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Most conventional video formats have been designed to produce high compression ratios
through the use of sophisticated video coding methods, resulting in dramatic reductions of re-
quired bandwidth. The complexity of these standards is however also their weakness, as the
inherent compute intensity adds to the video latency. Therefore, low-latency video delivery contin-
ues to be a challenging problem, especially for low-power mobile and IoT devices.

An alternative approach has been proposed, where certain texture compression formats, com-
monly used in computer graphics, would be used for real-time video compression at a very low
latency. These formats would allow the use of fast, hardware-accelerated render-time decoding,
while also lending themselves well to low-latency GPU encoding and parallel computation in gen-
eral.

The main drawback would come in the form of low compression ratios, but it has become a
lesser issue, thanks to the recent advent of new high-bandwidth wireless networking technologies,
such as the 802.11ax (WiFi 6) and 5G standards. Regardless, they still have only an enabling role,
as general-purpose platforms still depend on largely software-based network I/O solutions.

The objective of this work, is in studying the technical aspects of texture-compressed stream
delivery, and finding the best strategies for the performance optimization of the Linux kernel net-
work stacks using general-purpose hardware. A video streaming pipeline optimized for texture
formats is proposed, utilizing multi-threading, GPU acceleration, and network stack performance
tuning.

As a result, the pipeline was found to be capable of reaching very low latencies in the case of
high-bandwidth networks, when extrapolating from performance measurements in localhost TCP
and UDP tests. As an example, a 2160p frame encoded in the BC1 format, could be delivered
with a total end-to-end latency of under 10 ms, although it would require a 10 Gbit/s network and a
high core count -CPU. The achieved bandwidths were 31.7 Gbit/s and 25.3 Gbit/s for the proposed
TCP and UDP implementations respectively. As the latency is roughly proportional to the frame
size and network bandwidth, using a higher compression ratio format or more bandwidth could
easily bring the 4320p performance to a similar level with the 2160p results.

The use of texture compression in video delivery was concluded to be on the edge of viability
for the aforementioned low-power systems in wireless networks. The limiting factors are the net-
work performance and the CPU-overheads in the Linux network stack. While significant improve-
ments in device compute performances are unlikely to be seen in the near future, advancements
in the networking capabilities of consumer hardware could, however, be enough to make texture
compressed video delivery a reality.

Keywords: texture compression, latency, performance, networking, Linux
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Useimmat konventionaaliset videoformaatit on suunniteltu tuottamaan korkeita kompressio-
suhteita käyttäen hyödyksi hienostuneita videokoodausmenetelmiä johtaen dramaattisiin vähen-
nyksiin tarvittavassa kaistanleveydessä. Näiden standardien kompleksisuus on kuitenkin myös
niiden heikkous, koska niiden laskentaintensiivisyys kasvattaa videon viivettä. Näin ollen matala-
viiveinen videon siirto on edelleen haastava ongelma erityisesti matalatehoisissa mobiili- ja IoT-
laitteissa.

Vaihtoehtoista menetelmää on ehdotettu, missä usein tietokonegrafiikassa käytettyjä tekstuuri-
formaatteja voitaisiin käyttää reaaliaikaisessa videokompressiossa erittäin matalalla viiveellä. Nä-
mä formaatit mahdollistaisivat nopean laitteistokiihdytetyn renderöintiaikaisen dekoodauksen ja
samalla soveltuisivat hyvin matalan viiveen GPU-enkoodaukseen ja yleisesti rinnakkaiseen las-
kentaan.

Ensisijainen haittapuoli olisi matalissa pakkaussuhteissa, mutta tästä on viime aikoina tullut vä-
häisempi ongelma kiitos viimeaikaisten kehitysten korkean kaistanleveyden langattomissa verkko-
teknologioissa kuten 802.11ax- (WiFi 6) ja 5G-standardeissa. Niillä on kuitenkin ainoastaan mah-
dollistava rooli, sillä yleiskäyttöiset laskenta-alustat ovat edelleen suurelta osin riippuvaisia ohjel-
mistopohjaisista verkko-I/O-ratkaisuista.

Tämän työn tavoite, on tutkia tekstuurikompressoidun videovirran siirron teknisiä näkökohtia ja
löytää parhaimmat menetelmät Linux-järjestelmien verkkopinojen suorituskykyoptimointiin käyt-
täen yleiskäyttöisiä laitteistoja. Lisäksi ehdotetaan tekstuuriformaateille optimoitua videovirtajär-
jestelmää, jossa hyödynnetään monisäikeistystä, GPU-kiihdytystä ja verkkopinon hienosäätöä.

Lopputuloksena järjestelmän havaittiin olevan kykenevä saavuttamaan hyvin matalia viiveitä
korkean kaistanleveyden verkoissa, kun ekstrapoloidaan paikallisten TCP- ja UDP-testien tulok-
sista. Esimerkkinä BC1-formaatissa enkoodatun 2160p-videokuva pystytiin siirtämään alle 10 ms
kokonaislatenssilla, vaikkakin se edellytti 10 Gbit/s -verkkoa ja korkeaa CPU-ydinmäärää. Saavu-
tetut kaistanleveydet olivat 31.7 Gbit/s TCP:lle ja 25.3 Gbit/s UDP-toteutukselle. Koska viive on
suurinpiirtein verrannollinen videokuvan kokoon ja verkon kaistanleveyteen, korkeampi pakkaus-
suhde tai kaistanleveys voisi tuoda 4320p-suorituskyvyn samankaltaiselle tasolle 2160p-tulosten
kanssa.

Johtopäätöksenä tekstuurikompression käyttö videon siirrossa todettiin olevan toteutettavuu-
den rajoilla edellä mainituissa matalatehoisissa järjestelmissä langattomissa verkoissa. Rajoitta-
vat tekijät olivat verkon suorituskyky ja korkea CPU-käyttö Linuxin verkkopinossa. Vaikka huomat-
tavat parannukset laitteistojen laskennallisessa suorituskyvyssä ovatkin epätodennäköisiä lähitu-
levaisuudessa, edistysaskeleet kuluttajalaitteiden verkko-ominaisuuksissa voisivat kuitenkin olla
tarpeeksi tekemään tekstuurikompressiosta videon siirrossa todellisuutta.

Avainsanat: tekstuurikompressio, viive, suorituskyky, tietoverkot, Linux

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.
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1 INTRODUCTION

Media streaming has become a significant and prevalent application of the modern In-

ternet, especially over the past decade. The same time span has also seen the popu-

larization of cloud and remote computing concepts as a method of building scalable and

accessible Internet applications, but so far little of this has translated into improvements

in latency. On the contrary, achieving ultra-low latency in streaming of high-bandwidth

media, such as video, continues to be a non-trivial challenge.

A number of interesting latency-sensitive streaming applications have been emerging in

recent years. Most challenging are those that aggregate other requirements, such as

compute- or bandwidth-intensity, mobility and energy efficiency. Besides the delivery of

real-time video in general, some points of interest include interactive remote rendering,

virtual or augmented reality, machine vision, autonomous transportation and, teleopera-

tion applications [1].

Other broader technological trends and concepts also link to advancements in low-latency

communications. Most notable are mobile computing and Internet of Things (IoT) sys-

tems, that are required to operate on thin power budgets or modest compute capabilities.

To counter this, considerable efforts have been directed at distributed computational of-

floading solutions over networks. One of these is the concept of multi-access edge com-

puting (MEC), which aims to bring compute resources to the immediate vicinity of mobile

radio access networks (RAN) for the use of client devices with minimal latency [2].

In the recent years, compute performances have mostly been increasing only through in-

creased parallelization and hardware-offloading capabilities. General-purpose computing

on GPUs (GPGPU) has especially become the prevalent solution for processing large vol-

umes of data [3]. I/O performances on the other hand have seen much more improvement

in terms of not only memory speeds, but also network technologies [4]. Consequently, a

strong case could be built to say that the future of information technology is more-and-

more in interconnected and distributed compute systems [5].

Data centers and other industrial and enterprise settings have enjoyed over 10–100 Gbit/s

wired networking for a long time now [6]. Wireless networks are also being boosted by the

introduction of the new 802.11ax (Wi-Fi 6) and 5G millimeter-wave technologies. These

new standards are now promising comparable (theoretical) bandwidths of close to 10
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Gbit/s and network latencies in the order of milliseconds. [7] A gap has formed between

the compute and network performance, where the network bandwidths have exploded

while the compute side has stagnated [4].

The fundamental issue of latency lies in the fact that it is not a singular problem area, but

a sum of many separate challenges concerning compute, transfer and display capabilities

[7]. Despite of the ongoing technological advancements in networking, they only have an

enabling role in the latency-optimization of the media streaming applications.

The focus has to also shift towards optimizing end-host performance and especially soft-

ware stacks, which besides the application code itself, also extend to operating system

level [6]. In MEC contexts this is further underlined by the fact, that although servers

may make use of various specialized hardware acceleration and interconnect solutions,

low-end consumer devices currently still have to rely on more simplistic general-purpose

hardware.

The objective of this work is to study methods of maximizing low-latency high-bandwidth

stream performances in general-purpose Linux devices and high-speed wired and wire-

less networks. For the purposes of the work, a real-time video streaming system is

developed utilizing kernel network stack optimizations, heavy multi-threading and GPU

acceleration. Additional considerations include GPU buffer management schemes and

portability to mobile platforms.

As a secondary goal, practical considerations of using texture compression formats in

ultra low-latency video streaming are also discussed. These simple formats have a great

deal of computational benefits over conventional video codecs, but come at the cost of

very low compression ratios generating extremely high bandwidth requirements at high

resolutions. In other words, texture compression in frame-by-frame video streaming ap-

plications makes an ideal candidate for demonstrating high-performance networking in

practice.

Low-latency and high-bandwidth video stream delivery is studied in this work from both

theoretical and practical aspects. Chapter 2 discusses texture compression formats in

the context of video coding including their special properties and their practical signifi-

cance. Chapter 3 looks into performance aspects of networking, focusing on transmission

medium, transport protocol and Linux network stack impacts to end-to-end performance.

The information is then applied in Chapter 4, where the proposed video streaming system

is walked through starting from its architecture and moving into video coding, stream han-

dling and buffer management aspects. The performance results are presented in Chapter

5 with additional analysis of their causes, implications for any real-world applications, and

future work proposals. The final conclusions of the work are included in Chapter 6.
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2 TEXTURE-COMPRESSED VIDEO STREAMING

Traditionally, most video compression formats have been designed to maximize their com-

pression ratio for a given level of quality. While this has made streaming and storing large

amounts of video data over Internet much more economically viable, the main drawback

comes in the form of compute time required in coding of video.

As a response to the compute bottleneck issue, much work has been done to optimize

software codecs, and some alleviation has also been found from GPU and hardware

acceleration. Unfortunately, especially low-cost and low-power systems, such as some

mobile and IoT devices, remain problematic.

An alternative solution has been proposed, where instead of investing in local com-

pute resources, high-performance networking capabilities are utilized in conjunction with

lightweight texture compression formats to deliver video at the lowest possible latency.

The goal of this work is to develop a video streaming pipeline, which demonstrates the

use of texture compressed video in practice.

2.1 Texture Compression Formats

In modern computer graphics, large numbers of high-resolution textures are used in ren-

dering complicated 3D environments on a normal basis. Because GPUs have only a

limited amount of VRAM for storing these textures, various compression schemes have

been developed to reduce their memory footprint.

The drawback of using compressed textures manifests in requiring extremely fast decom-

pression during rendering. Due to the fast decoding requirement, texture compression pri-

marily relies on relatively simple adaptive color quantization-based approaches for lossy

compression. The contrast is stark when compared to e.g. frequency domain analysis or

motion compensation –based coding schemes utilized in conventional video compression

formats such as H.264 [8]. The resulting compression ratios of the texture formats are

much lower, typically in the range of 1:3 to 1:6 for the formats covered here.

Despite the low compression ratio, texture compression has other significant advantages.

One such benefit is the fact that the compression ratio is constant, because these formats

utilize constant-dimension pixel blocks that get compressed into a fixed number of bits.
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The compressed blocks are also completely independent of each other. These properties

result in predictable memory use –patterns, that have great favourable effects in both

compute parallelization and memory management.

Decompression is also accelerated in hardware, with virtually all graphics hardware sup-

porting many different formats [9]. From an application standpoint, there is little difference

between using compressed or uncompressed textures, as the decoding occurs transpar-

ently at render-time.

The aforementioned benefits of uniform block formats also apply to real-time encoding,

although there is no hardware support available for it. Despite of that, a well-optimized

encoder running on a moderately powerful GPU can achieve very low encode latencies

[9]. Even software encoders running on modern mid-range CPUs have been shown to

be capable of encoding 4320p frames in the order of milliseconds [10]. It should however

be noted, that a low-latency encoder may produce lower quality results compared to an

offline encoder, even though the compression formats would be the same [11].

One of the more widely adopted texture compression formats at least in PC systems is

the S3 Texture Compression (S3TC) family of formats. Somewhat confusingly, they are

known either as Block Compression (BC) formats in the Direct3D API [12], or DXT formats

in the OpenGL API [13].

As mentioned, texture compression formats operate on pixel blocks that are compressed

into a fixed number of bits. In the case of the S3TC BC1 (DXT1) format, blocks have a

constant size of 4-by-4 pixels, that are encoded into 64 bits. The first 32 bits contain two

16-bit color values in RGB 565 format representing the local minimum and maximum color

values of the block. The last 32 bits in the compressed block store sixteen 2-bit values,

which are used to linearly interpolate in the local color space defined by the minimum and

maximum. [13] Therefore, all color values inside the block effectively get quantized to four

distinct color levels between the minimum and maximum values. Since an uncompressed

24-bit RGB pixel block of equivalent size has a memory footprint of 384 bits, the resulting

compression ratio of the BC1 format is 1:6.

