

Tuomas Luojus

USABILITY AND ADAPTATION
OF REACT HOOKS

Faculty of Information Technology and Communication Sciences
M. Sc. Thesis

April 2021

ABSTRACT

Tuomas Luojus: Usability and Adaptation of React Hooks
M.Sc. Thesis
Tampere University
Master’s Degree Programme in Software Development
April 2021

In this study, usability and adaptation of a new feature to React framework – hooks – is inspected.

The usability inspection is done according to API usability evaluation principles based on earlier

research. The analysis of adaptation of hooks is based on the experiences of professional React

developers and how their projects have adapted to using hooks.

Web as a software platform has been increasingly popular in recent times. This has been

enabled by improvements in browser and computer performance. Web applications are attractive

to users due to their lack of need for installation and capability to work on most devices available

to users. As the popularity of the web has increased, so has the number of solutions available for

developers. This has led to short lifecycles of development tools, constant emergence of new

technologies, and rapid shifts in industry standards. Therefore, many developers have felt over-

whelmed by the number of solutions. For the regular developer, there is a need for standard, high

quality, and high usability solutions. This thesis argues that the solution for this is thoughtful de-

velopment and usability evaluation of web development software.

One impactful new solution is React hooks. Hooks were introduced to React JavaScript UI

framework in 2018 as a part of React moving from less compact class components to seemingly

more clear function components. Hooks allow function components to have local state and other

procedural features whereas before, only class components could include them. In present time,

React development community has largely abandoned class components in favor of function

components.

To evaluate the usability and adaptation of hooks as an API, two studies were conducted.

Firstly, a case study was done. In the case study, three general purpose components were written

as class components and function components. The components were then compared with each

other to find usability issues. Secondly, six professional React developers were interviewed in

order to find hooks related issues from real experiences of React developers.

It is concluded that the developers have almost entirely replaced class components with func-

tion components and hooks their projects. However, while hooks have accomplished their pur-

pose well in most cases, there are still critical cases where they have serious usability issues or

do not functionally provide sufficient replacement for class components.

Key words and terms: API usability, hooks, React, function components, state management

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

Contents

1 INTRODUCTION ... 1

2 WEB SOFTWARE ARCHITECTURE .. 3

2.1 SOFTWARE ARCHITECTURE .. 3
2.1.1 Defining Software Architecture .. 3
2.1.2 Components and Interfaces... 5
2.1.3 UI Architecture and MVC .. 5

2.2 SOFTWARE STATE ... 6
2.2.1 State in Software Development .. 7
2.2.2 Modeling Software State .. 7

2.3 WEB APPLICATIONS .. 8
2.3.1 Web Application Architecture Overview ... 9
2.3.2 Static and Dynamic Web Sites ... 10
2.3.3 Web as an Application Platform ... 10
2.3.4 AJAX .. 11
2.3.5 Single Page Application ... 11
2.3.6 JavaScript ... 12
2.3.7 JavaScript UI Frameworks ... 13

3 REACT UI FRAMEWORK.. 16

3.1 REACT OVERVIEW .. 16
3.2 COMPONENTS ... 17

3.2.1 Class Components .. 17
3.2.2 Function Components ... 18
3.2.3 Function Components With Hooks... 18

3.3 COMPONENT LIFECYCLE ... 19
3.4 REACT STATE MANAGEMENT ... 21

3.4.1 Local State .. 22
3.4.2 Global State Management with Redux ... 22
3.4.3 Other Global State Management Libraries ... 23

4 RESEARCH METHODS .. 25

4.1 CASE STUDY ... 26
4.2 DEVELOPER INTERVIEWS .. 26

4.2.1 Participants ... 27
4.2.2 Data Collection ... 28
4.2.3 Data Analysis .. 29

5 CASE STUDY ... 31

5.1 COMPONENT 1: DATETIMEDISPLAY ... 31
5.2 COMPONENT 2: LOGINVIEW ... 33
5.3 COMPONENT 3: USERPREFERENCESWINDOW ... 35
5.4 CASE STUDY FINDINGS ... 36

6 DEVELOPER INTERVIEWS .. 38

6.1 REACT AND OTHER FRAMEWORKS ... 38
6.1.1 React Overall .. 38
6.1.2 React Architecture .. 39
6.1.3 React Performance .. 39
6.1.4 Global State Management with React .. 40

6.1.5 Function and Class Components .. 42
6.2 FUNCTIONALITY OF HOOKS .. 42

6.2.1 Built-in hooks ... 43
6.2.2 Lifecycle Management ... 43
6.2.3 Custom and Third Party Hooks .. 44

6.3 HOOKS BASED REACT DEVELOPMENT .. 44
6.3.1 Readability .. 44
6.3.2 Ecosystem and Collaboration ... 44
6.3.3 Testability ... 45

6.4 ADAPTATION TO HOOKS ... 46
6.4.1 Learning Hooks .. 46
6.4.2 Transition to Hooks .. 46
6.4.3 Refactoring Class Components ... 47

6.5 INTERVIEW FINDINGS.. 47

7 FINDINGS AND DISCUSSION ... 48

7.1 FINDINGS .. 48
7.2 RELIABILITY ... 49
7.3 FUTURE RESEARCH ... 50

8 CONCLUSION.. 51

REFERENCES ... 53

Appendices

-1-

1 Introduction

The rapid growth of the web as a software platform [Taivalsaari and Mikkonen 2017] has

increased the need for highly usable web development tools and solutions for professional

application development. During the last decade, web development has experienced short

cycles of industry standard development tools rising and falling. Every time a new tool

rises to industry standard, developers have to spend time learning them and adapting to

them only to have to abandon them again after a few years [Taivalsaari and Mikkonen

2017]. The current industry standard frontend framework for JavaScript is React [Greif

and Benitte 2021]. React is an open source library originally created by developers at

Facebook [Facebook Open Source. 2021a].

React has two types of components: class components and function components. Be-

fore hooks were introduced to React, it was not possible to include procedural features

such as state and lifecycle management in function components natively. Therefore, if a

stateful component had to be made, it had to be written as a class component. Meanwhile,

the interviewed developers agreed that class components were deemed difficult to under-

stand, compartmentalize, and manage. [Facebook Open Source. 2021b]

In 2018, a new solution – hooks – was introduced to React. Hooks brought state and

other features from class components to function components. According to React devel-

opers interviewed for this study, the React developer community has gradually adapted

to hooks-based React development. This study aims to inspect how that adaptation pro-

cess has been for React developers, and how successful are hooks as a replacement for

earlier class-based solutions from a usability perspective. Since the introduction of hooks,

class components have been gradually replaced by function components in React devel-

opment.

Few studies have been done on specific web development frameworks or solutions

such as React. Most academic research on software and application architecture focuses

on theoretical ideas of designing and analyzing software instead of analyzing specific

existing frameworks. As the currently most used JavaScript frontend framework, React

ought to be studied in more detail.

Traditionally, comparisons of programming frameworks and languages have been

done by comparing their performance and technical details, but since computers and

browsers are getting increasingly faster and more efficient, usability evaluation of soft-

ware solutions for developers has become increasingly meaningful. Hooks were thus a

good fit for this study, since their main motivation is to make development easier and

increase the usability of React for developers. There is little effect on performance when

using function components with hooks compared to class components.

The purpose of the study is to add support in favor of thoughtful usability-based de-

velopment and usability evaluation of technology solutions. Especially in the fast-moving

-2-

web ecosystem, deliberate and attentive care ought to be used when introducing new soft-

ware solutions to the development ecosystem. This way, the ecosystem will be steadier

leading to fewer difficulties and less risky decisions for developers and better software.

Both the code-specific aspect of hooks and actual experiences of React development

with hooks are analyzed in order to get a holistic view of the usability and adaptation of

hooks. The research questions are: (1) What usability benefits and drawbacks do hooks

bring to React? And (2) How have project teams adapted to React hooks?

The study was conducted by first reviewing the existing literature on web software

architecture. Then, a case study was conducted by comparing two implementations of a

program: one written with class components, one with function components and hooks.

By this comparison, technical aspects of hooks were inspected. Finally, an interview of

React developers were conducted, where real life experiences and opinions of new hooks-

based React development were analyzed.

From the study, ten positive and six negative usability issues of hooks were recog-

nized. The overall usability of hooks was recognized to be positive in typical use cases

compared to class-based React, while some serious usability problems were present in

more specific cases.

Chapter 2 presents important concepts and ideas as a context for React hooks and the

study. In Chapter 3, core aspects of the React framework are explained. Chapter 4 covers

the methodologies of the case study and the developer interviews in more detail. Chapters

5 and 6 cover the results of the case study and the developer interviews, respectively.

Chapter 7 combines the findings of the two studies, presents the finally found usability

issues, and offers some discussion on the research done. Finally, the conclusions of the

research are drawn in Chapter 8.

-3-

2 Web Software Architecture

In this chapter, the needed background information on web software architecture and web

applications will be presented as a base for the study. The chapter will start from basics

of software architecture and move gradually towards web architecture and finer details of

web development. Important terms will be defined, and essential ideas will be presented

based on literature of the field of software architecture.

The structure of the chapter is as follows. Firstly, the term software architecture will

be inspected and defined based on the literature of the field. Then, the notion of state will

be inspected. Finally, different aspects of web applications, such as predominant models

and architectures in web application development will be inspected.

2.1 Software Architecture

Software architecture does not differ much from “regular” construction architecture in

principle. An architect designing a sauna building has to first recognize the smaller parts

that are included in the concept of a sauna: the door, the walls, the roof, the chairs, and

the stove. Then they design how to connect them in relation to each other, often drawing

a model of it. A software architect divides a large software into smaller pieces, and de-

signs how to connect them, often producing some type of visual model.

Software architecture as a distinct field of study started in the 1990’s [Kruchten et al.

2006], after which it has been adapted as a part of regular software development process.

However, recently there has much discussion in the software development field whether

software architecture is needed in the era of modern agile development where it has been

nicknamed BUFD (Big Up-Front Design) [Gruhn and Rüdiger 2018, 178]. Despite this,

software architecture is still an important part of agile software development – it has only

transformed from large documentation and long planning phases to iterative refactoring,

frequent communication, and reference to design decisions [Abrahamsson et al. 2010;

Keeling 2015].

In different contexts, the term software architecture gets often used for various dif-

ferent situations. In everyday discussion, it can sometimes mean any higher-level concept

of a software product, so some specificity is needed when studying the topic.

2.1.1 Defining Software Architecture

Software Architecture has been defined in several ways, often differently by different

parties. In this chapter, a few definitions of software architecture will be inspected, and

at finally combined into a definition of software architecture which will be utilized for

this study.

IEEE [2000] has a standard for architectural description. It defines architecture as an

organization of a system that consists of components, the components’ relationships with

each other and the environment, and different principles guiding the architectural design

-4-

and evolution. Notable in their definition is that it not only includes dividing the system

into smaller pieces, but also considers relationships, stakeholders, and the temporary evo-

lution of the software product during its life cycle from requirements definition to termi-

nation of use.

Bass et al. [2013, Ch. 1] have defined software architecture as a bridge between busi-

ness goals and the resulting system. They write that software architecture of a system

includes the structures of that system, which includes software elements, their relations,

and their properties. Notably, they argue that software architecture only includes infor-

mation that is important outside of a single element. Thus, the architecture is not con-

cerned with the internal workings of an element. As such, software architecture is an ab-

straction that includes relevant information about the system and omits irrelevant infor-

mation. They especially assert that the software architecture is what allows teams of soft-

ware developers to work on different parts of a product simultaneously regardless of or-

ganizational, geographical, or time-zone restrictions. The individuals or groups do not

need to know how the others’ software works; they only need to know what kind of in-

terface it offers with which they can interact.

Gruhn and Rüdiger [2018, Ch.1] have also characterized software architecture as or-

dering a large system to smaller elements and descriptions of their connections and be-

haviors in relation with each other via interfaces. They emphasize that architecture is not

what is implemented in the code but a set of structures and rules that guide the design of

the software product until completion, leading to code that represents the architecture.

The definition of Wills [1998 p. 482] also includes software’s parts and their essential

external qualities, and the relationship of those parts. They emphasized that architectures

were not only drawings on paper, but rigid structures and rules of the natures, roles, and

relationships of the parts of a system.

Soni et al. [1995] found four categories of architecture by inspecting software archi-

tecture in industrial context: (1) conceptual architecture, which describes the system by

its functional components and their interfaces, (2) module architecture, which describes

the ideal structure of the system, (3) execution architecture, which describes the dynamic

structure of the system by its run-time elements, and (4) code architecture, which de-

scribes the structure of the source code base.

Martin [2017, Ch. 1] argues that there is no difference at all between design and ar-

chitecture. He looks at it from the point of view of productivity: The faster the product

gets done, the better the architecture. For the definition of architecture, he follows the

others: the division of a system into components, the arrangement of those components,

and their communication between each other [Martin 2017, Ch. 1; Ch. 15].

-5-

In conclusion, while some fine details differ, most of the literature defines software

architecture as dividing a system into smaller elements or components and their relation-

ships. Typically, their relationships are described by the interfaces they offer, and by the

interfaces of other components they use themselves. Good software architecture can be

seen as a counter measure to complicated, entangled, or monolithic software. It enables

groups of people to work on a same project without having to know all the specificities

of code written by others – only the interfaces. This overview does not consider what the

potential systems are or their context. For example, they can be inspected from the view-

point of functions or software components. [Gruhn and Rüdiger 2018, Ch. 1]

2.1.2 Components and Interfaces

Systems can be decomposed into components (also known as subsystems) that are con-

nected by their interfaces. A component is an independent software piece that offers some

functionality to the system via an offered interface so other components can use it. Com-

ponents can be modified by altering their state, interfaces, or by creating new components

that inherit them. [Gruhn and Rüdiger 2018, Ch. 1]

Ever since the concept of software components was conceived, there has been a vision

for a type of software development, where the developers would have to write minimal

software themselves while most of the development process would include structuring

and combining existing software components to create new software products. While the

use of components-based architecture and modal software has increased, this vision has

not yet fully realized. [Caldiera and Basili 1991; Holzmann 2018]

Interfaces, or APIs connect the components to each other. Gruhn and Rüdiger [2018,

Ch. 1] defined three types of interfaces: export interfaces that offer the components’ func-

tionality to the system, import interfaces which define what the component requires from

the system, and assumption/commitment interfaces which describe assumptions that the

component has of the system, and commitments if the assumptions hold (Figure 1).

2.1.3 UI Architecture and MVC

Several toolkits and interface builders have been available for UI development since the

1970’s. Since modern application UIs can usually be divided into different visual and

Figure 1. System of two components connected by their interfaces. [Gruhn

and Rüdiger 2018, Ch. 1]

-6-

functional components quite intuitively, a component-based approach has been a natural

choice for UI architecture. [Myers et al. 2000]

MVC or model-view-controller is a common architecture for developing user inter-

faces presented by Krasner and Pope [1988]. MVC makes a division between three parts

of a user interface: model, which is the application’s domain-specific software simulation

or the central structure of the application, view, which displays the state of the application

for the user, and controller, with which the user can control the model and the view

(Figure 2). Building user interfaces of applications in this manner, the developers of one

part does not have to have total understanding of the other two parts, making the devel-

opment more efficient. MVC architecture is used in a great number of user interface

toolkits, and is well known by UI developers, as it is general enough to fit most UIs.

For example, in a typical MVC implementation of a checkbox control, the model is

the Boolean data whether the checkbox is selected or not. The control is the event handler

that handles the mouse click from the user’s device and manipulates the model. The view

is then the visible box and checkmark rendered on the screen of the user’s device with

pixels lighting up.

2.2 Software State

State in software refers to any configuration, context or history related information saved

in the memory of an application, typically as a variable. Software uses its state to alter its

behavior. Thus, a stateful application might have different outputs depending on the state

of the application whereas a stateless application will always return the same output when

given the same input. Happe et al. [2014] identified three types of state categories: com-

ponent-specific, system-specific, and user-specific state. These categories can be further

divided into subcategories depending on whether they work in runtime, deployment time,

or instantiation time.

Figure 2. MVC pattern [Krasner and Pope 1988]

-7-

Component state means the state encapsulated and accessible inside a specific com-

ponent. The component state is furthermore divided into four subcategories: Protocol

state, internal state, allocation state, and configuration state. System state is the state of

the whole software product shared between different components. Finally, User-specific

state is any data stored for specific users of the system. [Happe et al. 2014]

2.2.1 State in Software Development

There are a few considerations to be taken into account when developing stateful soft-

ware. Firstly, quality assurance becomes difficult when a software can have indefinite

number of possible state combinations. Whereas stateless software is usually quite easy

to test, writing automated test cases for every possible state combination of a stateful

software is highly difficult if not impossible. For example, if a software has a user modi-

fiable UI component with tens of thousands of possible state combinations, it is not usu-

ally feasible to write tests for all those state combination possibilities. One proposed way

of testing stateful software are exploratory test agents; automated actors that explore the

system under testing to expose faults and report them to the developers [Karlsson 2019].

