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Speech emotion recognition (SER) is the task of recognizing the emotional state of the speaker
from a speech signal. One potential field of application for SER is the study of the effect of
parental proximity and communication to the early cognitive development of preterm infants. A
crucial aspect in this kind of research is the analysis of the emotional content of speech that the
preterm infants hear during intensive care. However, manual analysis of emotions in speech is
highly time-consuming and expensive. Hence, an automatic SER system is essentially required
for performing large-scale emotional speech analysis.

In the present study, a system which performs SER for real-life child-centered audio samples
from a neonatal intensive care unit (NICU) was developed. Typically, with enough labeled train-
ing data, a traditional supervised machine learning approach could be taken to address this task.
However, the primary audio material of the present experiments recorded in a NICU contains
hundreds of hours of audio, and is thus far too large to be fully annotated manually. Therefore,
alternative machine learning-based approaches, namely cross-corpus generalization, k-medoids
clustering-based active learning (AL), and Wasserstein generative adversarial network-based do-
main adaptation (DA), are compared in the present experiments.

Since the dataset from the NICU was initially unannotated and the manual annotation of the
recordings is laborious, simulations with four already existing SER corpora were first conducted
to find out what would be the best approach for deploying a SER system on a novel unannotated
corpus. Then, a subset of the NICU dataset was annotated, and the discovered solutions from the
simulations were applied this subset to test how the simulated strategies would work in practice.

As a result, the DA method outperformed the cross-corpus generalization approach in situ-
ations when there are no labeled data available for the target corpus. With a moderate human
annotation effort, the AL method was superior compared to the DA method for the classification
of valence when approximately 4% of the NICU data was annotated. With the same number of
annotated samples, the DA method slightly outperformed the AL method when classifying arousal.
For a binary classification for valence, the best-performing model was a support vector machine
classifier utilizing the AL method with a classification accuracy of 73.4% unweighted average re-
call (UAR). For arousal, the best model for a binary classification was a neural network-based
classifier using the DA method with an accuracy of 73.2% UAR.

Keywords: speech emotion recognition, paralinguistic speech processing, active learning, domain
adaptation, LENA recorder
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Puheen tunteiden tunnistuksessa (SER, Speech Emotion Recognition) tarkoituksena on tun-
nistaa puhujan emotionaalinen tila puhesignaalista. Yksi potentiaalinen soveltamisala SER:ille on
tutkimus vanhempien läheisyyden ja kommunikaation vaikutuksesta keskosvauvojen varhaiseen
kognitiiviseen kehitykseen. Yksi tärkeä näkökanta tällaisessa tutkimuksessa on analysoida emo-
tionaalista sisältöä puheesta, jota keskoset kuulevat tehohoidon aikana. Puheen emotionaalisen
sisällön manuaalinen analyysi on kuitenkin erittäin aikaavievää ja kallista. Täten olennaisesti tar-
vitaan automaattinen SER-systeemi laajamittaiseen puheen emootioanalyysiin.

Tässä tutkimuksessa tarkastellaan systeemiä, joka suorittaa SER:iä tosielämän lapsikeskeisil-
le ääninäytteille vastasyntyneiden teho-osastolta. Tyypillisesti tällaista ongelmaa voitaisiin lähes-
tyä ohjatun koneoppimisen menetelmin, mikäli riittävä määrä annotoitua opetusdataa on saata-
villa. Tutkimuksen pääaineisto eli teho-osastonauhoitteet sisältävät kuitenkin satoja tunteja ääni-
materiaalia, joten aineisto on aivan liian suuri manuaalisesti annotoitavaksi. Tämän vuoksi vaih-
toehtoisia koneoppimisen lähestymistapoja vertailtiin tutkimuksessa. Nämä lähestymistavat olivat
ristikorpusopetus, k-medoids -klusterointialgoritmiin perustuva aktiivinen oppiminen (AL, Active
Learning) sekä Wasserstein-generatiiviseen kilpailevaan verkostoon perustuva määrittelyjoukon
adaptointi (DA, Domain Adaptation).

Koska tutkimuksen teho-osastonauhoitteista puuttuivat aluksi annotaatiot ja nauhoitteiden ma-
nuaalinen annotointi on erittäin työlästä, simulaatioita suoritettiin neljällä jo olemassa olevalla
SER-korpuksilla jotta saataisiin selville, että mikä olisi parhain lähestymistapa kehittää SER-
järjestelmää annotoimattomalle korpukselle. Tämän jälkeen osa teho-osastonauhoitteista anno-
toitiin ja näitä annotoituja nauhoitteita käytettiin arvioimaan simulaatioiden avulla saatujen löydös-
ten toimivuutta käytännössä.

Tutkimuksen kokeissa DA-metodi suoriutui paremmin kuin ristikorpusopetus tapauksissa, jois-
sa annotoitua dataa ei ole saatavilla kohdekorpukselle. Kohtalaisella annotoinnilla AL-metodi oli
parempi kuin DA-metodi valenssin luokittelussa kun noin 4% teho-osastonauhoitteista oli anno-
toitu. Samalla määrällä annotaatioita DA-metodi suoriutui kuitenkin hieman paremmin kuin AL-
metodi virittävyyden luokittelussa. Valenssin binäärisessä luokittelussa parhaiten suoriutunut ko-
neoppimismalli oli AL-metodia hyödyntävä tukivektorikone, jonka luokittelutarkkuus oli 73.4% UAR
(engl. unweighted average recall). Vastaavasti virittävyyden binäärisessä luokittelussa parhain
koneoppimismalli oli DA-metodia hyödyntävä neuroverkkopohjainen luokitin, jonka tarkkuus oli
73.2% UAR.

Avainsanat: puheen tunteiden tunnistus, paralingvistinen puheenkäsittely, aktiivinen oppiminen,
määrittelyjoukon adaptointi, LENA-nauhuri

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.
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1. INTRODUCTION

The basic purpose of speech is to transmit a message using language [1, 2]. The formal

structure of language is called the linguistic content of speech, which in turn consists of

phonemes, words, and sentences. Speech is transmitted as acoustic waveforms pro-

duced by the human speech production system [2]. However, these acoustic waveforms

contain much more information than only the linguistic content of speech, such as the

speaker’s personality, health state, attitude, speaking style, and the age of the speaker.

Paralinguistic speech processing (PSP) refers to the digital analysis of speech beyond its

linguistic content [1].

