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In a large distributed system, managing outgoing and incoming communications

is a complex task due to a large amount of connections. The data flowing inside

the system is growing along with the system and manually managing them is not

efficient after a certain point. Thus, there is a need for special software to simplify

the connections in the system. The special software developed for this purpose is

commonly referred to as message-oriented-middleware (MOM).

This paper will compare three different MOMs in the form of a literature review,

Apache Kafka, Apache Pulsar, and RabbitMQ. These MOMs are compared based

on predefined characteristics. These characteristics are important for a network

management system running in a Cloud Native environment. These characteristics

are consumer-producer patterns, scalability, throughput, reliability, security, and

backward compatibility.

This paper’s result is that Apache Kafka remains the primary choice as a MOM

for systems demanding high throughput for its wide community adoption and ma-

ture technology. Apache Pulsar is Apache Kafka’s most significant competitor in

this area because it can outperform Apache Kafka in many performance-related

characteristics. Apache Pulsar’s community is not near Apache Kafka’s, and its

technology is less mature. RabbitMQ is found to be the best choice when data

safety and reliability are a primary requirement.

Keywords: Cloud Native, Message-Oriented-Middleware, Message broker, Event

broker, Apache Kafka, Apache Pulsar, RabbitMQ, comparison, consumer-producer

pattern, scalability, throughput, reliability, security, backward compatibility

The originality of this thesis has been checked using the Turnitin Originality Check

service.
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Suuren hajautetun järjestelmän sisäisen ja ulkoisen viestinnän hallinta on mon-

imutkaista yhteyksien suuren lukumäärän vuoksi. Systeemissä liikkuva datan määrä

lisääntyy järjestelmän kasvaessa, eikä näiden yhteyksien hallinta ole enää tietyn pis-

teen jälkeen manuaalisesti tehokasta. Siksi tarvitaan tähän tarkoitukseen tehtyjä er-

ityisiä sovelluksia yksinkertaistamaan systeemin kommunikointia. Tähän tarkoituk-

seen erikoistuneita sovelluksia kutsutaan yleisesti termillä viestinvälitykseen suun-

tautuneet väliohjelmistot.

Tässä työssä tutkitaan kirjallisuuskatsauksen muodossa kolmea eri viestinvälity-

seen suuntautunutta väliohjelmistoa: Apache Kafka, Apache Pulsar ja RabbitMQ.

Tässä työssä väliohjelmistoja vertaillaan etukäteen määriteltyjen ominaisuuksien

osalta. Nämä vertailtavat ominaisuudet ovat Cloud Native-ympäristössä toimivan

verkonhallintajärjestelmän kannalta tärkeitä ominaisuuksia. Nämä ominaisuudet

ovat kuluttaja-tuottajamallit, skaalautuvuus, läpimenonopeus, luotettavuus, tur-

vallisuus ja taaksepäin yhteensopivuus.

Työn lopputuloksena on, että Apache Kafka pysyy jatkossakin pääasiallisena val-

intana korkeaan suoritustehoon tähtäävänä ratkaisuna sen suuren käyttäjäyhteisön

ja luotettavan teknologiansa vuoksi. Apache Pulsar on Apache Kafkan kovin kil-

pailija, sillä se kykenee voittamaan Apache Kafkan monissa suoritustehoon liit-

tyvissä ominaisuuksissa. Apache Pulsarin käyttäjäyhteisö ei ole kuitenkaan Apache

Kafkan tasoa, sekä teknologia on paljon uudempi. RabbitMQ:n todetaan olevan

paras valinta silloin, kun suositaan datan turvallisuutta ja luotettavuutta.

Avainsanat: Cloud Native, viestinvälitykseen suuntautunut väliohjelmisto, vies-

tivälittäjä, tapahtumavälittäjä, Apache Kafka, Apache Pulsar, RabbitMQ, vertailu,

kuluttaja-tuottajamalli, skaalautuvuus, läpimenonopeus, luotettavuus, turvallisuus,

taaksepäin yhteensopivuus

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin Originality Check –ohjel-
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1 Introduction

Message-oriented middleware (MOM) is software that handles exchanging messages

between different parts of a distributed system. The message-oriented middleware

term includes event brokers and message brokers. A message broker is a software,

that manages communications between senders and receivers in the system. An

event broker is an evolved version of a message broker. The event broker maintains

all the data in its storage in an immutable replayable data structure.

There are many possible use cases for a MOM. The best choice as a MOM always

depends on the use case. Possible use cases are, for example, financial transactions,

website order tracking, and event sourcing. The first thing is to consider whether

there is a need for a message-driven message broker or an event-driven event bro-

ker. This decision is depending on overall system complexity. If the system is a

message-driven system with simple consumer-producer relationships, then a tradi-

tional message broker or message queue can be enough. In case the relationship is

not clear due to architectural complexity, then an event broker is preferred.

This work aims to make a comparison of MOMs in the form of a literature

review. The comparison focuses on the essential characteristics needed in a cloud

native network management system (NMS). These characteristics are: high through-

put, implemented consumer-producer patterns, and supported security, reliability,

scalability mechanisms, and backward compatibility. The chosen MOMs are Apache

Kafka, Apache Pulsar, and RabbitMQ. A commonly used messaging solution in the

industry is Kafka, but also aforementioned MOMs are capable of implementing the

same kind of functionality. These MOMs were chosen for the research based on

knowledge gathered from the industry of the best Kafka alternatives. Other alter-

natives also were considered, such as RocketMQ and NATS Streaming, but they

were excluded because there was very little research. Also, including them would

have enlarged the scope of this research too broad.

This paper aims not to find an alternative for Kafka but rather to gain knowledge

of MOMs for cloud native environment. The aim of the research and the essential

characteristics of the NMS leads to the following research questions:

• Which consumer-producer patterns do Kafka, Pulsar, and RabbitMQ imple-

ment? (RQ1).

• How do scalability mechanisms differ in Kafka, Pulsar, and RabbitMQ? (RQ2).

• How does throughput differ in Kafka, Pulsar, and RabbitMQ? (RQ3).

• How do reliability mechanisms differ in Kafka, Pulsar, and RabbitMQ? (RQ4).
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• Which security mechanisms do Kafka, Pulsar, and RabbitMQ support? (RQ5).

• How does backward compatibility differ in Kafka, Pulsar, and RabbitMQ?

(RQ6).

This paper is structured as follows: Section 2 background is described starting

from distributed computing to event and messaging brokers’ characteristics. Section

3 describes the methodologies used in the research. Section 4 describes the MOMs

under research, and Section 5 presents the results. Discussion is in Section 6 and

conclusion in Section 7.
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2 Background

2.1 Distributed computing

A distributed system is a collection of interconnected computers over a network

and appears to its user as a single coherent system. The benefit of the distributed

system comes from the ability to exploit parallel processing on separate computers.

These computers are called nodes, and they operate independently from each other.

Even though they operate independently, they aim to solve a common goal, and this

involves message exchange between computers. Node listens for incoming messages

and processes them, which in turn leads to further exchange of messages. The nodes

in a distributed system can run on different hardware and software components by

different vendors. The nodes communicate with each other using messages through

Application Programming Interface (API). The API abstracts the implementation

details. Therefore the communicating nodes do not have to know anything about

each other except for their API.

The main benefits of a distributed system compared to a monolithic system are

increased portability, adaptability, and scalability. Increased availability of cloud

computing enables smaller networked devices to run more computationally demand-

ing applications. Therefore scalability has become one of the leading design goals

of a distributed system. Typically, problems with a distributed system’s scalability

are related to servers’ limited computational capacity and networking speed. [1]

Scalability in a distributed system has three different dimensions. Size scalability

means, that adding more components (i.e. more capacity) to the system will not

decrease the performance. Size scalability can face problems related to CPUs’ com-

putational capacity, storage capacities of disks, and network capacity between the

user and the system. Geographical scalability means that different system compo-

nents can lie geographically apart, but the user should not notice the delay between

components. Geographical scalability is hard to implement with synchronous com-

munication, and hence asynchronous technologies are typically used. Administrative

scalability means that the system needs a safe way to handle multiple independent

administrative domains that govern the system. Administrative scalability faces

problems related to policies of resource usage, management, and security. Typical

pitfalls and false assumptions when implementing a distributed system for the first

time are related to networking, latency, bandwidth, and administration. [1]

A common way to solve scalability problems is to improve the capacity of the

components in the system. This approach is called vertical scaling or scaling up

and can include increasing memory size, network bandwidth, and upgrading CPUs.
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Another way to solve these problems is by deploying more machines into the system.

This approach is called horizontal scaling or scaling out using three techniques:

hiding communication latency, distributing work, and using replication. Hiding

communication latency is done using asynchronous communication technologies that

enable the system to process other tasks while waiting for the previous to complete.

Distribution of work is done by splitting components and spreading them across the

system to avoid a single part becoming a bottleneck for the system. Replication

spreads the data across the distributed system to increase availability and balance

workload. Geographical scaling replicates components and data so that they are

closer to the user, decreasing the latency and enabling disaster avoidance. When

implementing replication, the system’s data consistency is hard to maintain and

requires a global synchronization mechanism. [1]

In distributed systems, there are two subtypes of high-performance computing;

cluster computing and grid computing. In cluster computing, the aim is to aggregate

resources, locating all nodes physically in the same location. In cluster computing,

the nodes are homogeneous by their hardware and software and interconnected with

a high-speed local area network. Cluster computing aims to solve high-performance

tasks where multiple jobs are run concurrently on multiple machines, exploiting

parallelism benefits. Typically in cluster computing, a slave-master architecture is

used, where a master node allocates jobs to a slave node to perform. One widely

applied example of a cluster computer is a Beowolf cluster, in which a single master

node schedules tasks to slave nodes governed by the master node. The master node

needs to run the software needed to execute sub-tasks on slave nodes and manage

the cluster, for example, Apache Hadoop. [1]

Grid computing aims to segregate available resources using networking to run

tasks concurrently. In grid computing, the nodes are a collection of computers with

heterogeneous software, hardware, location, and networking technologies. The main

difference in grid computing from cluster computing is that in grid computing, the

nodes are connected using the internet, and the unused resources in a node are

available to any job from the grid. Because the nodes contribute to the grid from

different geographical locations, the main problem is administrating the shared re-

sources between the sub-jobs. The problem of heterogeneous hardware and software

is solved by focusing on the system’s architecture; therefore, a layer architecture

is used. The architecture of grid computing consists of four layers: fabric layer,

connectivity layer, resource layer, and application layer. Typically the collective,

connectivity, and resource layers form what is called a grid middleware layer. [1]

Problems of giving access to the resources for customers in grid computing sys-

tems lead to the formation of utility computing, in which customers pay per-resource

basis. This utility computing concept initiated the basis for cloud computing. Vast
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amount cloud computing solutions nowadays are based on grid middleware imple-

mentations. These solutions include elastic provisioning of computing resources and

homogenization of heterogeneous resources of nodes through virtualization. Cloud

computing should still be seen as an evolved next step away from the grid computing

model rather than its subclass. [1]

2.2 Cloud computing

Cloud computing is defined as easily usable and accessible computer system re-

sources. [1] Probably the most significant achievement for cloud computing is the

globalization of computing resources. Cloud vendors offer these services as business

offerings to the customer through various interfaces like command-line tools, pro-

gramming interfaces, and web interfaces. These interfaces enable cloud usage with-

out special knowledge, expertise, or control over how the infrastructure supporting

those services works. The cloud seems a tempting possibility for companies to in-

crease their software resources compared to managing their infrastructure. Cloud

computing is usually billed on a pay-per-use model described with Utility comput-

ing, usually defined in Service Level Agreement (SLA). Cloud computing resources

are easily scalable since more resources can be acquired automatically when more

computing power is needed. This automatic scaling is called elastic provisioning or

rapid elasticity. Using elastic provisioning, customers do not have to engineer their

applications for peak times. They simply acquire more computing resources from

the cloud provider. Most cloud services run in highly reliable and time-tested data

centers, which usually define higher than 99,99 percentage up time in their SLAs.