This issue of testing stateful software is particularly relevant with UI software. While

manual human testing is perhaps the most reliable way to test application UIs, it is costly

in time and resources, whereas automated testing is often either lacking in test coverage

or too difficult to implement. There have been solutions proposed such as AppFlow that

have been somewhat successful mitigating this issue with automated testing of stateful

applications. [Hu et al. 2018]

Another issue with stateful software development is that when state is included in a

software, it becomes difficult to transfer state between sessions. For example, if a user

closes a web browser running a web application, all of the session-specific state infor-

mation is lost. In the case of web, there are solutions of persisting state between sessions

such as storing session information to the backend server and accessing it with cookies

or other user information at the beginning of the following session.

Some web application developers have opted for building applications with stateless

user interfaces, where the user-related information is saved to and accessed from the

cache or the backend with network requests each time there is changes to the state of the

application. This is known as Remote Session architecture [Fielding 2000, Ch. 3]. With

good caching and thoughtful data flow management, it is possible to achieve more scala-

ble software with stateless architecture.

2.2.2 Modeling Software State

One way to model software state is the finite-state machine (FSM). An FSM is an abstrac-

tion that models a machine that can be in exactly one state at a time. As its name implies,

an FSM has a finite number of possible states. For example, a simple elevator can only

-8-

be in one of three states: (1) going up, (2) going down, or (3) being still. The change of

state in FSMs is called a transition. Furthermore, a more modern elevator can be in a state

defined by the sequence of stops requested by its users. Similarly, stateful software can

be modeled by the finite number of its possible states at any time.

Statecharts are an extension to finite state machines with added hierarchical proper-

ties [Harel 1987]. With statecharts, finite state machines can be represented in a modular

and hierarchical way, with which it is simpler to see the state logic at a glance. While

infinite state machines and statecharts are a rather old concept, they are still used in com-

plex software state management architecture now. Figure 3 visualizes an Statechart rep-

resentation of an FSM model of a button that activates only when the above checkbox in

checked.

2.3 Web Applications

Web application is a software application that is accessible through web via an internet

browser. Web applications do not have to be installed separately, and they work with

most devices that have a modern browser. In recent years, the computational power of

browsers has increased significantly, which has led to a large focus shift towards web

applications.

The web has moved on from its original function of sharing documents and simple

multimedia content. Already in 2011, Taivalsaari et al. [2011] documented that the web

Figure 3 Statechart representation of a common UI element as an FSM model

-9-

had become the predominant application platform. They also foresaw the increase of pro-

gramming capabilities and interfaces in the web browser and the continuation of the trend

towards web-based software. As key characteristics that drove the application develop-

ment towards the web, they saw the lack of requirement for manual installation or manual

upgrades, instant worldwide deployment, and open application formats that enable com-

binations of content or mashups.

Another reason of the rise of the web has been the increased performance of the

browser and the JavaScript language, which have highly increased the user experience of

web applications [Taivalsaari and Mikkonen 2017; Wagner 2017].

Despite the recent growth of web-based applications, there have been worries on the

future of the viability of web applications. Mikkonen et al. [2019] have expressed worries

about the cornucopia, or abundance of features available for web development. All the

different APIs that provide abstractions to applications often contain very different de-

velopment styles and paradigms. This problem, if not treated appropriately, could even

lead to software application development moving away from web-based solutions.

2.3.1 Web Application Architecture Overview

Web application architecture includes the browser, the network, and the web server. The

browser sends HTTP requests to the server via the network infrastructure, to which the

server responds, again via the network (Figure 4). Thus, in the MVC model, the browser

takes care of the view, whereas the controller and the model can be distributed in any

number of ways between the client and the server. [Conallen 1999]

Modern web applications consist of three parts, each with their own responsibilities:

HTML (Hypertext Markup Language) that defines the semantic structure of the page in

a tree structure also known as the DOM (Document Object Model), CSS (Cascading Style

Sheets) that provides the visual style, and JavaScript that allows programmatic function-

ality of the web application.

Figure 4. Basic web architecture

-10-

2.3.2 Static and Dynamic Web Sites

Web sites can be divided into static and dynamic sites based on their functionality. A web

site is static if the content of the page is fixed with no changes to the HTML. The web

browser requests a specific web site from the server, and the server provides that specific

web site’s HTML content possibly with CSS and JavaScript. The content of the document

object model (DOM) that the browser creates from the HTML does not change at any

point of use.

Dynamic web sites, on the other hand, as the name implies, provide the user with

content that is dynamic; the content might change depending on, for example, the user,

the user’s interaction with the website, or the time of day. Dynamic web sites can use

either server-side scripting or client-side scripting for generating dynamic content.

Server-side scripting means that when a server receives a HTTP request from a browser,

it uses different parameters to generate a web site HTML file – possibly with a template

system – that is then served to the browser. Client-side scripting enables the manipulation

of the DOM tree, for example when a user clicks on an UI element. [Shklar and Rosen

2009, Ch 6]

While static web sites provide only plain information in graphical or textual means,

dynamic websites offer interactivity and dynamic content based on different parameters

such as the user who is currently using the web site, newest content, the location of the

user, or the time of day.

2.3.3 Web as an Application Platform

In the turn of the millennium, web development reached a turning point. More web de-

velopers started treating the web as a platform for social, interactive, dynamic, and elo-

quent applications rather than a collection of static web sites. This turning point was

coined web 2.0. [O'reilly 2009]

As web 2.0 started becoming the predominant use case of the internet, a term called

rich internet applications (RIA) was coined. The term refers to dynamic web sites that

work like desktop applications. Compared to the simple world of web 1.0, RIAs offered

more interactivity and richer, more satisfying user experience by scripts running in the

browser client. The research on RIAs peaked in the 2009 and has been in a steady decrease

since. In recent times, many of the features that have traditionally been described as RIA

features have become the norm in web applications. Therefore, the use of the term RIA

has largely decreased as well. [Casteleyn et al. 2014]

A more recent but similar term – progressive web applications (PWAs) – have re-

ceived hype in the web development community. PWAs are web applications that behave

similarly to native applications thanks to features like offline support, background syn-

chronization, and home screen installation. One main benefit of PWAs is that instead of

creating a separate native application for each different platform, the developers could

-11-

build one responsive web-based application that would work on any platform with tools

used in web development – HTML, CSS, and JavaScript. With PWAs, the end user can

use the application without installation with any device like a PC, mobile phone, or a

smart watch like they would a traditional installable application [Biørn-Hansen et al.

2017]. While large software companies such as Google has encouraged the use of PWAs,

they have raised concerns with issues related to security and privacy [Lee et al. 2018].

2.3.4 AJAX

AJAX (Asynchronous JavaScript and XML) is a client-side scripting technique that al-

lows the client browser to send HTTP requests to the server and modify the web page

content dynamically without reloading the whole page every time there is changes to the

page. With AJAX, after the initial HTTP request, the client could send requests in a form

of an XmlHttpRequest or JSON in the background, without any interruptions visible to

the user [Paulson 2005; Shklar and Rosen 2009]. AJAX web application architecture is

detailed in Figure 5.

With AJAX, it became possible to show changing content to the user without having

to refresh the whole page. Web sites could have UI elements that reacted to the input of

the user considerably faster compared to older techniques of reloading the page every

time there was any changes needed.

Although the term AJAX is not as often used anymore, the idea behind AJAX is a

cornerstone of modern web applications, and most modern web applications use AJAX

in some form. Perhaps the reason for the decrease of the term’s usage could be that it is

so universal that it does not need to be specifically mentioned when discussing web de-

velopment.

2.3.5 Single Page Application

With the emergence of AJAX, web applications gained potential for rarely needing to do

a complete refresh after the initial server request. A web application that only has to be

Figure 5. AJAX web application model

-12-

loaded once from the server and after that only uses techniques like AJAX for interactivity

and content generation is called a single page application or SPA. SPAs are built from

multiple parts that can be updated independently as to not require a full refresh of the

application. [Mesbah and van Deursen 2007]

The main purpose of SPAs is making web applications rely less on bandwidth speed

and server delay in order to make the applications faster and more interactive. The in-

crease in computing power of web browsers and the general rise of web application pop-

ularity are essential reasons for the rise of SPAs. [Jadhav et al. 2015]

SPAs do not usually simply follow the MVC pattern. Since the idea of SPAs is to

move as much functionality as possible from the server to the client, so is a lot of the

model and controller functionality moved to the client as well. Often SPAs follow the

Fractal MVC or FMVC model, which simply means that different parts of the application

contain their own MVC models while the application itself also has its own MVC model.

[Mikowski and Powell 2013, Ch 4]

In SPAs the application state dictates what the UI shows the user. When the user

clicks on a tab for example, the state changes so the tab content becomes visible. There

are many solutions to state management in SPAs and each development framework has

different ways of managing application state. One of the most used state management

models currently is Flux, which is developed by Facebook specifically for the React Ja-

vaScript framework [Tay 2019]. Flux is further presented in chapter 3.3.2.

2.3.6 JavaScript

While other client-side programming languages have been introduced over the past dec-

ades, JavaScript has maintained its place as the most used frontend language. JavaScript

is not the only language that runs on browsers, and some alternatives like WebAssembly

[WebAssembly 2021] have gained traction in the web development community. How-

ever, as JavaScript still is without a doubt the most popular client-side language, it is

highly relevant to study its current use. JavaScript is typically used according to the

ECMA (European Computer Manufacturers Association) standard ECMAScript [ECMA-

international 2021].

Whereas previously JavaScript was seen as a simple language to only write simple

scripts no longer than few lines, nowadays most websites rely fully on JavaScript. Not

only is JavaScript the dominant programming language in the UI side, recently it has also

expanded to server side as well with the Node.js framework [Node.js 2021]. This has

resulted in JavaScript becoming one of the most used programming languages in the

world [Taivalsaari and Mikkonen 2017; Mikkonen et al. 2019].

When web applications were still in their infancy, reusable components were already

recognized as one of the most useful and potent tools for web user interface (UI) devel-

opment [Myers et al. 2000]. Most web applications have started using component-based

-13-

architecture, where different components are connected via interfaces. Web site UIs are

often constructed from several reusable components and sub-components as building

blocks to compose the whole UI [Daniel et al. 2012]. With JavaScript, this has recently

been done with frameworks that provide a component APIs for building granular UIs.

2.3.7 JavaScript UI Frameworks

JavaScript is rarely used by itself. Often it is used with libraries like jQuery, which is

the most popular JavaScript library [w3techs 2021] that provides easier DOM tree tra-

versal and manipulation. While libraries like jQuery help bring interactivity to web ap-

plications, there has been a growing trend towards more holistic JavaScript frameworks

which not only make the JavaScript development easier and faster, but also give structure

and rigidity to the web applications.

The terms library and framework are used somewhat interchangeably in everyday

conversation and academic literature, but generally the word library will be used for im-

portable systems which provide different helpful functionalities – something a developer

can plug into their code whereas a framework is a more structural system – something a

developer can plug their code into. However, there is no consensus whether a system like

ReactJS is a library or a framework. On one hand it does not force the developer to any

rigid frame for development and is quite unopinionated on how the developer structures

their code, but on the other hand, it offers declarative solutions and inversion of control

for many common JavaScript functionalities. In this study, most libraries that offer more

than simple functionality – like ReactJS – will be referred to as “frameworks” for con-

sistency.

There have been some attempts at academically evaluating JavaScript frameworks by

authors such as Gizas et al. [2012], who compared the performance of seven JavaScript

frameworks in terms of size metrics, complexity metrics, and maintainability metrics.

Graziotin and Abrahamsson [2013] pointed out the importance of practitioner needs when

evaluating JavaScript frameworks. They argued that while metrics such as validation,

quality, and performance are seen as important for researchers, actual practitioners typi-

cally value metrics such as documentation, community, and pragmatics which ought to

be studied as well.

According to the State of JS 2020 survey [Greif and Benitte 2021], three JavaScript

frontend frameworks were noticeably more used than the rest: React, Angular, and Vue.

The survey was answered by 23,765 developers. Here will be given an overview of the

three frameworks.

ReactJS, also known as React, is a frontend framework developed by Facebook [Fa-

cebook Open Source 2021a]. React is a somewhat unopinionated framework as it does

not force the user to use any specific state management or architectural style. React uses

its own HTML-like syntax for building the DOM tree called JSX (JavaScript XML). JSX

-14-

is similar to a templating language, but it is in fact only syntactic sugar for React that gets

transformed to regular JavaScript by the React engine. React applications can be divided

into components with each component having the possibility to have its own state. React

uses its own virtual DOM to update the HTML of its components. React does not have

an enforced way of global state management, so the developer must make a decision to

use, for example, libraries like Redux or MobX or sharing local states with the context

API. Thus, React is mainly concerned with the view part of MVC.

Angular [Google 2021] is a JavaScript framework led by its team at Google. When

Angular 2 was released in 2016, it had changed so much that the developers decided to

make it its own product instead of a new version of the original Angular. This resulted in

the existence of two distinct Angular frameworks: the original (now known as AngularJS)

and Angular 2 (now known as Angular). Angular applications consist of components also.

For DOM manipulation, Angular uses HTML extended with additional syntax for tem-

plating, and automatically changes the DOM when the component state changes. Com-

pared to React, Angular offers more rigid environment and less configuration. Whereas

in React, the developer is free to select any libraries and packages for any product, angular

is more opinionated.

Vue.js, or simply Vue [You 2021], is a lightweight JavaScript frontend framework

that only focuses on the view part of MVC. As such, Vue is comparatively simple to just

plug into an already existing web application. Vue components are built with HTML-

based templates, and Vue is claimed to be faster than its alternatives thanks to its light

weight and optimization.

Additionally, there are numerous other frontend UI frameworks and libraries that

have various amounts of support and popularity. The large amount of web frameworks

and their overlap with each other can make it difficult for developers to decide which one

to use. This oversupply of frameworks has led some researchers like Mikkonen et al.

[2019] to predict a possible decrease in their role as drivers for web application evolution

as the frameworks often get replaced by other frameworks and abandoned.

Another tool that is often used with JavaScript is TypeScript [Microsoft 2021]. Ja-

vaScript infamously has dynamic typing, which means that any time a variable is declared,

the developer does not have to define the type of that variable because the language infers

it. The type of that variable can then later be changed if it is reassigned as the name dy-

namic typing suggests. This can lead to many issues such as difficult to detect bugs and

unexpected behavior. While dynamic typing was specifically chosen to make JavaScript

development simpler for the developer, the disadvantages of dynamic typing have been

felt to be too large compared to the advantages and the developers have begun to move

-15-

towards static typing with tools such as TypeScript. TypeScript is an open-source lan-

guage that enforces static typing in JavaScript by adding type definitions to it. While in

JavaScript, a variable is declared simply as:

let a = false;

In TypeScript with the type declaration is included in the variable declaration:

let a: boolean = false;

TypeScript validates the JavaScript code by checking for any type errors. TypeScript code

is transformed into JavaScript code, which means it can be run anywhere where JavaS-

cript code runs.

-16-

3 React UI Framework

React was published and open sourced at the JSConf US 2013 conference [Occhino and

Walke 2013]. The early development of React was done by engineers at Facebook. The

main objective of React was to offer a light UI JavaScript framework that was unopin-

ionated and fast. In 2020, React was the most used JavaScript UI framework [Greif and

Benitte 2021].

In this chapter, React is firstly introduced in a general way including the JSX syntax

and relevant tools. Secondly, React function components and class components are cov-

ered, Then finally React state management is discussed.

3.1 React Overview

React takes care of the view portion of the MVC model. As such, the Model and Control

aspects of React applications can be built with any architectural model. The main function

of React is to visually present the model of an application UI including dynamic data, and

when that data changes, React updates the view accordingly. React UIs are composed of

reusable components and their interfaces which they use to communicate [Hunt 2013].

Instead of templates, React uses its own syntax, JSX, to present and refresh the data

contained in them. While JSX resembles HTML visually, it is actually only syntactic

sugar for creating JavaScript elements. Therefore, the trivial code examples Example 1

and Example 2 are compiled as identical by React [Facebook Open Source 2021c]. When

the data included in the components change, React calculates the difference of the old and

new rendered content and updates only the parts of the UI that have changed data in them

[Hunt 2013].

const name = 'Bob';

return (

 React.createElement(

 'div',

 {className: 'greetingContainer'},

 'hello ' + name

);

);

Example 1. React element using React.createElement

const name = 'Bob';

return(

 <div className='greetingContainer'>

 hello {name}

 </div>

);

Example 2. React element using JSX

-17-

React applications are often built with the help of toolchains. React itself provides the

Create React App, which is a simple toolchain for SPAs, but there are others like Next.js

and Gatsby as well. Toolchains allow simple management and deployment of React ap-

plications. They usually include a package manager like npm or Yarn, a bundler like

webpack, and a compiler like Babel.

The package manager allows the developers to include 3rd party packages to their

application, the bundler bundles the modular core of the application into smaller packages

for optimization, and the compiler transfers the JavaScript code to a form that works on

older browsers [Facebook Open Source 2021d].

React allows one-way data binding between the view and the model. When a user

interacts with the view, for example by clicking a checkbox, the data regarding the inter-

action is sent to the model from an event handler function. On the other hand, if something

changes inside the state of the model, it can change the state of the view accordingly.

Two-way data binding – a feature that is used in some other frameworks for binding a

part of the application model to its view and updating the view every time the model is

updated and vice versa – is not supported by React.

In order to conduct DOM updates, attribute manipulation, and event handling, React

uses a pattern called virtual DOM (VDOM). VDOM is a virtual representation of the

actual DOM that is stored in the application memory. With VDOM, the developer can

write DOM manipulation in a declarative way and React handles the actual DOM updates

visible in the UI via the VDOM.