Perhaps the most well-known subcategory of PSP is speech emotion recognition (SER),

in which the task is to recognize the emotional state of the speaker from an acoustic

waveform [1, 3]. Although in some cases this might be an easy task for humans, machine-

based automatic recognition of emotions is an ongoing subject of research in the PSP

research community. Especially real-life audio recordings with various task-irrelevant

characteristics such as noise and overlapping speakers have turned out to be difficult

in PSP [4, 5].

Emotional speech is particularly interesting in the study of babies’ cognitive development.

Preterm infants can spend up to even four months at a hospital’s neonatal intensive care

unit (NICU) after birth. Since the baby is exposed to multiple environmental sources of

stress during the intensive care, such as bright lights and noise, the stay at the NICU might

negatively affect the early brain development of the child. To better understand the effect

of parental proximity and communication on a child’s development for prematurely born

children, there is an ongoing joint research project conducted by Turku University Hos-

pital and Tallinn Children’s Hospital called Auditory environment by Parents of Preterm

infant; Language development and Eye-movements (APPLE) [6]. The fundamental pur-

pose of this thesis is to contribute to this research project by creating a system which

performs SER as accurately as possible for hundreds of hours of real-life child-centered

audio recordings collected from a NICU during this project. An automatic system that

is capable of performing emotion analysis for recordings like these would help vastly in

the study of how different emotional environments affect a child’s cognitive development.

For example, one hypothesis might be that a preterm infant, whose audio environment

at the NICU mainly consists of speech with positive emotions, would be more likely to
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have faster cognitive development later on than those infants whose audio environment

consists of less positive emotions. Furthermore, in addition to the scientific study of child

development, a functioning SER system could be utilized for intervention studies aiming

to optimizing neonatal care [7]. Without an automatic SER system, the large-scale anal-

ysis of the emotional content of real-life audio recordings would be extremely expensive

and time-consuming.

Traditionally, training a SER system using supervised machine learning requires large

amounts of labeled data. These labels are often manually acquired from human anno-

tators. However, the size of the present audio dataset from the NICU that is going to be

analyzed is very large, and is thus too expensive to be fully annotated. Therefore, al-

ternative machine learning-based techniques such as cross-corpus generalization, active

learning (AL), and domain adaptation (DA) are required to tackle the absence of labeled

training data.

The main research goal of this thesis is to create a well-performing SER model for the

real-life child-centered audio recordings from a NICU. As already stated above, SER with

real-life recordings is a difficult task. Also, the absence of a fully annotated dataset raises

the question of how to most effectively deploy a SER system to a novel domain, where

effectiveness can be measured in terms of system accuracy and the amount of required

human effort to develop and validate the system. To this end, cross-corpus generalization

and state-of-the-art AL and DA methods are compared in the present experiments. These

methods have rarely been compared to each other directly. Moreover, the unique nature

of the dataset also provides an excellent opportunity to explore the application of SER

to a challenging real-world use case, where SER can be utilized for the scientific study

of child development. Furthermore, the present study is one of the few studies in which

SER is applied to real-world large-scale data.

This thesis is organized as follows. Chapter 2 presents a review of the main concepts of

the present study. A theoretical foundation for the core methods of the thesis is given in

Chapter 3. These include the cross-corpus generalization, AL, and DA methods used in

the present experiments. Chapter 4 describes the experiments conducted in the present

study, followed by the presentation and discussion of the results of these experiments in

Chapter 5. Finally, Chapter 6 provides a summary of the present experiments and the

main findings of the study. Additionally, future research questions related to SER and

possible future improvements for the present work are briefly discussed.
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2. BACKGROUND

This chapter presents a review of the main concepts of this thesis. First, Section 2.1 gives

a brief introduction to machine learning. Then, Section 2.2 introduces the basics of pre-

processing in speech processing, discusses about PSP and SER in general, and provides

a review of the previous work done in the field of SER. Next, Section 2.3 gives an overview

of the main features used in the present study, while Sections 2.4 and 2.5 provide a

detailed overview of the different classification models used in the present experiments.

Finally, Sections 2.6 and 2.7 give an overview of AL and DA, respectively. The basic

concepts of the topics are discussed, and there is also a review of the roles of AL and DA

in SER.

2.1 Introduction to machine learning

Machine learning is a subcategory of artificial intelligence in which the aim is to construct

computer programs or algorithms that are able to automatically improve their performance

with experience [8]. A machine-learning algorithm constructs a model based on training

data to perform some given task. This process is also known as the training process.

A model in machine learning is simply the outcome of the training process for some

machine-learning algorithm. This model can be considered as a mathematical function

that produces some output based on its input values [8].

Classification in machine learning is the task of predicting a categorical value or a set of

categorical values based on the input of the model [8]. For example, predicting whether

an image represents a dog or a cat is a classification task. Regression is the task of ap-

proximating a real-valued target function [8]. An example of a regression task is predicting

the height of a person given his or her shoe size.

For machine-learning algorithms to learn, some representation of the input data should

be given as an input to the algorithm. This representation is known as the input features.

The most basic training scenario in machine learning is supervised learning, in which the

training data contains both the input features and their respective target labels [9]. If there

are no target labels available, then the training scenario is called unsupervised learning.

A combination of these two is called semi-supervised learning, in which the premise is

that there is a small amount of labeled data available and a large amount of unlabeled
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data available [9].

2.2 Paralinguistic speech processing

Paralinguistic speech processing (PSP), also known as computational paralinguistics, is

a relatively new area of speech processing [1]. Approximately 30 years ago the field

was practically nonexistent, and neither did the term exist 20 years ago. In this context,

the word computational means simply that something is done by a computer. The word

paralinguistics is essentially the most relevant word here. Its first part, ‘para’, originates

from the Greek preposition παρα, which means ‘alongside something’. The latter part,

‘linguistics’, refers to the linguistic content of speech, including e.g., the phonetics, the

grammar, and the semantics of speech. Thus, PSP means digital speech processing

where we are interested in analyzing or recognizing the way something is said instead of

what is being said [1, 4].

The rest of this section is structured as follows. First, the basics of pre-processing in

speech processing are introduced in Section 2.2.1. These pre-processing principles ap-

ply to practically any speech processing task, including PSP. Then, Section 2.2.2 focuses

on the special characteristics of PSP that are different compared to other types of speech

processing. Throughout the entire section, the book Computational Paralinguistics: Emo-

tion, Affect and Personality in Speech and Language Processing by Schuller and Batliner

[1] will be extensively referred to. Their book is the first, and so far the only, book which

provides a comprehensive review of PSP, and is commonly used as a standard reference

for PSP. Finally, Section 2.2.3 reviews the previous work done in the field of SER, which

is a special case of PSP.