Sharing a data center’s computing resources and costs across a large pool of users

is called multitenancy. [2]

There are four different cloud deployment models: private cloud, community

cloud, public cloud, and hybrid cloud. Private cloud means that the cloud infras-

tructure is available and maintained only for a particular organization based on its

needs. Community cloud means that the cloud infrastructure is designed and avail-

able only for a particular user group or organization group that shares a specific

concern or a mission. Public cloud means that the cloud infrastructure is available

for general public and a cloud vendor maintains the infrastructure. A hybrid cloud

is a deployment model where the infrastructure contains two or more clouds that

are designed to interoperate together. [3] Figure 1 shows the layered architecture of

a typical cloud.
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Figure 1 Layer architecture of a typical cloud.

Typical cloud computing architecture contains four separate layers: hardware, in-

frastructure, platform, and application layer. The hardware layer is the bottom layer

that includes the hardware’s necessary resources in data centers like CPUs, mem-

ory, routers, power, and cooling system. The infrastructure layer includes mostly the

virtualization technologies, including virtual storage and computing resources like

virtual machines. The platform layer is equal for a customer as an operating system

for a programmer. It gives the customer an interface to upload and manage files

to be executed and stored in the cloud. The application layer includes the actual

running applications, for example, some of the popular office tools used by office

workers like Microsoft Office. Offering these layers to the customers leads to three

main types of services: Software-as-a-Service (SaaS), Platform-as-a-Service (PaaS),

and Infrastructure-as-a-Service (IaaS). [1]

SaaS is an application that runs in a vendor’s cloud with multiuser architecture

that works within a web browser and does not need an installation or management

by the user. Running the cloud application using multiuser architecture addresses

no up-front investment costs to the client for maintaining infrastructure. Service

provider costs are relatively low since only a single application is maintained. [2]

The customer does not have access to managing the underlying infrastructure, such

as network, server, operating system, or storage. [3]

PaaS is a variation of SaaS. It delivers a platform where the applications are

deployed. PaaS environment offers a possibility to manage the whole lifecycle from

the development of the application to deliver the application to the user. PaaS can
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be viewed as an execution environment for programmers that can be used over an

API. When using PaaS, web developers are only concerned with web development

and do not manage the underlying operating system and infrastructure. The main

drawback with PaaS is that the development and execution of the application is

limited by the vendor’s cloud design and its capabilities. [2] The developers do not

have access to modify the cloud infrastructure but have control of the application

and limited control of the execution environment. [3]

IaaS is a service offering model that offers the computing infrastructure as a

service, usually in a platform virtualization environment. IaaS business model aims

to offer a standardized infrastructure to the customer, which the customer then

can specialize based on their needs. By outsourcing the infrastructure maintenance

work to the cloud provider, customers only maintain their applications and the

execution environment. In IaaS, developers can decide the operating system, storage,

and networking level, which technologies and configurations to use for running the

application. IaaS is an attractive choice because the customer will be offered the

service in secure ”sandboxes” maintained with the newest security updates and

infrastructure equipment. [2]

Among SaaS, PaaS, and IaaS, cloud vendors offer multiple other services using as-

a-Service model. These services are called in general XaaS. Cloud vendors are aiming

to provide these services at lower cost through new virtualization technologies. [2][3]

Cloud computing still has some problematic topics, including provider lock-in,

security, and privacy issues. [1] Vendor lock-in means that changing the cloud

provider could be problematic due to differences in handling and saving data. When

deciding the cloud provider, also data sensitivity needs to be taken into account. [2]

Developers try to avoid vendor lock-in by adopting a multi-cloud architecture,

similar to the hybrid cloud architecture. Multi-cloud architecture has been increas-

ing for a couple of years, but some common problems still need to be solved. For

example, a common API needs to be developed so that using multiple clouds from

multiple vendors can be simplified. [4]

Typically a cloud application needs to be run in a Virtual Machine (VM) or a

container. Using containers leads to a situation where the application runs, even

when no request to the container is made and therefore it is running idle. Another

cloud computing model is developed to avoid paying for idle running containers,

called serverless computing. Instead of running the whole application in the con-

tainer, the serverless model utilizes Function-as-a-Service functionality (FaaS). In

FaaS, only a corresponding function is being run based on the request received. In

serverless computing, consumers are mainly billed based on a request count and a

memory size rather than a CPU’s computational power. [4]
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2.3 Microservices

Microservice architecture has gained popularity to build a distributed system utiliz-

ing cloud infrastructure. Microservice architecture is service-oriented architecture,

in which components of the application are split into smaller units to be run in

a loose-coupled fashion based on business capabilities. Every service is typically

maintained by a single team, and each service communicates with each other using

API. These services are run in separate processes and communicate with either by

synchronous or asynchronous messaging technologies. Every service can be seen as

a separate application with its data, tests, builds, and deployment. Microservice

architecture increases development agility by enabling making quick changes only

to a single part of the product. The ability to make quick changes makes it possible

not to require a redeployment of the whole application when a change is made. Mi-

croservices enable polyglot development, meaning each service can be written with

programming languages and frameworks best fit for the purpose. Microservices are

maintained by small, focused teams with an in-depth knowledge of the service’s

functionality. Hence new team members can easier join the team and start work-

ing. By loose coupling and isolation, fault tolerance increases since faulty service

will not affect the whole system. Scaling out of the system can be done simply

by adding more replicas of the needed service. System monitoring and traceability

increases since metrics from a service can be inspected per container, and for exam-

ple, memory usage and process utilization can be easily tied to a specific container.

The microservice architecture enables the concept of DevOps, which targets to au-

tomate everything within the deployment process to enable Continuous Integration

and Continuous Deployment (CI/CD). DevOps also aims to merge traditionally sep-

arated research and development teams with the operations team that manages the

production environment. [5]

Typically microservice architecture is implemented using containers or functions.

Containers are the basis of microservices. They are typically based on Linux kernel

features called namespaces and control groups. Docker made containers available for

the public majority, even though containers are not a new technology. Containers

make it possible to isolate components in a distributed system as individual enti-

ties that contain their dependencies. Containers have many technological benefits

over Virtual Machines (VM), the main ones being a fast startup and stop delays.

Containers share the same kernel when running on a single host. VMs also provide

hardware-level isolation, hence requiring more computational power. [5] Figure 2

shows how containers and virtual machines locate on a host computer.
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Figure 2 Virtual Machines and Containers on a single host.

Networking is an important topic in distributed systems because the services

communicate over a network using messages. Thereby problems in networking have

a significant impact on overall system performance. There exist mainly two different

kinds of communication in the distributed system. Internal communication means

service-to-service communication in the system, and external communication means

communication to external systems outside the system. Internal communication

is usually referred to as East-West communication, and external communication is

referred to as North-South communication. Hypertext Transfer Protocol (HTTP) is

the most used communication protocol in the system in internal communication and

external communication. There are also other internal communication technologies

to achieve improved performance, such as Websockets and Remote Procedure Call

(RPC). Typically communication between internal and external services is done

asynchronously so that the running thread will not be blocked when waiting for a

response. [5]

A modern distributed system consists of a large number of containers that can

not be handled manually. For this purpose, a container orchestrator is used, the

most popular being Kubernetes. The container orchestrator takes care of deploying

the containers to the nodes and managing their resources. The orchestrator also

monitors the resource limits of a node and the overall health of a container. To

maintain a container’s healthiness, it can restart, reschedule, load balance, and

scale the containers based on the configuration. [5] The most important terms

and concepts of Kubernetes are shown in Figure 3. They include pods, services,

ReplicaSets, and deployments.
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Figure 3 Main concepts of a Kubernetes.

The pod is an entity of one or more containers, the pod governs the life cycle of

those containers, and the containers have a shared network and storage resources in

the pod. Service is an entrypoint for a group of pods to create a network service

that Kubernetes uses for load balancing between the included pods. ReplicaSet

defines how many running instances of the pods are needed to be running at any

given time. Deployment is an entity to manage ReplicaSets and pods. Management

is based on the desired state defined in the deployment, for example, to rollout and

scale ReplicaSets or change pod state. [5]

2.4 Cloud Native

There is no unified definition of the term cloud native. The definition depends on the

context in which the term is being used. However, the Twelve Factor App method-

ology presented on the next page is the most commonly referred one. Nevertheless,

there is a relative agreement among developers over why cloud native development

is important. Cloud native breaks old monolithic concepts and replaces them with

a more agile way to deliver innovation with confidence. Cloud native promises in-

creasing speed, safety, and scalability over traditional development models. Cloud

native helps companies delivering products faster to customers by leveraging CI/CD

deployment model. Cloud native also increases the feedback loop’s speed from the

customer, hence enabling fast experimental changes of the product. By following

cloud native best practices, the application can be expected to have nearly zero

downtime. By embracing a disposable environment, flexible architecture, isolated

components, and leveraging scaling, the system can stay responsible even when fac-

ing failures. Cloud native also drives cultural change inside an organization to cloud

native driven lean thinking to accelerate innovation and experimentation. [6] Cloud

Native Computing Foundation (CNCF) is a Linux Foundation project to build a

sustainable ecosystem for cloud native technologies. CNCF hosts a list of projects
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on their site that are considered best suited for Cloud Native development.

It is challenging to design bounded isolated components that are not too big or

too small by functional or technical perpective. The goal is to have each component

designed for a single responsibility to maintain logical structure and simplicity in

the system. A shared understanding has to be created to bound the components to

maintain consistency across the teams. For that purpose, the concept of Domain

Driven Design (DDD) was invented. DDD embraces bound components based on

the business needs of the software. Different areas of the system are divided into

bounded contexts that have internally consistent naming. The messaging between

these contexts and their components can be modeled based on domain events. Com-

ponents publish the events to downstream components and subscribe for events from

upstream components. [6]

When cloud computing started gaining popularity, scalability problems were

usually solved by scaling up, meaning adding more resources to computing nodes.

In the cloud, a more beneficial way to scale is by scaling out, which means adding

more machines to the system to share the computing load. Scaling out requires the

application to be stateless. Hence new methodologies for application development

had to be invented. As an outcome, engineers at Heroku developed a methodology

called the twelve Factor App. These twelve factors describe the best practices for

stateless application development. The Twelve Factor App methodology can be

considered as the foundation of cloud native application development. [5]

The twelve factors are:

Codebase In order to have a successful CI/CD pipeline, the application should

have a single codebase. Typically, this is implemented using a single repository

with the help of a Version Control System (VCS) such as Git. The codebase can

have multiple deployment stages, for example, development, testing, and production

stages. [5]

Dependencies The dependencies of the application should be isolated and de-

clared separately from the application code. The dependency declarations should

be shipped with the code. Hence it is highly advised to use dependency manage-

ment tools such as npm or Maven. Also, proper usage of containerization tools

will reduce the management complexity of the dependencies. Dependencies can be

declared with tools such as Dockerfile. [5]

Configuration Developers should separate configuration code from the source

code to tackle differences in the configuration in different deployment environments.