3.2 Components

React applications comprise of reusable components that have import interfaces and ex-

port interfaces. Parent components can send parameters – props – to child components.

Props can then be used by the child component similarly to how typical functions use

parameters. There are two ways of writing components: class-based and function-based

[Facebook Open Source 2021e].

Each component has a lifecycle consisting of mounting, updating, and unmounting

[Facebook Open Source 2021e]. Mounting happens at the initial render. Most data fetch-

ing and other side effects typically happen right after mounting. Updating happens when

some data state inside the component changes and the component has to be rerendered.

Unmounting happens when a component is closed. Aborting ongoing network request

calls and other cleanup is typically done at unmount time.

3.2.1 Class Components

Class components used to be the only way to include state and lifecycle methods in React

components since function components did not have those features until somewhat re-

cently. React class components are written as regular ES6 classes. They may contain

-18-

functions, variables, props, and state accessible with the this-keyword. Example 3 shows

a typical React class component syntax.

class Greeting extends React.Component {

 render() {

 <div>hello {this.props.name}<div>

 }

}

Example 3. React class component

3.2.2 Function Components

Traditionally function components were used for simple components that did not require

interactivity or other complicated functionality. With the introduction hooks, function

components have become practically de facto standard way of writing components [Fa-

cebook Open Source 2021f]. Function components are seen as simpler with less boiler-

plate code and no need for this-keyword. In example 4, functional component composi-

tion is presented. Even in this trivial example, the simpler form of function component

can be observed (cf. example 3).

function Greeting(props) {

 return <div>hello {props.name}<div>

}

Example 4. React function component

Since the introduction of hooks to React, function components have gained most of

the functionality of class components like state and lifecycle management. As a result of

this and the fact that class components are seen as more complicated than function com-

ponents, function components have become the preferred component type [Facebook

Open Source 2021f].

3.2.3 Function Components With Hooks

In function components, increasingly important features of single page web applications

like state and lifecycle management used to not be possible. On the other hand, while

these features were present in class components, they often had increased complexity and

length due to required boilerplate code. Also, this-keyword and handler binding in class

components was seen as complicated and undesirable. This made it difficult to write com-

pact and decoupled components that were able to manage state and lifecycle.

React solved this issue by presenting a feature called hooks to React in October 2018.

Hooks were a way to easily add state management, lifecycle management and other pro-

cedural features to function components, effectively bringing the beginning to the end for

class components [Facebook Open Source 2021f].

-19-

Hooks are functions that add more features to React functional components by “hook-

ing into” some functionality, which the function component then uses to render a view

for the user. Hooks always start with use-keyword [Facebook Open Source 2021f]. With

basic React comes ten built-in hooks (Table 1) and a possibility of writing own custom

hooks.

Hook Purpose

useState Saving and updating a stateful value

useEffect Running effectful code after every completed render or when

certain values change

useContext Accessing a context value of a context object

useReducer useState alternative with reducer functionality

useCallback Creating callbacks with memoization optimization

useMemo Creating values with memoization optimization

useRef Storing mutable values

useImperativeHandle Customizing instance value exposed to parent components

when using ref

useLayoutEffect useEffect alternative that fires synchronously after all DOM

mutations

useDebugValue Displaying a label for custom hooks in React DevTools

Table 1 React built-in Hooks

If the developer needs some additional, more complex, functionality to their compo-

nents, they have the possibility to write custom hooks. Custom hooks take advantage of

built-in hooks to let the developers write, for example, side effects or stateful logic that

can be shared between components. Several 3rd party libraries have also started offering

hooks to use as interfaces to simply hook into the functionality they provide.

3.3 Component Lifecycle

In class components, the component lifecycle is handled by defining what happens at each

point of the component’s lifecycle with different lifecycle methods (Figure 6). The lifecy-

cle methods can be divided into three categories: mounting, updating, and unmounting.

These methods run at particular times in the component lifecycle process. For example,

in the componentDidMount method, all the functionalities that happens immediately after

a component is mounted would be written. In addition to the lifecycle methods presented

in Figure , three additional lifecycle methods – componentWillMount, compo-

nentWillUpdate, and componentWillReceiveProps – exist, but have been deemed unsafe

and recommended to avoid while still kept in the framework as legacy methods.

-20-

With hooks, on the other hand, the lifecycle of a component is managed with just two

hooks that are similar to each other: useEffect and useLayoutEffect (Figure 7). Code given

to them runs at the mounting of the component as well as every time its dependencies

change, and then performs the given clean-up function when the component unmounts.

Two identical components are presented, first written as a class component, second as

function component in Example 5.

Figure 6. Class component lifecycle

Figure 6 Class component lifecycle [Abramov 2018]

Figure 7 Function component lifecycle with hooks [Margalit 2021]

-21-

// ### Example class component ###

class ExampleClassComponent extends React.Component {

 componentDidMount() {

 console.log("component mounted");

 }

 componentWillUnmount() {

 console.log("Component unmounts.");

 }

 render() {

 return <h1>Hello World</h1>;

 }

};

// ### Example function component ###

const ExampleFunctionComponent = () => {

 useEffect(() => {

 console.log("component mounted");

 return (() => {

 console.log("Component unmounts.");

 })

 }, []);

 return <h1>Hello World</h1>;

};

Example 5. Lifecycle comparison of class and function components

3.4 React State Management

The idea behind SPAs is supported by state management. SPAs would lose almost all

their interactivity if there were no state management. Two main questions have risen

when building stateful applications in React: How to hold state information locally inside

a component, and how to share state between components.

While Happe et al. [2014] divided software state into three categories: component-

specific, system-specific, and user-specific state, Frontend software state is usually di-

vided into just local state and global state which map into component-specific and system-

specific, respectively while user-specific state data is typically stored in either local or

global state. This mapping gets a little hazy when taking into consideration the fact that

local state is shareable between components either from parent component to child com-

ponent via props or via context from any part of the component tree to any other part.

Thus, the question arises whether or not this shared local state is still part of the compo-

nent-specific state or if it then becomes system-specific state. Typically, in React, local

state is used in state data that is scoped only inside one single component, whereas global

state includes data that several components depend on. For example, the state of a text

field component would most likely be only stored in the local state of the component

whereas a theme selection affecting the colors and other appearance factors of the whole

application would be saved in the global state.

-22-

3.4.1 Local State

In class components, each component has a single local state object accessible by

this.state and mutable by this.setState function. The state must be assigned

in the constructor method of a class component in order to be usable in that component.

State is stored in a form of a JavaScript key-value object.

Before hooks were introduced, it was not possible to save local state in a function

component. The introduction of the useState hook allowed function components to have

local state. The useState hook returns a value and a setter function for that value, which

the program can call to change the state of that specific state value (typically triggered by

an event or a useEffect-hook) [Facebook Open Source 2021g]. This is more compact

compared to class functions where the state has to be managed as one single object for

the whole component.

3.4.2 Global State Management with Redux

While component’s local state management is relatively straight-forward, SPAs’ increas-

ingly growing need for application’s shared state presents a more complicated question.

Afterall, components need to communicate with each other via some type of interface –

not only parents with children and vice versa, but sibling to sibling and largely separated

components as well. Originally the main method of shared state in React was parent com-

ponents sending stateful data to children via props. This often resulted in a large number

of props being sent down the DOM tree to child components. If the components were far

away from each other in the DOM, they had to be sent through many layers of child

components before finally reaching the component that used that data. This was known

as prop drilling.

As the development philosophy of React is to strictly manage the view part of MVC

in an unopinionated manner, it does not offer any native solutions to global state manage-

ment. Perhaps due to this, there are a large number of external libraries and solutions for

state management today, most prominently Redux, MobX, Recoil.

The global state management library Redux utilizes the Flux-pattern developed orig-

inally at Facebook [Abramov 2021]. In Flux, the application has one store, where the

state is saved. This store is then accessed by actions via a dispatcher and finally the view

is updated according to the changes in the store state. Furthermore, when a view is

changed in certain ways, an action can be sent to the dispatcher to change the state again

(Figure 8). Due to the rigid nature of Flux, developers have to write a relatively high

amount of code: for every stateful action, developers must write an action creator, an

action, and a reducer that calculates a new state whenever an action is dispatched to the

store with all the included boilerplate code.

Redux does not natively support asynchronous operations as part of dispatching ac-

tions. Popular solution for this issue is the library redux-thunk [Hanh 2021]. With redux-

-23-

thunk, asynchronous operations such as data retrieval can be sent as a part of the action

to the dispatcher, making state management with Redux more flexible for different uses.

Some third party data fetching libraries also have state management capabilities. For

example, Apollo-library uses GraphQL to fetch data from a remote server and saves it

into cache as a type of state [Apollo 2021]. Similar cache-based data fetching/state man-

agement libraries for React include React-Query [Linsley 2021a] and SWR [SWR 2021],

which work with REST and Promise queries as well as GraphQL [Linsley 2021b].

3.4.3 Other Global State Management Libraries

MobX [MobX 2021] uses similar model to Redux but is claimed to be simpler and more

compact while requiring less boilerplate code. On the other hand, it has a smaller com-

munity, and it supports impure functions, which can lead to unpredictable problems.

Recoil is a newer solution for global state management from Facebook [Facebook

Open Source 2021h]. Instead of having many complicated parts like Redux does, Recoil

comprises only of atoms and selectors. Atoms are pieces of state that can be read from

and written to from any component. Any time an atom updates, any component that sub-

scribe to it will be rerendered. Selectors are state functions that derive the state from an-

other state modified by some pure function.

One solution for state sharing between components is using context API for sharing

local states. Context is a built-in solution for React to share variables and other data be-

tween components that are not necessarily related to each other. Using context for global

state management is not strictly speaking global state management since it does not store

or manage any separate state data by itself; it is merely a transport mechanism. However,

in many applications global state management is wholly replaced by local state manage-

ment sharing with context.

One particularly curious state management solution that has gained popularity lately

is react-query [Linsley 2021c]. React-query separates client state from server state. Most

global state management tools are able to handle client state quite well, but are not

Figure 8 Flux architecture

-24-

equipped to manage server state, or the changing data that is saved in the server. The data

has to be retrieved with asynchronous operations and updating the changing data is chal-

lenging. With solutions like react-query, the developer can simply tell the library what

data needs to be fetched and the location of that data via the library API, and the library

handles keeping that data up to date with the server state.

XState [2021] is another state management solution that has received attention during

recent times. XState is a JavaScript library that utilizes finite state machines and

statecharts to handle state in JavaScript applications. XState itself works on several plat-

forms including React. It has been claimed to be helpful when describing the behavior of

an application and implementing it according to that model.

One might think the above list of global state management solutions is already quite

extensive but in reality, it is only scratching the surface of the numerous state manage-

ment options available for developers. Despite the number of solutions available, the re-

cent trend of global state management in React seems to steer towards simpler solutions

that enable developers to write code faster without bothering with boilerplate code and

unneeded logic that can be abstracted away. Since the introduction of hooks to React,

almost every active state management library has started providing hook-based APIs to

accommodate to new function component focused React development.

-25-

4 Research Methods

Myers and Stylos [2016] argue that API usability is a crucial element that might dictate

whether an API will be successful or not. Myers and Stylos suggest that APIs with poor

usability are difficult to change later down their lifecycle since it might affect existing

code bases that use those APIs, which is why APIs ought to be published only after their

usability has been tested and evaluated.

The aim of this study is to evaluate the usability of React hooks as an API from dif-

ferent perspectives. Myers and Stylos [2016] maintain that a good way of evaluating the

usability of APIs is to use the popular Nielsen’s heuristic evaluation method, which is

typically used in user interface evaluation. In this study, Nielsen’s [1994] ten heuristics

(Table 2) will be used for supporting the usability evaluation of React hooks.

Usability Heuristic Example in API context

1 Visibility of system status Ease of checking state; feedback for

mismatches between state and opera-

tions

2 Match between system and the real

world

Logical method names and organiza-

tion into classes

3 User control and freedom Aborting and resetting operations

4 Consistency and standards Consistency throughout the API

5 Error prevention Good default operations; coherency

6 Recognition rather than recall Autocomplete-friendliness

7 Flexibility and efficiency of use Efficient use of API

8 Aesthetic and minimalist design Small number of classes, methods

9 Help users recognize, diagnose, and

recover from errors

Explanatory error messages

10 Help and documentation Adequate documentation

Table 2 Nielsen's Usability Heuristics in API context [Myers and Stylos 2016]

The study was conducted in two parts: case study and developer interviews. This was

done due to the need to inspect hooks-based state management from two distinct angles:

Firstly, the code-specific angle in which the hooks-based model will be examined by

simply different aspects of the structuring and logic of the code that uses it according to

heuristics, and secondly, actual experiences and opinions of React developers who have

had professional experience with hooks-based state management.

This chapter will present the case study and the developer interviews, and their anal-

ysis in more detail. For the developer interviews, firstly the purpose of the interviews will

be presented, then the selection of the interview participants will be discussed, and finally

the interview data analysis will be presented.

-26-

4.1 Case Study

In the case study part, local state management was inspected by comparing class compo-

nents to function components with hooks. Two versions of identically working compo-

nents were created and inspected: one class component and one function component.

Then, they were analyzed from different aspects such as readability, code line count, and

other factors based on the API usability evaluation methods presented by Myers an Stylos

[2016].

 The code written for the case study included software components that were part of

an enterprise and industrial automation research prototype application developed at Nokia

Bell Labs. The application was developed in collaboration with different development

teams across the corporation. The main purpose of the application is supervision and sur-

veillance of various enterprise facilities. The parts included in the case study were func-

tionally only generic ones such as basic controls and panels that have been approved for

publication for this thesis paper. The case study components were written by the thesis

writer during his traineeship at Nokia Bell Labs from September 2020 to March 2021.

The case study included three components and their subcomponents. The three com-

ponents were (1) DateTimeDisplay (Appendix 1 & 2), a component that displays the cur-

rent time and date to the user, (2) LoginView (Appendix 3 & 4), a component, which

includes input fields for username and password and some additional functionality, and

(3) UserPreferencesWindow (Appendix 5 & 6), a panel, in which the user can change

basic settings related to their preferences such as the color theme, video quality, temper-

ature units (Celsius or Fahrenheit), and the display language. These components were

chosen for this case study because they represent different aspects of possible React com-

ponents and have different functionalities to present different aspects of class-based and

function-based component architecture and their qualities. In addition to React version

16 and JavaScript, the components used for the analysis use TypeScript for strict static

typing and Redux for global state management.

The usability of hooks was evaluated using the application of Nielsen’s ten heuristics

[Nielsen 1994] for API usability evaluation by Myers and Stylos [2016]. The usability of

hooks in the components was inspected from the viewpoint of the ten heuristics and found

usability issues were assigned to the relevant heuristics.

4.2 Developer Interviews

In the interview part, six React developers were interviewed for their experiences with

state management in React. The interviews were exploratory and semi-structured. As a

semi-structured interview, the data was qualitative in nature. The aim of the interviews

was gaining understanding of the developers’ opinions, habits, and programming meth-

ods related to state management and functional components. Some studies have been

-27-

done on interview-based API usability evaluation. One such study that was also used as

an inspiration for this interview was done by Piccioni et al. [2013]. In their research, they

interviewed 25 participants on four API usability aspects: understandability, abstraction,

reusability, and learnability. They found that issues such as naming API features, discov-

ering relations between types of the API, and availability and quality of documentation

had an impact on API usability.

Semi-structured interview method was chosen because the interviewer was also ex-

perienced in React development and as a result could handle the conversation and ask

follow-up questions and clarifications. The purpose of the interviews was to gather infor-

mation on firstly, the habits and experiences of react developers including organizational

and practical issues related to state management, and secondly, opinions and more per-

sonal thoughts of the developers on React state management and web application devel-

opment.

As there has been little this type of usability

research focusing on JavaScript APIs, the

grounded theory methodology was chosen for

this research. As defined by Martin and Turner

[1986], grounded theory allows the researcher

to develop a theoretical account of the general

features of a topic while simultaneously ground-

ing the account in empirical observations or

data. Using grounded theory, the aim of the in-

terviews was to gather data in a holistic manner

to create understanding and structure of the un-

derlying elements of the research topic.

4.2.1 Participants

Before looking for the interviewees, the screen-

ing criteria was prepared. It was decided that to

participate in this interview, the person ought to

have professional experience with React since

the interviews aimed to gain understanding of

the practical working methodology of React de-

velopers as well.

The search for interviewees happened in a

few different ways. The first method to find in-

terview participants was to ask around the pro-

ject work team at Nokia Bell Labs, which is

how the first two participants were found. After

JavaScript experience

2-5 years 5-10 years

10-15 years More than 15 years

Figure 9 JavaScript experience of the

interview participants

React experience

1-2 years 2-4 years More than 4 years

Figure 10 React experience of the in-

terview participants

-28-

this, an interview invitation was sent around to different parties such as university lectur-

ers of relevant classes and personal acquaintances. Among a handful of responses, two

additional suitable interviewees were found this way. Finally, a message was sent on a

Slack group of a local React conference, where two more interviewees were found. The

interviewees residing in Finland were given a reward of a 15-euro gift card to a local food

delivery service. At the end of each interview, the interviewees were asked if they hap-

pened to know any potential interview participants, but finally any additional interview-

ees were not found with this “snowball sampling” method [Goodman 1961].