S3TC BC3 (DXT5) extends the BC1 format by including more complete alpha channel

support, where BC1 supported only optional 1-bit alpha channel by modifying the way

encoded data is interpreted. BC3 uses 128 bits per 4x4 pixel block by encoding the color

data to a standard 64-bit BC1 block and by encoding the alpha channel to a separate 64-

bit block. This alpha-block includes a 16-bit block storing two 8-bit minimum and maximum

alpha values, and a 48-bit block containing sixteen 3-bit values used to once again linearly

interpolate between the stored minimum and maximum. [13] The block size is twice as

large and thus has a compression ratio of 1:3.

Since video formats do not under normal circumstances have any need for alpha channel
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data, BC3 format is not directly relevant from the perspective of this work. However, it has

been previously proposed, that the BC3 format could be repurposed to deliver YCoCg

data instead of RGBA with a quality improvement over the standard BC1 or BC3 formats.

This can be done by converting RGB data to YCoCg color space, storing the Y channel

into the 64-bit alpha block, and using the other 64-bit block to store the two chrominance

channels. The decoding and conversion back to RGB could then performed render-time

using a simple fragment shader. [11]

As a complicating factor, the latter 64-bit block is expected to store 3-channel RGB data,

which is what a texture sampler would support. To avoid wasting the third channel com-

pletely when storing two-channel CoCg data, the remaining channel can be used to store

a separate scale factor, which is used to reduce quantization errors in the chrominance

channels during the coding process. [11]

Rudimentary quality comparison of an RGB 24-bit image encoded in BC1 and YCoCg-

BC3 formats is provided in Figure 2.1 using a real-time low-latency GPU encoder. It

should however be noted, that there does not exist any singular standard texture encoding

method, and different encoders will yield better results at the cost of encoding time. In

conventional computer graphics applications, texture compression is typically even done

by a much slower offline encoder for the best possible quality.

(a) (b) (c)

Figure 2.1. Quality comparison of (a) uncompressed 24-bit RGB, (b) BC1 and (c) YCoCg-
BC3 formats using a 192x192 pixel image and a zoomed 64x64 pixel section.
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Nevertheless, the comparison is still sufficient for demonstrating the level of quality that

could be expected from a reasonable real-time implementation. Most compression arti-

facts are rather subtle, but some artifacting can be seen in edge areas of the BC1 image.

Especially blocks, that contain three or more distinct shades of color, are most affected,

because the range of possible color values is limited into a few levels in the interpolation

axis defined by its two endpoint color values. In the case of BC1 using RGB 565 format,

the red and blue shades naturally compress more poorly than green ones, as the latter

channel gets one additional bit of precision over others.

Some images with softer color gradients compress quite well in the BC1 format, but sharp

edges remain a problem. The YCoCg-BC3 format is the better fit for most natural images

and could even be argued to have an imperceptible difference in quality. This is to be

expected, as BC3 uses more bits per pixel than then BC1 by a factor of two. Both formats

also benefit from very large resolutions, because the block sizes remain constant and

become smaller in respect to the image as a whole making the artifacts less noticeable.

Other formats, which could be considered in the context of this work, include the Eric-

son Texture Compression (ETC) [14, 15] and Adaptive Scalable Texture Compression

(ASTC) formats [16]. These are extensively used by mobile platforms and are conse-

quently supported by the OpenGL ES API [17]. The regular OpenGL API also includes

support for ETC2 [18], which together with ETC1 shares similar properties with the S3TC

BC formats. ASTC introduces other interesting properties, such as variable block sizes

resulting in adjustable quality levels and compression ratios ranging from 1:3 to 1:27.

In addition to actual texture formats, it would of course also be possible to stream other

pixel formats, such as the already mentioned 16-bit RGB 565, or any 4:2:0 or 4:2:2 -

subsampled luminance-chrominance formats as well. Technical properties would in this

case be very similar, meaning low, but constant compression ratio, predictable memory

footprints and very fast video coding or rendering.

Due to the pixel block sizes being fixed, it is not generally possible to directly support

arbitrary resolutions that are not multiples of the block size. While most widely used

resolutions of today are already divisible by the most common block size of four, such

as 720p or 1080p, a more general method is still desirable. An encode time padding

–approach was chosen as the solution, which is further discussed in Chapter 4.2.

Texture compression formats were of course originally designed for storing static image

data, and not for coding live video streams. It is in principle possible that encoded output

could include some instability in some edge cases when movement is present in frame.

Visual inspections done in connection with this work, or other literature, have fortunately

not indicated this to be a prevalent issue.

Instead, the remaining problems are more technical in nature, and involve the practical
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performance limitations of general-purpose hardware when developing high-bandwidth

video pipelines based on texture compression. Assuming sufficient network I/O perfor-

mance, the other properties of the texture compression formats can luckily be made use

of to offset some of the increase in bandwidth.

2.2 Technical Considerations

The primary technical issues of applying texture compression to video stream delivery,

rise from the low compression ratios, requiring very high stream bandwidths. While a

very high-resolution, high-frame rate H.264 video stream may typically at most have a

bitrate in tens or hundreds of megabits per second, the stream bandwidths studied here

can exceed those by two or three orders of magnitude.

Examples of these frame byte sizes and stream bandwidths of various texture formats are

presented in Tables 2.1 and 2.2 respectively. The latter table shows that a compression

ratio of 1:3 or more would be required to deliver 4320p video at 30 Hz frame rate in a 10

Gbit/s network. Raising the frame rate to 60 Hz would double the bandwidth and make

BC1 and some of the ASTC formats the only viable alternatives.

The discussion on minimum bandwidth requirements is naturally assuming optimal con-

ditions with minimal bandwidth losses due to packet retransmissions, processing over-

heads, and similar effects. The rest of the hardware and software stack involved also

has to also match the performance of the network, which can be regarded as the true

problem.

Table 2.1. Frame sizes (in MB) corresponding to some frame formats and resolutions.

Ratio 360p 720p 1080p 1440p 2160p 4320p

RGB 24-bit 1:1 0.69 2.76 6.22 11.1 24.9 99.5

YUV (4:2:0) 1:2 0.35 1.38 3.11 5.53 12.4 49.7

S3TC BC3 1:3 0.23 0.92 2.07 3.69 8.29 33.2

S3TC BC1 1:6 0.12 0.46 1.04 1.84 4.15 16.6

Table 2.2. Required minimum bandwidths (in Gbit/s) for the delivery of 30 Hz video.

Ratio 360p 720p 1080p 1440p 2160p 4320p

RGB 24-bit 1:1 0.17 0.66 1.49 2.65 5.97 23.9

YUV (4:2:0) 1:2 0.08 0.33 0.75 1.33 2.99 11.9

S3TC BC3 1:3 0.06 0.22 0.50 0.88 1.99 7.96

S3TC BC1 1:6 0.03 0.11 0.25 0.44 1.00 3.98
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It needs to be noted, that the key metric here is not the bandwidth itself, but the end-to-

end latency, which is determined as the time from a frame entering the pipeline encoder

to the frame being fully delivered, decoded and rendered on a display device. The end-to-

end latency is of course a further combination of the encode and delivery latencies, with

the delivery part turning out to be the most dominant of all, and therefore the focus of this

work too.

Real-world applications will of course have to deal with additional sources of latency,

such as video source delays in the forms of video capture or rendering, and also display

refresh latencies. Additionally, interactive applications would unavoidably have to handle

delays in user inputs. For the purposes of the work, these are however considered to be

separate issues, although many of the latency optimization strategies discussed in the

following sections would be applicable to them as well.

Regardless, the bandwidths calculated in Table 2.2 are only minimum values needed

to reach the given frame rate of 30 frames per second. Since the delivery latency is

inversely proportional to the pipeline throughput, the truly ideal network bandwidth would

be as “high as possible". If, for example, a 4320p frame was encoded in the BC1 format

and thus had a byte size of 16.6 MB, it would result in a minimum delivery latency of 13.3

ms in a 10 Gbit/s network. Quadrupling the network capacity to 40 Gbit/s would in such

case cut the network delay to only 3.3 ms.

The actual pipeline throughput and the resulting delivery latency is going to be affected by

a wide range of factors besides the raw network bandwidth. In practice, the I/O capacities

of end-host systems will be limited by factors such as CPU performance, which underlines

the need for pipeline parallelization. Luckily, texture compression formats lend themselves

extremely well for just that.

The basic data units in texture compression are the fixed-size pixel blocks, which are

explicitly designed for parallel decoding, fully independent of each other. The benefits are

not felt in only the decoding end either, but in all stages of the pipeline from video coding

to transfer.

Assuming the network I/O is largely CPU-bound, utilizing multi-threading becomes pivotal,

as it is the only way to reduce the delivery latency. This can for example be accomplished

by dividing the video stream into multiple sub-streams with each thread being given a

separate tile of the frame in a divide and conquer –fashion. The most sensible basis for

partitioning these tiles would then be to follow pixel block boundaries.

Thanks to the constant compression ratio, encoded data can be stored in simple array

formats of pre-determined sizes and topologies. Managing and partitioning such arrays

using memory offsets in the various stages of the streaming pipeline would therefore be

very easy and efficient.



9

Besides the decoding being trivial, fixed block –formats also make the writing of real-time

GPU encoders very straightforward. At its simplest the encoding stage can be imple-

mented in just a compute kernel or shader pass over the input frame. The only potential

problem area rises in managing buffer transfers between the GPU and host system mem-

ory, where data has to be streamed to from the network. The PCIe-bus therefore becomes

a potential bottleneck in discrete GPU systems, as even compressed frames can be up

to tens of megabytes in size.

The CPU is left with the task of managing the various memory operations and GPU buffer

transfers. A principle-level summary of the data flow through all the possible devices

using memory mapping is presented in Figure 2.2. The presented pipeline comprises all

stages of a complete pipeline, although the scope of this work has been further narrowed

down to the delivery and decoding stages of it.

Figure 2.2. The data flow in a hypothetical complete pipeline showing relevant devices,
with the non-dashed section being the narrowed-down pipeline covered later in the work.

The buffer transfers have potential to be the largest bottleneck after the network I/O.

Besides the fact that they could limit the bandwidth of the entire pipeline, they can also

add to its latency, unless proper measures are found to counteract it.

As demonstrated in Figure 2.3, the end-to-end latency of the pipeline does not have to be

the sum of its parts. Even without increasing transfer bandwidths or compute capacities,

it is possible to reduce the latency by introducing overlaps in the various processing and

transfer stages of the pipeline.

Allowing overlaps in video coding and transfers is yet another major benefit of using tex-

ture compression formats. Ideally, the encoding application would encode new blocks

while others were being transferred and sent over network. Similarly, the decoding appli-

cation would receive new blocks while transferring others to GPU for rendering.
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High-latency, low-throughput

High-latency, high-throughput

Low-latency, high-throughput

Figure 2.3. Latency vs. throughput – increasing overlap in coding and transfer can help
to reduce throughput without needing any increases of network bandwidth.

With the addition of the overlapped transfers to the assemble of optimization schemes,

the texture formats enable the proposed video streaming pipeline to work on impressively

many levels of parallelization. Although this is convenient, it is also very necessary due

to the extreme bandwidths required.

Also, as important as the performance optimizations are, the most effective method of

reducing end-to-end latency would still be to use higher compression ratio formats. This

is because the delivery latency would not be impacted by the used format itself, but only

by the frame byte size and thus the compression ratio. Formats such as BC1 could directly

halve the delivery latency when compared to the YCoCg-BC3 format, for example.

Finally, texture formats also have some favourable properties for network streaming appli-

cations through their error-resiliency, which is also in contrast to the previously mentioned

H.264 standard and similar formats. Once again, the relevant factor here is in the block-
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based nature of the formats. Relevant to especially lossy wireless networks, it may be

preferable to instead decode a frame with some blocks missing or corrupted.

When encountering such bit errors, the effects of the errors would at worst be limited to

only singular blocks in the frame. Additionally, in formats like BC1, for example, a singular

bit error has a 50 percent probability to be limited to only one pixel in the block. Therefore,

it may be possible to further optimize a texture streaming pipeline by doing away with error

handling and retransmissions entirely, because even frames missing entire blocks due to

packet losses would remain fully decodable.

Whether compromising quality to reduce latency is really an option would depend on

requirements of the application in question. In human-interactive systems the answer

would be up to the preferences of the user. Machine-vision systems on the other hand

could continue functioning nearly normally and e.g. keep identifying objects even if some

blocks in the stream were missing or faulty.

In any case, moving several gigabits of data per second through a video streaming

pipeline with a desired frame latency of milliseconds is still a demanding task. When

compared to conventional video streaming pipelines, texture compression makes the list

of priorities turn on its head, as video coding –related compute time is decreased and

video delivery becomes dominant instead.
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3 HIGH-PERFORMANCE NETWORKING

Typically, video streaming applications, that utilize higher compression ratio formats, are

not impacted by the network I/O performance. The bandwidths involved are low enough,

that the end host network performance is only of secondary importance to the overall end-

to-end latency. However, in the case of this work, where texture compression results in

drastic increase in bandwidth use, network stacks become a crucial point of optimization.

An overwhelming majority of local or global network infrastructures and services are built

on top of Linux systems. As could be expected, the network stack of the Linux kernel has

been a target of continuous development over th years. The scope of this work is mainly

concerned with the modern versions of the kernel, which implements the so-called "New"

API (NAPI) in their network stacks [4].

The network stack is an extensive and complicated assembly of different protocols, sub-

systems and hardware drivers, that have their own processing overheads. Most of these

can be divided into classes of per-packet and per-byte costs [4], both of which are signifi-

cant here. In order to gain a better understanding of how networking applications can be

optimized for the best bandwidth and latency, a holistic look on the stack is required.