By separating configuration from code, the configuration can be changed dynami-

cally per environment. It is a good practice to use configuration management tools,

such as Helm. [5]

Backing Services A backing service can be anything that the application uses
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over a network, for example, a database or a message broker. These backing services

should be treated as any other component in the system, and they should be loosely

coupled so that they can be replaced easily. [5] From the application perspective,

there should not be a difference if the service is local or external. [7]

Build, Release, Run Build, release and run stages should be separated from

each other in the development pipeline to establish continuous integration, deliv-

ery, and deployment models. Properly attaching the required configurations and

dependencies to the application is critical in every stage. [5]

Processes The application should be executed in one or more stateless processes.

Meaning all the data should be retained outside the process to another stateful

backing service, like into a database. [5]

Port Binding Data in every service should be isolated from other services. No

service should be able to access data directly maintained by another service. The

service managing its data can be accessed only through an exposed port, thereby

securing its internal data from other services. [5] Every service should be exported

using port binding, which means listening to incoming requests from the exported

port and responding accordingly. [7]

Concurrency The processes are first-class citizens. Their implementation is

based on the Unix process model, and they leverage different types of processes for

different tasks. [7] Using the Unix process model, the processes are independent and

can be scaled horizontally to achieve better resource usage. [5]

Disposability The robustness and scalability of the application are designed

by leveraging fast process startup and stopping time. [7] The containers already

implement such functionality and therefore are recommended as virtualization tools

in cloud native development. [5] The application should be designed to be robust

against sudden death, which is called a crash-only design. [7]

Dev/Prod Parity Development, staging, and production environments should

be as similar as possible to avoid configuration errors between the environments.

Having similar environments is a critical part of establishing a functional CI/CD

pipeline successfully. [7] Containers will help to package the dependencies within

the application to avoid differences in the environment. [5]

Logs The distributed system needs a good logging strategy because of its dis-

tributed nature. Without a proper logging strategy, finding bugs and their reason

can be complicated from the system afterward. Therefore it is a good practice to

treat logs as event streams and use a proper logging framework. [5]

Admin Processes Administrative and management tasks such as database mi-

grations should be done using on-off scripts. These scripts should be shipped within

the application to avoid synchronization issues. [7]
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2.5 Event-Driven Architecture

In a complex distributed system, a single action can trigger a long chain of actions.

At some point, the action flow is no longer clearly connected to the original action,

leading to the creation of an event-driven architecture. The event-driven archi-

tecture is a popular pattern used in an asynchronous distributed system. It can be

applied to large complex systems as well as small systems to provide high scalability.

The architecture is based on decoupled event processing components that consume

and produce events. The service, which consumes and processes events from the

event stream, is called a consumer, and the service which produces an event to an

event stream is called a producer. There exist two different main topologies to im-

plementing Event-Drive Architecture, mediator topology and broker topology. The

mediator topology is useful when there is a need to trigger multiple actions parallel

on a single event and broker topology when there is a need to chain actions. The

mediator topology is typically more complex to implement than broker topology

since the mediator component is more tightly coupled with event processors. [8]

Figure 4 shows an example of the broker topology.

Figure 4 Example of a broker topology.

In the broker topology, the messages are distributed across the components us-

ing a message broker. The broker topology simplifies event processing flow and

does not require an event orchestrator. The broker topology consists of two main

components, a broker component and an event processor component. The broker

component includes all the event channels of event flow, and those channels can be

implementations of message queues or message topics, or both. In broker topology,

the event processors receive the event from a broker and possibly publish a new

event to the broker after processing the event. Since microservices exchange data
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with each other using messages, a standard message format must be chosen that is

being respected from the very start of implementation. Among all the other event-

driven architecture patterns, the broker topology pattern still faces the typical issues

common when designing distributed systems using asynchronous messaging. One of

the main issues is broker failure. Therefore actions for reconnecting the broker must

be implemented. Since event processors are decoupled and distributed, and each

microservice typically has its database, atomic transactions are hard to implement.

[8]

2.6 Message

The most used message format for internal and external communication on the

web is JavaScript Object Notation (JSON). [5] It is a flexible and readable data

format, but serialization and deserialization require a large memory footprint with

large amounts of data. When performance is a critical requirement in the system,

alternative formats that convert messages into binary can be used, such as Avro. [5]

2.7 Message Queue

A message queue is a component in messaging systems that implements a first-in-

first-out (FIFO) functionality to order and store messages. The message queue can

store received messages in the memory for later use if there are no active consumers

at receiving time. Into the message queue can be sent any data. It does not validate

the format by default. Since messages can be saved in the queue for a certain

amount of time, the messages are sent asynchronously, increasing decoupling and

performance. Message brokers typically implement message queue functionality. [9]

2.8 Message Broker

A message broker is a communication technology for microservice architecture in

cloud native environment. It keeps track of publishers and subscribers for defined

topics, which over the services then exchange the data. The message broker is

an important abstraction layer in inter-service communication to isolate services

and simplify communication. It enables the microservices to be written in a poly-

glot manner because the message broker can transfer the messages using common

technologies, such as HTTP. Using message brokers, the communication can be

abstracted into this communication layer, and developers can concentrate on the

service business logic. Message brokers can validate, store, route, and deliver in-

ternal and external messaging based on the setup and configuration. [9] Message

brokers are designed for saving the messages for a short while. The messages are

deleted when acknowledged or shortly after. [10]
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2.9 Event

An event can be seen as a notification of an action that just happened or a mechanism

to transfer a state inside the system. An event flows through an event channel and

gets sent to interested consumers, and makes them do a state change. [11] An event

in event-driven architecture is the data for which services react and that they process.

An event stream forms a channel for communication between services and data

storage in which the events are stored afterward. The events in the event stream act

as a single source of truth for the system. Hence the events must accurately describe

what happened. Not all the data must be published into the event stream, but if

even a single service is interested in the event, it must be sent into the event stream.

Events are typically formed in a structure of key-value pairs. The key includes a

unique id so that the event can be identified later on. The event structure is typically

defined in an event definition, and a single event stream should include only one type

of event and ensure that different kinds of events are not mixed up. When creating

the event definitions, most narrow data types should be used to assure proper data

boundaries. [10] It is best to save exactly the whole received event stream to the

event storage and not aggregate them. [11]

2.10 Event broker

An event broker includes all the functionalities of a message broker and can be used

as a replacement for the system’s message broker. The event broker is designed to

retain an ordered log of events, so they keep track of all the events that have been sent

into the stream instead of deleting them like message brokers. Since message brokers

are designed usually based on message queue logic, the messages are delivered to

consumers per-queue basis. All the consumers that share that particular queue

for consumption will only receive a subset of all the messages sent into the queue.

By sharing the queue between consumers, it is impossible to communicate state

changes to all the consumers properly since all the consumers can not obtain all of

the data. The main benefit with event brokers compared to message brokers comes

from retaining and replaying the messages. The event brokers typically implement

this by saving the event stream into append-only immutable storage. The consumers

can read the whole event stream from start to end in the correct order. Since event

brokers retain the immutable stream in its storage, the stream works as a single

source of truth for the application. Typically all the event brokers and message

brokers are referred to with a hypernym known as message-oriented-middleware. [9]

Figure 5 illustrates the difference between a queue and a topic.
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Figure 5 Queue and topic based pub/sub implementation.

Event brokers can be distributed into multiple instances to increase performance,

scalability, durability, high availability, and fault tolerance. In distributed event

broker, the data needs to be replicated between nodes to keep the system functioning

in the broker fault case. The event broker is in charge of storing the events for

further processing. Hence it has many requirements considering its functionality.

The broker’s storage must be able to partition the event stream into substreams for

parallel processing for multiple instances of a consumer. The ordering of events must

not be changed in the event stream, and they must be delivered to the consumer in

the order they were saved into the partition. The events in the event stream must

be immutable. No service should be able to modify the content of the event stream

once published. Indexing in the event stream is vital for consumers since they keep

track of the offset to know where it is reading the stream. The difference between

the offset in which the consumer is reading currently and the newest item in the

stream is consumer lag. The system can be scaled to retain the consumer lag in

desired limits.

When choosing an event broker for the system, many things must also be taken

into consideration. Supportive tooling is vital, such as browsing capabilities of

the event stream, monitoring, topic management, and access control. Many hosted

services by the cloud vendors for event brokers have a rich feature set for a meaningful

cost. The client library support varies between brokers, and hence it must be taken

into account that the programming languages used are compatible with the client

libraries. [9]

Consumers can be grouped into consumer groups to implement horizontal scal-

ing. Every consumer in a consumer group is assigned a partition from the stream

which the consumer group reads. The number of consuming consumers is limited to

the number of partitions in the event stream. Even though the event broker stores

all the event stream data in its storage, the consumers can also store the received
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events in their own storage, such as a database. [10]

2.11 Persistence and Durability

Durability in messaging systems means that the messages sent into the queue or

topic will be retained by the MOM if there are no active subscribers on the queue

or topic at the moment. Durability is strictly connected with a quality of service in

MOMS. Without durability, messages will be lost if there are no active subscribers

at the time of message arrival. Persistence in messaging systems refers to saving the

received message into persistent storage, such as a log or a database. MOMs can be

durable or persistent, depending on the used technology and configuration. Both

are essential functionalities in case of broker failure that requires a broker restart.

In case if the broker is not durable and messages not persistent, data will be lost.

[12]

2.12 Event streaming

The difference between messaging and streaming is that event stream is a con-

stant replayable immutable dataflow. Instead of containing all the information as

a payload for further processing, like with messages, they contain only the needed

information to make a state change in the system. Messages contain the intention

or action in them along with the payload, making them not lightweight. Stream

data is unbounded, meaning it has no real start or endpoint. The system state can

hence be recreated by replaying the stream again until the wanted point.

Event streaming is an efficient way to implement asynchronous inter-component

communication in the microservices architecture. To achieve responsive, resilient,

and loosely coupled systems, stream processing has become de facto standard for

cloud native systems. Event streaming simplifies service discovery because data

change events are delivered to all consumers via loosely coupled topic-based sub-

scriptions defined in the event broker. Event streams are implemented using event

brokers that stream the events to all interested participants in the system. [6] Event

streaming does not guarantee the availability of all the data at the same time, hence

buffering would be needed. It is a good practice to implement services as stateless

by using a database per service model. This approach makes the service stateless

and the database stateful, but this can become problematic because most services

are not fully stateless. A service can become easily stateful, for example, when it

needs to do any filtering, joining, or aggregation on its input data. When a service

is stateful, a stateful streaming approach will help to manage the state. A state-

ful streaming approach can be applied by leveraging the service’s database to solve

stateless streaming problems. [11] Figure 6 illustrates stateful streaming.



18

Figure 6 Example of a stateful streaming using Kafka Streams.

In stateful streaming, event streams can be pushed to all the interested services,

converted and saved into database tables locally, and kept in sync by Kafka. A great

example of a stateful streaming solution is Kafka Streams. [11]

2.13 Message Bus

Message Bus is an architecture, which in the core is a centralized software platform

to translate internal system communication into a common language for all the con-

nected services to understand. Meaning, it translates different kinds of data formats,

such as XML, for example, into JSON so that all components can communicate to-

gether. When deploying a message bus, all the services connected to it must share

common data types, communication commands, and communication protocols. The

underlying software also operates internal orchestration logic such as connectivity,

routing, and request processing. Message bus was a common technology used in the

90s with service-oriented architecture. Since microservices architecture has gained

popularity, message bus does not fit well anymore with microservices, and it is hard

to scale and maintain. For these reasons, the message bus has dropped out of favor

in modern distributed cloud systems. A message broker is in microservices architec-

ture corresponding component for message bus in the service-oriented architecture.