The interviewees comprised of React developers aged 26-46 living in Finland, the

United States of America, and Austria. They had JavaScript experience ranging from 2

years to more than 15 years (Figure 9) and React experience from 1.5 years to over 6

years (Figure 10). Some participants also held experience in other frontend JavaScript

frameworks such as Vue, Angular, Svelte, Preact, and Ember. The interviewees ranged

from students who had moderate React experience to professional developers who had

been working with React since its release and some who had participated in organizing

React conferences and had been deeply involved in the React developer scene.

The interview participants held overall positive attitudes towards React and React

hooks according to the pre-interview form. When asked whether they would recommend

React to a colleague, three answered “agree” and three answered “strongly agree”. For

the claim React is moving in the right direction, the categories “can’t say”, “agree”, and

“strongly agree” each had two answers. The participants were generally satisfied with

React architecture and the way hooks fixed class components in React. For the learnabil-

ity of hooks, the participants were more divided, with four answering “agree”, one an-

swering “can’t say”, and one answering “disagree”.

4.2.2 Data Collection

Before the interview, the interview participants were asked to fill a short pre-interview

form (Appendix 7) for purposes of auditing and recording the basic characteristics like

age, location, and experience levels of the participants as well as recording their views on

React development in a general and quantitative manner.

The interviews were conducted as video teleconferences due to the COVID-19 pan-

demic and geographical distances. The length of the interviews ranged approximately

from 40 minutes to 65 minutes. The interviews followed a semi-structured format. An

interview guide partly inspired by the API usability interviews by Piccioni et al. [2013]

listing the most important themes was prepared before the interviews (Appendix 8), but

a large part of the discussion occurred by following up on concepts and ideas that emerged

during the interviews. The interviews took place from January 2021 to March 2021.

The interviews begun with a short unrecorded chat between the interviewer and the

participant, after which the recording was started. The interview generally started with

-29-

basic question about the participant’s experiences and opinions of web development and

React before moving into more detailed topics. The interviews varied somewhat based on

the expertise of the participants. For example, if a participant was especially knowledge-

able in the global state management aspect of React development, more time was spent

on that topic. It could clearly be seen that most developers preferred to talk about the

topics by reflecting on their past projects and based on their concrete experiences of those

projects rather than abstract ideas and concepts. By reflecting on past projects, the devel-

opers were able to convey their thoughts and opinions and base them on real experiences.

At the end of the interview, the participants were asked if they had any additional com-

ment or questions, which sometimes resulted in very important information that was not

covered by the actual interview.

4.2.3 Data Analysis

 The interviews were recorded and transcribed to a text form for detailed analysis. The

transcription happened by the interviewer by listening to the recordings and transcribing

them into a text document. Since the focus of the interviews was not on the manner of

speech of the interview participants, filler words and pauses were not transcribed, and

focus was placed on accurately transcribing the actual ideas expressed during the inter-

view without making any changes to the speech content.

 The analysis was done by extracting ideas that emerged during the interview. After

transcription, the interviews were transformed into an Excel spreadsheet and coded ac-

cording to their themes as detailed by Meyer and Avery [2009]. The categories for the

coding were generated by browsing through the transcripts and writing down categories

that came up frequently during the interviews (Table 3). These categories partly lined up

with the themes that were prepared beforehand, but also were formed by the concepts that

emerged from the interviews organically. Each concept that came up in the interview was

categorized into one, two, or three categories.

Several specific usability issues were mentioned by the interview participants. Usa-

bility issues mentioned by the interviewed developers were mapped to the API usability

application of Nielsen’s ten usability heuristics [Nielsen 1994] of Myers and Stylos

[2016] in order to see what heuristics the mentioned usability issues represented and what

aspects of usability were weakened or benefitted the most by hooks

-30-

Category n Explanation

Personal (pe) 41 Personal experiences with web development

react overall (ro) 58 High-level React experiences and opinions

other frameworks (of) 32 Experiences with other JavaScript frameworks

react architecture (ra) 31 Component architecture of React

react performance (rp) 14 Computational performance and optimization

of react

hooks overall (ho) 41 High-level experiences and opinions of hooks

Lifecycle (lc) 61 Function and class component lifecycle man-

agement

function components (fc) 60 Experiences on function component -based Re-

act development

custom hooks (ch) 21 Experiences with custom hooks

Third party hooks (3p) 19 Experiences with third party hooks

readability and memory (rm) 25 Readability and memory load requirement of

hooks-based React

Collaboration (co) 8 Collaboration with hooks

learning & documentation

(ld)

38 Learning and documentation of React and

hooks

Ecosystem (es) 24 React ecosystem, effect on use of hooks

frontend testing (ft) 34 Effect of hooks-based development on testing

hooks adaptation (ha) 25 Adaptation to hooks-based development

refactoring components (rc) 32 Experiences with refactoring React applica-

tions, effect of hooks on refactoring

Global state (gs) 44 React global state management solutions

Table 3 Interview categories and number of appearances

-31-

5 Case Study

In this chapter, the results of the case study will be presented and analyzed. The case study

includes three UI components: the DateTimeDisplay-component, the LoginView-compo-

nent, and the UserPreferencesWindow-component. All of them were written with the

style of class components and the more modern style of function components using hooks.

The components and their source lines of code (SLOC) are presented in Table 3, where

the additional length and complexity of class components can already be seen.

Component Class SLOC Function SLOC

DateTimeDisplay 56 45

LoginView 198 176

UserPreferencesWindow 318 287

Table 4 Relevant components and their source lines of code

5.1 Component 1: DateTimeDisplay

The function of the DateTimeDisplay-component (Figure 11) is to show the current time

and date to the user. The time is displayed in current time and it rerenders once a second

to show the current time by the second to the user.

Right after the component is first defined, the local state of the component is initiated

including the current time and date, and the width of the time string for presentation pur-

poses. In the class-based version of the component, the state is one object located within

the component and accessible with the this-keyword. It is initialized in the constructor

method, which is run before the initial render and additionally binds the incoming props

to the this-keyword with the function super(props). Most of the typing information for

the code snippets is declared as any for ease of reading.

export class DateTimeDisplay extends React.Component<any, any>{

 constructor(props: any) {

 super(props);

 this.state = {

 dateTime: this.formatDateTime(new Date()),

 widthOfTimeString: ''

 };

 };

 // […]

}

Snippet 1 State initialization in the class-based DateTimeDisplay component

Figure 11 DateTimeDisplay-component

-32-

In the function version of the DateTimeDisplay component, it is possible to initialize

the two state values as their own variables with the built-in useState hook. The hook takes

the initial state value as a parameter and returns a pair of values: the state value itself, and

a function that updates it. For example, in the first useState call in Snippet 2, the hook is

called with the parameter formatDateTime(new Date()), which is a function re-

turning the date in a desired string format. This is placed as the initial state. The hook

then returns values dateTime, which is the current state, and setDateTime, which is

the function that can be called to change the state.

export function DateTimeDisplay(props: any): JSX.Element {

 const [dateTime, setDateTime] = useState(formatDateTime(new Date()));

 const [widthOfTimeString, setWidthOfTimeString] = useState('');

 // […]

}

Snippet 2 State initialization in the function based DateTimeDisplay component

After the state initialization, and the initial render of the component has happened, an

interval function will be set. The interval function runs once per second and it updates the

time and date states as needed. Furthermore, the interval must be cleared if the component

unmounts for any reason so that it will not continue running in the background. In the

component function (Snippet 3), this will be achieved with the class component lifecycle

methods componentDidMount and componentWillUnmount.

In the function component (Snippet 4), the same is achieved with just one hook:

useEffect. useEffect takes as parameter two values, firstly a function and secondly an

array of dependable values. The function will then be run any time there is changes to any

of the dependent values as well as after the initial rendering of the component. In this

case, the dependent array is left as an empty array [], which indicates that the function

shall be run only after the initial render. The returned function will be run on component

unmount, similarly to the componentWillUnmount-method in the class component.

private intervalId: NodeJS.Timeout | undefined;

componentDidMount() {

 this.intervalId = setInterval(() => {

 this.setState({

 dateAndTimeStrings: this.formatDateAndTimeStrings(new Date()),

 });

 }, 1000);

 }

 componentWillUnmount() {

 if (this.intervalId) {

 clearInterval(this.intervalId);

 }

}

Snippet 3 Setting up an interval in the class-based DateTimeDisplay component

-33-

useEffect(() => {

 const intervalId: NodeJS.Timeout = setInterval(() => {

 setDateTime(formatDateAndTimeStrings(new Date()));

 }, 1000);

 return () => clearInterval(intervalId);

}, []); }

Snippet 4 Setting up an interval in the class-based DateTimeDisplay component

Finally, the date and time is presented in the return-clause of the component in JSX syn-

tax. The JSX itself is identical in function and class components except for the use of

this-keyword in the state object in the case of the class component.

return (

 <div

 <div style={ { minWidth: this.state.widthOfTimeString } } >

 { this.state.dateTime.time }

 </div>

 <div>{ this.state.dateTime.date }</div>

 </div>

);

Snippet 5 this.state declaration needed in returned value of class components

Two issues have been identified in the DateTimeDisplay component. Firstly, the man-

agement of the single local state value that is bound to this keyword in class components

requires more code than the useState hook approach. Secondly, the lifecycle management

of the component with the useEffect hook requires less code and the mounting and un-

mounting functions are all done in the same block, whereas in the class component the

mounting and unmounting functionality is tied to their own lifecycle methods and the

intervalId variable must be declared as a class variable instead of a local constant as in

the function component.

5.2 Component 2: LoginView

The LoginView-component is a very typical UI component that the user of the application

uses to input their credentials and access the application if the credentials are correct (Fig-

ure 12).

Figure 12 LoginView component

-34-

The component has four state values: credentials, error, loading, and disabled (Table

5), which are defined in the same way as in the DateTimeDisplay component (Snippet 1,

Snippet 2). One main difference of the LoginView is that it has two event handler func-

tions, handleInputChange and handleSubmit. In the function component, they can easily

be implemented as regular functions, whereas in the class version, they are implemented

as class methods.

State variable Explanation

credentials Object containing the inputted username and password

error String error message shown to the user if not empty

loading Boolean value whether the system is loading, shows animation if true

disabled Boolean value whether button disabled (when field empty)

Table 5 State values in LoginView

There are a few important things to be pointed out. Firstly, in the Snippet 6, the added

boilerplate code due to the binding of the methods to the class via the this-keyword is

visible. This is not necessary in function components. Secondly, the binding of Redux

state and actions to the component props via the connect-function (Snippet 7). In function

components, the dispatch function can be directly called without needing to map it to

props.

class LoginView extends React.Component<any, any>{

 constructor(props: any) {

 super(props);

 this.state = {

 […]

 };

 this.handleInputChange = this.handleInputChange.bind(this);

 this.handleSubmit = this.handleSubmit.bind(this);

 }

 async handleSubmit(e) {

 […]

 }

 // […]

 this.props.preferenceUserSet(response.userName)

 // […]

 const i18n: I18n = this.props.i18n;

 // […]

}

const mapStateToProps = (state: RootState) => ({

 i18n: state.preferenceSettings.i18n

});

const mapDispatchToProps = (dispatch: AppDispatch) => ({

 preferenceUserSet: (u: any) => dispatch(preferenceUserSet(u)),

 appMessageDisplay: (m: any) => dispatch(appMessageDisplay(m)),

 preferenceSet: (p: any) => dispatch(preferenceSet(p))

});

export default connect(mapStateToProps, mapDispatchToProps)(LoginView);

Snippet 6 Class component: Binding and using methods, state, and dispatch actions

-35-

export function LoginView(): JSX.Element {

 const dispatch = useDispatch();

 const i18n: I18n = useSelector((state) => state.preferenceSettings.i18n);

 […]

 dispatch(preferenceUserSet(response.userName));

 […]

 const handleSubmit = async (e) => {

 […]

 }

}

Snippet 7 Function component: No need to bind anything to the component

Lastly, like in the DateTimeDisplay component, local state in class components is

managed by the setState function that is bound to the this-keyword. In function compo-

nents, on the other hand, the useState values can individually be edited with their specific

function returned by the hook with less boilerplate code.

In the LoginView component, the added boilerplate code of class components due to

having to bind class methods and Redux functions to the class explicitly can be clearly

observed. In the function version, the Redux functions and component functions can be

used directly, without binding it to this reducing the amount of code needed for the same

component.

5.3 Component 3: UserPreferencesWindow

The UserPreferencesWindow (Figure 13) is a component that lets the user select different

use settings according to their preferences. The component includes two tabs: General

and Language and Region. The user can change settings like the color theme of the ap-

plication, the video quality of the embedded video streams and others. The interactions

are instantly dispatched to the Redux-store and visible to the user. For example, if the

user changes the color theme of the application, the new theme will be instantly dis-

patched to the Redux store and the server-side user profile.

Figure 13 UserPreferencesWindow

-36-

The same issues that were visible in class-based DateTimeDisplay and LoginView

components are also present in the class version of the UserPreferencesWindow. The

added boilerplate code due to method binding and Redux dispatch mapping to props, the

confusing use of this-keyword (49 appearances in the source code) was also present in

the UserPreferencesWindow component.

Perhaps the most interesting bit of the functional version of the UserPreferencesWin-

dow was the inclusion of one custom hook usePreference (Snippet 8). This custom hook

takes no parameters and returns a state value including the currently chosen user prefer-

ence settings and a function that changes that value similarly to the useState hook. Addi-

tionally, the custom hook sends the changed state to the redux store and the backend

server any time changes are made to the preferences state. The hook uses built-in hooks

useState and useEffect to achieve this functionality. This hook than then be reused by

different components that need to alter or retrieve the user preferences. In the class com-

ponent, on the other hand, these operations had to be done as part of event handlers. As

such, they can be difficult to make reusable, and are scattered in different parts of the

source code file.

function usePreference() {

 const prefsFromStore = useSelector(state => state.prefSettings.userPrefs);

 const [prefs, setPrefs] = useState(prefsFromStore);

 const dispatch = useDispatch();

 useEffect(() => {

 if (prefs && prefs!== prefsFromStore) {

 dispatch(preferenceSet(prefs));

 // Dispatching changes to backend server

 }

}, [prefs]);

 return [prefs, setPrefs];

}

Snippet 8 Custom hook for dispatching changed preference data to Redux and backend

5.4 Case Study Findings

By comparing the class component and function component implementations of common

UI elements, some clear differences have emerged. Firstly, function components seem to

be able to offer more concise, more expressive, and more granular component implemen-

tations than class components. With less boilerplate code, function components can be

divided into smaller reusable parts.

Another seemingly insignificant but rather noteworthy difference is the lack of this-

keyword in function components. In class components, props, state, class variables, and

methods are all accessed via this-keyword. This caused confusion as well as decreased

code readability.

-37-

Based on the case study, local state management with the useState hook is effective

and simple. Compared to class components’ state management bound to the class with

this-keyword, useState can be used flexibly and efficiently.

The class components’ lifecycle methods do not simply map to the useEffect hook.

While the lifecycle methods offer the developer a clear view of what happens in different

times in the component’s lifecycle, the useEffect hook is more concerned with its depend-

encies. For example, it does not seem to be possible to map a lifecycle method such as

componentDidUpdate to useEffect. Rather, the development view must be transferred

from temporal logic to variable- or dependency-specific outlook.

Custom hooks were found to be a clear way of creating reusable state logic that fits

the need of simple UI elements. The structure and interfaces of custom hooks of the com-

ponents included in the case study were sufficient and adequate for the cause.

In conclusion, function components offer more compactness and clarity compared to

class components, but they cannot be simply mapped to each other, especially as a result

of their different approaches to component lifecycle management.

-38-

6 Developer Interviews

In this chapter, the findings of the developer interviews will be presented. The aim of the

interviews was to gain state-related information on the opinions and experiences of pro-

fessional React developers. This chapter is divided into four parts that form cohesive

themes around the ideas and topics that were discussed during the interviews: (1) React

and other frameworks, (2) functionality of hooks, (3) hooks based React development,

and (4) adaptation of hooks.

6.1 React and Other Frameworks

In this first part, results on React overall, React architecture, React performance, and

global state management with React will be presented. When discussing different aspects

of React, developers tended to compare it with other frameworks they had experience

with.

6.1.1 React Overall

Overall, the participants had a fairly positive opinion on React. As an especially favorable

trait of React, simplicity of the base library was mentioned by almost every participant.

The fact that React itself does not enforce any opinions or rigid structures to any project

was seen as a clearly positive trait of the framework. The ease of setting up a React project

with create-react-app and the numerous built-in performance and accessibility improve-

ments that React offers were mentioned as a clear advantage of React.

React was mentioned to abstract away a large part of functionality for ease of use.

While this was seen as very helpful for developers, it was pointed out that one still needs

to understand the underlying mechanisms and principles of JavaScript to use those ab-

stractions efficiently.

The large size of the ecosystem of React was mentioned multiple times. According

to the participants, while the large ecosystem has considerable advantages on develop-

ment it has sometimes been difficult to navigate the quickly-changing and large ecosys-

tem of React. The number of libraries available for, for example, state management and

styling were seen as overwhelming at times. Most of developers (5/6) at some point had

been working on a project that had started with some technology that was new and suita-

ble at the time only to switch to a newer technology in the middle of the project only some

time later.