3.1 Linux Network Stack

Linux kernel network stack follows a layered model, where packets sent or received by

the host system are passed through many different sub-systems. The described sepa-

ration of concerns can be analysed through the OSI model, which divides the stack into

seven distinct layers. The OSI model names these layers as physical, data link, network,

transport, session, presentation and application layers. [19]

While the OSI model is a useful tool for higher-level software architectural design, a more

condensed model is preferred in the context of the work. The so-called five-layer Internet

Model combines the topmost three layers in the OSI model into one, called application

layer, which represents the endpoint user space application in its entirety [19]. The func-

tions of these five TCP/IP model layers are summarized in Table 3.1.

Referring to the Internet Model layer separation, Linux kernel implements the transport,

network and some parts of the data link model as separated sub-systems. The bulk of
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the layer 2 on the other hand, is implemented by the network interface card (NIC) and its

driver, and the exact details will vary between different vendors. [20]

Table 3.1. The layers of the Internet Model, their roles and some examples of protocols.

Layer Protocols Role

L5: Application Layer
HTTP, FTP,

SSH, etc.

Actual end-user application and other high-

level controls, e.g. session management.

L4: Transport Layer
TCP, UDP

DCCP, SCTP

End-to-end host connections and tracking

their state across Internet.

L3: Network Layer IPv4, IPv6
Packet routing and forwarding between

separate networks based on IP addresses.

L2: Data Link Layer
Ethernet,

IEEE 802.11

Packet delivery between neighbouring

devices located inside the same network.

L1: Physical Layer (N/A)
Physical hardware and electrical signals

used to carry data.

All of the layers use different protocols, that define their own packet header formats rel-

evant to the layer functions. It should be noted, that the scope of this discussion mostly

focuses on IPv4 networks with TCP and UDP as the transport protocols.

As a packet passes through the kernel network stack, each layer header information is

attached to the packet as demonstrated in Figure 3.1. Lower layer headers are placed

in front of upper layers in order to allow network devices, such as switches and routers,

that do not implement all TCP/IP model layers, to access their relevant header fields more

easily [20].

A packet may at any stage be modified by a layer implementation, or discarded due to

limited resource availability, checksum mismatch, other header sanity check fail or any

other error [20]. To better understand the process, a more detailed look on how packets

traverse their send and receive stacks should be taken. A simplified flowchart of the

network stack is also presented in Figure 3.2.

Figure 3.1. The full packet header structure in an IPv4 Ethernet network.

User space applications mainly access the network stack through a POSIX-compliant

socket API, which allows opening and closing communication endpoints bound to 16-bit
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port numbers. Besides acting as file descriptors allowing read and write operations, sock-

ets also offer a large number of configuration options that tweak their behaviour. The most

important required ones are the socket communication domain and type, which determine

the network and transport layer protocols associated with the socket. Additionally, a large

number of optional socket options, are available, if not restricted by the chosen protocol

stack, and some will also be relevant to the following discussion. [21]

Figure 3.2. Simplified network send and receive paths in Linux systems. [20]
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Each socket is allocated separate send and receive buffers by the kernel. The socket

buffers, as they will be called for the remainder of this work, store packet data in a struct

format, and act as a cache in which the packet is stored during processing. The struct data

type, which for the sake of clarity is referred to here as a socket buffer object, contains all

layer 2–4 packet headers, the packet payload, as well as various kinds of packet-specific

meta information, such as the target network interface. [20]

When data is transmitted by a host, the application performs writes to a socket descriptor

and the data gets copied to its send buffer in the kernel space. Likewise, as a packet is

received, it is held in the socket receive buffer until it is processed and copied by a receive

thread to some other user space memory location prepared for it [22].

Sitting right below the socket API itself is the transport sub-system, which is actually a

collection of various transport protocol handlers that are interchangeably mapped to the

relevant system calls [23]. The exact process depends on the protocol, but it would involve

end-to-end communication management measures such as potential congestion control

and packet loss or error detection and recovery.

The port number translation to socket instances is also performed in the packet receive

path by the transport layer through a socket lookup [20]. An L4 header will therefore

include the port number among other control information. Incoming packets with port

numbers, that are not associated with opened sockets of the appropriate protocol, will get

discarded.

The routing sub-system implements the L3 functionality in the Linux kernel, and it will pro-

cess both incoming, outgoing, and loopback packets. A routing table lookup is performed

for all these packets, and a checksum of the L3 header is also calculated in the case of

both IPv4 and IPv6. It should be noted that L3 checksums do not include the payload

itself, like L2 and L4 protocol checksums typically do. [20]

In the Linux kernels prior to version 3.6, a separate routing cache was maintained and

lookups would revert back to the main table when a cache miss occurred. This functional-

ity has since then been replaced by performance improvements to the main routing table

lookups. [20]

The destination address may at this stage be subject to changes by the network address

translation (NAT) system. If the destination address does not point to the local host,

and no translation rule is present for the destination subnet, the packet is directed at the

default gateway of the system, or discarded if the address is unreachable [20].

For outgoing packets, the source and destination addresses are encoded into the L3

protocol header, which is attached to the front of the transport layer header. The packet

is then passed over to the appropriate network interface.
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From the kernel point of view, the send path ends at the data link layer, where the kernel

neighbouring subsystem is used to translate the target IP address into an L2 address

needed in the layer header. This is accomplished through another lookup from the system

neighbouring table, which is where L2 addresses of the adjacent nodes are cached for

fast access [20]. In Ethernet networks it is likely to be the MAC address of a gateway

router.

Network devices can have their own internal memory for storing incoming and outgo-

ing packet data. In practice, some higher-end devices may even utilize multiple TX/RX

queues, which are buffers mapped to system memory using a DMA ring buffering scheme.

[22] Packets are therefore copied not only once, but twice in the send and receive paths,

first to the kernel socket buffer, and then to a device buffer. After an L2 header is cre-

ated, the outgoing packet is in the end handed over to a network interface driver to be

transmitted over the physical layer to the next node in the network.

L2 protocols, like Ethernet, typically implement checksums for transmitted frames. If er-

rors are detected in a packet, it will be (silently) dropped by an L2 device, i.e. a network

switch, along the way [20]. It is then up to the L4 protocol implementation to detect a

missing packet and deal with it assuming it can.

All L2 devices define a maximum transfer unit (MTU), which is the largest packet size

they are able to receive or send. In other words, the packet payload and all L2–L5 head-

ers combined must not exceed the MTU in any part of the packet path. In general, the

network path MTU is arguably one of the most impactful restrictions posed by network

infrastructures.

Unlike sending, which can be sequential to packet traversal in the stack, receiving is by-

default interrupt driven. Upon arrival of a new packet, the NIC will move the data to its

RX queue, and generate an interrupt signalling the system that new data is ready in the

circular buffer. The interrupt handler will then trigger the kernel stack, which will move the

data to its kernel space socket buffer for further processing. [22] If the RX queue is full,

which can happen when upper stack fails to keep up with incoming traffic, then the NIC

may either store it in its internal memory, or drop the excess packets [4].

In the old Linux kernels up to version 2.4, one interrupt would be generated per received

packet [20]. This was expensive and infeasible in high-load use cases, such as the video

streaming system presented in this work, where the stream width may be in millions of

packets per second. The interrupt handling issue was resolved in the introduction of the

NAPI system to the kernel, which changed the pipeline so that the entire RX queue could

be flushed at once by the interrupt handler, disabling new interrupts while doing so [4].

The packet receive path is similar to the send path, but advances in the opposite direction

and includes different lookups. Because network communication is always assumed to
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be at least somewhat unreliable, all L2–L4 protocols are required to perform additional

checks on header information and payload integrity. Luckily, the receive stack is able to

utilize some additional hardware offloading capabilities, such as checksum computations

in the NIC just before transmission [4].

Reducing the CPU involvement as much as possible is crucial. Packet traversal through

the various layers introduces a number of system calls and processing steps leading to

a massive per-packet CPU overhead, which is added to the per-byte copy and checksum

overheads [4]. Here the significance of the network hardware is highlighted, as hardware

offloading and large MTU allowances can either directly reduce the overheads, or the

number of packets to process.

3.2 Transport Layer Protocols

As stated, transport layer protocols manage the end-to-end communications between

two endpoint hosts. The two most popular L4 protocols of the Internet are by far the

transmission control protocol (TCP) and user datagram protocol (UDP).

The protocols give very different guarantees to the application layer and are therefore

the most visible part of the network stack to the user space application. Even more

importantly, their performance characteristics are very different with far-reaching effects

to any pipeline. The effects are also dependent on the transmission medium used.

3.2.1 User Datagram Protocol

UDP is known as the simplest L4 protocol, since it is in fact only a thin wrapper over

the routing sub-system. It is a connectionless and stateless protocol, that provides no

guarantees of packets being received in order, or at all. UDP is additionally regarded

to be a message-oriented protocol, meaning that the delivered packets, or datagrams,

represent atomic messages instead of continuous streams.

Because of its simplicity, UDP is a very lightweight protocol, which is reflected in its 8-

byte header format, that is used to carry port number and packet size information. The

16-bit packet length field limits the maximum size of UDP packets to 65 536 B, which is

plenty considering that in practice the network MTU is the true limiting factor. The header

structure is presented in Figure 3.3.

Figure 3.3. The 8-byte L4 header used by UDP [24].



18

As a stateless protocol, UDP does not implement many of the high-level features of other

competing L4 protocols, such as congestion control mechanisms. Due to the 65 KB

packet length limit, most implementations support packet fragmentation at send time, but

there is no mechanism for L4 defragmentation at the receiving end.

Slightly against a common misconception, UDP does support error-detection through the

16-bit checksum field of the header. The checksum is acquired by summing two byte

sections of data in the payload and a “pseudo header" comprising of the L4 and some

L3 header information [24]. Because UDP implements only error detection and not error

recovery, a packet that fails the checksum test is discarded by the receiver [20]. Since

the checksum is only 16-bits, it is of course not fully impossible that checksum collisions

could mask errors in large packets.

The checksum use is compulsory in IPv6, but not in IPv4 networks [25], where if check-

summing is not in use, zero data gets written to the packet checksum field. If checksum is

used, but its value is actually zero, it can be distinguished from the disabled value by cod-

ing it as a one’s complement of the result, i.e. all ones or “negative zero". [24] In practice,

the computation of the checksum is almost always offloaded to the NIC, meaning there is

little processing overhead involved [4].

Most notably UDP checksums are by default disabled when the target is the localhost

address [20], as packet errors are not expected inside the network stack itself. Memory

errors are of course still possible, but could be accounted for by other means, such as

error correcting memory. Regardless, disabling checksumming in loopback communica-

tions is yet another relevant performance factor, since virtual loopback adapters do not

have access to checksum hardware offloading.

Another, modified version of the UDP protocol is also available, called Lightweight User

Datagram Protocol (UDP Lite) [26], which allows adjustments to the checksum behaviour

as its main feature. While UDP only supports checksums for the whole packet, or not at

all, UDP Lite allows extending the checksum to a freely adjustable offset, meaning that it

can choose to support checksums only for the L4 header and some part of the payload.

Since many media formats already have at least partial resilience for bit errors in streams,

UDP Lite has seen some success in such streaming applications. The main limitation of

the protocol is the fact, that the L2 implementation of the pipeline has to be also configured

to not drop packets, which fail the checksum tests, making it less practical in other than

specialized systems.

Generally speaking, UDP streaming applications are capable of achieving lower latencies

and higher raw throughput rates compared to other L4 protocols. The no-delay controlla-

bility of the UDP-based streams would make them especially viable for real-time applica-

tions. Theoretically the communication latency could also be reliably predicted in systems
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optimized for hard real-time applications.

Depending on the application, while the L4 overhead of UDP is very low, it may how-

ever end up being offset by potential increases in processing overhead in the application

layer. Whether this is true depends on the packet-loss and packet-reordering tolerances

of the application. For use cases, where reliability is important, there exists other, more

reliable transport protocols that often manage to be more efficient than any measures

implemented in the application layer.

3.2.2 Transmission Control Protocol

TCP is the most widely adopted transport layer protocol of the Internet and typically the

primary alternative for UDP. The main goals of TCP are to provide reliable connection-

based stream communications over unreliable networks with some other L4 control capa-

bilities as well.

The important guarantees of the TCP protocol include error-free and order-preserving

packet delivery between two endpoints through loss- or error-detection, reordering, and

retransmission schemes [27]. However, these guarantees make TCP a stateful and sig-

nificantly more complicated protocol compared to UDP, with some additional overheads

and performance shortcomings.

The protocol being connection-oriented means that one host must establish a connection

with another listening host before data can be transmitted. Connections offer bi-directional

communication, and both hosts maintain state information about the other side and state

of the connection. [27] The benefit of the connection semantics is that the application

layer is not required to be aware of the potential errors in transmission, as the L4 imple-

mentation can account for them internally. The connection requirement also makes TCP

a strictly unicast protocol, unlike UDP.

As a stream protocol TCP does not technically require the application layer to be aware

of any MTU limitations or packet fragmentation taking place behind the scenes. When a

data stream is written to a TCP socket, it is broken down into segments, that the protocol

implementation can operate on. These segments are added a variable size L4 header

with a minimum length of 160-bits, as presented in Figure 3.4.

Besides including the port number for the socket table lookups, the TCP header also con-

tains sequence and acknowledgement fields that play part in the TCP acknowledgement

mechanism used to handle packet losses. For every successfully received packet, the

receiving host is expected to send an ACK message informing the sender that the packet

has been received. If a packet, identified by its sequence number, is not acknowledged

by the receiving side, then it and all its preceding non-acknowledged packets are retrans-

mitted. [28] Therefore, even unidirectional streaming involves two-way communication.
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Figure 3.4. The 20-byte (minimum) L4 header used by TCP [28].

TCP packets also contain a 16-bit checksum computed similarly to UDP from the L4

header, some L3 header fields, and the payload itself. If a checksum indicates a bit-

error in the packet, the receiving host can request a retransmission of the segment from

the sender. Alternatively, retransmission occurs after a time-out if no acknowledgement

is sent, indicating that the packet was dropped somewhere along the route. [28] The

use of checksum is always required in TCP, but like with UDP, checksum computation is

commonly handled in hardware.