[9]

2.14 Patterns

2.14.1 Point-to-Point

A point-to-point pattern uses a message queue in the middle of two services that

deliver the data from sender to receiver. The queue can be set to follow the first-

in-first-out (FIFO) principle to deliver the messages in the receiving order. Only
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one receiver will receive the message from the queue, but the messages can typically

be distributed in a round-robin fashion in case of multiple receivers to increase

throughput. No response from the receiving service is expected by default in a point-

to-point pattern. [12] Figure 7 illustrates the point-to-point messaging pattern.

Figure 7 Example of a point-to-point messaging pattern.

2.14.2 Request/Response

Request/Response is a messaging pattern that differs from point-to-point so that the

receiver sends a response to the request. The two communicating services change

data by sender sending a message through a queue and waiting until the receiving

service sends a response. The queues in this pattern are not required. Request/re-

sponse pattern can also be implemented without queues. When services typically

engage in multiple communications, some messages can be lost or delayed. In this

situation, the message queue can be used to assure message delivery.[5]

In MOMs, implementing request/response pattern is typically complicated, and

it comes with a downside of decreased throughput and increased complexity. Figure

8 illustrates the request/reply pattern.

Figure 8 Example of a request/reply messaging pattern.

2.14.3 Publish/Subscribe

Publisher/Subscribe (pub/sub) pattern is one of the most commonly used messaging

patterns in cloud applications. Pub/sub pattern is based on topics that define to

which subject the sent message is related. Topics reduce the number of connections

in the system. Subscribing services need only to know which topic to consume, and

publishing services need only to know which topic to publish. Topics enable loose

coupling between publishing and consuming services because they do not have to

know anything about each other. Pub/sub is the basis for event-driven architec-

ture and design. In pub/sub pattern, a MOM must keep track of subscribing and
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publishing services to guarantee message delivery. Pub/sub pattern ensures that

the published message will be delivered at some point of time, making the data

eventually consistent. [5] Figure 9 illustrates the pub/sub messaging pattern.

Figure 9 Example of a pub/sub messaging pattern.

2.15 Message Delivery Guarantees

In MOMs, pub/sub topics are typically by default nondurable, hence providing an

at-most-once delivery guarantee. That means the message is delivered zero or one

times, meaning it can be lost, but it delivers the best performance. Implementations

that use durable topics with some reliability mechanism, such as acknowledgments,

can give an ’at-least-once’ delivery guarantee. At least once delivery means that

message is being delivered one or more times. That means, possibly multiple at-

tempts to deliver the message are made, hence possibly ending up with duplicate

messages in the receiver. [12][13] Figure 10 illustrates different message delivery

guarantees.

Figure 10 An illustration of different message delivery guarantees.
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Typically, MOMs are incapable by default to deliver an ’exactly-once’ delivery.

This delivery guarantee is the most expensive because it requires additional acknowl-

edgment logic and additional functionality to filter duplicate messages. Typically

most messaging systems deliver all or some of these message delivery guarantees,

and the guarantee can be defined when setting up the system depending on the

MOM. [12][13]

2.16 Network Management System

A network management system (NMS) is designed for Communication Service Providers

(CSP) to manage their network operations. NMS operates a large number of net-

work elements (NE) that can not be managed manually on the needed scale. NMS

provides intelligent automation tools for, e.g., NE monitoring and configuring so

that CSPs can meet the defined service level agreements for their network.

On a high level, the NMS operations can be described with the acronym ’FCAPS’,

which stands for Fault, Configuration, Accounting (for non-billing use when not deal-

ing with collecting billing data), Administration, Performance, and Security. This

is the management task categorization used in the ISO (International Organization

for Standardization) model for network management.

Fault management deals with recognizing, collecting, isolating, and correcting

faults that occur in the network. Configuration management deals with gathering,

storing, and modifying the configurations of NEs. Administration activities cover,

e.g., managing system users and their permissions and downloading and activating

new SW releases to the NEs. Performance management deals with collecting, pro-

cessing, and storing measurement data from the NEs and reporting on the collected

data (e.g., revealing any adverse trends in some key performance indicators). Secu-

rity management deals with things like controlling access to NEs, encrypting traffic

between NMS and the NEs, and collecting audit logs from the NEs.

NMS plays, if possible, an even more important role in CSPs’ future with the

advent of 5G technology, which complicates network management even further due

to its new functionalities, such as network slicing. NMS should manage thousands of

NEs from different telecom vendors with ’zero touch’ operations (i.e. with minimum

human intervention) to decrease costs for the CSPs and eliminate human errors.

Data volumes coming from the managed networks are huge, and the NMS systems

must scale to duly process and store all incoming data to ensure no data is lost.
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3 Methodologies

A systematic literature review was conducted based on guidelines defined in [15] and

[16] to gather knowledge about the research topic. Also, a ”snowballing” process

was conducted based on guidelines in [17].

In this section, research questions are described (Section 3.1), and then in the

next section, the implemented search strategy is reported (Section 3.2). After them,

a quality assessment of included papers (Section 3.3) is described, and then data

extraction methods such as used include and exclude criteria and analysis (Section

3.4).

3.1 Research Questions and Goal of the Research

The goal of this research is to compare messaging solutions based on a chosen criteria

and to gain knowledge of MOMs for cloud native environment. The chosen crite-

ria for the research is based on NMS’s important characteristics in a cloud native

environment. These characteristics are: implemented consumer-producer patterns,

throughput, and supported security, reliability, scalability mechanisms, and back-

ward compatibility. The chosen MOMs for the research are Apache Kafka, Apache

Pulsar, and RabbitMQ.

Based on aforementioned requirements for the research, the research questions

are formed:

• Which consumer-producer patterns do Kafka, Pulsar, and RabbitMQ imple-

ment? (RQ1).

• How do scalability mechanisms differ in Kafka, Pulsar, and RabbitMQ? (RQ2).

• How does throughput differ in Kafka, Pulsar, and RabbitMQ? (RQ3).

• How do reliability mechanisms differ in Kafka, Pulsar, and RabbitMQ? (RQ4).

• Which security mechanisms do Kafka, Pulsar, and RabbitMQ support? (RQ5).

• How does backward compatibility differ in Kafka, Pulsar, and RabbitMQ?

(RQ6).

It is common knowledge in the industry that the most popular MOM in cloud

native development is Kafka. Kafka’s popularity in cloud native development is

well earned. Kafka is by many characteristics outperforming traditional messaging

brokers and was one of the first event brokers in the market.
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These MOMs were chosen for the research based on knowledge gathered from

the industry of the best Kafka alternatives. Other alternatives also were considered,

such as RocketMQ and NATS Streaming, but they were excluded because there

was very little research. Also, including them would have enlarged the scope of this

research too broad.

3.2 Search strategy

This section describes the search strategy, used search terms, used bibliographic

sources, listing selected inclusion and exclusion criteria, and a selection process of

inclusion for the gathered sources. Figure 11 illustrates the process for gathering

the sources for this research.

Figure 11 A process used for choosing the data included in the research.

Search terms. The selection of used search terms was based on the chosen

technologies, including their names and also any wording related to the characteris-

tics for which the comparison was to be done against. The search string contained

the following search terms:

( (”kafka”) OR (”rabbitmq”) OR (”apache pulsar”) ) AND ( (bench-

mark*) OR (secur*) OR (”reliability”) OR (”scalability”) OR (”perfor-

mance”) OR (”throughput”) OR (pattern*) )

The asterisk character (*) was used to match any wording variations, for example,

plurals and verb conjugations. The terms were matched against the title, abstract,

and keywords of the paper to increase the likelihood of accurate results.

Bibliographic sources. The most relevant bibliographic sources were selected

based on suggestions in [16]. The sources were selected because they are commonly
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known as the most relevant sources for the software engineering domain. The list

includes Scopus, IEEEXplore Digital Library, Springer, and Google Scholar.

Inclusion and exclusion criteria. The inclusion and exclusion criteria were

first applied to the title and abstract (T/A). Later it was applied to full text (Full)

for included papers after reading the abstract. Table 1 shows how they were imple-

mented based on the criteria.

Table 1 Inclusion and exclusion criteria

Criteria Assessment criteria Step

Inclusion Comparison of the characteristics of chosen technologies Full

Architectural comparison of chosen technologies Full

Research on the future of any of chosen technologies Full

Exclusion Not in final stage T/A

Not written in English T/A

Published 2016 or earlier T/A

Research not applicable for cloud native Full

Paper done for marketing purposes T/A

Not peer reviewed T/A

Duplicate papers Full

Search and selection process. The search was conducted from September

2020 to January 2021, including all the papers available. The search string returned

241 unique papers.

Testing the applicability of inclusion and exclusion criteria. Inclusion and exclu-

sion criteria were tested on ten papers randomly selected from the retrieved papers.

Applying inclusion and exclusion criteria to title and abstract. The inclusion and

exclusion criteria were applied to all 241 unique papers. From all 241 papers, 19

papers were included after reading their title and abstract.

Full reading. The included 19 papers were read fully. From them, 14 papers

were excluded based on the excluding criteria, typically because they were not ap-

plicable for cloud native environment or had no comparison between two or more

technologies. After a full reading, five papers were still included in the research.

Snowballing. The snowballing process was performed on all the referenced papers

in the included ones after full reading, ending up with one additional paper. Three

papers were identified to be potentially included, but only one was selected after a

full read.

After the whole search process, six papers were included in the research, as

reported in Table 2.
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Table 2 Results of search after applying inclusion and exclusion criteria

Step # Papers

Retrieval from bibliographic sources (unique papers) 241

Reading by title and abstract 222 rejected

Full reading 14 rejected

Backward and forward snowballing 1 included

Papers identified 6

Primary studies 6

3.3 Data extraction

Data were extracted from 6 primary studies, and a pie chart was created from the

distribution of technologies in the included papers. Since most of the papers included

more than one technology typically, the amounts do not add up to 6 papers. Figure

12 illustrates how many times any of the chosen MOMs are under research in the

included papers.

Figure 12 Distribution of the chosen technologies in the included papers.

In general, the search process aimed to have every included paper some bench-

marking or comparison results between two or more selected technologies. This

requirement is the reason why there are only six papers left. This thesis aims to

compare the selected technologies one against the another and not compare the

features of a single technology.
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The reason why so few of the papers did include Pulsar is, as we will see later, it

is quite new technology. RabbitMQ and Kafka are considerably older, hence having

much more papers done research using them.
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4 Technologies

Comparing MOMs to each other is a non-trivial task. The best choice is whatever

fits your use case. Typically, every MOM aims for a certain type of messaging that

makes them good at one thing and worse at another. There is no general comparison

between the MOMs because there are many different variables that affect the results

when making comparison. For example, these variables are the server’s underlying

hardware and the configuration settings of the MOM. In the next section, typical

differences between MOMs are described in which this research is concerned. Some

of the features are closely related to each other. For example, data replication is

related to reliability and scalability.

4.1 Comparing MOMs by defined characteristics

Patterns. All the MOMs simplify connections inside the system by implementing

different messaging topologies such as point-to-point and pub/sub. There are two

types of communication between a MOM and a client, push-based and pull-based

communication. Implementations in MOMs that use push method to the consumer,

could without any backup logic lead into a consumer becoming overwhelmed by

the amount of data it receives, in essence into a type of Denial of Service Attack

situation. This research will compare available messaging patterns in the MOMs,

and push/pull implementations between MOM and client.