[P5] The developer might have started with Redux and Styled Components

and then changed to Emotion but didn’t drop the old Styled Components, and

later might decide to change to Recoil instead of Redux.

Compared to other frontend UI frameworks, React was seen to get updated slower.

Especially recently when new frameworks have been appearing constantly and updated

-39-

quickly, React has been moving more slowly according to the developers. An example

mentioned was concurrent mode, which was already announced three years ago, but still

has not been released into React, while other frameworks seem to be moving at a faster

pace. Another worry was that React was focusing on presenting simple solutions to both

small-scale and large-scale projects, which have vastly different needs.

[P6] They’re trying to solve a spectrum of problems as opposed to only fo-

cusing on the main problems of the majority of the community.

In addition to React, other frameworks mentioned during the interviews included

jQuery, BackboneJS, Angular, AngularJS, Vue, Svelte, Preact, and Hyperapp. When

asked about the developers’ general thoughts on React, they often compared React to

these other frameworks. The advantages of React, compared to the others, were mostly

seen to be the flexibility and quickness of the React API, the large ecosystem, and simi-

larity to native JavaScript. Most (4/6) of the interviewed developers were working mainly

with React, while some (2/6) were working with up to two UI frameworks in parallel.

Most (5/6) developers expressed that they were passively monitoring other UI frame-

works as well even if not actively using them.

6.1.2 React Architecture

One particularly strong advantage of React was the architecture. According to the partic-

ipants, splitting the source code into React components was a natural way of creating user

interfaces. Sharing data between the component tree via props was seen as a sufficient

way of handling the component interfaces. On the other hand, some participants (2/6)

expressed disapproval of the context API; sharing data between components via context

was seen as a frequent cause of problems and not always a sufficient solution for prop

drilling – sending large number of props down several layers of the component tree.

One participant expressed worries that there were not enough developers with skills

in designing React architecture. Since React does not provide any architectural guidance

of how components ought to be arranged in the component tree or the system directory

structure, the developers have to do all the architectural decisions themselves. This was

seen as a problem since often developers did not have the necessary skills in architectural

design when building React applications which had led to code base that was confusing

and difficult to manage.

6.1.3 React Performance

Performance of React was a frequent topic especially among the more experienced React

developers. Overall, the performance of React was seen as largely positive with some

drawbacks. The VDOM concept was a large advantage for performance of React. The

developers were pleased with the automatic optimization done by the React engine. The

-40-

automated optimization of React helped the developers to be “lazy” when developing

React applications, since they did not have to consider the optimization aspect themselves

and could focus on the view and business logic parts of the application.

[P2] [VDOM optimization] makes it really easy and nice for us to relax a

little […] and rely on fact that in the end it gets optimized and figured out

what gets changed in the end.

While the developers were satisfied with the performance of React overall, they ex-

pressed discontent with the performance of the context API and slow release of concur-

rent computing solutions into the framework. Also, the recent hype of SPAs and their

performance compared to more traditional styles of web sites was criticized. One devel-

oper said that while the performance of SPAs is better, the development time of them is

also much larger and often not worth the increased performance.

6.1.4 Global State Management with React

The more experienced interview participants held strong opinions on global state man-

agement solutions. It is important to recognize these views as global state management

along with local state management compose all state management in React. Although the

interviewer did not bring up any global state management libraries themselves, the par-

ticipants were keen to discuss the differences of all state management libraries they were

familiar with.

The one global state management library mentioned by every interview participant

was Redux. Redux was seen as the default global state management library that other

libraries were compared with. Redux itself did get criticism mainly for the amount of

boilerplate code needed to use it, which is why most (4/6) developers had felt dissatisfac-

tion towards using it recently and had started looking at other options for global state

management. Redux was sometimes used with tools such as RxJS and redux-observable,

which allow additional functionality like composing asynchronous operations with Re-

dux.

One developer explained that in a project they had been a part of, Redux was dropped

altogether and replaced by thoughtful data retrieval any time server data was needed while

keeping simple state data like the user information in the context where it could be quickly

accessed. That is, instead of retrieving all the needed data from the server after the first

render, they would retrieve smaller pieces of data whenever they needed it. Abandoning

Redux had a positive impact on the clarity and maintainability of the project according to

the developer.

Some developers (4/6) also had experience with using Apollo’s built-in caching tools

to handle the state of and application. The idea is that Apollo is used to retrieve data from

the server and the retrieved data is saved in the cache. Every time when that data is then

-41-

needed, Apollo can either retrieve the cached version of that data or retrieve the newest

data from the server. This way the state data does not need to be saved in any external

state store.

MobX and Recoil were other global state management libraries that were mentioned

by several (5/6) developers. Slight shift from the dominance of Redux towards the simpler

solution Recoil had been observed by some of the developers. MobX, on the other hand,

was seen as a tool “for specific cases” and slightly falling behind in popularity mostly

mentioned as an alternative to Redux that many developers knew but had not tried.

One experienced developer described that they had built their own state management

tool based on JavaScript’s mutation observer, which can be used inside HTML markup.

The reason was that their project management had prohibited the use of React in their

project, so they decided to build their own state and component management tools based

on React logic.

One additional solution for transferring state related information between the appli-

cation components was doing it via the URL of the web application. With libraries such

as react router, the application edits the URL according to the state of the application and

then in different components the state data would be parsed from the URL directly. This

also allowed copying the URL from a specific application state and sharing it to anyone

with the state information persisting.

Context API with local state management hooks was seen as a state management style

that had to be used with caution since it was slow. Since the whole context tree had to be

refreshed every time context had any changes, it was only used for data that changed

infrequently. One solution was mentioned for this problem: use-context-selector [Kato

2021]. With use-context-selector, the developers can access and edit just certain parts of

the context, so that every component using context does not have to be rerendered.

Another up and coming state management solution that was mentioned by a few (2/6)

developers was XState. XState was used for applications with complex stateful logic by

incorporating infinite state machine and state chart -based thinking in the state manage-

ment.

[P4] I see as the biggest problem for me, in React, that there are so many

patterns and libraries for state management and none of them are React’s

official ones.

The large number of solutions for React state management was mentioned by several

developers. Overall, the large ecosystem had led to difficulties choosing proper state man-

agement tools for projects, but it was also seen as a sign of constant improvement and

forward movement. From the interviews, it was quite clear that most of the lesser experi-

enced and full stack -focused developers struggled with the amount of state management

-42-

libraries, while the more experienced developers focused mainly on front end and React

saw it as a positive that the React ecosystem was constantly coming up with new solutions

for all the different use cases while expressing compassion with newcomers who had to

learn all the different solutions from the beginning.

Two highly experienced participants, P5 and P6, said that state management tools can

be categorized, and then the selection becomes much easier. P6 divided the state manage-

ment tools into tools that keep the state close to the components, tools that keep the state

away from the components and state machines. P5, on the other hand, described a two-

dimension categorization dividing state management tools into firstly direct and indirect,

and secondly single and multi-store tools.

6.1.5 Function and Class Components

All the participating developers had experience with writing both, class components and

function components. Developers held overwhelmingly positive opinions on function

components compared to class component while having some criticism as well.

Before hooks, the developers had to write both class components and function com-

ponents. Class components were written for components that included some complex

logic or state logic while function components were written for components that had little

logic and handled simple views. After hooks were introduced to React, developers have

been only or mostly writing function components making the code of React components

more unified.

[P5] When I was writing my book [before the introduction of hooks], I con-

stantly thought this would be much more pleasant if the whole thing could be

done with functions.

Compared to class components, function components were seen as more compact and

“clean” with less boilerplate code allowing for dividing the applications into smaller com-

ponents and reusing component logic. On the other hand, half (3/6) of the developers

purposefully still had class components in their projects for easier monitoring of complex

lifecycles and debugging since in class components, the component is rendered in a clear

lifecycle. Most (5/6) of the developers mentioned having a few class components in their

projects for this purpose while one developer said they had no class components and no

apparent need for class components in their projects.

6.2 Functionality of Hooks

One of the main purposes of this study was to find out the different qualities of React

hooks, and how they were able to replace class components in the view of the developers.

Overall, the developers held positive opinions on hooks-based state management with a

-43-

few caveats such as the lifecycle management of components being more difficult in cer-

tain cases.

6.2.1 Built-in hooks

The developers held mostly positive opinions on hooks, referring to the ability to easily

write reusable logic with hooks, the small amount of boilerplate code, and the ease of

using them. In addition to the most popular built-in hooks useState and useEffect, the

developers had used useContext, useReducer, useCallback, useMemo, and useRef exten-

sively, while useImperativeHandle, useLayoutEffect, and useDebugValue had been used

considerably less.

Hooks did receive some criticism as well, mainly on their level of abstraction. On one

hand, hooks were perceived to be too “magical” – meaning that their functionalities were

too abstract and not instantly visible to the developers using them. In many cases, the

developers had had difficulties figuring out how the hooks actually work “under the

hood”. On the other hand, some (2/6) developers felt that the abstraction level was not

high enough, since the developers had to decide themselves when to use tools such as

useEffect as opposed to useLayoutEffect and felt that the decision could be handled by

the hooks themselves.

6.2.2 Lifecycle Management

The difference between lifecycle handling in class components and function components

with hooks was perhaps the main criticism of hooks. Whereas in class components, the

lifecycle of components was handled by lifecycle methods, which ran at specific parts in

the component’s lifecycle such as on mount, on props update, and on unmount. With

hooks, this was replaced by effects, which run at component mount as well as when their

dependencies change whereas the returned function is run on component unmount.

[P1] It works in about 90 percent of cases, but the rest 10 or 20 percent where

there is more complex state management is not trivial enough to ignore.

Most (5/6) of the developers mentioned this lack of direct mapping of lifecycle meth-

ods to effects as one of the largest shortcomings of hooks. Several (4/6) of the developers

had had difficulties with using effects and had even considered reverting certain compo-

nents back to class components because of the problems with the effect hook. Especially

components where it was seen as important to track its lifecycle were often kept as class

components.

The developers’ opinions with lifecycle management with hooks were not exclusively

negative. One of the developers expressed exclusively positive views on the effect based

lifecycle management, praising the better division of functionality into separate effects

following single responsibility principle. One developer expressed neutral opinions, and

-44-

the majority (5/6) expressed generally positive opinions with the drawback of tracking

complex lifecycles being more difficult.

6.2.3 Custom and Third Party Hooks

The developers’ habits and experiences using custom hooks varied somewhat. Half (3/6)

of the developers said that they had never written custom hooks, some (2/6) said they

sometimes write custom hooks for specific cases, and one said they use custom hooks

often. Custom hooks were mostly used with side effects such as data retrieval.

While custom hooks were seen as a good way to reuse and share functionality be-

tween components, they were also criticized for having to write several custom hooks for

very similar issues since hooks were difficult to customize.

Since the introduction of Hooks, most third party libraries now also support hooks.

Especially useful were the different state management and data retrieval related hooks.

Different third party libraries that provided hooks mentioned by the developers were Re-

dux, Apollo, and React Router. Hooks-based third party library interfaces were talked

about in a positive manner by all developers.

6.3 Hooks Based React Development

When discussing hooks, the participants were keen to express their opinions on different

aspects of hooks such as their readability, ecosystem, collaboration, testability, and ease

of learning.

6.3.1 Readability

Every interviewed developer agreed that in most cases, function components with hooks

were easier to read and understand than class components. One developer pointed out that

just the good naming of hooks had led to easier to read code since the developer could

just read the name of the hook and infer the functionality in a general way. All developers

also said that developing with hooks require either less memory load from the developer

or about the same as class components.

[P2] Them being functional components makes [reading them] easier. It not

having this-keyword makes it easier. There is less unnecessary text and it’s

grouped better in useEffect.

6.3.2 Ecosystem and Collaboration

Every participating developer agreed that the large size of the React ecosystem was one

of the most influential advantages of React. What this meant for hooks based React de-

velopment was that according to the developers, it had been easy to find solutions and

answers to any questions they had about hooks, and they had been able to find libraries

to support their hooks based development without difficulties. Additionally, most of the

-45-

community had adapted to hooks and there was little confusion due to the change from

class components to function components.

One of the clear advantages of hooks was that of any component based architecture:

the client of a component does not need to know how the component works, only what

the interface is like, and what it produces. Similarly, regarding hooks it was said that

collaboration was easy since the developers who use them only need to know what each

hook takes as parameters and what it produces and not go too much into details on the

inner workings of them. This was usually achieved via rigid documentation. Therefore,

the developers had had no problems with collaborative programming with hooks, and

some had felt that hooks based development was even more easy to do collaboratively

than class based development.

6.3.3 Testability

Every developer agreed that frontend testing was very important in maintaining the qual-

ity and functionality of the application code base. The pragmatic experiences and more

fine opinions, however, varied slightly between the developers. On what to test, one de-

veloper said that only the most critical core components ought to be unit tested while

another developer said that they unit test almost 100 percent of their components.

Some (2/6) developers said that while they think that writing frontend tests is im-

portant, there was rarely time or budget for that. In the end, most (4/6) developers agreed

that the amount of testing was mostly a matter of budgeting and organizational or mana-

gerial decision making. One developer pointed out that it was the most important to de-

cide what to test. They pointed out different testing styles and testing libraries such as

unit testing, acceptance testing, and performance testing, which could be chosen based on

the specific use case and the purpose of testing the application.

On testability of hooks specifically, the developers thought it was either easier com-

pared to class components or about the same. One advantage of function components with

hooks approach compared to class based approach was writing unit tests with correct state

information. One developer explained that in their project they had a standard way of

setting up the state of the application for testing, which all the unit tests could use, making

testing easier. For testing styles other than unit testing, there was no difference between

class components and function components since the visual output of the function and

class components are the same in the end.

One difficulty with hooks was regarding custom hooks. Since custom hooks were

seen as a kind of “hidden” dependency, it was difficult to know when mock hooks had to

be written and how in unit tests. For example, when using a custom hook that accesses

the context API, the developer has to wrap the component in a provider for unit testing,

which was not an easy thing to notice.

-46-

6.4 Adaptation to Hooks

Since the introduction of hooks to React in 2018, the React community has started moving

towards hooks based React development away from class based development. The inter-

view participants were asked about their own experiences on this transition and how do

they think about refactoring old class components into function components with hooks.

6.4.1 Learning Hooks

Most (5/6) of the interviewed developers said that the official documentation of React

was the first place where they started learning about hooks. The official documentation

was regarded highly, one developer even saying it is “the best documentation you can

find”. One developer did mention of a case of the official documentation not having clear

enough explanation of one aspect of the useState hook, but otherwise the explanations

and examples presented in the official documentation web site was seen as very useful in

helping the developers understand different aspects of hooks and hooks based React de-

velopment.

One developer found out about hooks when talking with a family member who men-

tioned them. After hearing about them, that developer started to argue in favor of class

components with their family member while looking at informal videos and blogs com-

paring class components to function components. After some time, that developer also

started favoring function components after finding out more about them, but they men-

tioned that had they started their studying from the official sources it would have been

more efficient compared to reading from informal sources.

One additional way of learning more about hooks that was mentioned during the in-

terviews was React conferences. In these conferences, the developers had been able to

hear about different hooks and their functionalities from other prominent figures of the

web development community.

6.4.2 Transition to Hooks

When adapting to new technologies, developers usually had to estimate issues such as the

size of the ecosystem, maturity, the reliability of the provider, and the learning curve in

order to make a decision whether to include the new technology to a project. One devel-

oper mentioned having internal processes such as sending requests for comments to other

team members and having sometimes lengthy discussions taking different things into con-

sideration.

In the case of hooks however, the developers had no problems adapting them to pro-

jects. Since hooks were already a part of the React core library and could be used along-

side old code, adding them into current projects was not a difficult decision at all. How-

ever, the developers mostly did not jump into using hooks right away after they were

-47-

introduced, but rather waited a while to see whether they were accepted by the React

developer community before starting to use them in their own projects themselves.

6.4.3 Refactoring Class Components

Refactoring old class components into function components was seen as something that

had some value and something that had to be done in some cases but not all. While the

developers brought up advantages of refactoring – increased readability and maintaina-

bility, accommodating new developers not familiar with old styles, and more learning

resources – their view of actually refactoring components from class components to func-

tion components mostly was that they lacked time and budget for that.

Although refactoring class components to function components specifically was not

seen as a very time-consuming itself, it was done only in cases where it caused consider-

able benefits to the product. One developer expressed that they did not see any benefits

of refactoring and had “made peace with class components”.

6.5 Interview Findings

While the developers were mostly satisfied with hooks based React development, Most

(4/6) had found cases in their development process where hooks were not a sufficient

replacement to class components. Additionally, almost all (5/6) developers interviewed

had had some usability problems with hooks, either with using or learning them.

Despite the shortcomings of hooks, all developers said that they had embraced hooks

based development and abandoned class components except in the few cases where they

could not be replaced by hooks, in which cases they would keep the class components.

-48-

7 Findings and Discussion

In this chapter, the combined findings of the two studies regarding usability of React

hooks are presented. Firstly, the positive (Table 6) and negative (Table 7) usability issues

found will be presented and classified by Nielsen’s [1994] usability heuristics. Then, the

findings concerning adaptation of hooks will be presented. After that, the reliability of

the study will be covered, and finally, potential future research topics will be discussed.