2.2.1 Pre-processing in speech processing

In speech processing, windowing is commonly the initial step in feature extraction. In

windowing, a digital speech signal is split into short segments, also called audio frames,

in which the signal is assumed to be stationary [2]. A signal, in turn, is a physical repre-

sentation which carries data from one point to another [10]. The purpose of windowing is

to split the time-varying speech signal into shorter segments within which the properties

of the signal stay constant.

When a digital speech signal is split into short segments, the borders of the segments are

discontinuous. Typically, to counter the effect of discontinuity, the segments are multiplied

with a smooth windowing function that emphasises the values at the center of the segment

and suppresses the values at the borders, i.e. the windowing function goes towards

a small value or zero at the borders [2]. For features in the time domain, rectangular

windows can also be used. However, the main problem with rectangular windows in the
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time domain is that they produce a spectral leakage in the frequency domain due to large

side lobes. Consequently, these side lobes may cause unwanted effects in the frequency

domain, such as a ringing effect caused by a sinc function (the frequency response of a

rectangular window) [2].

By using a smooth windowing function, the discontinuities near the borders of the win-

dowed segments become negligible. The signal values outside of the frames can either

be regarded as zero (stationary approach) or undefined (non-stationary approach) [1].

The window length should be determined so that it is long enough to model the desired

property of the signal, but on the other hand, short enough for the signal to be station-

ary within the window. Voiced speech is often regarded as a quasi-periodic signal, which

means that the signal is assumed to be periodic within a small time frame [2]. Additionally,

the adjacent windowed frames are overlapped in order not to lose information within the

signal. Typical window lengths in speech processing are 20–40-ms in length with time

shifts of 10 ms [2]. Common windowing functions are Hamming and Hann windows be-

cause they both have the desired properties for analysis: they decay rapidly in the time

domain, but also have a narrow and rectangular spectrum in the frequency domain [2].

Figure 2.1 demonstrates a 30-ms segment of a digital speech waveform and its Hann-

windowed version along with the Hann window.

Time (ms)

A
m

pl
itu

de

A 30-ms segment of a speech signal

Time (ms)

A
m

pl
itu

de

Windowed segment and a Hann window

Figure 2.1. A 30-ms segment of a speech signal corresponding to a vowel sound (upper
image) and its Hann-windowed version along with a Hann window (lower image).

After the speech signal is windowed, it is typical that frame-level acoustic features, also

known as acoustic low-level descriptors (LLDs), are extracted from the windowed frames.

Here the underlying assumption is that the signal properties of interest are constant within

the frame of analysis, and that the feature of interest evolves at a slower rate than the rate
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at which the adjacent overlapping windowed frames are located in the signal. This is

also known as the short-time analysis of speech [2]. Typical frame-level features include

mel-frequency cepstral coefficients (MFCCs), fundamental frequency (f0), linear predic-

tive coding (LPC) coefficients, the short-time autocorrelation function (STACF), and the

short-time zero-crossing rate (STZCR) [2]. In addition, derived features of LLDs can

be computed. These include e.g. first and second order delta features (see Section

2.3.1 for further details), filtered versions of LLDs, and LLDs with some nonlinear function

applied [1, 2].

2.2.2 Fundamentals of paralinguistic speech processing

In PSP, an important concept is the distinction between speaker states and traits. Al-

though both terms can mean similar things, in PSP traits refer to longer-lasting or per-

manent properties of the speaker, whereas states are shorter-term characteristics. Any

characteristics with a duration of something between these longer-term traits and shorter-

term states have been defined by Schuller and Batliner [1] as medium-term between traits

and states, which we refer to in this text as ‘intermediate straits’. Table 2.1 demonstrates

examples of the three aforementioned cases of different time scales for paralinguistic phe-

nomena. A common task for a PSP system is to either analyze, classify, or detect some

paralinguistic phenomenon or phenomena (e.g. the examples in Table 2.1) [1]. When

designing a model for a PSP task, the time scale of the paralinguistic phenomenon of

interest should be taken into account. For example, a model for classifying personality

should somehow exploit the fact that the time scale of personality-related phenomena in

speech is long-term. Therefore, temporal dependencies related to personality in speech

cannot be modeled using models that only consider a short time scale. The basic as-

sumption when designing a PSP model is that the phenomenon of interest is constant for

the entire time scale of analysis [1].

Typically, similarly to a classical machine-learning system, a PSP system consists of two

separate parts; feature extraction and a PSP model [1, 4]. The first part, feature extrac-

tion, converts a digital speech signal into some feature representation. The second part,

the PSP model, then performs classification or regression regarding the paralinguistic

phenomenon of interest by means of supervised machine learning [1, 4]. More recently,

however, it has become increasingly popular to use end-to-end PSP systems which com-

bine these two parts. This can be achieved by using deep neural networks (DNNs) that

are able to learn task-specific features directly from the training data while simultaneously

training the DNN-based PSP model [11].

Since paralinguistic phenomena occur over time scales that are longer than typical fea-

tures in speech processing, the features and models in PSP should also correspond to a

time scale that is longer than frame-level. This time scale can range from the level of a
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Table 2.1. Examples of different paralinguistic phenomena divided into three different
time scales [1, 4].

Type Subtype Examples 

long-term traits biological trait primitives height, weight, age, gender 

cultural trait primitives race, culture, social class 

personality traits personality, likeability 

intermediate straits (partly) self-induced more or 
less temporary states 

sleepiness, intoxication, health 
state, mood 

structural signals role in groups, friendship, 
attitude, interest, politeness 

discrepant signals irony, sarcasm, lying 

mode (can also be long-term 
or short-term) 

speaking style, voice quality 

short-term states emotional states emotion, valence, arousal 

emotion-related states or 
affects 

stress, confidence, 
uncertainty, frustration, pain 

 

single utterance up to days or even longer periods of time [1]. Additionally, paralinguistic

information is often hidden in the way LLDs evolve over time, and not in the individual

frame-level features. Hence, there is a need for suprasegmental features (not to be con-

fused with suprasegmentals in phonetics) which accumulate information over multiple

frames. Moreover, as PSP deals with non-linguistic information, redundant information

such as the actual linguistic content of the speech is reduced when using suprasegmen-

tal features [1].

By far the most common solution for obtaining suprasegmental features in PSP is to apply

functionals to the time series of frame-level features [1, 4, 5]. Functionals are mathemat-

ical operations which map a time series of arbitrary length into a single value. These

include e.g. mean values, statistical nth order moments, extreme values, the range of

the signal, percentile values and percentile ranges, and regression coefficients [1]. The

functional mapping of a time series into a single value has the desirable property that

audio samples of different lengths become mapped into constant-length feature vectors.