Scalability. MOMs implement load balancing and replication by sending meta-

data about connected consumers and producers. MOM aims to implement a proper

load balancing between the producers and consumers and scale out when needed to

avoid bottlenecks. The ability to configure buffering for the messages and stream-

ing is essential functionality for a modern MOM. The broker storage is also closely

in connection with the reliability of the MOM. For example, replication can be done

on the broker level or data level. By leveraging replication on the broker level by

replicating broker instances, broker faults do not endanger the system’s whole func-

tionality. Data replication replicates the data across the broker instances to increase

fault tolerance so that data will not be lost even if one broker instance is lost. Data

and broker replication is also an essential aspect of scalability. In case of an increased

message load, increasing the number of broker instances will prevent bottlenecks in

the system. This research will take a close look at data replication mechanism

and broker replication mechanism of each MOM.

Throughput. Throughput in the context of MOMs is generally defined as the

amount of messages flowing through the broker. The factors that affect throughput
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are typically related to reliability mechanisms and scalability mechanisms. There

are also differences between brokers in how they are able to handle different mes-

sage sizes and how that affects the latency of the system. Also, the filtering of the

messages is important, and that implementation can be located in the broker or at

the client depending on the broker, which will also affect performance overall. Send-

ing the messages in compressed or decompressed form also has a significant effect

on the performance. This research will compare effects of scaling mechanisms, reli-

ability mechanisms, and message size to latency and throughput. Also available

compression types are compared for each technology.

Reliability. Reliability in MOMs is closely related to message persistence and

durability. Traditional MOMs don’t always implement durability, meaning that

messages can be lost, and the messages can become unordered in case of no active

receivers at the receiving moment. Traditional MOMs tend to save received messages

into their local memory, and modern MOMs usually have the functionality to save

them into persistent storage. [9] Also, message delivery guarantees and message

ordering are essential to increase reliability. Delivery guarantees differ from broker to

broker, but typically most of them support at-least-once and at-most-once deliveries.

Strict message ordering typically has a decreasing performance effect on MOMs.

This research will compare message persistence, message durability, message

delivery guarantees and message ordering of each MOM.

Security. The main security features for MOMs are encryption and authentica-

tion. Encryption ensures that messages between clients and MOM are secured with

an encryption mechanism. Typical encryption mechanisms for MOMs are Secure

Sockets Layer (SSL) and Transport Layer Security (TLS), usually mentioned as SS-

L/TLS. Authentication ensures that only wanted clients can create a connection to

the MOM. The connection can be established with a secure and reliable authenti-

cation mechanism such as Simple Authentication and Security Layer (SASL). Both

security mechanisms can affect the system performance, especially throughput. This

research will compare available encryption and authentication mechanisms for

each MOM.

Backward compatibility. Typically all the MOMs promise that their systems

are backward compatible, depending on the versioning. Anyway, even the smallest

changes to the API can require refactoring and bugs. Rolling upgrade is essential for

systems promising high availability, meaning an ability to upgrade the broker version

without generating downtime in the system. This research will compare implemen-

tations of rolling update and whether backward compatibility is guaranteed

between versions in each MOM.
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4.2 Kafka

Kafka is an event streaming platform written in Scala. Kafka was open sourced

in 2011 and is being developed and maintained by Apache Software Foundation.

Kafka was initiated at LinkedIn to replace traditional message brokers, which were

complicated to scale. Kafka is developed to aim for low latency and high throughput

with large volumes of data, meaning it favors performance over reliability features.

Traditional message brokers tend to slow down when adding multiple consumers

into a topic and queue. Kafka solves this by a different architectural approach

that makes it easier to scale the broker horizontally. Kafka cluster’s architecture is

two-tiered, which includes a Kafka broker and a ZooKeeper server. [18]

4.2.1 Patterns

Kafka supports two messaging patterns by leveraging topics, point-to-point, and

publish/subscribe. To utilize parallel processing to increase performance, consumers

can be separated into consumer groups. The consumer groups can consume a single

topic at the same time. Consumer groups manage their message offsets, telling

where it is currently reading the data in the partition. Kafka replicates the topic

partitions and tries to assign each partition to one consumer in the consumer group.

Since only one consumer in the consumer group can read the messages of a single

partition, increasing performance is done by adding more partitions and consumers.

By leveraging independent offsets, in case of a single consumer, a topic acts as a

queue and with multiple consumers as a pub/sub topic. [12] Figure 13 illustrates

the architecture of the Kafka broker.

Figure 13 An architecture of a Kafka broker.

Each consumer group can have multiple instances of a particular type of con-
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sumer in the group, but only the lastly joined one into the group will continue

consuming messages. The ability to transform a topic into a queue simplifies con-

nections since there is no need to keep track of e.g., which of the consumers should

get the next message in a round-robin fashion like in traditional message brokers.

In addition, there is no need to keep track of which consumer the earlier messages

were delivered, in case of redelivery.

In Kafka, consumers pull data from brokers. When consumer falls behind using

pull-based connection, consumer will catch up later, since it manages its own offset

in that partition. These all things are an example of transferring responsibility

from broker to client. It increases broker performance but needs to be taken into

account in client code. As typically with all the pull-based systems, Kafka leverages

aggressive batching of data. [12] Kafka offers streaming by Kafka Streams API. [18]

4.2.2 Scalability mechanisms

Kafka brokers are connected to ZooKeeper servers that provide high availability

by replicating information across the system. ZooKeeper manages the distribution

of partitions of a topic between brokers in the cluster. ZooKeeper assigns master

and slave roles for broker instances in the cluster. The master broker receives the

messages sent into a topic and is responsible for replicating the messages among

the slave brokers. These distributed partitions are called ’replicas’, and a broker

containing all of the messages and partitions also held by the leader is called an

in-sync replica. There is ongoing work to replace ZooKeeper with a self-managed

metadata quorum. [21] Figure 14 illustrates how Kafka brokers are replicated in the

cluster.



31

Figure 14 Replication in Kafka brokers.

By leveraging in-sync replicas, in the case of a master broker going offline, the

in-sync replica will take over the master role. Slave brokers can send acknowledg-

ment receipts, which defines how many in-sync replicas must send a receipt about

a successful replication before the application thread continues. For example, repli-

cation can be three, meaning one master and two slave brokers own replicas. It is

suggested to set a minimum amount of in-sync replicas to two. Thereby one in-sync

replica broker going offline does not affect the whole system. Using these in-sync

replicas, Kafka minimizes the need to write messages from memory to disk to speed

up the throughput. [9] All the scalability features in Kafka are closely related to

fault tolerance and high availability. [18]

Data replication between multiple Kafka brokers in different geographical loca-

tions can be done using a command line tool MirrorMaker, which is shipped by

default with Kafka. The keys in a topic need to understandable by MirrorMaker to

ensure that ordering is sustained between brokers since partitions could be different

between the two brokers per topic when scaling horizontally. [9] MirrorMaker is the

tool that will be used when implementing geo-replication.

4.2.3 Reliability mechanisms

Kafka enables retaining and replaying the messages from an append-only log file, in

which Kafka stores its messages, making them persistent and durable. Kafka does

not remove the messages from the storage after they are consumed. Kafka retains by
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default all the messages for one week. After that, it removes the messages from the

storage, regardless they are consumed or not. [9] Kafka leverages zero-copy principle

for delivering data from the log file to the network socket, skipping the application

layer, saving CPU resources.

When using replication, Kafka will save the messages into replicated partitions

of the log. In case of a failure, Kafka will be able to recover from those replicas. [18]

Kafka offers three different message guarantees: at-most-once, at-least-once, and

exactly-once. At-most-once does not guarantee message delivery, hence offering the

best performance. At-least-once can lead to duplicate messages if acknowledgment is

not delivered to the producer back. Exactly-once is implemented using transactions,

meaning that messages are sent in batches, and they are all successfully deliver or

not at all. [18]

Every topic in Kafka has its own log, which consists of one or more partitions, in

which the received messages are stored in order. The ordering is guaranteed within

each partition, meaning that ordering is not guaranteed between partitions.

Kafka supports four different compression algorithms: Gzip, Snappy, l4z, and

Zstandard. [18]

4.2.4 Security mechanisms

Kafka supports mixes between authorized and unauthorized, as well as encrypted

and non-encrypted setups. Kafka supports SSL/TLS encryption between broker-

client, broker-broker, and broker-cli. Authentication between broker and client

is supported using SSL/TLS, SASL, and Kerberos. Also, authentication between

Kafka and ZooKeeper is available with SSL/TLS. By leveraging authorization us-

ing access control lists (ACL), Kafka can only allow certain users to write to or

read from specific topics. Every Kafka broker should have their SSL/TLS certificate

generated with an individual SSL/TLS key. [18]

4.2.5 Backward compatibility

Kafka is designed to be an always-on system that can be upgraded to a newer version

without downtime using rolling update by guaranteeing backward compatibility with

earlier versions. After broker upgrade, the Kafka clients need to be updated to

newer version, but upgrading the broker first will not break the system. With newer

versions of Kafka, it is also possible to upgrade clients before the broker, making

them forward compatible. Implementing this needs special effort from a schema

management point of view, but according to documentation, it is possible. In the

documentation, there exist great step-by-step tutorials for implementing a rolling

update. [18]
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4.3 Pulsar

Pulsar is a high-performance messaging, and streaming platform that originated in

Yahoo! in 2014, but its development is nowadays powered mainly by Chinese com-

panies. Pulsar is mostly written Java and has been open sourced in 2016. It is now

developed and maintained by Apache Software Foundation. Yahoo! developed Pul-

sar for the same need as Kafka has been developed, to replace traditional message

brokers. Pulsar is also developed for high throughput and low latency with massive

amounts of data. This approach always comes with a downside of reduced security

and reliability features when comparing to traditional brokers. When the devel-

opment started for Pulsar, Kafka was already open sourced, so Kafka’s best parts

were picked and some parts implemented differently that seemed not optimal. Pul-

sar cluster’s architecture is three-layered, which includes Pulsar broker, BookKeeper

server, and ZooKeeper server. [19]

4.3.1 Patterns

Pulsar supports pub/sub messaging pattern, which is based on topics. Consumers

can make different kinds of subscriptions to these topics, which modify how the

consumers communicate with the topic. Four different subscriptions are available:

exclusive, failover, shared, and key shared. By combining these subscriptions, dif-

ferent kinds of patterns are achievable, such as point-to-point. By combining these

subscriptions, implementing Kafka-like consumer groups is also possible. [19] When

a consumer connects to a topic, it specifies the subscription it is using, the subscrip-

tion keeps track of the point at which the consumer is reading the topic. Figure 15

illustrates these subscriptions and their impact on consumer behavior.

Figure 15 Pulsar topic subscriptions.



34

Exclusive subscription means that only one consumer is allowed to create a

connection to the topic, rejecting all the other consumers from creating a connection.

Failover subscription means that multiple consumers can create a connection to

a topic, but only one of them can consume. In case of the consuming service discon-

necting from the topic, the next oldest connected service will continue consuming.

A shared subscription means that multiple consumers can create a connection

to a topic, and they all can consume messages from it in a round-robin fashion. By

using a shared subscription, the application can scale horizontally since the messages

can be processed in parallel by multiple consumers.

Key shared subscriptions work just like the shared one, but the messages are

always delivered to the same consumer, based on the key in the message, rather

than using round robin.

Pulsar aggressively batches the data as typical when aiming for high throughput.

By default, Pulsar waits for an acknowledgment by the consumer that the message

was processed. When using batching, the batch is acknowledged only when the

consumer acknowledges all the messages of the batch.

