioritization, image/video quality
assessment, computer vision, and image/video retrieval.

Muhammad Irfan received his BS degree in Computer
Science from Islamia College, Peshawar, Pakistan. He is

currently a Master student at Department of Software,

Sejong University, Seoul, Republic of Korea. His research
interest includes image and video processing, intelligent

transportation systems, computer vision, machine learning,

and deep learning.

Khan Muhammad (S’16-M’18) received the Ph.D

degree in Digital Contents from Sejong University,

South Korea. He is currently working as an Assistant

Professor at Department of Software and Lead

Researcher of Intelligent Media Laboratory, Sejong

University, Seoul. His research interests include

intelligent video surveillance (fire/smoke scene analysis,

transportation systems, and disaster management),

medical image analysis (brain MRI, diagnostic hysteroscopy, and wireless

capsule endoscopy), information security (steganography, encryption,

watermarking, and image hashing), video summarization (single-view and

multi-view), multimedia, computer vision, IoT, and smart cities. He has

registered over 7 patents and published over 100 papers in peer-reviewed

international journals and conferences in these research areas with target venues

as IEEE COMMAG, NETWORK, TII, TIE, TSMC-Systems, IoTJ, Access,

TSC, Elsevier INS, Neurocomputing, PRL, FGCS, ASOC, IJIM, SWEVO,

COMCOM, COMIND, JPDC, PMC, BSPC, CAEE, Springer NCAA, MTAP,

JOMS, and RTIP, etc. He is also serving as a professional reviewer for over 70

well-reputed journals and conferences. He is currently involved in editing of

several special issues as GE/LGE. He is a member of the IEEE and ACM.

Javier (Javi) Del Ser (M’07–SM’12) received his

first PhD in Telecommunication Engineering

(Cum Laude) from the University of Navarra,

Spain, in 2006, and a second PhD in

Computational Intelligence (Summa Cum Laude,

Extraordinary Prize) from the University of Alcala,

Spain, in 2013. He has held several positions as a

Professor and a Researcher at different institutions

of the Basque Research Network (including the

University of Mondragon, CEIT and Robotiker). Currently he is a Research

Professor in Data Analytics and Optimization at TECNALIA (Spain), a visiting

fellow at the Basque Centre for Applied Mathematics (BCAM) and an adjunct

professor at the University of the Basque Country (UPV/EHU). He is also a

Senior AI advisor at the technological startup Sherpa. His research interests

gravitate on the use of descriptive, predictive and prescriptive algorithms for

data mining and optimization in a diverse range of application fields such as

Energy, Transport, Telecommunications, Health and Industry, among others. In

these fields he has published more than 300 scientific articles, co-supervised 10

Ph.D. thesis, edited 7 books, co-authored 9 patents and participated/led more

than 43 research projects. He serves as an associate editor in a number of

indexed journals, including Information Fusion, Swarm and Evolutionary

Computation, Cognitive Computation and IEEE Transactions on Intelligent

Transportation Systems.

Dr. Javier Sanchez-Medina is currently an Associate
Professor in the Computer Science department at the

University of Las Palmas de Gran Canaria (ULPGC),

Spain. Dr. Sanchez-Medina earned his Engineering
Master Degree at the Telecommunications Faculty on

2002, and his PhD at the Computer Science Department

on 2008. His PhD dissertation versed on the use of
Genetic Algorithms, Parallel Computing and Cellular

Automata based Traffic Microsimulation to optimize the Traffic Lights

Programming within an Urban Traffic Network. His research interests include
mainly the application of Data Mining, Evolutionary Computation and Parallel

Computing to Intelligent Transportation Systems, in particular to Traffic

Modeling and Prediction. Javier Sanchez-Medina has been volunteering for
several years at many international conferences related to Intelligent

Transportation, Computer Science, Evolutionary Computation, etc. He is

reviewer for some Transportation related journals like the IEEE ITSS
Transactions, or the IEEE Transactions on Vehicular Technology. Since 2010,

we has served for the IEEE ITS Society organizing the TBMO 2010 Workshop

at ITSC2010, co-organizing the "Travel Behavior Research: Bounded
Rationality and Behavioral Response" Special Session at ITSC2011, being

Publications Chair at the IEEE FISTS2011, Registration Chair at the IEEE

ITSC2012 and Workshops and Tutorials Chair for IEEE ITSC 2013, Panels
Chair for IEEE VTC-Fall 2013, Program co-chair for IEEE ITSC2014 and

IEEE ITSC2016, Publicity Chair for IEEE IV2017, Program Chair for IEEE

ICVES 2017 and Program co-Chair for IEEE ITSC2018. He served as general
chair for the IEEE ITSC2015, a record beating edition of IEEE ITSCs, hosted

at Las Palmas de Gran Canaria (Spain) on September 2015. He has also

contributed to the IEEE ITS Society as Founding Editor in Chief of the IEEE
ITS Podcast from May 2013 to December 2016, and Editor in Chief of the IEEE

ITS Newsletter during 2015 and 2016. He has recently been appointed as Vice

President for Technical Activities for the IEEE ITS Society and President of its
Spanish Chapter for the term 2017-2018. Before of that he served as Vice

President of that Spanish Chapter during 2015 and 2016. He has widely

published his research with more than 30 international conference articles and
more than 20 international journal articles and 3 research chapters, being the

https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6979

The final formatted version can be downloaded from IEEE ITS website at https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6979

16

main author of more than half of them. He has also been keynote speaker at two
conferences (ANT2017, SOLI2017) and distinguished lecturer at the IEEE

ITSS Tunisian Chapter in November, 2016.