This simplifies further analysis and processing of the features [1]. However, some infor-

mation is lost when applying functionals to the data. Although this is often desirable for

long audio signals, on some occasions the loss of information has to be minimized. In

these cases, feature stacking and temporal models can be used, for example. In feature

stacking, adjacent feature frames are stacked together to form a long feature vector. The

main issue with this is that all input waveforms must have the same length in order to

have a constant-length output. Moreover, feature stacking is not suitable for segments

longer than a couple of seconds since otherwise the output feature vector will get too

large for practical use cases [1]. More recently, temporal models like recurrent neural
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networks (RNNs) have become more common in PSP [11]. These models are able to

process longer-term information than by using feature stacking without reduction in infor-

mation, but on the other hand they tend to require more training data. Additionally, RNN

models are able to handle inputs of varying lengths which is a useful property for PSP [1,

11]. An example of a conventional feature extraction pipeline in PSP is demonstrated in

Figure 2.2.

Audio frames Frame-level
features

Time series
model

Functionals

Speech signal

Figure 2.2. An example of a typical feature extraction pipeline in PSP. First, a digital
speech signal is split into audio frames using a windowing function. Then, one or multiple
frame-level features are extracted from the windowed frames. Finally, either the frame-
level features are directly used as an input to a time series model, or functionals are
applied to the frame-level features to produce a constant-length feature vector.

Selecting an optimal set of features for a PSP system is not a trivial task. The selection

of features depends on the PSP model to be used, the amount and quality of the training

data, and the knowledge of the task at hand [1, 5]. With much data available, DNNs can

be utilized to learn a suitable feature representation directly from windowed segments or

even from raw acoustic waveforms. These methods can be further improved if domain

knowledge of the task at hand is available, e.g. by using some more advanced features

as the initial features for the model [12]. However, this is not typically the case in PSP,

where often high-quality annotated data is scarce [1, 11]. In this case, the option is to

either utilize expert knowledge or to extract a large set of features that are not specific

to the task at hand. By utilizing expert knowledge, it is possible to find acoustic and

linguistic features that are relevant for a specific PSP task. However, so far nobody has

found the perfect features for any PSP task, and often the ones that have been defined

may not be easy to extract in practice in a systematic manner [1]. Thus, the most common

method in PSP is to extract a large number of features that are not tailored for the specific

task [1, 5, 13]. These features are chosen so that they can be extracted systematically,

and are typically extracted using a feature extraction toolkit, such as openSMILE1. As a

comparison, it is common to compute only one type of frame-level features for some given

application in typical speech processing [2].

Generally, compared to other speech processing tasks, feature vectors in PSP are high-

dimensional [1]. Large feature spaces lead to, among other things, more complex models

which are prone to overfit the data, make the optimization algorithms more complex, and

1 Open-source Speech and Music Interpretation by Large-space Extraction; for further reading, see [14].
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thus lead to more extensive computation. Therefore, a common solution is to perform

feature selection or to use a classifier that is robust to non-significant features [1, 15].

An example of such a classifier is the support vector machine (SVM) [1], which has the

desired property of being able to handle high-dimensional feature spaces and can also

withstand overfitting. These are some of the reasons why SVMs are among the most

popular classifiers in PSP [1, 5]. Other common classifiers in PSP include random forests

(RFs) [13] and neural network-based approaches, such as convolutional neural networks

(CNNs), multilayer perceptrons (MLPs), RNNs, and combinations of these [1, 11]. Fur-

thermore, other classifiers like hidden Markov models (HMMs), Gaussian mixture models

(GMMs), and k-nearest neighbors (k-NN) have been used to some extent [5, 13, 15]. Out

of all the classifiers in PSP, the neural network-based approaches have gained popularity

in recent years [5, 11].

In general, many PSP tasks have turned out to be difficult, even for state-of-the-art

machine-learning models2 [5, 11, 13]. One of main bottlenecks in developing PSP mod-

els is the lack of high-quality annotated data for PSP tasks, which many modern DNN-

based machine-learning models heavily depend on [11]. There are many reasons for

the absence of annotated data in PSP. First, data collection in PSP may involve private

or sensitive information within the recorded test subjects. This is also one of the rea-

sons why many PSP corpora are not freely accessible within the research community, but

instead, access to many PSP corpora is highly restricted [1, 4, 11]. Second, data collec-

tion for PSP tasks may be challenging, since many paralinguistic phenomena, such as

personality, can be difficult to capture into a large-scale dataset in a systematic manner

[4, 5]. Third, PSP corpora can be difficult and time-consuming to annotate, since many

paralinguistic phenomena may not be transparent even for human experts [4, 5, 11]. To

alleviate the lack of large-scale annotated PSP corpora which hinders the development of

PSP models, multiple solutions have recently started to emerge in the field of PSP. These

include e.g. crowdsourcing, AL, DA, pretrained DNN models, reinforcement learning, and

utilizing synthesized speech [11].

2.2.3 Speech emotion recognition

The categorization of speech into different emotions, also known as speech emotion

recognition (SER), is a PSP task which has interested researchers for years [3]. The

automatic processing of emotions in speech started to evolve in the mid-nineties together

with the development of the field of PSP in general. At first, only a few acted basic emo-

tions were included in the studies, but later on, the analysis of more realistic portrayals of

several emotions has become more prevalent [3, 16].

2 Since 2009, different PSP tasks have been discussed annually in challenges held at INTERSPEECH
conferences (http://www.compare.openaudio.eu/), which are the world’s largest speech-related tech-
nical conferences.

http://www.compare.openaudio.eu/
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Many of the common properties of PSP described in Section 2.2.2 apply in SER. Similar to

PSP systems, a SER system is commonly constructed using supervised machine learn-

ing to either assign an input speech signal into one of predefined categorical emotional

labels (classification), or to predict a continuous value on some predefined emotional

scale (regression) [1, 3]. An example of classification in SER could be a case where a

model predicts whether the emotion of a given utterance is either ‘joy’, ‘sadness’, ‘anger’,

or ‘neutral’. A regression task in SER could be, e.g., a case where a model predicts a

value in the range from 0 to 1 for some given utterance, where the value 0 means that

the expressed emotion is negative, and the value 1 means that the expressed emotion is

positive.

The number of emotional categories in different SER corpora varies largely based on the

intended use case of the SER corpus [3]. Commonly, since SER is in itself a difficult

task even for human experts, less than 10 different emotional categories are used in SER

corpora. When SER corpora are created, the assignment of audio samples into different

emotional categories is usually conducted by human annotators [1, 3, 17].