Pulsar also has a feature called chunking that cannot be run simultaneously with

batching. Chunking splits the messages when a message exceeds the defined size.

Pulsar implements streaming of data using Pulsar Functions. Pulsar implements

push-based communication between broker and consumer, but the API is designed

to simulate pull-based communication. [19]

4.3.2 Scalability mechanisms

Pulsar can effectively replicate broker instances horizontally leveraging ZooKeeper,

just like Kafka. ZooKeeper cluster handles the coordination of tasks between Pulsar

broker instances when they are replicated. ZooKeeper also plays an important

role when implementing geo-replication, which is a default functionality of a Pulsar

cluster. Pulsar uses ZooKeeper also as metadata storage for cluster configuration.

In addition to traditional topic-based pub/sub, Pulsar also implements Kafka like

partitioned topics. Normal topics in Pulsar can only be used with a single broker

instance, meaning partitioned topics must be used when there are multiple brokers

in the cluster. [19] Figure 16 illustrates how partitioned topics work in Pulsar.
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Figure 16 An example of partitioned topics in a Pulsar cluster.

These partitions are spread across the replicated broker instances to increase

throughput. These partitions also have different kinds of routing modes that con-

figure the way the topic partition is done on brokers. Pulsar automatically handles

the partitioning of topics to the brokers. [19] Most of the scalability features are

closely related to fault tolerance and high availability. [19]

4.3.3 Reliability mechanisms

By default, Pulsar retains the messages if there are no consumers at the receiving

time, making the messages durable. Pulsar only stores by default all unacknowl-

edged messages into persistent storage, making the messages persistent. Pulsar

deletes by default all the acknowledged messages, but this can be changed from the

configuration settings. There is also a possibility to use non-persistent topics, mean-

ing the messages are only saved into the memory, meaning they are not persistent.

[19]

In Pulsar cluster, BookKeeper take care of handling the data in the cluster. Pul-

sar broker handles incoming and outgoing messaging between broker and client. Pul-

sar uses BookKeeper as storage to save and retain messages to make them persistent.

BookKeeper cluster consists of bookies that write to one or more of append-only

data structures called ledgers, in which the messages are stored. The ledger is from

an architectural point of view somewhat equal to the log file in Kafka. The ledger
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consists of segments that are somewhat equal to partitions of a log file in Kafka, but

the segments are written as an ordered list and not concurrently like in Kafka. This

segmentation of a ledger means that Pulsar writes only to the last segment, mean-

ing the earlier segments are immutable. [19] Figure 17 illustrates the architecture

of the Pulsar cluster.

Figure 17 An example of architecture of a Pulsar cluster.

Pulsar offers a tiered storage functionality that allows older data to be sent

from BookKeeper to a long-term and cheaper cloud storage such as Amazon S3.

Since segments are written one by one as an ordered list, Pulsar can offload older

immutable segments stored in the ledger one by one to the cloud storage. Even

though the older segments are offloaded to the cloud storage, Pulsar can query that

data using Pulsar SQL. [19]

Pulsar supports three message guarantees: at-most-once, at-least-once, and effectively-

once. Effectively-once means that each message that is sent to a function, the func-

tion returns an output that is associated with the input message. That means Pulsar

does not implement exactly-once guarantee, even though Pulsar supports transac-

tions like Kafka. Transactions in Pulsar are applicable only for streaming and have

a little different intend of use. The parallelism of consumption in exclusive and

failover subscriptions is limited to the number of partitions in the topic. Parallelism

can go beyond the number of partitions when using the shared subscription, but

message ordering is not guaranteed.

Pulsar offers a strict ordering guarantee for messages per partition in the topic

when using exclusive or failover subscriptions. The ordering guarantee can be im-

plemented per partition or per producer, but typically per partition functionality

is used. When a client subscribes to multiple topics, the message ordering is not

guaranteed. It is guaranteed only for a single topic subscription. Also, Pulsar has

a functionality to guarantee that messages are not saved to the persistent storage
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multiple times. Meaning that no duplicate messages can be saved no matter which

message guarantee is used, but it does not guarantee the consumer will not consume

the message multiple times.

Pulsar supports four different compression algorithms: zlib, Snappy, l4z, and

Zstandard. [19]

4.3.4 Security mechanisms

By default, Pulsar does not use any encryption, authentication, or authorization fea-

tures. Pulsar supports Advanced Encryption Standard (AES) end-to-end encryption

from client to storage level. Encryption for communication between client-broker,

broker-broker and broker-cli is supported with SSL/TLS. Like Kafka, by leveraging

SSL/TLS keys, SSL/TLS certificates can be assigned to each broker.

Pulsar broker validates credentials when a client tries to connect to the broker.

After authentication is done, the broker creates a role token that the connection

is valid for a certain time. Pulsar offers four authentication methods: SSL/TLS,

SASL, Athenz, Kerberos, and JSON Web Token Authentication.

Pulsar uses access control lists to implement authorization for clients based on

the role tokens assigned in the authentication phase. Also, network segmentation

can be used. [19]

4.3.5 Backward compatibility

According to Pulsar documentation, broker and client versions are backward com-

patible as well as forward compatible. Pulsar documentation has a great amount

of tutorials for implementing canary testing as well as rolling update. Pulsar docu-

mentation suggests testing your upgrade with canary tests always first. Typically,

there is no need to upgrade ZooKeeper instances, the broker and bookies are enough.

When implementing rolling update, there needs to be taken into account, that book-

ies are stateful and broker is stateless. To implement the rolling update, brokers and

bookies need to be upgraded one-by-one to not have any downtime. The upgrade

is done by simply stopping the broker or bookie, upgrading it, and then restarting

with few commands. [19]

4.4 RabbitMQ

RabbitMQ is a feature-rich traditional message broker originally started by Rab-

bit Technologies in 2007 but is since 2013 developed and maintained by VMware.

RabbitMQ’s source code is published under Mozilla Public License, and its written

in Erlang. RabbitMQ supports multiple protocols to implement messaging: Ad-

vanced Messaging Queuing Protocol (AMQP), Streaming Text Oriented Messaging
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Protocol (STOMP), Message Queuing Telemetry Transport (MQTT), and Hyper-

text Transfer Protocol (HTTP) using WebSockets. RabbitMQ was developed using

AMQP 0-9-1, which is its core technology still to this day. Other technologies are

available only by using a plugin. AMQP 1.0 and its latter versions are also available

through a plugin because they share essentially nothing with the RabbitMQ’s core

version. RabbitMQ has improved the AMQP 0-9-1 by extending it from various

functional aspects. [20]

AMQP is a binary protocol with rich features. It is implemented favoring security

and reliability features over performance. The most significant benefit of AMQP is

its interoperability between different vendors and proven reliability. AMQP is a

wire-level protocol, meaning that it describes only the format of data that will be

sent, making systems interoperable that are implemented in different languages.

[20] The only messaging protocol to be taken under research is the core version of

RabbitMQ.

4.4.1 Patterns

RabbitMQ supports point-to-point and pub/sub messaging patterns. As its name

suggests, RabbitMQ started as a message queue, extended with pub/sub later on.

RabbitMQ has four important terms that are used in the broker architecture. Ex-

changes are endpoints in the RabbitMQ broker, which the clients connect to send

messages. Bindings are used to link the exchanges to queues, handling the routing

logic depending on the binding key defined in the queue. Queues are components

that handle message delivery to receivers and store messages by saving them into

persistent storage. Virtual hosts are used to separating exchanges, queues, and users

into groups to ease administration and access control. [20]

RabbitMQ supports four different exchange types. Direct exchange delivers the

message into a queue defined by the binding key in the message header. Topic

exchange delivers the message to the queues based on a routing filter defined between

the exchange and the queue. Fanout exchange delivers the message to all bounded

queues to the exchange, also known as a broadcast. Also, a headers exchange is

supported, which bases the routing logic between the exchange and the queues on

other message header attributes than the routing key. The difference between the

routing key and the binding key is, that the routing key is defined in the message,

whereas the binding key is defined in the queue. [20] Figure 18 illustrates how

different exchange types work in RabbitMQ broker.
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Figure 18 An example of RabbitMQ broker and different exchange types.

Virtual hosts are used in the RabbitMQ broker to enable hosting multiple isolated

environments. Those environments include each their own users, exchanges, queues,

and bindings. RabbitMQ cluster contains one or more instances of brokers, which

all share exchanges, queues, bindings, virtual hosts, users, and other configurations.

RabbitMQ implements both push and pull models between broker and consumer,

but the documentation says that the push model is highly recommended since the

pull model is inefficient. [20]

4.4.2 Scalability mechanisms

RabbitMQ scales out by replicating broker instances into master/slave topology and

replicating data across them. In case of a master broker failure, the messages will

be automatically redirected to slave instances. This is implemented using mirrored

queues, which means that the queues from the master broker are replicated to slave

brokers. Once the message is acknowledged, the message will be removed from

master and slave broker instances.

In RabbitMQ cluster, all the users, exchanges, and bindings are by default au-

tomatically replicated across the whole cluster. The only exception is the normal

queues that only reside only on a single broker instance. In the cluster, which has

multiple broker instances, all the queues remain visible and reachable for all bro-

ker instances, whether they are located in master or slave brokers. Once the master

broker fails, the slave brokers will go through a new master election process and will

continue with their new master/slave topology. It is highly advised not to create

two-node clusters. Odd numbers should be preferred for master/slave topology to

function properly. There is also a concept of shovel and federation to make Rab-

bitMQ brokers distributed.

There is also a new approach to mirrored queues called quorum queues, which
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offer better throughput and reliability than mirrored queues. Quorum queues retain

all the messages in their memory and on disk, meaning they have higher latency

than mirrored queues. [20]

With mirrored queues, RabbitMQ saves messages in batches to the disk. The

interval is on average about a few hundred milliseconds between disk calls. To

increase performance, it is suggested that applications should process acknowledg-

ments asynchronously in an unordered fashion. Queues can be assigned a priority

property between one to ten. Higher the priority, the faster the message will be

processed by the broker. [20]

4.4.3 Reliability mechanisms

In RabbitMQ, one can implement message persistence and durability by leverag-

ing durable queues, exchanges, and persistent messages. In RabbitMQ, durable

queues and exchanges mean that they can be recreated automatically after restart.

Non-durable queues and exchanges will not be able to be recreated, and persistent

messages will have no effect on this type of queues and exchanges. Message persis-

tence mode should be defined in the message by the publisher, simply publishing

into a durable queue and exchange will not make the message persistent. [20]

RabbitMQ leverages acknowledgments in broker-to-consumer messaging to en-

sure data delivery. In the publisher-to-broker messaging, there is a similar function-

ality, but it is called a confirm. Using confirms, the broker sends back a confirmation

upon receiving the message to the producer. It is being called as confirm and not

acknowledgement, since RabbitMQ has made there extensions on top of original

AMQP acknowledgment logic. The acknowledgment can be configured to be sent

at receiving or after processing the message. The confirm will be sent by the broker

when the durable queue has persisted the message to the disk. [20]

There is also a concept called Lazy Queues that persist the messages into the

storage as soon as possible, minimizing the time they are retained in memory. Rab-

bitMQ cleans the message from the persistent storage periodically using garbage

collection after the message is acknowledged. This means that RabbitMQ does not

retain the messages after consuming like Kafka and Pulsar. [20]

Message delivery can be guaranteed only by using acknowledgments and con-

firms, and they can be redelivered if acknowledgment is not received. Acknowledg-

ments do not guarantee that the message will not be lost due, e.g., networking error.