7.1 Findings

Although the number of negative usability findings was close to the number of positive

ones, the positive ones were seen as more important for most use cases by the developers.

The developers were quick to praise hooks at first, and they said that hooks were sufficient

and appropriate in most cases. The problems started to show in irregular cases where the

basic functionality of hooks was not be sufficient for various reasons.

The positive usability findings were mostly regarding flexibility and efficiency of use,

aesthetic and minimalist design with one finding each in consistency and standards,

recognition rather than recall, and help and documentation. The negative findings were

regarding error prevention, visibility of system status, consistency and standards, recog-

nition rather than recall, and flexibility and efficiency of use as presented in Table 8.

Positive Usability Finding Heuristic

+Hook names consistently start with use Consistency and standards

+Hook naming mostly recognizable Recognition rather than recall

+Ability to declare arbitrary number of local

state variables with useState

Flexibility and efficiency of use

+Combining and reusing state logic Flexibility and efficiency of use

+Good third party library support Flexibility and efficiency of use

+Quick to refactor from class components to

function components with hooks

Flexibility and efficiency of use

+Separation from core component (this-key-

word)

Aesthetic and minimalist design

+Better code structure with effect hooks Aesthetic and minimalist design

+Compact state and lifecycle management Aesthetic and minimalist design

+Large ecosystem and stellar documentation

leading to ease of learning

Help and documentation

Table 6 Positive usability findings

-49-

Negative Usability Finding Heuristic

-Too “magical” – functionality not instantly

visible to developers

Visibility of system status

-No direct mapping from class lifecycle meth-

ods

Consistency and standards

-Leaky abstraction – Similar hooks where

only difference is optimization

Error prevention

-Hooks are a hidden dependency when testing Error prevention

-Some hook names not recognizable Recognition rather than recall

-Effect based lifecycle management not suffi-

cient in all use cases

Flexibility and efficiency of use

Table 7 Negative usability findings

Heuristic Positive

findings

Negative

findings

Visibility of system status 0 1

Match between system and the real world 0 0

User control and freedom 0 0

Consistency and standards 1 1

Error prevention 0 2

Recognition rather than recall 1 1

Flexibility and efficiency of use 4 1

Aesthetic and minimalist design 3 0

Help users recognize, diagnose, and recover from errors 0 0

Help and documentation 1 0

Table 8 Found Usability Issues Categorized by Usability Heuristic

The interview participants had adapted to hooks well by the time of the interviews.

The adaptation did not happen directly after the introduction of hooks, but rather gradu-

ally as the hooks became increasingly more favored by the React developer community.

Some developers had replaced class components completely with function components

and hooks, while some developers still saw class components as a useful tool for certain

situations.

7.2 Reliability

The reliability of the research was considered in various ways. Firstly, the interview par-

ticipants chosen for the interviews had to have enough information and experience of

React development. Therefore, only developers who had professional React experience

-50-

were chosen. Few potential participants who had some non-professional React experience

were found as well during the participant search phase but had to be declined. Further-

more, the chosen participants all had varying amounts of experience, as seen in figures 9

and 10, which added different perspectives to the analysis of the subject matter. Secondly,

the themes that were selected for the interviews were chosen as not to include any opin-

ions of the interviewer themselves and to give a holistic overview of the inspected areas.

Thirdly, the interviews were recorded and transcribed in a way which allowed the record-

ing of specific thoughts of the participants. Lastly, the analysis of the data was done in a

manner which considered every interviewee’s opinion. During the interviews, every par-

ticipant was given the chance to give their opinion on all the pre-determined themes.

For the greater reliability of the case study, three different components from a real

application were selected. All the inspected components were part of the same application

but had largely different functions inside the application: some only included local state,

some included Redux API, and one included a custom hook. All the components were

written by the same person.

7.3 Future Research

This study has, most of all, added support for the need for thoughtful API development

and evaluation in the libraries included in the industry standard. While the writer in no

way wants to hinder rapid development and innovation that is characteristic to modern

development of web development tools by implementing long evaluation and design pe-

riods, the regular developer who builds web applications will definitely appreciate stable

and highly usable tools in their everyday development.

This study has also shown that there is need for more research on API usability. APIs

have traditionally been studied regarding their performance and degree of use, but recent

trends of improved speed of computers and browsers have revealed a need for study on

the usability aspect of APIs.

In the future, research on the usability of APIs will be essential. Until recently, most

research on web technologies has been regarding the performance aspect of development

solutions while the usability of them has been studied only little. As the computational

power of computers and environments such as web browsers increase, the significance of

usability over performance will see an increase as well.

More extensive evaluation of hooks specifically would certainly reveal problems this

study was not able to find. For the development of React and React hooks, usability is

one of the aspects which will determine whether React will still be the principal web user

interface framework in the future.

-51-

8 Conclusion

In this chapter, the study done for this thesis will be inspected from a larger perspective.

Then the research questions presented in the introduction will be addressed. After that,

the place of this type of study in this research field will be inspected, and finally some

final comments about the topic will be given.

The rise of the web as an application platform has been observed over the last years.

As applications are moving to the web platform, there has been an increase of available

web technologies and ways of development. The velocity of new styles, frameworks, and

libraries appearing in the web development ecosystem has caused many developers to

experience difficulties in choosing and adapting new technologies to their projects. This

could lead to developers making suboptimal decisions of technology selection and chang-

ing the used technologies in the middle of a project causing much unnecessary work and

costs. To support a steadier ecosystem, it is crucial to ensure that new technologies re-

leased have been developed and evaluated in a thoughtful manner.

This study aimed to evaluate the usability and adaption of one significant new feature

of the most popular web user interface development framework – React hooks. Hooks

were inspected by creating a case study and conducting developer interviews of web de-

velopment professionals with the purpose of recognizing different issues that hooks had

had on state management in the React framework. Issues on usability and hooks adapta-

tion were recognized and analyzed. While the results of the study can be regarded as

appropriate, it must be recognized that the scope of the study was limited, and not all

aspects of hooks based state management were found. For example, React is known to

have good error messaging, which did not come up in any of the interviews.

The answer to the research questions presented in the introduction chapter are now

presented.

Question 1: What usability benefits and drawbacks do hooks bring to React? – Hooks

were found to offer several usability benefits with a few drawbacks. Overall, the devel-

opers held positive opinions on the usability of hooks in most cases, while expressing that

they had severe problems in less common use cases. Ten positive usability issues and six

negative usability issues presented in Chapter 7 were found.

Question 2: How have project teams adapted to React hooks? – In the few years since

the introduction of hooks, most developers have started using them. The quick adopters

often were ones who kept up with the React developer community regularly, while most

developers had begun using hooks gradually and not immediately after their introduction.

Waiting for hooks to be accepted and adapted by the larger developer community before

adapting them to software projects themselves was common among the developers. Now

developers still use class components in specific situations instead of fully substituting

them with function components with hooks.

-52-

This study has shown the importance of thoughtful usability evaluation and develop-

ment of new web technologies. In the rapid-moving world of web development, develop-

ers are increasingly in need of standard and steady web development techniques. While

the fast movement of the web development ecosystem is unquestionably a prerequisite of

innovation, the majority of the web development still happens in the real software projects

where stability is a necessity.

-53-

References
Abrahamsson, P., M. A. Babar, and P. Kruchten. 2010. "Agility and Architecture: Can

they Coexist?" IEEE Software 27 (2): 16-22. doi:10.1109/MS.2010.36.

Abramov, Dan. 2021. "Redux - A Predictable State Container for JavaScript Apps. | Re-

dux.", accessed Mar 1, 2021, https://redux.js.org/.

Abramov, Dan. Twitter post. April 5, 2018, 4:56 a.m., https://twit-

ter.com/dan_abramov/status/981712092611989509.

Apollo. 2021. "Managing Local State.", accessed Mar 1, 2021, https://www.apol-

lographql.com/docs/react/local-state/local-state-management/.

Bass, Len, Paul Clements, and Rick Kazman. 2013. Software Architecture in Practice.

3rd ed. Upper Saddle River, NJ: Addison-Wesley.

Biørn-Hansen, Andreas, Tim A. Majchrzak, and Tor-Morten Grønli. 2017. "Progressive

Web Apps: The Possible Web-Native Unifier for Mobile Development. "SCITE-

PRESS.

Caldiera, G. and V. R. Basili. 1991. "Identifying and Qualifying Reusable Software

Components." Computer (Long Beach, Calif.) 24 (2): 61-70. doi:10.1109/2.67210.

Casteleyn, Sven, Irene Garrig'os, and Jose-Norberto Maz'on. 2014. "Ten Years of Rich

Internet Applications: A Systematic Mapping Study, and Beyond." ACM Transac-

tions on the Web 8 (3): 1-46. doi:10.1145/2626369.

Conallen, Jim. 1999. "Modeling Web Application Architectures with UML." Communi-

cations of the ACM 42 (10): 63-70. doi:10.1145/317665.317677.

Daniel, Florian, Stefano Soi, Stefano Tranquillini, Fabio Casati, Chang Heng, and Li

Yan. 2012. "Distributed Orchestration of User Interfaces." Information Systems

(Oxford) 37 (6): 539-556. doi:10.1016/j.is.2011.08.001.

ECMA-international. 2021. "ECMA-262: ECMAScript® 2020 Language Specifica-

tion.", accessed Apr 8, 2021, https://www.ecma-international.org/publications-and-

standards/standards/ecma-262/.

Facebook Open Source. 2021a. "React – A JavaScript Library for Building User Inter-

faces.", accessed Feb 24, 2021, https://reactjs.org/.

Facebook Open Source. 2021b. "State and Lifecycle – React.", accessed Feb 25, 2021,

https://reactjs.org/docs/state-and-lifecycle.html.

Facebook Open Source. 2021c. "JSX in Depth – React.", accessed Feb 24, 2021,

https://reactjs.org/docs/jsx-in-depth.html.

Facebook Open Source. 2021d. "Create a New React App – React.", accessed Feb 24,

2021, https://reactjs.org/docs/create-a-new-react-app.html.

Facebook Open Source. 2021e. "Components and Props – React.", accessed Feb 25,

2021, https://reactjs.org/docs/components-and-props.html.

https://redux.js.org/
https://www.apollographql.com/docs/react/local-state/local-state-management/
https://www.apollographql.com/docs/react/local-state/local-state-management/
https://reactjs.org/

-54-

Facebook Open Source. 2021f. "Introducing Hooks – React.", accessed Feb 25, 2021,

https://reactjs.org/docs/hooks-intro.html.

Facebook Open Source. 2021g. "Hooks API Reference – React.", accessed Feb 26,

2021, https://reactjs.org/docs/hooks-reference.html.

Facebook Open Source. 2021h "Recoil.", accessed Mar 1, 2021, https://recoiljs.org/.

Fielding, Roy T. 2000. Architectural styles and the design of network-based software

architectures. Vol. 7. University of California, Irvine Irvine.

Gizas, Andreas, Sotiris Christodoulou, and Theodore Papatheodorou. 2012. "Compara-

tive Evaluation of Javascript Frameworks." Proceedings of the 21st International

Conference on World Wide Web.

Goodman, Leo A. 1961. "Snowball Sampling." The Annals of Mathematical Statistics:

148-170.

Google. 2021. "Angular.", accessed Apr 6, 2021, https://angular.io/.

Graziotin, Daniel and Pekka Abrahamsson. 2013. "Making Sense Out of a Jungle of Ja-

vaScript Frameworks." International Conference on Product Focused Software

Process Improvement. Springer, Berlin, Heidelberg, 2013.

Greif, Sacha and Raphaël Benitte. 2021. "State of JS 2020.", accessed Feb 23,

2021, https://2020.stateofjs.com/en-US/.

Gruhn, Volker and Rüdiger Striemer. 2018. The Essence of Software Engineering. 1st

ed. Cham: Springer International Publishing. doi:10.1007/978-3-319-73897-0.

Hanh, Evan. 2021. "Redux-Thunk.", accessed Apr 6, 2021, https://github.com/re-

duxjs/redux-thunk.

Happe, Lucia, Barbora Buhnova, and Ralf Reussner. 2014. "Stateful Component-Based

Performance Models." Software and Systems Modeling 13 (4): 1319-1343.

doi:10.1007/s10270-013-0336-6.

Harel, David. 1987. "Statecharts: A Visual Formalism for Complex Systems." Science

of Computer Programming 8 (3): 231-274.

Holzmann, Gerard J. 2018. "Software Components." IEEE Software 35 (3): 80-82.

doi:10.1109/MS.2018.2141034.

Hu, Gang, Linjie Zhu, and Junfeng Yang. 2018. "AppFlow: Using Machine Learning to

Synthesize Robust, Reusable UI Tests." Proceedings of the 2018 26th ACM Joint

Meeting on European Software Engineering Conference and Symposium on the

Foundations of Software Engineering.

Hunt, Pete. 2013. "Why did we Build React? – React Blog.", accessed Feb 24,

2021, https://reactjs.org/blog/2013/06/05/why-react.html.

IEEE. 2000. IEEE Std 1471-2000: IEEE Recommended Practice for Architectural De-

scription of Software-Intensive Systems. IEEE.

https://recoiljs.org/
https://angular.io/
https://2020.stateofjs.com/en-US/
https://github.com/reduxjs/redux-thunk
https://github.com/reduxjs/redux-thunk
https://reactjs.org/blog/2013/06/05/why-react.html

-55-

Jadhav, Madhuri A., Balkrishna R. Sawant, and Anushree Deshmukh. 2015. "Single

Page Application using Angularjs." International Journal of Computer Science and

Information Technologies 6 (3): 2876-2879.

Karlsson, Stefan. 2019. "Exploratory Test Agents for Stateful Software Systems." Pro-

ceedings of the 2019 27th ACM Joint Meeting on European Software Engineering

Conference and Symposium on the Foundations of Software Engineering.

Kato, Daishi. 2021. "Use-Context-Selector.", accessed Apr 8, 2021,

https://github.com/dai-shi/use-context-selector.

Keeling, Michael. 2015. "Lightweight and Flexible: Emerging Trends in Software Ar-

chitecture from the SATURN Conferences." IEEE Software 32 (3): 7-11.

doi:10.1109/MS.2015.65.

Krasner, Glenn E. and Stephen T. Pope. 1988. "A Description of the Model-View-Con-

troller User Interface Paradigm in the Smalltalk-80 System." Journal of Object Ori-

ented Programming 1 (3): 26-49.

Kruchten, P., H. Obbink, and J. Stafford. 2006. "The Past, Present, and Future for Soft-

ware Architecture." IEEE Software 23 (2): 22-30. doi:10.1109/MS.2006.59.

Lee, Jiyeon, Hayeon Kim, Junghwan Park, Insik Shin, and Sooel Son. 2018. "Pride and

Prejudice in Progressive Web Apps: Abusing Native App-Like Features in Web

Applications." Proceedings of the 2018 ACM SIGSAC Conference on Computer

and Communications Security.

Linsley, Tanner. 2021a "React Query.", accessed Mar 1, 2021, https://react-

query.tanstack.com.

Linsley, Tanner. 2021b "Comparison | React Query Vs SWR Vs Apollo Vs RTK

Query.", accessed Mar 1, 2021, https://react-query.tanstack.com/comparison.

Linsley, Tanner. 2021c "React Query.", accessed Mar 24, 2021, https://react-

query.tanstack.com/overview.

Margalit, Gal. GitHub repository. 2021. https://github.com/Wavez/react-hooks-lifecycle

Martin, Patricia Yancey and Barry A. Turner. 1986. "Grounded Theory and Organiza-

tional Research." The Journal of Applied Behavioral Science 22 (2): 141-157.

Martin, Robert. 2017. Clean Architecture: A Craftsman's Guide to Software Structure

and Design, First Edition. 1st ed. Boston: Prentice Hall.

Mesbah, A. and A. van Deursen. 2007. “Migrating Multi-Page Web Applications to

Single-Page AJAX Interfaces.” 11th European Conference on Software Mainte-

nance and Reengineering (CSMR'07) IEEE. doi:10.1109/CSMR.2007.33.

Meyer, Daniel Z. and Leanne M. Avery. 2009. "Excel as a Qualitative Data Analysis

Tool." Field Methods 21 (1): 91-112. doi:10.1177/1525822X08323985.

Microsoft. 2021. "TypeScript: Typed JavaScript at any Scale.", accessed Apr 8, 2021,

https://www.typescriptlang.org.

https://react-query.tanstack.com/
https://react-query.tanstack.com/
https://react-query.tanstack.com/comparison
https://react-query.tanstack.com/overview
https://react-query.tanstack.com/overview

-56-

Mikkonen, Tommi, Cesare Pautasso, Kari Systä, and Antero Taivalsaari. 2019. On the

Web Platform Cornucopia. Cham: Springer International Publishing.

doi:10.1007/978-3-030-19274-7_25.

Mikowski, Michael, and Josh Powell. 2013. Single Page Web Applications. 1st ed.

Manning Publications.

MobX. 2021. "README · MobX.", accessed Mar 1, 2021, https://mobx.js.org/in-

dex.html.

Myers, Brad A. and Jeffrey Stylos. 2016. "Improving API Usability." Communications

of the ACM 59 (6): 62-69.