In 1980, a psychologist named James A. Russell introduced a circular model for rep-

resenting emotions [18]. He proposed that all emotions can be mapped into a two-

dimensional plane with valence as one axis and arousal, also called activation in many

studies, as the other axis. Valence is a measure of positive and negative affectivity, or in

other words, pleasantness and unpleasantness, whereas arousal measures how calming

or exciting the spoken information is [18]. This mapping of emotions into a valence-

arousal plane has been used in a vast number of SER studies (e.g. [17], [19], [20], [21],

[22], [23], [24], [25]) to harmonize differences between the emotional labels of different

corpora. Indeed, some corpora have even only provided emotional labels in the valence-

arousal plane. It should be noted, however, that mapping emotions into a valence-arousal

plane is not a trivial task since no comprehensive one-to-one mapping has yet been de-

fined [3, 4, 16, 17].

Besides unifying the divergence between corpora, mapping emotions into a valence-

arousal plane has been commonly used to reduce the complexity of a given SER task

by both reducing the number of possible classes and making the given classes more dis-

tinct from each other [16, 17]. Furthermore, classification in this plane can be regarded

as two binary decisions if discrete emotional labels are considered. This works well with

binary classifiers such as SVMs, which have been popularly used in SER [4, 5, 16]. Stud-

ies such as [5] and [26] have demonstrated that arousal is typically easier to classify than

valence. However, as e.g. Schuller et al. [17] pointed out, for some SER corpora the

classification of arousal is easier than it is for valence.

As with other PSP tasks in general, most phenomena related to SER are expressed in the

way LLDs evolve over time. Emotions in speech are regarded as short-term states (see
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Table 2.1), and the time scale of emotions in SER is commonly at the level of utterances

(i.e., ranging from less than a second up to even tens of seconds) [3]. Thus, supraseg-

mental features, which accumulate information across multiple audio frames, are com-

monly used in SER. By far the most popular features in SER have been high-dimensional

feature vectors that are not specifically tailored to the SER task, but instead are meant

to capture properties of speech signals as diversely as possible [5, 14]. Studies such as

[27], [28], and [29] utilized a 6373-dimensional feature set that was used as the standard

feature set in the INTERSPEECH computational paralinguistics challenges from 2013 to

2017. Schuller et al. [19] and Zhang et al. [20] used 6552-dimensional suprasegmental

features that consisted of 39 functionals of 56 LLDs. Another frequently occurring fea-

ture set in SER is the 384-dimensional INTERSPEECH 2009 emotion challenge baseline

feature set, which has appeared in e.g. [21], [30], and [31].

Two minimalistic sets of features, the Geneva Minimalistic Acoustic Parameter Set

(GeMAPS), and its extended version, the extended Geneva Minimalistic Acoustic Pa-

rameter Set (eGeMAPS), were proposed by Eyben et al. [32] as an attempt to unify

features in the field of affective computing, including SER. Since then, studies such as

[24], [26], and [33] have used the proposed features as baseline features. The GeMAPS

and eGeMAPS features have provided performance that is comparable to and even better

than large feature vectors that are not tailored for a specific task [32]. These features are

discussed in further detail in Section 2.3.2.

In the past few years, more advanced features than those of the large suprasegmental

feature vectors have become increasingly popular in SER. Many of these methods involve

learning a task-specific feature representation in conjunction with training a SER model.

Trigeorgis et al. [26] presented the first fully end-to-end SER model which utilized CNN

and bidirectional long short-term memory (LSTM) layers to convert raw speech wave-

forms into predicted emotions. Cummins et al. [33] exploited a pretrained deep CNN,

originally meant for image recognition, to convert spectrograms into a 4096-dimensional

feature representation. Chen et al. [34] proposed a 3-D attention-based convolutional

RNN that converted a log-mel spectrogram and its first and second order delta features

directly into a predicted emotion. Etienne et al. [35] used a DNN approach where they

converted log-spectrograms into high-level features by using four CNN layers and one

bidirectional LSTM layer. Zhao et al. [36] processed 743-dimensional frame-level features

using a fully convolutional network and a bidirectional attention-based LSTM network side

by side. These processed features are then concatenated and fed to a fully connected

network for predicting emotional labels. Zhang et al. [37] input log-mel filterbank energies

into a temporal CNN model to predict soft emotional labels.

Since the most common features in SER have been large feature vectors which presum-

ably contain many irrelevant elements, it seems natural that SVMs are the most popularly

used classifiers in SER due to their properties (see Section 2.2.2 for a list of these prop-
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erties) [4, 5, 16]. More recently, however, neural network-based models such as MLPs

(e.g. [27], [31], [38]), CNNs (e.g. [33], [37]), RNNs (e.g. [22]), and combinations of these

(e.g. [26], [34], [35], [36]) have become more and more widespread in the SER research

community. Other commonplace classifiers in SER include GMMs, RFs, and naïve Bayes

classifiers [5, 16].

Often, a SER system is intended to be applied in situations or conditions that are new

to the system [3, 5, 16]. This not only considers new speakers from the same language

that the system was trained on, but occasionally also speakers in different languages and

varying recording conditions. In order to provide a classification model that is capable of

performing emotion recognition with sufficient reliability over unseen samples, the model

should not learn speaker-dependent or corpus-specific properties [3, 17]. Instead, an op-

timal SER model should solely learn emotion-related dependencies between the features

and their corresponding labels. However, learning only emotion-related dependencies

has proven to be a difficult task [16, 17].

Furthermore, emotions are portrayed differently across corpora and cultures. One might

not even have a SER corpus available for a specific language. Thus, a common solution to

create a well-generalizing SER model and to test its generalizability across e.g. different

cultures, speakers, and recording conditions is to train the model on one or multiple SER

corpora and test the model on some other SER corpus or corpora [17, 19]. This cross-

corpus generalization SER setting has been examined in multiple studies (e.g. [17], [19],

[20], [37]). Schuller et al. [17] have conducted the most extensive SER study regarding

cross-corpus generalization thus far. They performed intra- and inter-corpus experiments

using six frequently-used SER corpora of various languages, emotions, and test setups.

Their experiments involved four different normalization strategies and different numbers

of emotional classes. The study showed that reliable real-life emotion classification, let

alone classification above chance level, was only feasible with certain corpora and only

with certain emotional classes, even with corpora of similar cultural backgrounds. Their

research also highlighted issues of SER corpora and cross-corpus emotion recognition

at that time, of which many are still present today.