Redelivery can lead to duplicated messages, meaning RabbitMQ offers at-least-once

and at-most-once delivery guarantees.

RabbitMQ implements a FIFO pattern in its queues, but that is only per queue

basis. That means RabbitMQ does not guarantee strict message ordering, and

consumers should not rely on the message order. In general, RabbitMQ is very
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reliable and durable, but there are many ways to screw up.

RabbitMQ does not have any message encoding features supported. Publishers

can still encode the messages before sending them using HTTP supported encoding,

such as gzip. The open source version of RabbitMQ does not support inter-cluster

message compression, which could greatly decrease the amount of data exchanged

in the cluster. [20]

4.4.4 Security mechanisms

RabbitMQ has built-in support for SSL/TLS. RabbitMQ brokers accept connections

from clients, other brokers, and administration tools. SSL/TLS can be used to secure

all communications by leveraging certificates.

RabbitMQ supports multiple authentication mechanisms. RabbitMQ supports

SAML authentication by default. There is also username/password-based internal

mechanism. Also X.509 certificates can be used. The username/password-based

mechanism is managed by the internal authentication backend. Users can also be

granted limited access to different virtual hosts, and in them, users can have different

kinds of permissions. There is also a possibility to use LDAP through a plugin. [20]

4.4.5 Backward compatibility

Upgrading RabbitMQ requires checking multiple steps when comparing to Kafka

and Pulsar. For some versions, the broker must be first upgraded to an intermediate

version to upgrade to the wanted version. RabbitMQ supports rolling update only

between specific versions. A rolling update is available in 3.7.18 and latter versions.

Earlier versions typically require a full cluster stop.

It is highly recommended to also upgrade the Erlang version together with Rab-

bitMQ, since certain versions of them are not compatible. In addition, since Rab-

bitMQ supports a large amount of plugins, their interoperability must also be ver-

ified. Upgrading a RabbitMQ cluster with multiple broker instances that have dif-

ferent versions is supported only for versions 3.8 and latter. RabbitMQ does not

support downgrades. [20]
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5 Comparison results

Benchmarking results are always in relation to the test execution environment and

its performance. The included testbeds are described next per paper. The listing of

the papers and all the related information can be found in Section 7.2.

5.1 Testbeds of each paper

[SP1] A cluster with 5 brokers with a CPU of 12 cores @ 2300.13Mhz,

with 16GB of memory, HDD as a persistent storage and 1Gbps

network connection. Single producer and consumer tests are run

by scaling node amount from 1 to 5 with an amount of 1 million

messages of size 50 Bit each. In case of multiple producers and

consumers the node amount is kept constant and the amount of

consumers and producers are scaled up. Persistent storage was not

attached to RabbitMQ.

[SP2] A Linux server with 3.11 kernel, CPU of 24 cores (Intel Xeon X5660

@ 2.80GHz) and 12GB of RAM. The hard disk was WD1003FBYX-

01Y7B0 running at 7200 rpm. RabbitMQ version was 3.5.3 and

Kafka version 0.10.0.1 with default recommended configurations.

New broker instances were always started on the same machine.

[SP3] A single machine with CPU of 12 cores @ 3.6Ghz, 16GB of mem-

ory and SSD as persistent storage. Kafka version 2.2.1, RabbitMQ

3.8.1, and Pulsar 2.6.0 with their default recommended configura-

tions.

[SP4] No information about the hardware, but the tests were carried out

for Kafka and RabbitMQ with a single broker on a single machine.

No replication was allowed, meaning that writing and reading for

Kafka were measured on a single topic and a single partition. For

RabbitMQ, the tests were carried out in the same fashion, allowing

only one queue with one partition.

[SP5] Server was deployed to UpCloud with Debian 10 operating system.

CPU of 20 Core Intel(R) Xeon(R) Gold 6136 CPU @ 3.00GHz,

memory of 32Gb RAM and 200Gb SSD as persistent storage. The

tests were conducted on a single machine. Pulsar and Kafka were

both used with their default configuration. Pulsar-client and bro-

ker versions 2.5.1 were used. Confluent-kafka was used as a client

library with version 1.4.1 and Kafka broker version was 2.5.0.
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[SP6] A server was running in openlandscape.cloud with Ubuntu

16.04LTS as an operating system. Each machine in the cluster had

a CPU with eight cores, 16Gb RAM and 240Gb SSD. Kafka ver-

sion 2.2.0 and Pulsar version 2.3.1. With a configuration to allow

accepting large messages.

5.2 Which consumer-producer patterns do Kafka, Pulsar,

and RabbitMQ implement?

According to study, RabbitMQ allows modifying the exchanges through an API,

where as Kafka allows only the producer decide which partition to send the message,

hence RabbitMQ has better routing functionalities. [SP2]

One study found that in terms of message patterns, RabbitMQ and Kafka are

equal, but RabbitMQ does not have support for message batching. [SP4]

A Study compared push/pull implementations for all the compared technologies.

In Kafka, producers push the messages to the broker, and consumers pull them

from the broker. In RabbitMQ, the producer pushes messages to an exchange,

which delivers them to the queue, and then the broker pushes the messages to the

consumers. In Pulsar, the producer pushes the messages to the broker, and then

the broker pushes them to the consumer. [SP3]

Kafka, Pulsar, and RabbitMQ support point-to-point and publish/subscribe pat-

terns.

5.3 How do scalability mechanisms differ in Kafka, Pulsar,

and RabbitMQ?

According to one study, Kafka and RabbitMQ support broker replication. Kafka

leverages ZooKeeper, and it is built-in in RabbitMQ. RabbitMQ and Kafka both

support master-slave architecture in their cluster. Kafka leverages partitions in data

replication, and RabbitMQ mirrored queues. The difference is that new brokers

added into the RabbitMQ cluster are by default visible to all the consumers. In

Kafka, they are not visible because Kafka’s architecture leverages consumer groups

which can access the replicas of partitions that they are only assigned to. [SP1]

According to another study, Pulsar has the best scalability due to its three-

layered architecture (Pulsar broker, ZooKeeper, BookKeeper) when comparing to

Kafka and RabbitMQ. The same study argued that Kafka’s scalability is better than

RabbitMQ’s since Kafka has two-layered architecture (Kafka broker and ZooKeeper).

RabbitMQ had the worst scalability of all three. [SP3]

According to documentation, the Pulsar broker is implemented being stateless,

and BookKeeper is stateful, meaning scaling can be done without re-partitioning
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existing data between brokers. Kafka brokers require re-partitioning. The Pulsar

cluster supports multitenancy, meaning that multiple users can share a cluster using

namespaces like in Kubernetes. Kafka does not support multitenancy. Pulsar is also

possible to be integrated with RabbitMQ and Kafka, making it easy to integrate

with existing systems. [18] [19]

When it comes to geo-replication, it is built-in in Pulsar, whereas MirrorMaker

must be used with Kafka. With RabbitMQ, a plugin should be used to implement

geo-replication by shoveling. [18][19][20]

5.4 How does throughput differ in Kafka, Pulsar, and Rab-

bitMQ?

One study found that Kafka’s latency decreased to one-third without any mean-

ingful effect on the producer and consumer throughput when scaling from one to

five brokers, one consumer, and producer per broker. The RabbitMQ’s through-

put also remained high. Kafka’s latency dropped to one-third when scaling from

one to five brokers. The study did not provide results for RabbitMQ’s latency with

a single producer and consumer per broker. [SP1] The same study found that la-

tency in Kafka increased more than two orders of magnitude when an increasing

amount of consumers and producers from one to five on five separate brokers, hence

incoming traffic increasing 5x. The same study found that Kafka’s producer through-

put dropped about 20% and consumer throughput dropped 96The study found in

the same test that the producer throughput about 75% and consumer throughput

dropped about 10% in RabbitMQ. RabbitMQ’s latency stayed low until it started

increasing sharply after adding more than 15 consumers and producers, causing the

queues to fill up, increasing latency. [SP1]

One study found that both, RabbitMQ and Kafka can deliver millisecond-level

low latencies when using at-most-once when both read only from internal memory.

Replication did not drastically affect the results. The same study found that when

using at-least-once, RabbitMQ’s latency was not really impacted when comparing to

at-most-once. This result was argued to be a result of RabbitMQ retaining messages

quite long in the memory, meaning that even if messages are written to the disk,

they are also available in memory. The results show also that RabbitMQ’s latency

remains around 10ms in both message delivery guarantees. Kafka’s latency remains

with at-most-once in below 10 ms but increases to around 20ms when using at-least-

once. Also, the results show that when reading from disk, the latency can grow up

to 100 ms. [SP2] The study found that when using single node, single producer and

consumer, single partition, and no replication, RabbitMQ outperforms Kafka. They

also argued that, when replication is allowed, Kafka will outperform RabbitMQ. The
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same study found that RabbitMQ’s throughput decreased by 50% when changing

from at-most-once to at-least-once delivery guarantee when replication is allowed.

The study also found that Kafka’s throughput decreased by 50% to 75% when

changing from at-most-once to at-least-once delivery guarantee when replication is

allowed. [SP2]

One study argued that Kafka had the best throughput, Pulsar and RabbitMQ

had somewhat equal throughput. [SP3]

Another study measured the relation between latency and throughput with vary-

ing message size and traffic. The study shows, Kafka overperforms RabbitMQ with

1 KB messages by around twice higher writing speed per second. In reading speed,

Kafka outperforms RabbitMQ clearly with 3x to 10x better performance. The aver-

age latency was overall higher with Kafka than RabbitMQ. The same study shows

that with 100 KB messages, RabbitMQ outperforms Kafka clearly in writing speed

with 1000 messages per second, but otherwise, there were no significant differences

in throughput between them. The latency with Kafka was still around 10x higher

than RabbitMQ. [SP4]

One paper studied Pulsar’s and Kafka’s maximum throughput with message

sizes of 1 KB, 65 KB, and 600 KB. The study found out that Pulsar had the

highest maximum throughput with 1 KB messages. Kafka had nearly 35% lower

maximum throughput with 1 KB messages. When using 65 KB messages, the study

found instead that Kafka had 60% higher maximum throughput than Pulsar. The

study argued that the result could be a result of a bottleneck in the Pulsar cluster.

With 600 KB messages, Kafka outperformed Pulsar again with three times greater

throughput. Kafka handled 870 messages/sec and Pulsar 293 messages/sec. In the

test, the Pulsar cluster crashed with out-of-memory error and killed the BookKeeper

node. This result shows that with a default configuration, the BookKeeper node is

not able to handle big messages. This argument was based on the result that when

using a non-persistent configuration, Pulsar was able to handle 600 KB messages

with a maximum throughput of 2764 messages/sec. [SP5]

In the same paper, latency was also measured with varying message size and

throughput. Messages of 1 KB were used with 1000 and 5000 messages/sec through-

put. Messages of 65 KB were used with 100 and 500 messages/sec throughput.

Lastly, messages of 600 KB were used with 50 and 200 messages/sec throughput.

With 1 KB messages with both throughput rates, Pulsar’s latency was around 1/4

of Kafka’s. Pulsar managed sub-millisecond latencies with both throughput rates.