Segments are also reordered by the TCP protocol handler so that the application layer

will always receive them in correct sequence. As could be expected, packet reordering

can add to the end-to-end latency of the application, since some segments may have to

be retransmitted to make a complete payload.

By default TCP acknowledgements are cumulative, which means that the receiving host

can acknowledge the receiving of multiple continuous segments by sending a singular

ACK message with the sequence number of the last segment [28]. This can however

be inefficient in circumstances where multiple segments are received simultaneously, but

e.g. the first segment in the sequence is faulty. In such a case the receiver does not

have a method to communicate to the sender which segment needs to be retransmitted,

meaning all segments could end up being retransmitted.

The cumulative acknowledgement problem has luckily been solved by the selective ac-

knowledgement (SACK) extension, which is a useful TCP header option, that can be used

by the receiver to acknowledge a discontinuous set of segments and avoid large numbers

of unnecessarily retransmissions. In order to use SACK messages, both hosts have to

support it, which can be negotiated at connection time. [29]

A number of similar TCP performance tweaks have been introduced over years. Some of

them are relevant especially for low-bandwidth applications, such as the Nagle’s algorithm

[30] or delayed acknowledgement [31], that can be disabled in socket options to improve

the throughput and latency [32, 33]. For the purposes of this work however, these effects

are not as relevant, since the bandwidth of the video stream is so large.

TCP does not only ensure reliable stream delivery, but it also implements a congestion

control mechanism, which can help to avoid saturating a transmission channel with traffic
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[34]. Congestion control is commonly motivated by the fact that in general-purpose con-

texts multiple applications are usually required to share limited network resources, and

situations where one application consumes all bandwidth are to be avoided. For the pro-

posed video streaming system, congestion control turns out to be a hindrance, since it

actually aims to consume as much bandwidth as possible.

Congestion control is implemented in TCP through a sliding window mechanism, which

limits the number of in-flight segments that can be transmitted without an acknowledge-

ment being received yet. The window size is increased in an additive fashion for every

received successful ACK message, or until a maximum window size is reached. Corre-

spondingly, if a segment is detected to be lost due to packet loss or corruption, the window

size is reduced in a more sharp multiplicative step. [34]

The TCP additive increase – multiplicative decrease (AIMD) congestion control mecha-

nism results in a characteristic sawtooth effect in the overall end-to-end throughput. The

pattern is a well-documented property of TCP, and it is one of the main performance

issues of the protocol, besides the “slow start" problem, which is caused by the initial

window size always starting from one. [19, 34] Both effects are visualized in Figure 3.5.

(a) (b)

Figure 3.5. (a) Acknowledgment-driven window scaling behavior of the TCP congestion
control mechanism, and (b) the resulting characteristic sawtooth throughput pattern. [19]

The congestion control mechanism fulfils its purpose well, in allowing fair sharing of lim-

ited bandwidth among multiple hosts in networks, where link saturation leads to dropped

packets. Unfortunately, the window reduction mechanism does not distinguish between

true capacity saturation and sporadic errors in lossy transmission mediums. Because

of this uneven throughput behaviour, a singular TCP connection cannot realistically ever

fully saturate network bandwidth alone [34].

Besides the acknowledgement/retransmission overheads of TCP communications, the
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congestion control mechanism can easily produce an even greater impact to the through-

put performance. Especially wireless networks, which are inherently prone to packet

errors and losses, have been found to be the most susceptible to throughput deterioration

[19].

Since all networks have some upper capacity limit, some window scaling function is al-

ways needed, assuming that the real network bandwidth is not known in advance. The

impact of congestion control can luckily be reduced by using a more aggressive window

scaling function. In the case of this work, the chosen scaling function is the CUBIC algo-

rithm, which has been default for Linux systems since around kernel version 2.6 and is

currently the most widely adopted TCP congestion control algorithm in the world [35].

TCP is also vulnerable to the so-called buffer bloat problem related to wireless networks.

Due to the unpredictability of a wireless medium, some router vendors have made at-

tempts to even out throughput fluctuations by increasing buffer space in their network

hardware. Somewhat paradoxically, the addition of new invisible buffer space can pre-

vent TCP implementations from adjusting to the network congestion correctly, resulting in

performance losses. [36]

All long round-trip time (RTT) networks are vulnerable to these issues, as latency reduces

the TCP scheduler ability to adapt, because of the need for two-way communication. Re-

lated to RTT, is also the bandwidth-delay-product property of the network, which repre-

sents the intrinsic maximum amount of inflight-data for an L4 protocol. [29] In case of the

video delivery system studied in this work, the congestion avoidance is less of an issue

due to the fact that it naturally targets relatively low-latency networks.

3.3 Network Performance Tuning

An important goal of this work is to find ways to optimize the standard Linux network stack

as far as possible for the best bandwidth and latency. Unfortunately, despite the efforts

of the kernel development community, a number of performance pitfalls remain present in

the stack.

The relevant question becomes, how to work around the limitations through application

design and resource management. These optimization efforts are not limited only to the

transport layer protocol options, which were already discussed in the previous sections,

but to the fundamental mechanisms in the stack itself common to all L4 protocols.

3.3.1 Multi-Threaded Sockets

When taking a look at either the send or receive paths of the kernel network stack, a

high degree of CPU overhead is very apparent throughout the different stages of packet
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processing. One natural question that follows, is whether the network I/O could be up-

scaled through the use of multi-threading.

It has been found in multiple instances [23], that the kernel stack does not accommodate

multi-threaded I/O to the extent one could expect from the world’s most popular server

operating system. The reason is that the implementation of the socket interface was orig-

inally developed in a time where the network was still the primary performance bottleneck

instead of the end-host performance. Ever since the introduction of the NAPI system,

work has been ongoing to change the state of affairs. [4]

Therefore, for an individual socket instance, the multi-threaded performance of the socket

buffer data structures leaves a lot to be desired [23]. Since the bulk of the processing is

handled by the kernel threads behind the interface, increasing the number of user-space

threads is also of little help.

Instead, the workable solution could be considered obvious in the light of the fact, that

many ordinary data center applications manage to utilize massive amounts of bandwidth

just fine on a daily basis, assuming they run large numbers of processes in parallel. In

other words, the winning strategy is in multi-socket multi-threading solutions.

In essence, large bandwidth networking applications, such as video pipelines, can over-

come some of the performance limitations of the network stack by splicing their data into

smaller sub-streams [34]. The described multi-socket streaming strategy enables the ef-

fective scaling of the application–kernel interface, and has produced throughput improve-

ments for both the TCP and UDP protocols in many studies, such as the performance

tests done as a part of this work.

While the associated CPU overheads themselves still remain, multi-socket streaming

does at least allow making use of modern multi-core processors to their highest po-

tential, aside from possible restrictions in e.g. memory and bus performances. If the

network adapter happened to support multiple RX queues, or there were entirely sepa-

rate adapters, they could also get assigned different queues thus distributing the interrupt

handling overhead between the stream [4].

Transport protocol implementations can also benefit from the multi-socket approach di-

rectly. The most obvious example is of course the TCP protocol, where multi-connection

TCP has shown improved performance scaling properties over single-connection alterna-

tives [37]. It especially helps to address the bandwidth under-utilization problem caused

by the sawtooth throughput effect, and partially the slow-start issue as well [34].

Multiple sockets could be further combined with various load-balancing systems designed

to even out throughput differences between socket instances. The only drawback is, that

these would likely have to be implemented completely by the application layer.
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Alternatively, numerous entirely new transport layer implementations have also been

proposed, like the Multi-Path TCP (MPTCP) [37], which attempt to integrate the multi-

connection TCP scheme into the kernel itself. These protocols can then be abstracted

into the existing socket API making them more-or-less interchangeable with existing TCP

applications without the extra involvement of the application layer.

Parallel multi-socket streaming is not however the be-all and end-all of kernel networking

performance. Even pushing aside any revisions to the system architecture and hardware

stack, there is potential for improvement in the software stack too. While these issues

are internal to the kernel [4], there also exists performance overheads related to system

calls, memory conservation, and thread synchronizations that could be reduced through

configuration options available to the end-application or its user.

3.3.2 Socket Buffers

Besides acting as the main programming interface between the kernel and application

layer, sockets also have an important role in network stack resource management. The

socket send and receive buffers act as temporary storage spaces for incoming and out-

going traffic, linking the user and kernel space programming together [23].

The socket buffers have a limited size, which can be adjusted through some socket op-

tions in the application. However, there also exists system-wide maximum buffer size

values, which the application cannot exceed, unless the process is executed with root

permissions. These maximum sizes are defined separately for the TCP and UDP proto-

cols, and extend system-wide for all processes.

In the test system that was used in the work, and presumably in most Linux environments

in general, the UDP socket buffer maximum size was by default set to 208 KB, while TCP

buffers were up to 6 MB. For the UDP protocol the problem is severe, as it turns out that

the socket buffer size can severely limit the effective network bandwidth for the system

[38]. The issue is worsened by the fact, that UDP has no congestion control measure to

counteract it.

One can surprisingly easily generate more than enough traffic to saturate the socket

buffer space completely. Especially traffic sent or received in bursts will quickly overflow

the buffer space, as the kernel-side threads are no longer able to process pending packets

fast enough.

Saturating the send or receive buffer is an unsolvable problem to the kernel. In such

cases, the only solution is to start discarding new packets [22]. Running out of receive

buffer space will also impact the network adapter RX queue, which can similarly overflow

in situations where the software stack is unable to keep up with the incoming packet flow,

resulting in packet drops in the adapter [4].



25

From the perspective of the transport layer, the dropped packets will then appear as any

normal transit-time packet losses. For UDP stacks, the buffer saturation will manifest as

any missing packets. For the TCP, the connection throughput will be limited by congestion

control, just like in the case of any network maximum bandwidth excesses.

3.3.3 Packet Fragmentation

Top network layers have to always take lower layer limitations into account. The MTU of

the network is a hard limit to the packet maximum size imposed by the L2 frame size,

which includes the payload and all headers across upper layers. In cases, where a large

packet happens to cross an L2 node with an MTU less than the packet size, the packet

may get simply discarded, preventing communication entirely [20].

In Ethernet networks the typical maximum MTU is 1 500 B, while the lower limit that a

network device has to be able to handle, is 576 B for IPv4 networks and 1 280 B for IPv6

networks [25]. In specialized networks some high-end Ethernet routers and switches are

able to expand this up to 9 000 B, also referred to as "jumbo frames".

Other L2 networks may impose larger MTU values, such as wireless IEEE 802.11 -

networks, which support an MTU of 2304 B. Unfortunately, bridging the wireless con-

nections with standard Ethernet networks would still limit the route maximum MTU to that

of the Ethernet network. [39]

Some L4 or L5 implementations take the MTU limitations into account by performing MTU

discovery in advance to find the maximum of the network path. L3- and L4-capable de-

vices may also fragment packets automatically to an MTU-compliant size. [20] Other

protocols do not make any MTU guarantees at all, and it is up to the application to limit

its message sizes to a value that is known to be supported. Fragmentation operations re-

quiring reordering of header data can also be a performance overhead, which is why most

network adapters provide hardware fragmentation offloading capabilities to the kernel [4].

Packet size can have implications for the performance of the entire application. A signif-

icant per-packet overhead is involved throughout the different parts of the stack, caused

by factors from interrupt handling to the number of required system calls. Ideally packet

streams should follow the pipeline maximum MTU, and while fragmentation can allow a

network application to at least function, it is not ideal from the performance standpoint.

The route MTU is likely one of the most universal limitations to end-to-end networking,

since it impacts the entire network path between the hosts. Both network layer protocols,

as well as transport protocols, also restrict the maximum packet or segment size typically

to a value of 65 536 B, but in practice the data link MTU remains the limiting factor.

However, as discussed earlier, packets routed locally to the same host are never passed
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through the layer 2 of the stack. This means that in local contexts, such as the localhost

video stream performance tests, or any inter-process communication in general, MTU

does not limit the packet size allowing at least testing within the full 65 KB range.

3.3.4 Busy-Poll Receiving

The weakness of the NAPI system is the interrupt handling in the receive path of the stack.

When new packet data is written to the RX queue of the NIC, the interrupt generated

has to be handled in a separate thread within kernel, which then will flush the queue of

pending data [20]. In the meanwhile, application threads attempting to read the socket

will be blocked until the data is processed and ready to be pulled from the socket buffer.

The interrupt-driven receive scheme is motivated by resource efficiency, since in most

applications sockets can remain inactive for long periods of time, freeing CPU time for

other tasks [4]. The primary problem of the interrupt-driven system is in latency caused

by both the interrupts and the required context switching.

An alternative setup, designed to tackle the latency issue, has been proposed, where the

application thread can actively poll the RX queue directly [40]. Referred to as busy-poll

sockets, the approach allows optimizing for the best possible latency at a significant cost

in CPU time, since the application thread can no longer sleep while waiting for packets. A

comparison of the two types of sockets is presented in Figure 3.6.

(a)

(b)

Figure 3.6. (a) The normal NAPI receive process and (b) the busy-poll version, with
separate threads highlighted in different colors [41].
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Busy-poll sockets are an interesting alternative to more advanced networking technolo-

gies, like the previously mentioned RDMA, which can be used to reduce latency using

special high-end network hardware. Although busy-poll does admittedly also require ex-

plicit support from the physical network adapter, it has regardless become a common

feature in consumer gear over the last decade. In other words, the hardware support

requirement could be regarded mostly a non-issue in the case of busy-polling. [41]

However, consuming the CPU time of an entire processor core is only feasible if the core

has no other tasks to perform at the same time. Although busy-poll sockets can in one-

to-one comparisons outperform the ordinary NAPI sockets, as a whole they are mostly

suitable for only those low-intensity use cases that require low-latency messaging but not

high bandwidth [41].