Schuller et al. [19] studied a cross-corpus generalization SER setting with the emphasis

on comparing majority-voting between classifiers trained on a single dataset and train-

ing a classifier using a combination of multiple datasets. Their findings indicated that,

on average, it is more beneficial to train a single classifier on multiple datasets than to

use multiple separately trained classifiers, although the classification results varied con-

siderably depending on the classifier that was used. Zhang et al. [20] used six different

datasets as test sets and ten arrangements of labeled and unlabeled training sets for each

test set to evaluate unsupervised learning on cross-corpus SER. In the study, three differ-

ent normalization strategies were investigated. They discovered that adding normalized

unlabeled data to agglomerated multi-corpus data enhanced classification performance.
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This increase in performance was found to be approximately 50% of the performance

increase if labeled data was added. Zhang et al. [37] proposed a family of loss functions

called f -similarity preservation loss (f -SPL) for soft labels which are meant to preserve

label similarities in a learned feature space. They combined f -SPL and cross-entropy

classification loss and demonstrated in cross-corpus SER experiments that their method

significantly outperformed a reference method which only utilized classification loss.

Only a few SER studies have been conducted on large-scale datasets. Jia et al. [39] ran-

domly select 3000 utterances from a corpus of large-scale internet voice data containing

a little under seven million utterances for manual annotation. Next, they proposed two

novel methods for the emotion recognition task, a deep sparse neural network and a bidi-

rectional LSTM, both of which were pretrained with 90,000 unlabeled utterances by using

an autoencoder in an unsupervised manner. Then, these two methods were applied to

the annotated utterances. Their experiments revealed that both proposed methods out-

performed traditional SER models. When comparing the two methods, the bidirectional

LSTM was more accurate than the deep sparse neural network at the cost of a notably

longer training time. Fan et al. [40] presented a large-scale SER dataset with a little

over 147,000 utterances from 820 subjects with a total duration of over 200 hours. They

proposed a novel SER model containing pyramid convolutions which outperformed other

models that were tested on the dataset. Additionally, they showed that existing models

are prone to overfit to small-scale datasets which limits the ability of these models to

generalize for real-life data.

When creating a novel SER corpus, the basic requirements of a good SER corpus include

a large enough number of samples, a balanced distribution of different emotional cate-

gories, a large number of speakers, and an unequivocal distinction between emotional

categories [1, 3]. Additionally, the corpus should represent the actual application of the

SER system for which the system is intended to be used for. For example, a classification

model which is trained using a SER corpus recorded in a clean recording environment

is unlikely to perform well in a real-life noisy environment such as a crowded city street.

Nevertheless, obtaining such high-quality annotated SER data that fulfills the basic re-

quirements of a good SER corpus has turned out to be extremely difficult [1, 3, 16].

First of all, gathering large quantities of SER data for realistic applications is in itself

troublesome. Not only is the data collection process time-consuming and expensive,

but it is also extremely challenging or tedious to acquire data that is fully representa-

tive of the application that the corpus is intended to be used for [3, 16]. Besides, the

frequency of emotional expressions from different emotional categories is highly imbal-

anced in real-world data for SER systems to be trained properly. It has been reported

that neutral speech can account for over 90% of realistic speech content [3]. A common

way to tackle the imbalance in the distribution of emotional labels is to use actors with

acted emotions in the data collection process. This is not an optimal solution, since it is
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generally acknowledged that one cannot model natural emotions adequately using acted

emotions because of the different way that emotions are portrayed in acted speech [17,

41, 42, 43]. Also, speech in acted corpora is often not as diverse as in corpora con-

taining realistic speech. Consequently, many SER studies show somewhat optimistic re-

sults since the corpora involved are using acted emotions instead of realistic portrayals of

emotions [3, 16, 17, 40].

Second, there is no universal way of annotating emotions. It is not only that emotions

can be expressed and perceived differently by people from different cultures, but also

by people from the same culture. This results in the fact that utterances with the same

emotional label between two distinct SER corpora can be very different from each other

[1, 3, 17]. For example, utterances with the label ‘neutral’ might be restrained in one cor-

pus and very lively in another. Furthermore, in many cases a ground truth label cannot

be unequivocally determined, and often the agreement rates between different annota-

tors, especially in realistic SER corpora, can be low even with domain experts [1, 3].

Again, resources are also a major limiting factor in the sizes of high-quality SER cor-

pora, both real and acted, since the annotation process of emotions is both costly and

laborious [3, 17, 27].

Third, as with other PSP corpora, data collection for SER tasks can involve private infor-

mation within the test subjects. For instance, daylong audio recordings from real environ-

ments may contain sensitive information in the discussions of the participants. Hence, it

is typical that realistic SER corpora are not freely distributable in the research community

[3, 4, 16]. This considerably restricts the number of use cases of realistic SER datasets,

resulting in many studies using freely accessible corpora which contain acted emotions

despite the research community being well aware of their limitations [17, 41].

To conclude, SER is a subcategory of PSP for which many of the common PSP-related

properties (Section 2.2.2) also apply. For instance, similar features and classifiers have

been used in both PSP and SER. One of the key elements of what makes SER a chal-

lenging task is that it is difficult to set a clear threshold after which an emotion changes

from one to another [3]. In addition, what makes SER even more challenging is that emo-

tions can be expressed and perceived differently by individuals. To simplify a given SER

task and to harmonize differences between SER corpora, emotions can be mapped into

a two-dimensional valence-arousal plane [16, 17]. This mapping of emotions has been

used in multiple studies related so SER (e.g. [19], [20], [21], [22], [23], [24], [25]).

2.3 Feature extraction methods

In machine learning, feature extraction is the process of converting data into some other

representation. The main purpose of this representation is to make the actual task of

the machine-learning model easier by removing information from the data which is not
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relevant for the specific task [9]. For example, an acoustic speech signal contains a

plethora of information which is not relevant to the majority of speech processing tasks,

such as speaker- and recording device-dependent characteristics. Additionally, an ideal

feature representation not only removes redundant information from the data, but also

maximizes the informativeness of each sample regarding the task-at-hand [9, 44]. This

section provides an overview of the main features used in the present study.