Myers, Brad, Scott Hudson, and Randy Pausch. 2000. "Past, Present, and Future of User

Interface Software Tools." ACM Transactions on Computer-Human Interaction 7

(1): 3-28. doi:10.1145/344949.344959.

Nielsen, Jakob. 1994. "10 Usability Heuristics for User Interface Design.", accessed Apr

5, 2021, https://www.nngroup.com/articles/ten-usability-heuristics/.

Node.js. 2021. "Node.Js.", accessed 18.2., 2021, https://nodejs.org/en/.

O'reilly, Tim. 2009. What is Web 2.0 " O'Reilly Media, Inc.".

Occhino, Tom and Walke, Jordan. 2013. "JS Apps at Facebook.", accessed Feb 24,

2021, https://www.youtube.com/watch?v=GW0rj4sNH2w.

Paulson, L. D. 2005. "Building Rich Web Applications with Ajax." Computer (Long

Beach, Calif.) 38 (10): 14-17. doi:10.1109/MC.2005.330.

Piccioni, M., Furia, C. A., & Meyer, B. 2013. “An empirical study of API usability.”

ACM/IEEE International Symposium on Empirical Software Engineering and

Measurement (pp. 5-14). IEEE.

Shklar, Leon and Rich Rosen. 2009. Web Application Architecture: Principles, Proto-

cols and Practices. 2nd ed. John Wiley & Sons, Inc.

Soni, Dilip, Robert Nord, and Christine Hofmeister. 1995. Software Architecture in In-

dustrial Applications ACM. doi:10.1145/225014.225033.

SWR. 2021. "SWR: React Hooks for Data Fetching.", accessed Mar 1,

2021, https://swr.vercel.com.

Taivalsaari, A., T. Mikkonen, M. Anttonen, and A. Salminen. 2011. "The Death of Bi-

nary Software: End User Software Moves to the Web." 2011 Ninth international

conference on creating, connecting and collaborating through computing. IEEE.

doi:10.1109/C5.2011.9.

Taivalsaari, Antero and Tommi Mikkonen. 2017. The Web as a Software Platform: Ten

Years Later SCITEPRESS - Science and Technology Publications.

doi:10.5220/0006234800410050.

Tay, Yangshun. 2021. "In-Depth Overview | Flux.", accessed Feb 22, 2021, https://face-

book.github.io/flux/docs/in-depth-overview.

w3techs. 2021. "Usage Statistics of JavaScript Libraries for Websites.", accessed Feb

22, 2021, https://w3techs.com/technologies/overview/javascript_library.

https://mobx.js.org/index.html
https://mobx.js.org/index.html
https://www.nngroup.com/articles/ten-usability-heuristics/
https://nodejs.org/en/
https://www.youtube.com/watch?v=GW0rj4sNH2w
https://swr.vercel.com/
https://facebook.github.io/flux/docs/in-depth-overview
https://facebook.github.io/flux/docs/in-depth-overview
https://w3techs.com/technologies/overview/javascript_library

-57-

Wagner, Jeremy L. 2017. Web Performance in Action: Building Fast Web Pages Man-

ning Publications Company.

WebAssembly. 2021. "WebAssembly.", accessed Apr 8, 2021, https://webassembly.org.

Wills, Alan Cameron. 1998. Objects, Components and Frameworks with UML: The Ca-

talysis Approach. Reading (Mass.): Addison-Wesley.

XState. 2021. "XState.", accessed Apr 6, 2021, https://xstate.js.org/.

You, Evan. 2021. "Vue.Js.", accessed Feb 23, 2021, https://vuejs.org/.

https://xstate.js.org/
https://vuejs.org/

-58-

Appendix 1

DateTimeDisplay component source code (class version)

export class DateTimeDisplay extends React.Component<any, any> {

 constructor(props: any) {

 super(props);

 this.state = {

 dateTime: this.formatDateAndTimeStrings(new Date()),

 widthOfTimeString: ''

 };

 }

 private intervalId: NodeJS.Timeout | undefined;

 componentDidMount() {

 this.intervalId = setInterval(() => {

 this.setState({

 dateTime: this.formatDateAndTimeStrings(new Date()),

 widthOfTimeString: `${ this.state.dateTime.time.length }ch`

 });

 }, 1000);

 }

 componentWillUnmount() {

 if (this.intervalId) {

 clearInterval(this.intervalId);

 }

 }

 formatDateAndTimeStrings(date: Date): DateAndTimeStrings {

 const localization: Localization = Localization.get();

 const dateString: string = localization.formatDateDowMmDdYyyy(date).replace(',', '

');

 const timeString: string = localization.formatDateHhMmSs(date);

 return ({ date: dateString, time: timeString });

 }

 render() {

 return (

 <div className={ css.root }>

 <div className={ css.time } data-testid={ "timeField" } style={ { minWidth:

this.state.widthOfTimeString } } >

 { this.state.dateTime.time }

 </div>

 <div className={ css.date } data-testid={ "dateField" }>

 { this.state.dateTime.date }

 </div>

 </div>

);

 }

}

-59-

Appendix 2

DateTimeDisplay component source code (function version)

export function DateTimeDisplay(): JSX.Element {

 const [dateTime, setDateTime] = useState(formatDateAndTimeStrings(new Date()));

 const [widthOfTimeString, setWidthOfTimeString] = useState('');

 useEffect(() => {

 const intervalId: NodeJS.Timeout = setInterval(() => {

 const now: Date = new Date();

 setDateTime(formatDateAndTimeStrings(now));

 }, 1000);

 setDateTime(formatDateAndTimeStrings(new Date()));

 setWidthOfTimeString(`${ dateTime.time.length }ch`);

 return () => clearInterval(intervalId);

 }, []);

 function formatDateAndTimeStrings(date: Date): DateAndTimeStrings {

 const localization: Localization = Localization.get();

 const dateString: string = localization.formatDateDowMmDdYyyy(date).replace(',', '

');

 const timeString: string = localization.formatDateHhMmSs(date);

 return ({ date: dateString, time: timeString });

 }

 return (

 <div className={ css.root }>

 <div className={ css.time } data-testid={ "timeField" } style={ { minWidth:

widthOfTimeString } } >

 { dateTime.time }

 </div>

 <div className={ css.date } data-testid={ "dateField" }>

 { dateTime.date }

 </div>

 </div>

);

}

-60-

Appendix 3

LoginView component source code (class version)

class LoginView extends React.Component<any, any>{

 constructor(props: any) {

 super(props);

 this.state = {

 credentials: { username: '', password: '' },

 error: '',

 loading: false,

 disabled: true

 };

 this.handleInputChange = this.handleInputChange.bind(this);

 this.handleSubmit = this.handleSubmit.bind(this);

 }

 private nameInput = React.createRef<HTMLInputElement>();

 handleInputChange(e: React.ChangeEvent<HTMLInputElement>): void {

 const { name, value } = e.target;

 this.setState({ credentials: { ...this.state.credentials, [name]: value } },

 () => this.setState({ disabled: (this.state.credentials.username === '' ||

this.state.credentials.password === '') })

);

 this.setState({ error: '' });

 }

 async handleSubmit(e: React.MouseEvent<HTMLElement>): Promise<void> {

 e.preventDefault();

 this.setState({

 error: '',

 loading: true,

 disabled: true

 });

 let response = null;

 try {

 response = await this.auth(this.state.credentials);

 this.props.preferenceUserSet(response.userName);

 } catch (e) {

 this.setState({

 error: e,

 disabled: false

 });

 } finally {

 this.setState({ loading: false });

 if (this.nameInput.current) {

 this.nameInput.current.focus();

 }

 }

 }

 private productName = i18n.labels.productName;

 private textCut = this.productName.length < 10

 ? ' '

 :
;

 auth(credentials: Credentials) {

 // <removed>

 }

 render() {

 logger.debug("render()");

 const i18n: I18n = this.props.i18n;

 // <removed>

 return (

 <div className={ css.root }>

 <div className={ css.version }>ver. { process.env.REACT_APP_VERSION }</div>

 <div className={ css.loginContainer }>

 <div className={ css.loginPanel }>

 <div className={ css.body }>

 <h1 className={ css.loginTitle } data-testid={ 'loginTitle' }>

 { i18n.labels.welcomeTo } { this.textCut }

 { this.productName }

 </h1>

 <form>

-61-

 <div className={ css.textFields }>

 <div className={ css.labelAndInput }>

 <div className={ css.label }>

 { i18n.labels.userName }

 </div>

 <input

 className={ css.textField }

 type='text'

 name='username'

 data-testid={ 'usernameInput' }

 onChange={ this.handleInputChange }

 value={ this.state.credentials.username }

 disabled={ this.state.loading }

 autoFocus={ true }

 ref={ this.nameInput }

 />

 </div>

 <div className={ css.labelAndInput }>

 <div className={ css.label }>

 { i18n.labels.password }

 </div>

 <input

 className={ css.textField }

 type='password'

 name='password'

 data-testid={ 'pwInput' }

 onChange={ this.handleInputChange }

 value={ this.state.credentials.password }

 disabled={ this.state.loading }

 />

 </div>

 { this.state.loading

 ? <div className={ css.status }> { i18n.labels.loggingIn } </div>

 : <div className={ css.error } data-testid={ 'error' }>{

this.state.error }</div> }

 </div>

 <div className={ css.buttonContainer }>

 <button className={ css.loginButton }

 onClick={ this.handleSubmit }

 disabled={ this.state.disabled }>

 { i18n.labels.loginButton }

 </button>

 </div>

 </form>

 </div>

 </div>

 </div>

 </div>

);

 }

}

const mapStateToProps = (state: RootState) => ({

 i18n: state.preferenceSettings.i18n

});

const mapDispatchToProps = (dispatch: AppDispatch) => ({

 preferenceUserSet: (u: any) => dispatch(preferenceUserSet(u)),

 appMessageDisplay: (m: any) => dispatch(appMessageDisplay(m)),

 preferenceSet: (p: any) => dispatch(preferenceSet(p))

});

export default connect(mapStateToProps, mapDispatchToProps)(LoginView);

-62-

Appendix 4

LoginView component source code (function version)

export function LoginView(): JSX.Element {

 logger.debug("render()");

 const [credentials, setCredentials] = useState<Credentials>({ username: '', pass-

word: '' });

 const [error, setError] = useState<string>('');

 const [loading, setLoading] = useState<boolean>(false);

 const [disabled, setDisabled] = useState<boolean>(true);

 const i18n: I18n = useSelector((state: RootState) => state.preferenceSettings.i18n);

 const dispatch = useDispatch();

 const userInput = useRef<HTMLInputElement | null>(null);

 const productName = i18n.labels.productName;

 const [userPreferenceQuery, { data: userData }] = use-

LazyQuery(API_BASE_MAP.GET_USER_INFO, {

 fetchPolicy: "no-cache"

 });

 const textCut = productName.length < 10

 ? ' '

 :
;

 useEffect(() => {

 if (userInput.current !== null){

 userInput.current.focus();

 }

 }, [loading]);

 useEffect(() => {

 setDisabled(credentials.username === '' || credentials.password === '');

 }, [credentials]);

 const handleInputChange = (e: React.ChangeEvent<HTMLInputElement>): void => {

 const { name, value } = e.target;

 setCredentials({ ...credentials, [name]: value });

 setError('');

 };

 const handleSubmit = async (e: React.MouseEvent<HTMLElement>): Promise<void> => {

 e.preventDefault();

 setError('');

 setLoading(true);

 setDisabled(true);

 let response = null;

 try {

 response = await auth(credentials);

 dispatch(preferenceUserSet(response.userName));

 } catch (e) {

 setError(e);

 setDisabled(false);

 } finally {

 setLoading(false);

 }

 };

 if (userData) {

 if (userData.getUserProfile.error) {

 dispatch(appMessageDisplay({

 type: "error",

 message: i18n.messages.failedSavePreferences,

 details: userData.getUserProfile.error

 }));

 }

 if (userData.getUserProfile?.profileJson && userData.getUserProfile?.lastUpdatedTS)

{

 dispatch(preferenceLastTsSet(JSON.parse(userData.getUserProfile.lastUpdatedTS)));

 const profileSettings = JSON.parse(userData.getUserProfile.profileJson);

 delete profileSettings.lastUpdatedTS;

 dispatch(preferenceSet(profileSettings));

 }

 return (

 <Route>

 <Redirect to="/map" />

 </Route>

-63-

);

 }

 return (

 <div className={ css.root }>

 <div className={ css.version }>ver. { process.env.REACT_APP_VERSION }</div>

 <div className={ css.loginContainer }>

 <div className={ css.loginPanel }>

 <div className={ css.body }>

 <h1 className={ css.loginTitle } data-testid={ 'loginTitle' }>

 { i18n.labels.welcomeTo } { textCut }

 { productName }

 </h1>

 <form>

 <div className={ css.textFields }>

 <div className={ css.labelAndInput }>

 <div className={ css.label }>

 { i18n.labels.userName }

 </div>

 <input

 className={ css.textField }

 type='text'

 name='username'

 data-testid={ 'usernameInput' }

 onChange={ handleInputChange }

 value={ credentials.username }

 disabled={ loading }

 autoFocus={ true }

 ref={ userInput }

 />

 </div>

 <div className={ css.labelAndInput }>

 <div className={ css.label }>

 { i18n.labels.password }

 </div>

 <input

 className={ css.textField }

 type='password'

 name='password'

 data-testid={ 'pwInput' }

 onChange={ handleInputChange }

 value={ credentials.password }

 disabled={ loading }

 />

 </div>

 { loading

 ? <div className={ css.status }> { i18n.labels.loggingIn } </div>

 : <div className={ css.error } data-testid={ 'error' }>{ error }</div>

}

 </div>

 <div className={ css.buttonContainer }>

 <button className={ css.loginButton }

 onClick={ handleSubmit }

 disabled={ disabled }>

 { i18n.labels.loginButton }

 </button>

 </div>

 </form>

 </div>

 </div>

 </div>

 </div>

);

}

-64-

Appendix 5

UserPreferencesWindow component source code (class version)

class UserPreferencesWindowC extends React.Component<any, any> {

 constructor(props: any) {

 super(props);

 this.onClose = this.onClose.bind(this);

 }

 onClose() {

 const user: string | undefined = this.props.userName;

 const lastUpdatedTS: number | undefined = this.props.lastUpdatedTS;

 const preferences = this.props.userPreferences;

 const [sendUserPrefs] = useMutation(API_BASE_MAP.PUT_USER_INFO);

 if (user) {

 const kvl = Object.entries(preferences).map(([key, value]) => ({ key, value }));

 const userProfileInput: UserProfileInput = { userId: user, lastUpdatedTS:

lastUpdatedTS, kvl: (kvl as KeyValuePair[]) };

 const i18n: I18n = this.props.i18n;

 sendUserPrefs({ variables: { userProfileInput } })

 .then((resp: any) => {

 this.props.preferenceLastTsSet(resp.data.putUserProfile.lastUpdatedTS);

 const getPrefError = resp.data.putUserProfile.error;

 if (getPrefError) {

 logger.error("Error sending preferences:", getPrefError);

 const errorCode = resp.data.putUserProfile.errorCode;

 const errorDetails = errorCode === 'UPE-0001'

 ? i18n.getMsg(("errorCode_" + errorCode) as keyof Messages)

 : getPrefError;

 this.props.appMessageDisplay({

 type: "error",

 message: i18n.messages.failedSavePreferences,

 details: errorDetails

 });

 }

 })

 .catch((error: any) => {

 logger.error("Error sending preferences:", error.message);

 this.props.appMessageDisplay({

 type: "error",

 message: i18n.messages.failedSavePreferences,

 details: error.message

 });

 });

 }

 this.props.preferenceWindowToggle();

 }

 render() {

 const i18n: I18n = this.props.i18n;

 const prefWindowOpen: boolean | undefined = this.props.preferencesWindowOpen;

 const preferences = this.props.userPreferences;

 const setPreferences = (p: any) => this.props.preferenceSet(p);

 const availableLocales: AvailableLocalesMap = this.props.availableLocales;

 const tabs: Tab[] = [

 {

 id: "general", title: i18n.labels.generalTitle,

 component: <GeneralTab i18n={ i18n } key={ "generalTab" } preferences={ prefer-

ences } setPreferences={ setPreferences } />

 },

 {

 id: "languageRegion", title: i18n.labels.languageAndRegionTitle,

 component: <LocaleTab i18n={ i18n } availableLocales={ availableLocales } key={

"localeTab" } preferences={ preferences } setPreferences={ setPreferences } />

 },

];

 if (!prefWindowOpen) {

 return null;

 }

-65-

 return (

 <Draggable bounds="parent" handle=".dragHandle">

 <div className={ css.root }>

 <div className={ css.titleContainer + " dragHandle" }>

 <div className={ css.leftSide }></div>

 <div className={ css.title }>{ i18n.labels.settingsTitle }</div>

 <IconButton

 name={ "Close" }

 tooltip={ i18n.labels.closeTooltip }

 iconSvg={ <Close/> }

 onClick={ this.onClose }

 testId={ "userPref-close-button" }

 borderless={ true }/>

 </div>

 <div className={ css.body }>

 <TabPanel tabs={ tabs } toolbarButtons={ [] } />

 </div>

 </div>

 </Draggable>

);

 }

}

class GeneralTab extends React.Component<any, any> {

 constructor(props: any) {

 super(props);

 }

 onVideoQualityChange(value: any){

 this.props.setPreferences({ ...this.props.preferences, videoQuality: value.value });