With 65 KB messages, Pulsar’s latency was half of Kafka’s with a lower through-

put rate, and with a higher throughput rate, Pulsar’s latency was about 1/5 of

Kafka’s latency. Even though Kafka’s throughput was significantly greater than

Pulsar’s, like mentioned earlier with message size of 600 KB, Pulsar’s latency re-
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mains about half of Kafka’s with both throughput rates. Kafka’s maximum latency

was 4-5x greater than Pulsar’s. The study concluded that Kafka is the most reli-

able in terms of maximum throughput in their research. Still, if the Pulsar cluster

would be more scaled out, the results could be significantly different. In latency,

Pulsar outperformed Kafka in every aspect. [SP5]

One paper conducted testing with messages of size 1 KB and 1 MB between

Kafka and Pulsar in terms of throughput, latency, ram usage, disk usage and band-

width usage. The study concluded that Pulsar overperforms Kafka in all aspects

of performance. With 1 KB messages, Pulsar had over twice greater throughput,

and latency was 15 times smaller than Kafka’s. In terms of CPU, RAM, and band-

width usage, Pulsar outperformed Kafka in all aspects, except Kafka slightly won

in overall CPU usage of the whole cluster. With 1 MB messages, the gap decreased

between them. Pulsar had around 27% higher throughput, but Pulsar’s latency was

still around 15 times smaller than Kafka’s. Also, in terms of CPU, RAM, and band-

width usage, Pulsar outperformed Kafka in all aspects, except disk writing speed.

The study concluded that Kafka still has greater community support and a rich

ecosystem, hence making it still a good choice. [SP6]

Kafka supports compression with Gzip, Snappy,l4z, and Zstandard. [18] Pul-

sar supports zlib, Snappy,l4z, and Zstandard. [19] RabbitMQ does not support any

compression algorithms since AMQP does not support them. Still, some compres-

sion can be done on the client side using default HTTP supported compression, such

as Gzip. RabbitMQ does not support inter-node message compression in its open

source version. [20]

5.5 How do reliability mechanisms differ in Kafka, Pulsar,

and RabbitMQ?

A study found that if reliability and data safety is essential, such that losing a single

message can be critical, RabbitMQ is a better choice than Kafka. RabbitMQ and

its AMQP protocol have a wider range of security features and still can maintain a

good performance when comparing to Kafka. [SP1]

According to a study, RabbitMQ has a feature to sort messages sent into a queue,

whereas Kafka can only retain order per partition. Since Kafka leverages heavily

batching and aims for high throughput, it is designed such that the whole batch

must be resent to correct the ordering in the partition. RabbitMQ can correct that

ordering in the queue by leveraging acknowledgments, and since messages are by

default retained in memory, there’s no need to resend a full batch. [SP2]

A study argued that Pulsar had the best ordering guarantee when compared

to RabbitMQ and Kafka, Kafka had the second-best ordering guarantee, and Rab-
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bitMQ the worst. The same study argued that there were no significant differences

in delivery guarantees between all three systems, even though RabbitMQ does not

implement exactly-one guarantee. The same study argued also, that overall reli-

ability was the best in RabbitMQ, and Pulsar and Rabbit just a little bit worse.

[SP3]

One study concluded that in terms of reliability, Kafka is more reliable than

RabbitMQ since it has more features it supports. The main difference the study

found is that RabbitMQ does not support replication synchronization and idempo-

tent messaging. [SP4]

5.6 Which security mechanisms do Kafka, Pulsar, and Rab-

bitMQ support?

Kafka supports SSL/TLS encryption in broker-client, broker-broker, broker-ZooKeeper

and broker-cli connections. Authentication can be done in Kafka using between them

using SSL/TLS, SASL, and Kerberos. Authorization is done in Kafka using ACLs.

[18]

Pulsar supports Advanced Encryption Standard (AES) end-to-end encryption

from client to storage level. Pulsar also supports SSL/TLS to encrypt messaging

between client-broker, broker-broker, and broker-cli. Authentication can be done in

Pulsar using SSL/TLS, Athenz, Kerberos, SASL, and JSON WTA. Authorization

is done in Pulsar using ACLs or network segmentation. [19]

RabbitMQ supports encrypting messages with SSL/TLS between client-broker,

broker-broker, and broker-client. Two primary authentication mechanisms for clients

are username/password and X.509 certificates (SSL/TLS), but RabbitMQ also sup-

ports SASL. RabbitMQ can implement authorization using separate virtual hosts

assigned to different users. Also, ACL-type of permission list can be used in those

virtual hosts to grant or deny operations. [20]

5.7 How does backward compatibility differ in Kafka, Pul-

sar, and RabbitMQ?

Kafka broker is backward compatible and supports rolling update. Client versions

are forward compatible. Documentation does not describe in detail the actual imple-

mentation of the rolling update, what kind of effects that have on partitioning and

assigned clients. Downgrading is supported if something goes wrong in the rolling

update. [18]

According to Pulsar’s documentation, broker and client versions are backward

compatible as well as forward compatible. The main benefit that already was men-

tioned in regards to upgradability is that the Pulsar broker is stateless. By storing
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data in BookKeeper, the brokers can be upgraded without a need for re-partitioning.

Pulsar supports rolling update and downgrade in case of an error. [19]

RabbitMQ supports rolling update with newer versions, but it is only possible

between certain versions if update is done from 3.7.18 version or earlier. Sometimes

with older versions, updating between the wanted versions requires an update to

an intermediate version first. It is recommended also to upgrade the Erlang version

with the broker, and on top of that, the certain broker versions and Erlang versions

are not compatible. Upgrading a RabbitMQ cluster with multiple versions of broker

instances is supported only for versions 3.8 and latter. RabbitMQ does not support

downgrades. [20]
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6 Discussion

Comparing these messaging systems by the defined characteristics, some certain dif-

ferences can be found. For example, using persistent storage is possible in each

technology but not required in RabbitMQ. Out of all three, RabbitMQ implements

many things differently since it is a traditional message broker, not aiming for high

throughput. Kafka and Pulsar are quite similar in how they handle data. Pulsar

and Kafka’s main difference is that Pulsar uses a separate data storage system called

BookKeeper, and Pulsar has tiered storage. This three-layered architecture with

ZooKeeper and BookKeeper increases scalability by enabling the Pulsar broker’s

statelessness compared to Kafka’s two-layered architecture and its stateful broker.

Also, some research shows that Pulsar with proper configuration can outperform

Kafka in nearly all of the performance-related aspects, including throughput and la-

tency [SP6]. Also, Pulsar’s end-to-end encryption with AES, built-in geo-replication,

and multi-tenancy is something Kafka does not support by default. Pulsar supports

a wider amount of authentication mechanisms and authorization mechanisms when

comparing to Kafka.

The best choice as a MOM is always use case specific. Meaning, testing should

always be done before jumping into conclusions, simply based on some results that

can be read on the site of one solution. Typically, every MOM tries to market their

own solution on their site and show test results in use cases in which perform well.

Where Pulsar shines in performance and scalability, it still lacks some community

support and technological maturity when comparing to Kafka. The technological

maturity will probably come with the time, but the future will show how it gets

adapted from the community. In Table 3, some information is gathered from repos-

itories of Kafka, Pulsar, and RabbitMQ on Github.

Table 3 Repository comparison of the chosen technologies.

apache/kafka apache/pulsar rabbitmq/rabbitmq-server

Stars 18189 7411 8148

Forks 9676 1865 3067

Open Issues 807 1163 217

Age 10 years 5 years 10 years

Language Java, Scala Java Erlang

License Apache-2.0 Apache-2.0 Mozilla Public License 2.0

There exist many hosted offerings of the chosen technologies. Confluent offers

Kafka commercially to users using their Confluent Platform and Confluent Cloud.
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RabbitMQ is hosted by Cloud AMQP and Cloud Foundry. Pulsar is currently hosted

in Alibaba Cloud, called Pulsar-as-a-service, and StreamNative also has their offering

for Pulsar in their cloud.

Confluent currently works on the ’Next-Generation event streaming platform’

called Project Metamorphosis, which aims to lower cost and better performance

than their current Kafka offering. The future will show whether it will be open

sourced or not. [22]

There is also some effort being put into a general benchmarking framework to

overcome biased results when benchmarking MOMs. It is called OpenMessaging

Benchmark Framework. It is currently a Linux Foundation Collaborative Project

and is being supported, for example, by Alibaba. According to README.md in

their Github repository, they support benchmarking for Kafka, RocketMQ, Rab-

bitMQ, Pulsar, and NATS Streaming. [23]
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7 Conclusion

Kafka remains the number one solution for most event streaming applications that

demand high throughput due to its rich ecosystem and wide community adoption.

RabbitMQ is the choice for reliable and safe messaging. Pulsar is something to keep

an eye on. It could be replacing Kafka if it gets adopted by the community. Pulsar

is a great tool for a software architect to have as a Kafka alternative. Table 4 in

Chapter 7.2 summarizes all three technologies.

When selecting papers for the research, it was hard to find papers that would be

comparable. Usually, papers only concerned with a single technology with varying

testbeds, meaning they did not provide any value to the comparison. In some of

the papers, there is sometimes clear false information to one’s eye. That is maybe

due to updates to the systems or just general differences in opinions. Meaning that

one could, for example, argue that RabbitMQ implements batching using ’consumer

prefetch’. It is not actually batching but kind of close, so it is not really a false

argument. Or one could argue that Kafka does not implement exactly-once message

delivery because using it would ’kill the performance’. Implementing it is technically

possible but complicated. These opinion differences allow the firms behind each

technology to make some immoral marketing arguments. Also, some chosen papers

did not describe the testbed or hardware in detail enough to make the tests fully

comparable. Any of the papers did not compare security or backward compatibility

related functionality in detail.

For future work, some comparisons should be done about how authentication and

encryption mechanisms affect throughput and latency. Also, some research should

be done about finding optimal hardware configurations such as CPU speed and

memory size. As technologies evolve, general throughput and latency benchmarking

continue to be also relevant. These tests should be done using OpenMessaging

Benchmark Framework to maintain comparability in results.
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Table 4 Comparison table of the chosen technologies.

Kafka Pulsar RabbitMQ
Developed
aiming for

High throughput
and low latency

High throughput
and low latency

Reliability and
data safety

Messaging
patterns

Point-to-Point,
Pub/Sub

Point-to-Point,
Pub/Sub

Point-to-Point,
Pub/Sub

Push or Pull
with consumer

Pull
Push, API

simulates pull
Both, but

push preferred
Message
durability

Yes Yes
By using

durable queues

Message
persistence

Yes
Yes,

Also tiered
storage

Possible, but
does not by

default have it
Message
reliability
mechanism

Acknowledgements Acknowledgements
Acknowledgements

and confirms

Message
delivery
guarantees

At-least-once,
At-most-once,
Exactly-once

At-least-once,
At-most-once,

Effectively-once

At-least-once,
At-most-once

Message
ordering

Per partition
Per partition with
partitioned topics

Per queue

Data
replication
mechanism

Partitions
in a log

Bookies,
partitions and

segments

Mirrored Queues,
Quorum Queues

Broker
replication
mechanism

ZooKeeper
handles

replication

ZooKeeper
handles

replication

Build-in replication,
Shoveling,
Federation

Geo-replication
Using

MirrorMaker
Built-in

functionality
Hard to implement

Message
batching

Yes Yes
Hard to

implement
Supports
streaming

Yes Yes No

Smart broker,
dumb client

No No Yes

Compression
types

Gzip, Snappy,
l4z and Zstandard

Zlib, Snappy,
l4z and Zstandard

None

Encryption SSL/TLS SSL/TLS, AES SSL/TLS

Authentication
SSL/TLS, SASL,

Kerberos

SSL/TLS, Athenz,
Kerberos, SASL,

JSON WTA

SSL/TLS, SASL,
username and

password
Authorization ACL Permissions, Tokens vHosts, Permissions
Backward
compatibility

Good Excellent
Only between

certain versions

Rolling udpate Supported Supported
Possible but
complicated
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