2.3.1 Log-mel

The log-mel spectrum is nowadays perhaps the most commonly-used feature in all audio

analysis systems [44]. The procedure to obtain a log-mel spectrum of a digital signal

begins with extracting the magnitude of the discrete short-time Fourier transform (STFT)

of a windowed signal, i.e.

|STFT (t, ω)| =

⃓⃓⃓⃓
⃓
N−1∑︂
n=0

x(n)w(t− n)e−jωn

⃓⃓⃓⃓
⃓ , (2.1)

where t is the time instant of analysis, ω is the analysis frequency, x(n) is the time do-

main signal, w(n) is the windowing function, and N is the window length [2]. For the

|STFT (t, ω)|, a mel conversion of the frequency scale is applied using a mel-scale fil-

ter bank (a set of triangular filter responses in the magnitude domain with center fre-

quencies that are evenly spaced on the mel scale). The mapping from hertz to mels is

Figure 2.3. The log-mel spectrum of a speech signal using 40 mel filters.
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defined as

mel(f) = 2595 · log10
(︃
1 +

f

700

)︃
, (2.2)

where f is the frequency in Hz. Finally, after converting |STFT (t, ω)| into mels, the log-

mel spectrum is obtained by taking the logarithm of the mel-filtered |STFT (t, ω)|. The

use of the nonlinear mel scale is motivated by the fact that the mel scale takes the human

perception of sound into account, which makes it convenient for human-oriented audio

classification tasks [2]. Figure 2.3 shows an example of a log-mel spectrum of a speech

signal with a sampling frequency of 16 kHz using 40 mel filters.

It is typical to include first and second order time derivatives of log-mels (aka delta and

deltadelta features) together with the original log-mel features. These delta features are

used to account for temporal changes of the features between adjacent time frames. The

first order delta features estimate the momentary evolution of the features, whereas the

second order delta features estimate the rate of change of the features [44].

2.3.2 GeMAPS and eGeMAPS

A minimalistic set of features for various areas of voice analysis, the Geneva Minimalistic

Acoustic Parameter Set (GeMAPS), was proposed by Eyben et al. in 2016 [32]. One of

the main purposes of GeMAPS was to have a standardized feature set for voice research

and affective computing for researchers working in various research areas. A standard-

ized feature set helps, for example, in comparing different state-of-the-art methods, and

also in combining and integrating different methods for voice analysis. Additionally, in con-

trast to the large brute-force feature sets that had been commonly used before GeMAPS

in affective computing, the meaning of a small set of features is easier to interpret in a

given task [32].

GeMAPS features were chosen in [32] according to three criteria:

1. The potential of an acoustic feature to index physiological changes in voice produc-

tion during affective processes.

2. The frequency and success with which the feature has been used in the literature,

as well as the automatic extractability of the feature.

3. The theoretical significance of the feature.

The GeMAPS feature set consists of prosodic, excitation, vocal tract, and spectral LLDs.

To deal with different-length inputs, various functionals, such as the arithmetic mean and

the standard deviation normalized by the arithmetic mean, are applied to the LLDs over

the time dimension to get a feature output of constant length. After applying these func-



17

tionals, the GeMAPS feature set contains 62 parameters. An extension of GeMAPS, the

extended Geneva Minimalistic Acoustic Parameter Set (eGeMAPS), adds functionals of

cepstral LLDs to GeMAPS to better model affective states using a total of 88 parameters.

For further details on the parameters and the functionals of GeMAPS and eGeMAPS,

see Section 3 of [32]. The implementation to extract GeMAPS and eGeMAPS features is

publicly available with the openSMILE toolkit [14].

2.4 Support vector machine

A support vector machine (SVM) is a non-probabilistic binary linear classifier. This clas-

sifier was first introduced by Boser et al. in 1992 [45] and it is based on the framework

of the “Generalised Portrait Method” proposed by Vapnik and Chervonenkis in 1964 [46].

Their method was built on constructing a hyperplane which optimally separates the data

points of two classes in the training data. In the case of SVMs, the optimal hyperplane is

determined as the hyperplane which maximizes the margin between the two classes.

Following the SVM formulation of [47], let us have N linearly separable data points

(x1, y1), . . . , (xN , yN) ∈ χ× {±1}, i = (1, . . . , N), (2.3)

where xi are observations, yi are their respective labels, and χ is a set containing all

observations xi. For mathematical purposes, the two classes are labeled +1 and −1. A

general hyperplane in some inner product space H can be written in the form

⟨w,x⟩ − b = 0, (2.4)

where w ∈ H, and b ∈ R. Among all of the possible hyperplanes in H, there ex-

ists a unique optimal hyperplane, which maximizes the separating margin between any

observation and the hyperplane. This optimal hyperplane can be found by solving the

optimization problem

maximize
w∈H, b∈R

min{∥x− xi∥ | x ∈ H, ⟨w,x⟩ − b = 0, i = 1, . . . , N}. (2.5)

By rescaling w and b so that the observations closest to the hyperplane satisfy the equa-

tion

|⟨w,xi⟩+ b| = 1, (2.6)
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we get a canonical form of the hyperplane, which satisfies

yi(⟨w,xi⟩+ b) ≥ 1 . (2.7)

Note that now the separating margin equals 1
∥w∥ . Equation 2.7 can be split into two

equations

⟨w,xi⟩+ b ≥ 1 for yi = +1 (2.8)

and

⟨w,xi⟩+ b ≤ 1 for yi = −1, (2.9)

which now enable the classification of unknown samples into the two classes. Now we

can solve the optimization problem of 2.5 and construct the optimal hyperplane by solving

minimize τ(w) =
1

2
∥w∥2 subject to yi(⟨w,xi⟩+ b) ≥ 1 . (2.10)

The xi that lie on the separating margin are called support vectors. An essential sidenote

is that by following the Karush-Kuhn-Tucker (KKT) conditions of optimization theory, the

optimal hyperplane is completely determined by its support vectors.

The aforementioned derivations hold only for linearly separable data points, whereas of-

ten the data points encountered in real-life machine-learning scenarios are not separable

by a linear hyperplane [47]. To allow data points to violate the conditions in Equation 2.10,

the objective function τ(w) is replaced by

τ(w, ξ) =
1

2
∥w∥2 + C

N∑︂
i=1

ξi , (2.11)

where C > 0 is a penalty parameter, also known as the box constraint, and ξi are so-

called slack variables. Now the SVM can be called a soft margin classifier since it no

longer creates a clear threshold which separates the two classes perfectly. A classifier

that generalizes well is obtained by adjusting the classifier’s capacity with ∥w∥ and the

sum
∑︁N

i=1 ξi. The box constraint C determines the trade-off between maximizing the

class-separating margin and minimizing the training error [47].

In machine learning, feature spaces H typically require nonlinear class boundaries [47].

For these cases, Boser et. al. [45] propose mapping the data points into a higher-

dimensional feature space Ω where target classes are linearly separable. This method is
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popularly known as the kernel trick. With a suitable kernel, k, it is possible to compute

inner products in higher-dimensional feature spaces without ever mapping the data points

into that space. This can be achieved with k that are nonlinear in the original input feature

space [9, 47]. For a class of kernels, k, which represent inner products in H through a

mapping function Φ, i.e.