 }

 render() {

 const videoQualityOptions = [

 { value: 'high', label: this.props.i18n.labels.highValue },

 { value: 'medium', label: this.props.i18n.labels.mediumValue },

 { value: 'low', label: this.props.i18n.labels.lowValue },

];

 const themeControl = <ThemeControl

 preferences={ this.props.preferences }

 setPreferences={ this.props.setPreferences }

 i18n={ this.props.i18n }

 />;

 const videoQualityControl = <DropDownControl

 id={ 'videoQualitySelection' }

 options={ videoQualityOptions }

 selected={ this.props.preferences.videoQuality }

 onChange={ (v: any) => this.onVideoQualityChange(v) }

 />;

 return (

 <div className={ css.generalContent }>

 <LabelAndControl label={ this.props.i18n.labels.appearanceLabel } control={

themeControl } />

 <LabelAndControl label={ this.props.i18n.labels.videoQuality } control={ vide-

oQualityControl } />

 </div>

);

 }

}

class LocaleTab extends React.Component<any, any> {

 constructor(props: any) {

 super(props);

 }

 private temperatureOptions = [

 { value: 'C', label: '°C - Celsius' },

 { value: 'F', label: '°F - Fahrenheit' }

];

 private languageOptions: BasicControlOptions[] = [];

 componentDidMount(){

 const availableLocales: AvailableLocalesMap = this.props.availableLocales;

 Object.entries(availableLocales).forEach (

 ([key, value]) => this.languageOptions.push({ value: key, label: value })

);

-66-

 }

 onTemperatureUnitChange(value: any) {

 this.props.setPreferences({ ...this.props.preferences, temperatureUnit: value });

 }

 onLanguageChange(value: any) {

 this.props.setPreferences({ ...this.props.preferences, locale: value.value });

 }

 render(){

 const temperatureControl = <RadioControl

 id={ 'temperatureUnitSelection' }

 options={ this.temperatureOptions }

 selected={ this.props.preferences.temperatureUnit }

 onChange={ (v: any) => this.onTemperatureUnitChange(v) }

 />;

 const languageControl = <DropDownControl

 id={ 'languageSelection' }

 options={ this.languageOptions }

 selected={ this.props.preferences.locale }

 onChange={ (v: any) => this.onLanguageChange(v) }

 />;

 return (

 <div className={ css.generalContent }>

 <LabelAndControl label={ this.props.i18n.labels.language } control={ language-

Control } />

 <LabelAndControl label={ this.props.i18n.labels.temperatureUnit } control={ tem-

peratureControl } />

 </div>

);

 }

}

function LabelAndControl({ label, control }: {label: string, control: JSX.Element}):

JSX.Element {

 return (

 <div className={ css.preferenceContainer }>

 <div className={ css.preferenceName }>

 {label}:

 </div>

 { control }

 </div>

);

}

class ThemeControl extends React.Component<any, any> {

 constructor(props: PreferenceHookTypes) {

 super(props);

 }

 render() {

 const themeToSvg = {

 'dark': <DarkTheme/>,

 'darker': <DarkerTheme/>,

 'custom': <CustomTheme/>,

 'light': <CustomTheme/>,

 'nokia': <CustomTheme/>

 };

 return (

 <div className={ css.preferenceControl }>

 {availableThemes.map((theme) => (

 <div className={ css.themeSelection } key={ theme }>

 <IconButton

 className={ css.themeSvg }

 testId={ `${ theme }-themeSelection` }

 name={ theme }

 iconSvg={ themeToSvg[theme] }

 tooltip={ theme }

 selected={ this.props.preferences.theme === theme }

 onClick={ () => this.props.setPreferences({ ...this.props.preferences,

theme: theme }) }

 borderless={ true }

 withoutBackground={ true }

 />

 <div className={ this.props.preferences.theme === theme ? css.select-

edThemeName : css.themeName }>

-67-

 {this.props.i18n ? (this.props.i18n.labels as any)[`themeValue_${ theme

}`] : null}

 </div>

 </div>

))}

 </div>

);

 }

}

function DropDownControl(props: BasicControlProps) {

 return (

 <div className={ css.preferenceDropdown }>

 <DropDownBox

 id={ props.id }

 value={ props.options.find(({ value }) => value === props.selected) }

 onChange={ props.onChange }

 options={ props.options }

 placeholder={ props.selected }

 />

 </div>

);

}

function RadioControl(props: BasicControlProps) {

 return (

 <div className={ css.radioControlContainer }>

 {props.options.map((value: any) => (

 <div key={ value.value } className={ css.radioControl }>

 <RadioButton

 name={ value.value }

 selected={ props.selected === value.value }

 onSelect={ () => props.onChange(value.value) }

 label={ value.label }

 />

 </div>

))}

 </div>

);

}

const mapStateToProps = (state: RootState) => ({

 i18n: state.preferenceSettings.i18n,

 preferencesWindowOpen: state.viewportSettings.preferencesWindowOpen,

 userName: state.preferenceSettings.userName,

 lastUpdatedTS: state.preferenceSettings.lastUpdatedTS,

 userPreferences: state.preferenceSettings.userPreferences,

 availableLocales: state.preferenceSettings.availableLocales

});

const mapDispatchToProps = (dispatch: AppDispatch) => ({

 preferenceWindowToggle: () => dispatch(preferenceWindowToggle()),

 preferenceSet: (p: any) => dispatch(preferenceSet(p)),

 preferenceLastTsSet: (ts: any) => dispatch(preferenceLastTsSet(ts)),

 appMessageDisplay: (m: any) => dispatch(appMessageDisplay(m))

});

export default connect(mapStateToProps, mapDispatchToProps)(UserPreferencesWindowC);

-68-

Appendix 6

UserPreferencesWindow component source code (function version)

export function UserPreferencesWindow(): JSX.Element | null {

 const i18n: I18n = useSelector((state: RootState) => state.preferenceSettings.i18n);

 const prefWindowOpen: boolean | undefined = useSelector((state: RootState) =>

state.viewportSettings.preferencesWindowOpen);

 const dispatch = useDispatch();

 const [preferences, setPreferences] = usePreference();

 const user: string | undefined = useSelector((state: RootState) => state.preference-

Settings.userName);

 const [sendUserPrefs] = useMutation(API_BASE_MAP.PUT_USER_INFO);

 const lastUpdatedTS: number | undefined = useSelector((state: RootState) =>

state.preferenceSettings.lastUpdatedTS);

 const onClose = () => {

 if (user) {

 const kvl = Object.entries(preferences).map(([key, value]) => ({ key, value }));

 const userProfileInput: UserProfileInput = { userId: user, lastUpdatedTS:

lastUpdatedTS, kvl: kvl };

 sendUserPrefs({ variables: { userProfileInput } })

 .then((resp: any) => {

 dispatch(preferenceLastTsSet(resp.data.putUserProfile.lastUpdatedTS));

 const getPrefError = resp.data.putUserProfile.error;

 if (getPrefError) {

 logger.error("Error sending preferences:", getPrefError);

 const errorCode = resp.data.putUserProfile.errorCode;

 const errorDetails = errorCode === 'UPE-0001'

 ? i18n.getMsg(("errorCode_" + errorCode) as keyof Messages)

 : getPrefError;

 dispatch(appMessageDisplay({

 type: "error",

 message: i18n.messages.failedSavePreferences,

 details: errorDetails

 }));

 }

 })

 .catch((error: any) => {

 logger.error("Error sending preferences:", error.message);

 dispatch(appMessageDisplay({

 type: "error",

 message: i18n.messages.failedSavePreferences,

 details: error.message

 }));

 });

 }

 dispatch(preferenceWindowToggle());

 };

 const tabs: Tab[] = [

 {

 id: "general", title: i18n.labels.generalTitle,

 component: <GeneralTab key={ "generalTab" } preferences={ preferences } setPrefer-

ences={ setPreferences } />

 },

 {

 id: "languageRegion", title: i18n.labels.languageAndRegionTitle,

 component: <LocaleTab key={ "localeTab" } preferences={ preferences } setPrefer-

ences={ setPreferences } />

 },

 // {

 // id: "timeZone", title: i18n.labels.timeZoneTitle,

 // component: <TimeZoneTab />

 // },

];

 if (!prefWindowOpen) {

 return null;

 }

 return (

 <Draggable bounds="parent" handle=".dragHandle">

 <div className={ css.root }>

-69-

 <div className={ css.titleContainer + " dragHandle" }>

 <div className={ css.leftSide }></div>

 <div className={ css.title }>{ i18n.labels.settingsTitle }</div>

 <IconButton

 name={ "Close" }

 tooltip={ i18n.labels.closeTooltip }

 iconSvg={ <Close/> }

 onClick={ onClose }

 testId={ "userPref-close-button" }

 borderless={ true }/>

 </div>

 <div className={ css.body }>

 <TabPanel tabs={ tabs } toolbarButtons={ [] } />

 </div>

 </div>

 </Draggable>

);

}

function usePreference(): [UserPreferences, React.Dispatch<React.SetState-

Action<UserPreferences>>] {

 const preferencesFromStore: UserPreferences = useSelector((state: RootState) =>

state.preferenceSettings.userPreferences);

 const [preferences, setPreferences] = useState<UserPreferences>(preferencesFromStore);

 const dispatch = useDispatch();

 useEffect(() => {

 if (preferences && preferences !== preferencesFromStore) {

 dispatch(preferenceSet(preferences));

 }

 }, [preferences]);

 return [preferences, setPreferences];

}

function GeneralTab(props: any) :JSX.Element {

 const i18n: I18n = useSelector((state: RootState) => state.preferenceSettings.i18n);

 const videoQualityOptions = [

 { value: 'high', label: i18n.labels.highValue },

 { value: 'medium', label: i18n.labels.mediumValue },

 { value: 'low', label: i18n.labels.lowValue },

];

 const onVideoQualityChange = (value: any) => {

 props.setPreferences({ ...props.preferences, videoQuality: value.value });

 };

 const themeControl = <ThemeControl

 preferences={ props.preferences }

 setPreferences={ props.setPreferences }

 />;

 const videoQualityControl = <DropDownControl

 id={ 'videoQualitySelection' }

 options={ videoQualityOptions }

 selected={ props.preferences.videoQuality }

 onChange={ onVideoQualityChange }

 />;

 return (

 <div className={ css.generalContent }>

 <LabelAndControl label={ i18n.labels.appearanceLabel } control={ themeControl } />

 <LabelAndControl label={ i18n.labels.videoQuality } control={ videoQualityControl

} />

 </div>

);

}

function LocaleTab(props: PreferenceHookTypes) :JSX.Element {

 const i18n: I18n = useSelector((state: RootState) => state.preferenceSettings.i18n);

 const availableLocales: AvailableLocalesMap = useSelector((state: RootState) =>

state.preferenceSettings.availableLocales);

 const languageOptions: BasicControlOptions[] = [];

 Object.entries(availableLocales).forEach (

 ([key, value]) => languageOptions.push({ value: key, label: value })

);

 const onLanguageChange = (value: any) => {

-70-

 props.setPreferences({ ...props.preferences, locale: value.value });

 };

 const onTemperatureUnitChange = (value: any) => {

 props.setPreferences({ ...props.preferences, temperatureUnit: value });

 };

 const temperatureOptions = [

 { value: 'C', label: '°C - Celsius' },

 { value: 'F', label: '°F - Fahrenheit' }

];

 const languageControl = <DropDownControl

 id={ 'languageSelection' }

 options={ languageOptions }

 selected={ props.preferences.locale }

 onChange={ onLanguageChange }

 />;

 const temperatureControl = <RadioControl

 id={ 'temperatureUnitSelection' }

 options={ temperatureOptions }

 selected={ props.preferences.temperatureUnit }

 onChange={ onTemperatureUnitChange }

 />;

 return (

 <div className={ css.generalContent }>

 <LabelAndControl label={ i18n.labels.language } control={ languageControl } />

 <LabelAndControl label={ i18n.labels.temperatureUnit } control={ temperatureCon-

trol } />

 </div>

);

}

function LabelAndControl({ label, control }: {label: string, control: JSX.Element}):

JSX.Element {

 return (

 <div className={ css.preferenceContainer }>

 <div className={ css.preferenceName }>

 {label}:

 </div>

 { control }

 </div>

);

}

function ThemeControl(props: PreferenceHookTypes) {

 const i18n: I18n = useSelector((state: RootState) => state.preferenceSettings.i18n);

 const themeToSvg = {

 'dark': <DarkTheme/>,

 'darker': <DarkerTheme/>,

 'custom': <CustomTheme/>,

 'light': <CustomTheme/>,

 'nokia': <CustomTheme/>

 };

 return (

 <div className={ css.preferenceControl }>

 {availableThemes.map((theme) => (

 <div className={ css.themeSelection } key={ theme }>

 <IconButton

 className={ css.themeSvg }

 testId={ `${ theme }-themeSelection` }

 name={ theme }

 iconSvg={ themeToSvg[theme] }

 tooltip={ theme }

 selected={ props.preferences && props.preferences.theme === theme }

 onClick={ () => props.setPreferences({ ...props.preferences, theme: theme })

}

 borderless={ true }

 withoutBackground={ true }

 />

 <div className={ props.preferences.theme === theme ? css.selectedThemeName :

css.themeName }>{(i18n.labels as any)[`themeValue_${ theme }`]}</div>

 </div>

))}

 </div>

-71-

);

}

function DropDownControl(props: BasicControlProps) {

 return (

 <div className={ css.preferenceDropdown }>

 <DropDownBox

 id={ props.id }

 value={ props.options.find(({ value }) => value === props.selected) }

 onChange={ props.onChange }

 options={ props.options }

 placeholder={ props.selected }

 />

 </div>

);

}

function RadioControl(props: BasicControlProps) {

 return (

 <div className={ css.radioControlContainer }>

 {props.options.map((value: any) => (

 <div key={ value.value } className={ css.radioControl }>

 <RadioButton

 name={ value.value }

 selected={ props.selected === value.value }

 onSelect={ () => props.onChange(value.value) }

 label={ value.label }

 />

 </div>

))}

 </div>

);

}

-72-

Appendix 7

Pre-interview Form

-73-

-74-

Appendix 8

Interview Guide

• Personal history with JavaScript and React

• React and React architecture in general

o Overall impressions of React

o Is component and props -based architecture of React suitable

for you?

o Future vision of React; is React moving in the right direction?

• Hooks-based state management

o Usability of hooks as a state management tool

o Transition to 100% function components? Or do Class compo-

nents have a place in modern React

o Built-in hooks, custom hooks, and 3rd party custom hooks;

your experiences and opinions

o Different pragmatic aspects of hooks (readability, collabora-

tion, ecosystem, testability, learning, documentation)

• Global state management

o Choosing your state management library and architecture

o Viability of local state sharing with context

o How do you handle the jungle of state management options?

• Adapting new technologies

o How quickly did you adapt to hooks?

o What goes into your thought process of choosing a framework,

library, etc. for a project?

o Long-term viability of current JavaScript ecosystem

o Fast-moving JS: value of refactoring, maintaining, and adapt-

ing new technologies during development.

• Any questions or comments?

• Do you know anyone who could participate in this interview?

	1 Introduction
	2 Web Software Architecture
	2.1 Software Architecture
	2.1.1 Defining Software Architecture
	2.1.2 Components and Interfaces
	2.1.3 UI Architecture and MVC

	2.2 Software State
	2.2.1 State in Software Development
	2.2.2 Modeling Software State

	2.3 Web Applications
	2.3.1 Web Application Architecture Overview
	2.3.2 Static and Dynamic Web Sites
	2.3.3 Web as an Application Platform
	2.3.4 AJAX
	2.3.5 Single Page Application
	2.3.6 JavaScript
	2.3.7 JavaScript UI Frameworks

	3 React UI Framework
	3.1 React Overview
	3.2 Components
	3.2.1 Class Components
	3.2.2 Function Components
	3.2.3 Function Components With Hooks

	3.3 Component Lifecycle
	3.4 React State Management
	3.4.1 Local State
	3.4.2 Global State Management with Redux
	3.4.3 Other Global State Management Libraries

	4 Research Methods
	4.1 Case Study
	4.2 Developer Interviews
	4.2.1 Participants
	4.2.2 Data Collection
	4.2.3 Data Analysis

	5 Case Study
	5.1 Component 1: DateTimeDisplay
	5.2 Component 2: LoginView
	5.3 Component 3: UserPreferencesWindow
	5.4 Case Study Findings

	6 Developer Interviews
	6.1 React and Other Frameworks
	6.1.1 React Overall
	6.1.2 React Architecture
	6.1.3 React Performance
	6.1.4 Global State Management with React
	6.1.5 Function and Class Components

	6.2 Functionality of Hooks
	6.2.1 Built-in hooks
	6.2.2 Lifecycle Management
	6.2.3 Custom and Third Party Hooks

	6.3 Hooks Based React Development
	6.3.1 Readability
	6.3.2 Ecosystem and Collaboration
	6.3.3 Testability

	6.4 Adaptation to Hooks
	6.4.1 Learning Hooks
	6.4.2 Transition to Hooks
	6.4.3 Refactoring Class Components

	6.5 Interview Findings

	7 Findings and Discussion
	7.1 Findings
	7.2 Reliability
	7.3 Future Research

	8 Conclusion