The CPU-intensity makes busy-polling infeasible for high-bandwidth low-latency appli-

cations that depend on multi-threaded network I/O, where multiple sockets are used to

stream data in parallel. One of these applications is arguably the video streaming pipeline

discussed in the following Chapter 4.

Busy-polling is also limited to only real physical network adapters, since it explicitly targets

the RX queue of the adapter [41]. A relevant example, where this does not apply, would

be the Linux loopback adapter, which is a virtual interface that lives only in the layer 3 of

the network stack. Since these receive ring buffers do not exist in loopback in the first

place, busy polling cannot be used to speed up localhost communications.
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4 PROPOSED SYSTEM

The video streaming system described in this work is primarily intended as a research

platform for texture compression in low latency video coding. The goal of the following

chapter is to study the technical challenges involved in achieving not only the lowest

latencies, but also the very high bandwidths imposed by the texture formats.

The project also had multiple secondary design goals, which were influenced by a versa-

tile set of research directions and use cases. Some important objectives include main-

taining compatibility with general-purpose hardware and standard Linux systems. Both

of these can be considered preconditions for porting the presented video streaming sys-

tem to currently available mobile platforms, or in general any heterogeneous software

and hardware environments. Likewise, some interest was directed at distributed compute

applications.

The fundamental compromises between performance, quality and hardware were already

discussed in Section 2.2. Other secondary factors related to software architectural ques-

tions also have to be taken into consideration, such as modularity and separation of con-

cerns. These secondary considerations must not however compromise the latency or

throughput performances.

4.1 Architecture Overview

The pipeline was designed to acquire video stream from a video source, encode and

transfer it over network, and finally decode and render it at the receiving end. Two

endpoint programs written in C++14 were implemented, following a classic client–server

model where the encode program acts as the server and the decode program as the

client. The programs are further divided into interchangeable modules and connect

through a common main program, which also handles all runtime configuration and ses-

sion management, such as initializations, handshake procedures and state transitions.

The encode program is split into three modules: video source adapter, video encoder

and stream server. The decode program on the other hand consists of only two modules:

stream client and video decoder. Multiple interchangeable versions of all these modules

were developed, such as CPU and GPU implementations. The encoder and decoder
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arguably form the active cores of both programs with video source and streaming modules

acting as simple adapters to various video and network devices respectively.

Architectural decisions reflect the emphasis on compute and transfer performances. As

discussed in Chapter 3, the high CPU overhead in the kernel network stack highlights the

importance of multithreading, which acts as the main driver of the architectural choices.

Scalability is pursued by splitting the video stream between the encoder and decoder into

multiple parallel sub-streams. The corresponding I/O threads can then avoid unnecessary

synchronizations between each other, with the only points of synchronization being the

encoder frame input and decoder display output.

High-level block diagrams of the both the encode and decode programs are presented in

Figures 4.1 and 4.2 respectively. In addition, the diagrams also display the main buffers

and external devices of the pipeline.

Figure 4.1. The encode program block diagram.

The current implementation of the presented model includes an additional point of syn-

chronization at the encoder output, which blocks sending until the encoding is complete.

This is not fully necessary, as the sub-streams are designated their own tiles of the frame.

Ideally, the encoder input should therefore be the only point of synchronization besides

decoder output.

Since the focus of the work is in studying the stream delivery, encoder output can still be

regarded as the most relevant point of reference. The low encode latencies of the texture

formats used here also make the encoding process impact to the end-to-end latency a

lesser issue compared to the delivery.

Despite of the delivery latency forming the majority of the total end-to-end numbers, opti-

mizing for maximum network throughput alone is not the end of story either. As proposed

in Section 2.2, the end-to-end latency can further be reduced by introducing overlap in



30

the encoding, transfer, and decoding stages of the delivered frame. In practice these

efforts were limited to the decoder implementation, though the same principles apply ev-

erywhere.

A number of abstractions were made while designing the architecture. Some of these

terms should be further clarified as the following terminology in question will be referred

to in the subsequent sections.

When implementing some of the tested video coding processes, it was decided to support

splitting the data into separate channels, or grouping it in some other ways. These chan-

nels are managed as one or more distinct unit groups with each group handling some

slice of the frame data.

Figure 4.2. The decode program block diagram.

As might be expected, the groups further consist of variable numbers of units, which are

abstractions for one end-to-end sub-stream. Each unit has a static number of resources

attached to it — namely CPU threads, network sockets and buffers at both ends of the

pipeline. Both the encode and decode programs have to negotiate together on how many

units will be allocated for every groups.

Unit allocation becomes an important element in the performance optimization of the

pipeline, since it can be used to balance the resource allocation between different groups.

Alternatively, the problem could be circumvented by utilizing load balancing patterns, but

the static allocation scheme was deemed more likely to produce better performance.

On a higher level, the main modules of the encode and decode programs follow a state-

machine-like behaviour. The aforementioned initial handshake process, which is pre-

sented in Figure 4.3, is implemented as a simple TCP-based protocol. Its main purpose

is to allow the encode and decode programs to synchronize and agree on common con-

figuration information before initiating a video stream.
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Figure 4.3. The handshake process and state transitions.

Ideally, the modularity of the architecture would allow full separation of the video coding

and delivery parts of the program. If this was the case, the encoder and decoder would

not be required to know how data is transported, and the network code would not need to

care about video formats. In practice, only the latter was actually achieved.

Complete separation of concerns turned out to be not fully feasible. As an example,

the transport layer protocols — UDP and TCP — provide completely different kinds of

guarantees that can be used to further optimize the pipeline performance.

4.2 Video Coding

Texture formats lend naturally themselves to GPU-based coding, and the pipeline archi-

tecture was designed with this in mind. GPU-accelerated encoding and decoding would

therefore be the obvious route for any commercial production system.

Keeping the previously outlined goals of the work in mind however, it was decided to

implement a low-overhead CPU pass-through encoder in conjunction with a file system

-based video adapter. The efforts were concentrated on the decoder implementation,

although much of the presented solutions would in fact be more or less directly applicable

to the encoder as well.



32

The decode program was was fitted with a feature-complete GPU decoder written for the

OpenGL API. As one of the goals of the project was to port the decoder to a mobile

platform, the chosen API version was in fact OpenGL ES 3.1, with the ES standard being

largely backwards-compatible with the full OpenGL API. Thankfully, both versions share

the EGL library for context management and allow using the ARM Mali GL ES emulation

headers in desktop systems.

4.2.1 Encoder and Decoder

As the video data enters the pipeline, it is stored in a frame buffer of the video adapter,

where it gets passed to the encoder through a callback function. The encoder then has

to internally distribute the data among the designated number of units and unit groups for

encoding. In the case of the CPU pass-through encoder, the frame buffer is passed as it

is to a group of output threads. Here the frame data will be further split into packets before

passing them onward to the relevant stream server send units. This is the key point of

reference from where the delivery latency will actually be measured.

In the opposing host endpoint, the decoder assigns each receive unit a buffer address,

which points to the main decode buffer. The exact details of how the data is received

depend on the transport protocol used, and are further elaborated in Section 4.3. As the

frame data is received in a RAM buffer, it will have to be transferred to the GPU using a

double buffering scheme, which is likewise discussed separately in Section 4.4.

There still exist some complications related to the networking aspects, due to which the

encoder and decoder were not completely equal problems. The root issue is that the

encoder is not a target of any strict real-time requirements, as it can simply drop entire

frames at once whenever it fails to keep up with the video source. This is made possible

by the fact that the decoder is expected to handle any frame rate fluctuations by default.

The decoder on the other hand is required to operate on unreliable packet streams, which

are prone to unpredictable timing, but also packet reordering and losses in the case of

UDP. Moreover, the decoder does not have any easy way to drop frames, but only indi-

vidual packets in case it is not able to keep up with the encoder. These are also not only

video coding -related complications, but the effects have to be accounted for throughout

the networking and buffer management code as well.

Like was mentioned, the encoder and decoder are the active cores of the endpoint pro-

grams. Even though the discussion on efficient real-time texture format encoders is not

in itself part of the work, there still exists multitude of other fundamental problem areas

regarding stream processing, and video format management.
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4.2.2 Video Formats

In the video coding stages, the unit and unit group -abstractions translate to numbers of

tiles and bitplanes respectively. It should in fact be noted that the unit group allocations

only impact video coding, and not stream delivery, since the tasks of separating and

merging of the sub-streams are handled by the encoder and decoder. The management

of these unit groups is done as part of an extensive video format system used by these

components. The format negotiation itself occurs at the configuration exchange stage of

the handshake process.

The pipeline was developed to support a wide range of video modes with both raw, com-

pressed and sub-sampled formats as well as unlocked resolutions and frame rates. While

some of the modes translate directly into single-channel compressed formats such as

BC1 or YCoCg-BC3, others include multi-bitplane formats.

The number of unit groups is fixed and directly linked to the number of bitplanes in a

video mode, while the number units and tiles in a group is arbitrary. However, the ratio

of units allocated between different groups is not. Instead, the ratio should be balanced

between the groups to match their memory footprint ratios, in order to balance the CPU

time needed in stream delivery.

As an example, Figure 4.4 demonstrates a scenario where an RGB input frame is en-

coded into a two-bitplane YCoCg format with 4:2:0 subsampling. Here the Y-channel

forms its own bitplane and the CoCg-channels are serialized into another two-channel

bitplane with half the width and height. As a result, the CoCg-bitplane is only half the byte

size of the Y plane. A sensible unit allocation pattern would therefore follow a 1:2 ratio to

balance the computing and networking resource needs in all parts of the pipeline.

(a) (b) (c)

Figure 4.4. (a) A 24-bit RGB input frame, (b) sub-sampled YCoCg frame separated into
luminance and chrominance bitplanes and (c) tile division following a 2:1 ratio.
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One practical limitation of the texture compression formats is that the geometries of both

entire frames, as well as individual tiles, have to conform to the pixel block size of the

format in question. In other words, the frame dimensions have to be multiples of the block

size.

In the case of frame geometry, the issue is less prevalent, as most common video reso-

lutions such as 1080p, 2160p and 4320p are already divisible by four, which is the block

size in the S3TC and ETC formats. It is also supported by ASTC among many other

values. Regardless, a general purpose video platform needs to be able to handle any

arbitrary resolutions including odd frame dimensions.

A simple solution is to pad the input frame with additional data before encoding to a res-

olution complying with the block size. The complete padded frame can then be streamed

to the decoder device and the corresponding padded regions may be cropped outside the

visible area of the renderer viewport.

The padding process may easily be implemented using existing texture samplers during

GPU encoding. One of the most sensible sampling modes in this case would be replicat-

ing the border row and column pixel values, also referred to as clamp-to-edge sampling

in OpenGL [18].

The chosen tiling pattern utilizes horizontal slicing, which means that tile widths will always

conform to the block size in a padded frame. Tile height however still requires a more best

effort -style approach, where some tiles would inevitably have more pixels than others.

Especially in high-resolution video modes this discrepancy luckily becomes very small.

Simultaneously another problem related to memory access patterns was resolved. Due to

the horizontal slicing, both the tiles and the frame in its entirety form singular continuous

blocks of memory both before and after encoding. All tiles may then be represented

simply as memory offset and byte size values simplifying array accesses and therefore

slightly improving the performance.

Together with the inherent uniformity that comes from block-based constant compression

ratio texture formats, the continuity of the data in memory is another valuable advantage

worth preserving. Besides the fact that it allows the optimization of the stream delivery

functions presented in this work, it can also potentially greatly simplify the application of

more specialized high-speed networking technologies, such as RDMA. This is the reason

why the slight tile size discrepancies were in the end preferred over e.g. fairer, more

square-like tiling methods.

While the Figure 4.4 presented a scenario where a frame was divided into even size tiles,

Figure 4.5 shows a more generically applicable example. Here, both frame padding and

variable size tiling are visualized.
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(a) (b) (c)

Figure 4.5. (a) The visible area of a 30x26 frame, (b) the complete frame padded to a
32x28 resolution with a 4x4 block format and (c) tile division using a 3-unit split.

The texture formats discussed in this work are decoded based on the maximum and

minimum values of each individual block. Therefore, replicating the border row an column

values should not alter these limits and thus have any visible effects in the border regions

of the rendered frame.

In the current implementation of the pipeline, the padded data is streamed to the decoding

device as any other data, which admittedly means a tiny increase in the consumed band-

width. Since the width and height of the extra padded regions is limited to a remainder of

less than block size, the extra data can however be considered insignificant especially in

high resolutions.

All-in-all, these workarounds concerning the limitations of block-based texture formats are

the only strictly video coding -related problem area discussed here. The main contribution

lies in the delivery part of the high-bandwidth video stream.

4.3 Stream Delivery

The role of the stream server and client modules is to manage network sockets and act

as their abstractions. As the encoder splits the encoded data into packets, it makes a

synchronous callbacks to the stream module, which writes the data to the socket of the

corresponding unit.

All stream state information, such as what frame packets belong to, which packets have

already been transferred, and the correct ordering of the packets, is available to the en-

coder, making its task very simple. From the decoder point of view, this information be-

comes much more obfuscated, and some method has to be found to determine how

the incoming packets should be processed. To further complicate the problem, the per-

formance and scalability over an arbitrary number of threads and sub-streams remain

central.
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The decode units have to track two pieces of state information needed to tell what frame

a packet belongs to and what its offset, or location, in the frame is. Of these two variables,

offset is the more self-explanatory one needed to move the data on its correct place in

the decoder frame buffer. Frame index on the other hand is a shared state variable used

to track when a frame being received changes and subsequently control buffer updates.

To simplify the socket code and packet handling, the packet size itself is constant over a

session. It is negotiated at handshake time and can be fully adjusted to match whatever

the network capabilities happen to be. By default the value is set to 1412 bytes to conform

to a typical network MTU of 1500 and avoid additional packet fragmentations.