Sergey Andreev [SM’17] (sergey.andreev@tuni.fi) is an

assistant professor of communications engineering and

Academy Research Fellow at Tampere University,
Finland. Since 2018, he has also been a Visiting Senior

Research Fellow with the Centre for

Telecommunications Research, King's College London,
UK. He received his Ph.D. (2012) from TUT as well as

his Specialist (2006) and Cand.Sc. (2009) degrees from

SUAI. He serves as editor for IEEE Wireless
Communications Letters (2016-) and as lead series editor of the IoT Series

(2018-) for IEEE Communications Magazine. He (co-)authored more than 200

published research works on intelligent IoT, mobile communications, and
heterogeneous networking.

Weiping Ding (M’16-SM’19) received the Ph.D.
degree in Computation Application, Nanjing

University of Aeronautics and Astronautics (NUAA),

Nanjing, China, in 2013, and was awarded the

Outstanding Doctoral Dissertation by NUAA. He was

a Visiting Scholar at University of Lethbridge(UL),

Alberta, Canada, in 2011. From 2014 to 2015, He is a
Postdoctoral Researcher at the Brain Research Center,

National Chiao Tung University (NCTU), Hsinchu,
Taiwan. In 2016, He was a Visiting Scholar at

National University of Singapore (NUS), Singapore. From 2017 to 2018, he

was a Visiting Professor at University of Technology Sydney (UTS), Ultimo,
NSW, Australia. He is a member of Senior IEEE, IEEE-CIS, ACM, IAENG

and Senior CCF. Now, Dr. Ding is the Chair of IEEE CIS Task Force on

Granular Data Mining for Big Data. He is a member of Technical Committee
on Soft Computing of IEEE SMCS, a member of Technical Committee on

Granular Computing of IEEE SMCS, a member of Technical Committee on

Data Mining and Big Data Analytics Technical Committee of IEEE CIS. He
also is a member of IEEE CIS Task Force on Adaptive and Evolving Fuzzy

Systems.

Dr. Ding’s main research directions involve deep learning, data mining,
evolutionary computing, granular computing, machine learning and big data

analytics. He has published over 50 papers in flagship journals and conference

proceedings as the first author, including IEEE Transactions on Fuzzy Systems,
IEEE Transactions on Neural Network and Learning System, IEEE

Transactions on Cybernetics, IEEE Transactions on Systems, Man, and

Cybernetics: Systems, IEEE Transactions on Emerging Topics in
Computational Intelligence. To data, he has held 12 approved invention patents

in total over 20 issued patents. Dr. Ding was a recipient of Computer Education

Excellent Paper Award (First-Prize) from the National Computer Education
Committee of China, in 2009. He was an Excellent-Young Teacher (Qing Lan

Project) of Jiangsu Province in 2014, and a High-Level Talent (Six Talent Peak)

of Jiangsu Province in 2016. He was awarded the Best Paper of ICDMA’15,
and awarded an Outstanding Teacher of Software Design and Entrepreneurship

Competition by the Ministry of Industry and Information Technology, China,

in 2017. Dr. Ding was a recipient of the Medical Science and Technology
Award (Second Prize) of Jiangsu Province, China, in 2017, and the Education

Teaching and Research Achievement Award (Third Prize) of Jiangsu Province,

China, in 2018. He was a recipient of Natural Science Outstanding Academic
Paper Award (First Prize), Nantong, China, in 2017, Science and Technology

Progress Award (Second Prize), Nantong, China, in 2018, Outstanding

Associate Editor of 2018 for IEEE Access Journal. Dr. Ding was awarded two
Chinese Government Scholarships for Overseas Studies in 2011 and 2016.

Dr. Ding currently serves on the Editorial Advisory Board of Knowledge-based

Systems and Editorial Board of Information Fusion. He serves/served as an
Associate Editor of several prestigious journals, including IEEE Transactions

on Fuzzy Systems, Information Sciences, Swarm and Evolutionary

Computation, IEEE Access and Journal of Intelligent & Fuzzy Systems, Co-
Editor-in-Chief of Journal of Artificial Intelligence and Systems, as well as the

lead guest editor in several international journals. He serves/served as a

program committee member for several international conferences and
workshops.

Jong Weon Lee received M.S. degree in Electrical and
Computer Engineering from University of Wisconsin

at Madison in 1991, and Ph.D. degree from University

of Southern California in 2002. He is presently
Professor of Department of Software at Sejong

University. His research interests include augmented

reality, computer vision, machine learning, human-
computer interaction and serious game.

https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6979