In the very likely case that a compressed frame size is not evenly divisible by packet size,

the last remainder packet of the frame is padded to the full packet size. The decoder

is then expected to ignore any excess dummy data in the last packet. The main benefit

of this arrangement is removing the need to separately code payload lengths to custom

application layer headers and thus avoiding the need to make multiple separate system

calls to read the payload from the socket.

The decoder is divided into a main thread and a number of unit threads. The main thread

is responsible for managing the units and performing GPU buffer updates and rendering.

The receive units are then assigned their own buffer addresses, which point to the offsets

of the corresponding tiles in the decoder frame buffer. After this, each unit is free to move

data to the buffer and then signal the main thread of their state changes whenever a frame

is finished or a new one is being received.

The unit threads are designed to operate independently of each other, with their only point

of synchronization being the point of frame change. As a frame update signal is received,

the main thread will block the unit threads for a short period during which the frame buffer

is replaced. The double buffering scheme then allows the main thread to perform a DMA

transfer of the data to the GPU memory while the receive units proceed to receive the

data of the next frame in parallel.

Each unit is guarded by its own mutex under which unit-specific state variables, such as

the target buffer and current frame index or packet offset are maintained. Even though

the current frame index is a shared property, each unit maintains its own record of it to

avoid the need to synchronize for concurrent data accesses.

The arrangement was designed to improve performance by minimizing as many synchro-

nizations between the main and receive threads as possible. Whatever other common

state information that must to be shared between the receive units can also be cached

separately by each unit and updated in conjunction with a frame update. The buffer up-

date is also performed at this time, which would block any new receive operations at the

moment in any case.
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The only remaining problem is how buffer updates should be triggered, or in other words

determining when a unit thread has finished receiving and moving frame data to its buffer.

In the case of the TCP implementation, the update mechanism was built on top of a frame

end signal, while the UDP version required both frame begin and end signals.

One fundamental issue is in separating packets of different sub-streams from each other.

A simple solution was to allocate each unit its own receive socket, and use the port

numbers as the basis of separation. Besides making it possible for the receive module to

assign packets to their correct receive units, it also ensures the best possible scaling of

the network I/O, due to socket performance scaling poorly across multiple threads.

In most commercial applications it is usually preferred to avoid reserving excessive num-

ber of ports, which could reach up to tens of sockets. However, the solution was deemed

to be the best compromise in this case.

Besides the target unit, the rest of the packet meta-information, meaning the offset and

frame index, have to be inferred from the packet stream itself. Thanks to the guarantees

of the TCP protocol, the issue can in that case be solved by tracking and maintaining the

amount of data received.

For UDP the unreliability makes the use of extra application layer headers unavoidable.

Although frame changes could theoretically be identified by grouping packets by the time

of arrival, the offsets would still have to be encoded into the header to account for packet

reordering.

As the Linux kernel network stack already poses a significant per-packet CPU overhead,

any additional overheads have to be considered carefully. Depending on the video format

and packet size, the amount of incoming traffic can easily reach millions of packets per

second.

4.3.1 UDP Stream Delivery

As a completely stateless and connectionless protocol UDP offers little guarantees of

packet delivery to the application layer. In other words, the incoming video packets may

arrive out-of-order or not at all, meaning that the application has to be able to handle all

such errors in software.

In practice, this mandates inclusion of an application layer header to each packet of the

video stream. The simple packet format used by the UDP version of the pipeline is pre-

sented in Figure 4.6. The proposed 32-bit header contains only two fields — frame iden-

tifier and offset.

The header structure is motivated by the desire to make it fast to decode. Frame identifier

and packet offset fields fit into a single 32-bit integer variable and match byte boundaries
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thus requiring potentially only one array access and two bitwise operations to separate

them. After this, the decoder would have all the information required to locate the target

position of the payload and which frame the packet is a part of.

Figure 4.6. Packet structure used in UDP streaming with a simple two-field 32-bit header
and 1412-byte payload.

The 24-bit packet offset is a relative offset counting from the beginning of the tile of the

given unit. Naturally, the length of the offset field creates an upper limit for tile size. In total

the address range becomes 224 bytes, or around 16 MB, which is 1.5 times the size of

an uncompressed 1440p frame in RGB 24-bit. When streaming uncompressed 8K video

over UDP, the minimum unit and tile number would then become six tiles.

In practice, the address space is not a major issue since the streamed frames would

be compressed and one would want to use a large number of units anyway to transport

larger frames. Regardless, the offset field could also always be simply expanded to 32

bits, which should be enough for any currently available resolution.

In addition, there are alternative ways to code the offset, such as using a packet index

instead in place of the byte offset. Since every packet is the same size, the actual offset

could then be easily acquired by multiplying the packet index with packet byte size. This

would make resulting address range and tile maximum byte size depend on used packet

size. For example with only a 128-byte packet size and a 24-bit index the usable address

range would already be over 2 GB.

It is the task of the encoder to actually attach the header information to the packets. Prob-

lematically, the encoder has to somehow reserve additional 4-byte gaps in the encoded

frame data to account for the header, which complicates encoding especially in GPUs. Al-

ternatively, the packet data could be copied to a separate extended buffer before passing

it to the send module, but that would not be efficient either.

A compromise solution was developed, in which the encoder overwrites the packet header

information on top of previous packet data that has already been sent. This would not

be practical if the callbacks to the send module were not completely synchronous, or in

general if there were any multiple threads working in parallel inside one unit. Luckily, for

the current CPU pass-through encoder implementation, it is not the case.
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Including of a header to the packets is however not sufficient to account for all the short-

comings of UDP. If and when packets are completely lost, there is no way to tell on the

receiving side when all data has arrived. In principle, the chance of packet losses makes

it impossible to achieve perfect timing in buffer updates, which would require triggering as

soon as the last in-flight packet arrives.

Instead, a timer mechanism is used to trigger a buffer update in the main thread based

on the average receive time across all units. Some padding is also added to account for

variations in socket throughputs and system load.

Since the decoder is required to handle non-constant frame rates, the timer also has to

adjust to any irregularities in the stream. In order to start the timer, unit threads therefore

have to signal the main thread as they start receiving packets where the 8-bit frame index

is newer than the current one, signifying that the encoder has begun sending another

frame.

Only one unit can enter the frame begin notify -block, which, besides starting the timer,

will also update the frame index in other units. Several units are likely to notice a frame

change at the same time, but the other threads are instead forced to wait for a signal from

the one thread inside the block.

Units that for some reason have not noticed a frame change before the first thread returns

may not notice any change at all, as their frame indexes are silently updated. If the

previous buffer update has not yet completed at the time, then the notifying thread will

also block until buffer update is complete.

Figure 4.7. A block diagram of the UDP receive loop and the critical section.

The multitude of theoretically possible timing variations highlights the fact that parallel

multi-socket streaming is by nature very chaotic, since only few timing guarantees can be

made. The timing problems are further demonstrated in Figure 4.8, which shows a sce-

nario where multiple conflicting operations occur in a system operating near its maximum
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capacity. Despite of this, only one mutex lock in the begin block and a another one per

each unit are required.

Other effects of UDP packet loss may be accounted for in an almost semi-passive fashion.

If the packet frame index is older than the current frame, then the frame has already been

rendered and the packet can simply be discarded. The corresponding segment of the

image would not be updated and instead the old data in the buffer would remain there.

Due to double buffering, the data would be from the second-last frame. If a packet is

lost entirely, the effect will be the same. The resulting rudimentary visual packet loss

-compensation mechanism is achieved for free as a side effect of the programming.

Figure 4.8. Example of a timer-based multi-threaded UDP receive process highlighting
some of the more critical timings and synchronization points.

Header parsing is complicated by the fact that some risk of bit errors or other bad data

is always present in network communications. In the case of wrong memory offsets, they

could quickly lead to a segmentation fault in the decoder. To counteract any errors in the

packet headers, a quick check has to be performed to ensure that the offset is smaller

than tile byte size. Using offsets measured from main tile offset yields a small benefit

here, since there is no need to check the parsed unsigned offset against a lower bound,

as the lower limit is always zero.

There is a chance that a corrupted offset or frame index for that matter could still be in the

valid range. In such case some visible artifact in the form of stuttering or misplaced data

would be expected. The only way to try to counter such errors would be to add some kind

of parity information to the header, or other similar solutions.

Errors may further accumulate in the payload itself, but luckily, texture compression for-

mats are somewhat resistive to such errors. As discussed previously in Section 2.2, it

could either affect only a singular pixel, or distort an entire block, depending on the video

format used.

Other, more advanced error and packet loss compensation mechanism could of course

in principle be implemented. For example an inpainting scheme could be a way to reduce

quality loss. There is of course the question of whether these kind of methods could

realistically be made lightweight enough not to impede overall performance.
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It should be remembered that the decoder is a real-time system. If the video bandwidth

exceeds the effective processing and transfer capacities of the pipeline, stream quality

and user-experience will start to degrade one way or another no matter what compen-

sation schemes are in use. More important is that the application can recover for any

momentary disturbances.

4.3.2 TCP Stream Delivery

The TCP version of the receive process is somewhat simplified compared to UDP. Since

data is guaranteed to arrive in order and without dropping packets, the frame indices and

packet offsets previously coded into a header can now be determined by tracking the

amount of received data.

Even more importantly, there is no longer a need to perform any packet reordering, which

is now handled internally by the TCP implementation of the network stack. Where the

UDP version was required to read a packet from a socket into a separate cache to first

parse its offset from a header, the TCP units can place the data in its correct place already

in the read system call. These guarantees therefore help to cut the required per-packet

CPU time into a fraction of the UDP implementation.

Each of the TCP units can maintain its own private record of the stream state and know

when all data in its tile has been received. At this moment the receive unit can then enter

a frame end block and signal the main thread to perform a buffer update. Unlike in the

UDP mode, there is also no need to synchronize at frame begin either, as that was only

required for starting the buffer update timer, which is no longer present, and to update

the frame indices, which can now be done independently. This TCP receive loop and the

critical section, consisting of only the buffer pointer itself, is visualized in Figure 4.9.

Figure 4.9. A block diagram of the TCP receive loop and the critical section.

Buffer updates may even be performed in some units while other threads are still in the

middle of receiving data. Although rendering the frame is not possible until the last unit
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buffer update is complete, it does at least allow distributing the DMA buffer transfers

over a wider time span, which can avoid possible bus bandwidth saturation related to the

transfers. This stepped buffer update scheme of the TCP implementation turns out to

produce surprisingly large end-to-end latency benefits, which are analysed more in-detail

in the results discussion.

The task of the main thread is simplified to waiting for frame end signals and performing

the buffer updates in a FIFO order of the finished units. Once all units are finished,

the frame can then be rendered. In the meanwhile, the double buffering scheme allows

finished units to proceed to wait for the next frame data.

Most of the synchronization issues regarding the TCP mode are relatively minor com-

pared to those of UDP, since the unit states are now internally maintained. The only

cross-unit synchronization involves the protection of the frame end block in which units

simply add themselves to a buffer update queue and then wait for the buffer update to

complete, before proceeding to receive more data. The timing aspects of the TCP re-

ceive process are visualized in Figure 4.10.

Figure 4.10. Example of timings in the TCP receive process, demonstrating the stepped
buffer update scheme.

TCP creates an indirect synchronization mechanism between the encoder and decode

programs, because the encoder send code is in its current implementation sequential

and synchronous to the video encoding. In a case where a TCP connection bandwidth is

less than the encoding bandwidth, the socket buffer space would be filled and the encoder

would simply start dropping frames.

Frame dropping in the encoder remains, in fact, the only possible way to discard data

and adjust to any throughput limitations in the TCP version. Individual packets cannot

be dropped, as missing packets in the stream would cause the stream to fall out of sync,

although some revisions to the network could maybe be done to counteract it. It is here

where the TCP pipeline is very unlike the UDP implementation, in which packets may be

dropped or discarded at any time for any reason. This limitation of the TCP implementa-

tion remains somewhat inconvenient in practice, as for example it makes any socket read

or write errors irrecoverable.
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Buffer updates of course still also block all copy operations related to any incoming pack-

ets of the next frame within the unit. If the main thread was performing slowly enough,

incoming TCP traffic would also become partially blocked, reducing the throughput. The

result is a self-regulating congestion control mechanism, meaning there is no need for

other measures in cases, where the decoder is not able to keep up with the incoming

traffic.

In ideal systems, or close-to-ideal such as highly reliable wired networks, it could be ar-

gued that TCP is the more sensible stream transport protocol. Even for less idealized

conditions, it is unlikely, that any self-implemented UDP packet reordering and retrans-

mission mechanism in the application layer could outperform the kernel TCP stack. While

block-based formats can at least eliminate the need for retransmissions, data reordering

in the buffer is still a necessary feature.

However, as previously discussed in Chapter 3, if network reliability or round-trip-time

were to worsen, TCP would definitely begin to suffer from some negative performance

characteristics. Therefore, based on application layer implementation alone, it is not com-

pletely clear how these two protocols would actually compare in various demanding real-

world networks.

4.4 OpenGL Buffer Transfers

In the previous sections, stream delivery was discussed more from a CPU-oriented point

of view, where data was being simply copied to some buffer in memory. Utilizing double

buffering, the filled buffer would then be replaced in a buffer update event, while the

contents were decoded and rendered on screen.

From the viewpoint of a receive unit, each unit gets allocated its “own" buffer, or a memory

address, which is guaranteed to fit all the tile data by the main thread. These buffer

addresses point actually to different offsets within one larger frame buffer, though the

units do not need to be aware of it.

In the OpenGL decoder, the buffer addresses are part of a GPU buffer object mapped

to RAM. For every received frame, a DMA buffer transfer operation is performed from

RAM to GPU, followed by a render call to whatever display surface is in use. Thanks to

the hardware-accelerated decoding, rendering the texture to a quad itself takes a time of

only tenths of a millisecond even in 4320p resolutions and modest hardware. The buffer

transfer latency on the other hand, is much more significant by an order of magnitude.

The received data is always expected to be in a valid texture format, which begs the

question of why use GL buffer objects for storage instead of textures directly. The answer

lies in the fact that the various memory mapping solutions available for buffers in the

OpenGL (ES) API make them the obvious storage type of choice for the pipeline.
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Unfortunately, the buffer data has to be translated into a texture object for rendering, and

also to make texture samplers and parameters work in general. The chosen solution

to the problem was to perform a separate copy operation from the buffer object to a

texture object, which has to be done after the buffer transfer from RAM has completed.

Although in any other part of the pipeline any additional copy operations would be highly

problematic due to latency increases, the buffer to texture -copy is less so due to the fact

that the operation takes place inside the VRAM and is thus extremely fast even for large

uncompressed frames.

There does exist one special alternative to this, which is called a buffer texture object and

has been available since OpenGL version 3.1. As per its name, it is a type of texture where

the pixel data is retrieved from the buffer behind it. However, these buffer texture objects

only support uncompressed texture formats, and the use of e.g. sampler parameters is

also restricted, making their use infeasible. [42]

Regarding multi-bitplane video formats, the decoder is designed to create multiple buffers

and textures for each unit group. Specially designed GLSL fragment shaders can then be

used to combine the bitplane textures at render-time.

In OpenGL, a buffer map calls take as input the target buffer itself, and a number of

required or optional access flags, which either act as performance hints, or cause drastic

alterations to how the mapped buffer is used. In addition, the mapping can only target

a specific part of the buffer, in which case offset and byte size values are also included.

In the case of the decoder, there is never need to read from these buffers, which is why

they are mapped as write-only. Reading from such buffers in RAM will thus constitute as

undefined behaviour. [18]

Upon a successful return of the call, the OpenGL implementation will have allocated a

new region for the mapped buffer somewhere in RAM. This is the address that will then

be passed to receive units when offset appropriately.

Up to this point, no data has yet been transferred to the GPU. In the initial versions of the

pipeline, the transfer would occur when an unmap call was made to the buffer, indicating

that the data could now be transferred to the GPU. The transfer would then be followed

by a buffer to texture copy call and finally the render call. Simultaneously, the second

buffer in the double buffering scheme was mapped to RAM and the next frame would be

received to it.

As could be expected, the buffer map and unmap calls are relatively costly operations

[43]. Although the remapping calls were only needed typically only tens of times per sec-

ond, which could be considered modest compared to some other rendering and stream

processing applications, they still had a small measurable impact to the buffer transfer

latency.
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Moreover, by default the OpenGL buffer mappings are considered synchronous opera-

tions. Any pending operations still using the buffer are required to complete before map-

ping takes place, meaning that the decoder main thread is blocked and the relevant tasks

effectively become serialized internally by the driver. In other words, this ensures that any

pending render operations complete before new data can be written to the buffer. In some

circumstances, it may however be preferable that the main thread is given more control

over what tasks truly require synchronization and which can run in parallel.

The API provides a special unsynchronized-flag in the map call, which can remove the

CPU–GPU synchronization point [18]. It is then up to the application to ensure that any

applicable tasks related to the buffer are first completed in both the GPU and CPU.

Although unsynchronized buffers could on a surface level appear a prefect solution, they

have a somewhat unintuitive drawback on the GPU driver side. These unsynchronized

map calls can cause new task serializations within the driver itself, producing apparent

stalls in driver communications. [43]

Here, it should be mentioned that other interesting buffer mapping flags include the explicit

flush option, where an implicit complete buffer flush at the unmap call is replaced by

explicit flush range -calls [18]. What this in effect does, is it allows controlling what parts

of the buffer are transferred and when, which could in theory be used to make small

progressive buffer transfers as the receive threads write data to the buffer.

The ultimate solution to the buffer transfer performance problem is to do away with buffer

remapping in its entirety. Starting from OpenGL 4.3, or OpenGL ES 3.1, the standards

include support for so called persistent and coherent buffer storage [44], which is the

approach chosen in the current implementation of the pipeline.

Use of the persistent flag indicates to the OpenGL driver, that the mapping of the buffer is

to be permanent over a longer time period, and it can be accessed by both the GPU and

CPU without additional buffer mapping calls in between. The buffer transfers are then

either handled by the same previously mentioned explicit flush calls, or by making the

mapping coherent. [44]

The coherent flag is optional to persistent buffers and it locks the mapped section of

the RAM in place preventing paging and making it effectively pinned. Such memory is

then always accessible to the GPU device and therefore does not require performing any

separate transfer operations. [44] Instead the transfer occurs implicitly when the data is

copied from the buffer into the texture.

As a side effect, persistent buffering tends to simplify the programming to a degree, since

both of the double buffers only have to be mapped once, and then they can be written to

directly without need for flushing either. The buffers do however have to be both allocated

and mapped using the persistent and coherent flags, and some type of a fence synchro-
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nization or a finish call has to be done following rendering [44]. Luckily rendering itself is

very fast, so in practice the chance on actual contentions happening should be near zero.

The buffer transfers, or copies to texture, do still take substantial amounts of time, as they

are limited by the PCIe bus throughput. This is where the previously discussed stepped

transfer method of the TCP implementation can still be a substantial improvement.

While the discussion has mostly concerned the decoder, almost all of the buffer man-

agement strategies are also usable in any GPU encoder implementation as well. The

encoder would either manage each encode unit separately and stream data from each

unit’s own output double buffer, or perform the encoding in a singular pass over the entire

frame and manage one larger buffer similarly.

Whether either option is preferable would depend on how the encoder input is received.

In its current form the encoder accepts as input only complete frames, but the implemen-

tation could be converted into a stream-based model instead. The encoder input may

also become from a render buffer of a 3D application running within the same GPU, in

which case the input data would already be available in GPU memory and there would be

no need for any input buffer transfers at all.

There also exists some unknown factors that would need to be studied more closely.

These include determining the optimal balance between using singular large buffer ob-

jects, or multiple smaller buffers and piecewise transfers resulting in larger numbers of

API calls. Likewise, any vendor-specific driver and hardware differences in performance

characteristics appear to be poorly understood. Regardless, the strategies approached

here should be applicable for a wide range of GPU-accelerated stream processing appli-

cations.
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5 RESULTS AND EVALUATION

Performance tests were performed in a localhost environment using the previously de-

scribed CPU pass-through encoder and the OpenGL decoder. The main goal of these

tests was to evaluate the performance of the technical solutions discussed throughout

Chapter 4. These include the performance impacts of the UDP and TCP implementa-

tions, Linux kernel, and GPU buffer transfer strategies.

The primary metric was the delivery latency, which consists of the time between an en-

coded frame entering the send loop, and the frame being rendered on screen. Display

device latency is excluded. Therefore, the two interesting sub-components of the delivery

latency are the network and buffer transfer latencies.

Based on the performance measurements, it is apparent that the described implementa-

tion has some shortcomings. Therefore, a final set of future work proposals will also be

presented to address the identified problems.

5.1 Performance Measurements

The key benefit of the localhost tests using loopback adapters is that the endpoint ap-

plications share the same system clock, which can be used as a timing reference. One

drawback is that the network adapter queue transfers, receive interrupt handling, and

hardware offloading are all left out, since the virtual loopback interfaces do not implement

the layers 1 or 2 of the stack.

The approach is arguably not ideal, as some of the packet processing work covered in

Chapter 3 has to be either performed by the CPU, or skipped entirely. On the other

hand, concentrating on the software stack will at least make the results of the analysis

universally applicable, because the effects of adapter-specific hardware differences get

eliminated.

It should additionally be noted, that the encoder and decoder compete over the same

system resources. While the used unit thread numbers have been chosen to reduce the

need for context switching, memory access still has to be shared. In any other kind of

application it would not be a major issue, but for the extremely intensive I/O workloads in

question it is likely to play a role.
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For similar reasons, using a feature-complete GPU encoder together with the GPU de-

coder would have also been infeasible, assuming that only one graphics card was in-

stalled. Instead, the pass-through CPU encoder was preferred due to its small perfor-

mance overhead. Likewise, the video source adapter was made capable of pre-loading

video data to RAM, removing the need for runtime file system operations.

The shortcomings are also partially offset by the fact that data is not required to cross

any physical networks and only needs to be shifted around between RAM and VRAM

instead. Therefore, the localhost tests are still able to give an approximation of the perfor-

mance characteristics and capabilities of the pipeline in the high-bandwidth low-round-trip

networks it was primarily designed for.

A high-end desktop work station was used to run the performance tests, where the hard-

ware was optimized for both high single-thread performance as well as reasonable multi-

threading performance. The relevant hardware specifications have been collected in Table

5.1.

Table 5.1. The performance test computer specifications.

Model Notes

CPU AMD Ryzen 9 3950x @ 3500 MHz 16-core/32-thread

GPU Nvidia GeForce RTX 2070 @ 1620 MHz PCIe 3.0 x16

RAM 4x8 GB DDR4 CL16 @ 3600 MHz Dual-channel

The objective of the first tests was to evaluate the frame size impact to the delivery latency.

Tests were run using a variable frame resolution from 144p to 4320p, the uncompressed

24-bit RGB format, 16 stream units and a packet size of 1408 B. As the delivery latency

is only affected by the byte size of the frame, and not its format, the results can be easily

extrapolated to compressed formats by multiplying the results with the compression ratio.

Parts of the 4320p results of both UDP and TCP pipelines in time domain are presented

in Figure 5.1, demonstrating the typical latency variation in the first 20 frames of video

with a 10 Hz refresh rate — a time span of two seconds. The plotted values include the

median latency of 1000 runs, and their 5th and 95th percentiles. The delivery latencies

as the function of frame byte size excluding the first five frames are presented in Figure

5.2 for the same 1000 run series.

From the results, it becomes apparent that a small amount of time is required for the

stream to stabilize. Firstly, the slow start effect of the TCP protocol is easily detectable in

the first frame latency of the TCP version, which it is not present in the UDP data. Sec-

ondly, the UDP version instead suffers from more general instability where the measured

latency can even go down.
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Figure 5.1. The 5th, 50th, and 95th percentile latencies of the first 20 frames in 4320p
resolution and RGB 24-bit format over a series of 1000 test runs using 16 units.

The primary cause of the UDP fluctuations is the implementation of the frame update

timer mechanism, which can take multiple frames to determine the optimal delay. In

conjunction with the timing issues, the system thread scheduler is also likely to affect the

socket startup performances of both protocols, as it also needs to train for the sudden

jump in workload.

Previously, there also existed a version of the pipeline, where both the TCP and UDP

implementations used two threads per decode unit, handling socket reading and packet

copying separately. Tests run with the two-thread version showed a longer, approximately

35 frames long settling in -period and a few millisecond latency increase. The effect was

determined to be caused by the thread scheduler, and it disappeared following the move

to single-thread receiving.

The impact of the scheduling effects is challenging to isolate from the slow start and timer

adjustment mechanisms, since the latter are more dominant. Likewise, at this stage it is

difficult to fully rule out any other potential resource use -related adjustment effects within

the kernel network stack.

The median delivery latency for the UDP pipeline is 30 ms, and for the TCP version 24

ms, with 5th and 95th percentiles being 28–36 and 22–27 ms respectively. The range

of fluctuations being this large even in the localhost tests shows that the network stack,

thread schedulers, and OpenGL drivers perform quite chaotically even in close-to-ideal

conditions.
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When studying the impact of the frame size to the median latency in Figure 5.2, the

performance behaviour becomes more predictable. As expected, the delivery latency is

roughly proportional to the frame resolution and thus its byte size, while the format itself

has little effect. The video format only plays a significant role in the encoding times, which

are not included in these numbers.
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Figure 5.2. Delivery latency measurements compared to frame size over a series of 1000
test runs using 16 units and 1408 B packets.

In the case of an 4320p frame in 24-bit RGB format, the frame size is approximately 99.5

MB, which translates to 31.7 and 25.3 Gbit/s of throughput for the TCP and UDP versions

respectively. Intuitively, the UDP latency curve has a slightly higher slope compared to

the TCP due to packet processing overheads and one additional copy operation in the

receive path. In smaller frame sizes, UDP still manages to match the TCP performance.

The results imply that even a small increase in compression ratio will produce a linear

decrease in latency. When accounting for the network bandwidth and round-trip time, the

total could easily reach tens of milliseconds for the uncompressed 24-bit RGB format in

4320p. In other words, this would give an advantage to higher compression ratio formats

such as BC1 over BC3 for example, as halving the frame size means halving the delivery

latency.

Concerning the results presented in Figure 5.2, the latency curve is directly related to

the maximum frame rate of the system at a given frame size. For example, BC3-encoded

4320p video with a delivery latency of around 12 ms in UDP could be streamed just barely

at 60 frames per second, or at 16.7 ms per frame.
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These frame-based bandwidth measurements are of course not fully representative of the

true overall throughput. Overlaps between decoder buffer transfers and encoding mean

that the true maximum frame rate is slightly higher.

While the UDP implementation is at a disadvantage in the localhost environments, it does

at least benefit from being able to discard late packets. TCP on the other hand forces the

decoder to wait for all the data to arrive, meaning the slowest unit and TCP connection

determine the latency of the entire pipeline.

If all units were streaming data at similar rates, this would not be a major factor, but further

analysis of parallel socket performance variations indicates that this is not the case. More

specifically, tests were run to measure how much time individual units were spending in

the encoder and decoder send and receive loops on average. The results presented in

Table 5.2 demonstrate that there is a lot of random throughput fluctuations between the

sockets.

Table 5.2. Average sub-timings for an uncompressed RGB 24-bit frame using a 4320p
resolution and 1408 B packet size.

Send Loop

(unit avg.)

Send Loop

(unit max.)

Recv Loop

(unit avg.)

Recv Loop

(unit max.)
Total

UDP 13 ms 20 ms 17 ms 23 ms 31 ms

TCP 11 ms 19 ms 12 ms 20 ms 24 ms

It turns out, that the slowest unit is typically transferring data around 50 % slower than the

average in the case of both protocols. It is certain, that at least some of the 5th and 95th

percentile fluctuations seen in Figure 5.1 are caused by these throughput variations.

In the UDP implementation these socket performance differences manifest as some late

data getting discarded. The latency itself is mostly unaffected, as the update timer is

based on the average receive time of all units. In accordance with these results the UDP

frame update timer is rather tightly optimized to trigger after a period of 1.5 times the

average receive time from the first packet of a new frame arriving.

The measured socket throughput variations have a much greater effect on the TCP

pipeline, as its latency is directly tied to the slowest sub-stream latency. However, thanks

to the stepped buffer update mechanism, much of the waiting time is spent on buffer

transfers, and it more than makes up for having to wait for the slowest units at least in

these tests.

The impact of the stepped buffer update method was tested using a modified implemen-

tation of the TCP pipeline, in which buffer updates were instead blocked until the last

receive unit had finished, much to the style of the update timer in the UDP version. While
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the normal version had a delivery latency of 24 ms for a 4320p frame, the deferred transfer

version scored only 29 ms.

Both the UDP and deferred TCP buffer transfer latencies were measured to be around 8

ms. This aligns with the numbers in Table 5.2, where the UDP total latency is around the

sum of the measured buffer transfer time and the maximum receive time multiplied by 1.5.

These preceding tests were run using a unit number of sixteen, which should represent

an optimal number of threads in a 16-core system with hyper-threading. In order to affirm

this, a set of tests were also run using a variable number of units demonstrating the

scalability of the pipeline. These results are presented in Figure 5.3, showing that both

UDP and TCP performance curves level out at around 16 threads, which is expected.

For both protocols the socket read and write calls form a large part of the used CPU

time. Therefore, an important method of reducing the time spent in socket-related system

calls is to produce less packets overall. Thankfully, the pipeline was developed to support

variable packet sizes, which makes it possible to directly measure the performance effect,

as presented in Figure 5.4.

It should be noted, that for the UDP pipeline the packet size has a concrete meaning

as the length of the actual datagram sent over network. For the stream-oriented TCP

protocol, the packet size represents a more abstract concept as an atomic segment of

a tile. Nevertheless, in both cases the packet size parameter is linked to the number of

system calls and other operations required to transfer a complete frame.
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Figure 5.3. Delivery latency as a function of units and threads using an RGB 24-bit 2160p
format and 1408 B packet size.
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From Figure 5.4, it can be seen that the packet size reduction had an immense effect on

both of the protocols. When comparing to the default 1408-byte packets, the performance

difference shows that the limiting factor is indeed in the CPU processing overheads within

the stack.

Besides CPU time, the second most important limitation is the simple memory bandwidth,

which would not be impacted by packet size adjustments. As previously mentioned, it is

effectively reduced by the fact that the encoder and decoder are competing of the same

bandwidth in the localhost tests. The memory frequency in the test system is however

higher than most platforms, which likely alleviates some of the problem.

The impact of the memory clock frequency was experimented by performing the same

tests with a 3 200 MHz clock rate instead of the 3 600 MHz used in other tests. The 400

MHz decrease in the frequency produced a clearly measurable 10–15 percent increase in

latency for both protocols, which makes sense considering that the workload is extremely

I/O intensive. The CPU clock frequency, on the other hand, was not modified in any of the

tests discussed here.

UDP does not seem to benefit proportionally from the packet size increase any more

than TCP, despite its higher per-packet CPU overhead in the application layer. The notion

could be explained by the fact, that although TCP abstracts packet-based messaging

behind the socket API, the L4 implementation still has to perform packet reordering and

retransmission internally.
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Figure 5.4. Latency as the function of packet size using the 24-bit RGB format, 4320p
resolution and 16 units.
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It can be inferred that the pipeline could easily benefit from large MTU -technologies such

as the Ethernet jumbo frames. In the case of the stream-based TCP implementation the

packet size could also be increased just to reduce the number of needed socket-related

system calls.

Regarding kernel network stack configuration, the UDP and TCP receive and send buffer

size limits were increased to a more reasonable value of around 16 MB per socket, follow-

ing the discussion in Section 3.3. The tests were able to verify that this had a considerable

effect on the throughput in the TCP pipeline and the packet drop rate in the UDP version,

which could exceed 50 % in some circumstances. After the increase, no more packet

losses were observed outside the startup adjustment phase.

The rest of the discussed network stack or socket options had more minimal impacts.

Testing busy polling in localhost was not possible due to loopback interfaces lacking the

support for it, though as previously discussed, it is likely that the results would have been

significantly worse. All the TCP tests were run using the cubic window scaling function

due to its favourable performance characteristics. TCP socket options such as Nagle’s

algorithm or delayed acknowledgement, did not have measurable effects to performance

at all, as was expected for low-round-trip connections.

Due to some of the discussed complexities of the network stack, and the operating system

environment as a whole, it is in general difficult to determine the perfect combination of

tweaks to reach the absolute minimum latency. Instead, the most favourable path would

likely be to direct these efforts to improve the code instead of the configuration.

Regardless, the pipeline in its current form is more than enough to assess the feasibility of

texture compression formats for video streaming. In addition, the lessons learned in this

work should have a wide range of applications in the fields of high-performance network

communications and stream processing.

5.2 Future Work

Despite the extensive efforts, the pipeline presented here still has a number of perfor-

mance shortcomings, that could be fixed. The purpose of this section is to propose so-

lutions to these issues, and also to point out possible future work topics, including some

outside the area of stream delivery.

Several of the performance enhancements concern the fact, that both TCP and UDP

sockets presented similar non-ideal performance behaviour in the context of multi-socket

streaming. For both protocols, the delivery latency becomes at least partially constrained

by the slowest socket in the pipeline. The results showed that the socket throughput

discrepancy was a major contribution of 4–8 ms to the 4320p latency.
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In the localhost tests the issue could be solved by adjusting the system thread scheduling

and possibly moving towards harder real-time environments. However, thread affinity still

does not address issues like packet-loss-induced congestion control in the transport layer.

A more general solution would be to directly balance socket workloads and resources.

Ideally, both UDP and TCP pipelines would use a load-balancing scheme to balance the

socket throughput variations. While multi-threaded socket accesses have been shown to

be inefficient, an equivalent system could instead be implemented by using finished units

to take and transfer some of the pending data of the slow-performing threads. As units

would not be required to share socket accesses, the strategy should be more efficient

than e.g. a more typical thread-pool implementation.

Since units currently identify their packets by the port numbers, any load balancing system

would require encoding the packet unit into its header. This is not necessarily a problem

for the UDP pipeline, since the existing header offset field could be re-purposed to count

from the beginning of the frame, thus carrying the unit information with it.

For TCP, the implementation of load balancing through unit re-allocation would require the

use of additional control messages, or inclusion of application layer headers. TCP could

also benefit from being able to discard late data, like the UDP version, at least in the case

of significant disturbances in individual connections.

Additionally, an already proven solution would be to implement the stepped buffer transfer

mechanism in the UDP pipeline. Such change should then produce a latency improve-

ment of around 4 ms in the 4320p tests — or 50 % of the buffer transfer time — like in the

TCP version.

Another point of improvement would involve the superfluous copy operation in the UDP

receive path, which is not present in the TCP implementation. The copy operation in

question was originally added to account for packet reordering the UDP protocol, and

involves reading the packet into an intermediary buffer to allow header processing before

copying to the correct frame buffer offset.

However, considering that the pipeline was designed for low-round-trip networks, it may

not be necessary to reorder all of the UDP packets in the first place. In such short-

distance networks it is likely that packets arrive to the receiving device in the order they

were sent in. Therefore, it could be interesting to develop an UDP implementation which

predicts the offsets of incoming packets, checks the header offset afterwards and then

re-orders the few out-of-order packets within the frame buffer.

The only problem would be in handling the header information, as receiving it directly

into the frame buffer would be destructive to existing data there. A straightforward mitiga-

tion would be to move the header section to the end of the UDP packet, removing most

overwrites of valid data, assuming that the encoder sends packets in order. Some neigh-
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bouring blocks could still be corrupted by out-of-order packets. Whether this is acceptable

would depend on the application.

The estimated latency save of removing the excess copy from the UDP path would be in

the range of multiple milliseconds. When added together with the other potential perfor-

mance optimizations, it should be fully possible to bring the UDP pipeline latency to the

level of TCP in the localhost environments.

Even though the current UDP implementation performed consistently worse than TCP

in all of the tests, there is strong reason to believe that UDP could even surpass the

performance of the TCP pipeline. The case for UDP is even stronger in lossy real-world

networks, due to reliable networks tending to favour TCP streams.

There are of course other topics besides the transport protocols and socket optimizations,

which have been left outside the scope of this work. Even concerning transport and ap-

plication protocols, there exists a variety of alternatives to UDP and TCP, that should also

be acknowledged. Other similarly excluded topics would include multi-path delivery and

adaptive streaming, or in other words, dynamic runtime adaptation to network condition

deterioration through quality adjustments.

If the requirement of relying on only general-purpose compute platforms was loosened,

there would also be immense potential for utilizing more specialized networking solutions.

The end-host network I/O performance could, for example, be improved by technologies

such as RDMA and GPUDirect, or other kinds of acceleration, like FPGA-based smart

NICs.

Some other topics outside stream delivery include video encoding and packet loss com-

pensation, which have been covered here barely at all. Suffice to say, that although tex-

ture compression has shown great potential in very low-latency video streaming, a great

deal of work remains.
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6 CONCLUSIONS

The growing interest towards remote and distributed computing, and the recent emer-

gence of ever more ambitious edge computing paradigms, has motivated great develop-

ments in the field of high-performance networking. At the same time, compute perfor-

mance has seen only modest improvements, which underlines a fast-growing gap be-

tween the networking and end-host performances. In other words, the software stack

has become a major problem for high-performance network connectivity, especially in the

consumer-grade mobile and IoT devices.

One particularly challenging area is in real-time video delivery, where the problems of la-

tency and bandwidth are combined. Against the described background, the texture com-

pression formats have become an interesting option for real-time video delivery. These

formats offer extremely fast GPU video coding at the cost of low compression ratio.

Conventional video formats involve bandwidths of typically tens, or at most hundreds of

megabits of traffic per second. Texture-compressed video, on the other hand, would

increase high-resolution video stream bandwidth by a factor of two to three orders of

magnitude. This makes the delivery of the video a massive challenge, even in modern

high-performance networks.

The objective of this work, was to study the technical aspects of texture-compressed video

stream delivery in general-purpose Linux systems, with additional interests in mobile de-

vices and wireless networking. A video streaming pipeline was therefore developed, uti-

lizing heavy multi-threading, standard Linux socket interfaces, and GPU-acceleration.

Besides their low compression ratio, texture formats have a multitude of other, more inter-

esting properties discussed as part of the work. Most of these are consequences of the

associated fixed-size block formats, that allow performance optimizations by simplifying

stream processing greatly. The formats are also highly error- and loss-resistant making

them well suited for streaming over unreliable networks.

Due to the aforementioned fact that the software stack is the limiting factor, an overview of

the Linux kernel network stack followed, concentrating on a layered view of the send and

received paths. Multi-socket streaming was concluded to be the most scalable method

for very high-bandwidth video delivery, among other optimizations such as socket buffer

size tuning. Two different transport layer protocols, TCP and UDP, were also studied, with
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a focus on their latency and throughput performance characteristics.

The need for network I/O scalability reflected into the proposed pipeline architecture

through the use of multiple sub-streams, or delivery units. These units would also be

relevant to GPU buffer management, where modern OpenGL features were made use of

to efficiently stream received data into GPU memory.

The latency and throughput performances of the proposed video delivery pipeline were

evaluated in extensive localhost tests. The TCP version of the pipeline proved to perform

the best in the close-to-ideal conditions of the localhost environment, reaching 31.7 Gbit/s,

while UDP reached 25.3 Gbit/s. In terms of latency, these bandwidths translate to 24 ms

and 30 ms for uncompressed RGB 24-bit video in 4320p resolution. These latency values

do not however include the network latency, only that of the network stack.

Both protocols experienced problems of uneven socket throughput rates between differ-

ent units, which appears to be an inherent problem of multi-socket streaming using the

network stack and the kernel thread scheduling. The performance imbalance was a prob-

lem for both protocols, where the delivery latency became limited by the slowest unit in

the pipeline. A stepped buffer update scheme was developed for the TCP implementation

in order to partially counteract the, allowing partial buffer transfers while data was still

being received.

While the performance of the UDP pipeline was consistently worse, there is reason to

believe that when properly optimized, it could even surpass the TCP implementation.

TCP especially benefited from the localhost test setup, which could not replicate a real-

world lossy network environment.

Since the delivery latency is proportional to only the frame size, the results could be

extrapolated for compressed formats. When factoring in the latency of the network, results

imply, that it should be within the realm of possibilities to use wireless 802.11ax-networks

to deliver BC1-compressed 2160p video at 60 Hz with a latency of 10 ms.

The delivery of texture compressed video stream remains a demanding problem. In the

case of the latest wireless standards, like millimeter-wave 5G or 802.11ax, texture com-

pression can be argued to be on the edge of feasibility. The kernel CPU overheads, and

the network bandwidth remain the main issues. For high-performance wired networks

and devices, texture compression would be viable already.

Wireless networking at bandwidths of over 10 Gbit/s may not be realistic in the near-future,

but the issue of processing overheads is solvable already today. Hardware-offloaded

network I/O, or any other zero-copy networking schemes could for example be enough.

Considering the potential market for the applications, and the great efforts involved in the

development of edge computing technologies, this may be enough to pave way to the

future use of texture compression in real-time video delivery as well.
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