Φ: H → Ω, x ↦→ x := Φ(x), (2.12)

we can represent a general kernel function as

k(x, x′) = ⟨Φ(x),Φ(x′)⟩ . (2.13)

There are multiple different kernel functions, the most popular being the Gaussian kernel,

also known as the radial basis function (RBF) kernel. One of the reasons why the RBF

kernel is popularly used is its universality in terms of its approximation capability [9, 47,

48]. The RBF kernel is defined as

k(x, x′) = e−
∥x−x′∥2

2σ2 , (2.14)

where σ > 0. An interesting property of the RBF kernel is that Φ computes inner products

in a feature space with infinite dimensionality. This follows from the property that the RBF

Gram matrix has full rank and that there are no restrictions on the number of elements

in χ [47]. Other popular kernels include the linear kernel ⟨x, x′⟩ and its extension, the

polynomial kernel

k(x, x′) = ⟨x, x′⟩d, (2.15)

where d ∈ Z+ [9, 47].

To avoid the inner product with some values of χ being dominant in the kernel compu-

tation, a kernel scale parameter, γ, is introduced. This parameter defines how far the

influence of a single observation xi extends. When applying this scaling parameter, all

values of χ are divided by γ before computing the kernel mapping [47].

An SVM can be further extended into support vector regression (SVR), which was first

presented by Drucker et al. [49]. Instead of the previous y ∈ {±1}, we can have y ∈ R by

introducing Vapnik’s ϵ-insensitive loss function [47, 50]. Now, the loss can be determined
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by predicting f(x) instead of y as

c(x, y, f(x)) := max {0, |y − f(x)| − ϵ}, (2.16)

where y are the real observations, f(x) are the predicted observations, and ϵ is a thresh-

old parameter. No prediction f(x) can be further than ϵ from y, i.e. a smaller value of ϵ

results in the model being more sensitive to errors. To predict a linear regression

f(x) = ⟨w,x⟩+ b, (2.17)

the objective function to minimize is now

1

2
∥w∥2 + C

N∑︂
i=1

max {0, |yi − f(xi)| − ϵ} . (2.18)

Although SVMs are inherently binary classifiers, they can also be extended into multiclass

problems by combining several SVM classifiers [51]. The most popular multiclass SVM

methods are “one vs. all” and “one vs. one”, where separate SVMs are either trained

to discriminate one of the classes against the rest, or between every pair of classes,

respectively [51].

2.5 Neural networks

This section gives an overview of neural networks. First, Section 2.5.1 provides an in-

troduction and a general description of neural networks. Next, Sections 2.5.2, 2.5.3, and

2.5.4 describe three different commonly-used variants of neural networks, followed by a

brief outline of deep learning and a review of some of the common practicalities related

to neural networks in Section 2.5.5. Finally, Sections 2.5.6 and 2.5.7 describe two special

types of use cases for neural networks.

2.5.1 General description

Neural networks, also known as artificial neural networks, are computational systems

which consist of connected units called artificial neurons. These artificial neurons are

mathematical models which try to mimic the biological neurons of real-life physiological

nervous systems of vertebrates [1, 8]. Perhaps the most famous artificial neuron model

is the perceptron, which Rosenblatt first presented in 1958 [52].

The perceptron is a binary classifier that takes an arbitrary number of real-valued inputs

and provides a single output. Commonly, the output of a neuron is 1 if it is activated,
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and 0 or -1 if activation does not occur. The output, also sometimes called the activation,

is the weighted sum of the inputs combined with a bias term that does not depend on

any input value. This bias term represents a permanent additive offset and is meant to

shift the decision boundary of the classifier [8]. The bias term can also be considered as

a threshold that the weighted combination of inputs must surpass for the neuron to be

activated. To be more specific, the output y of the perceptron is

y(x1, . . . , xN) =

⎧⎨⎩ 1, if b+
∑︁N

i=1 wixi > 0

−1, otherwise
, (2.19)

where b is the bias term, xi are the inputs of the perceptron, wi are the weights for the

inputs, and N is the number of inputs [8]. The weights wi represent the importances of

the connections between neurons. A larger weight between two neurons implies a greater

influence, whereas a smaller weight implies a smaller influence [8].

By combining perceptrons side-by-side into layers, and possibly stacking these layers

one after another, a network of neurons is formed. If all of the connections in a network

feed forward from one layer to the following layer without backward connections, i.e.,

connections do not form a loop, the network is called a feed-forward neural network (FNN)

[8, 53]. An FNN treats every input pattern independently without any memory over time.

Both the weights wi and the bias term b in each neuron of the network are trainable.

The network is trained iteratively by feeding training samples to the network and updating

the trainable parameters of each neuron according to the output error of the network [8].

Commonly, it is not possible to train a network by inputting all of the training samples to

the network at once, for example due to memory limitations. Hence, a neural network is

often trained by feeding the network batches of data which are smaller than the size of

the whole data. When all of the training samples have been fed to the network, one epoch

has passed. Usually a neural network is trained for a number of epochs ranging from a

few epochs up to even many thousands of epochs [8, 9, 53].

A major problem is that Equation 2.19 does not allow for the training of multilayer net-

works using the backpropagation algorithm, which is the most popular training algorithm

of neural networks [8, 9]. In the backpropagation algorithm, the neural network is trained

iteratively in two passes: a forward pass and a backward pass. In the forward pass, the

training samples are fed to the network and the output of the network is computed. In

the backward bass, the error of the network is first determined based on the output of the

network using some loss function [8, 9]. An example of a common loss function is the
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mean squared error (MSE) loss function, which is defined as [54]

MSE =
1

N

N∑︂
i=1

(yi − yî)
2, (2.20)

where yi is the true value, yî is the predicted value, and N is the number of instances.

Then, using some optimization algorithm, such as the stochastic gradient descent, the

trainable parameters of the network are updated by iterating backward from the last layer

to the first [8]. The parameters are modified by taking steps towards the negative of the

gradient of the loss function with respect to each parameter. The size of these steps is

called the learning rate of the network. Here, the chain rule is utilized by first computing

the error gradients of one layer and then propagating the computed gradients backwards

to the previous layer, one layer at a time [8, 9].

As pointed out by Minsky and Papert in 1969 [55], another major problem with perceptrons

utilizing Equation 2.19 is the inability to perform the XOR operation [8, 9]. Thus, instead of

using the traditional perceptron model, an alternative model is often used. This model is a

neuron whose output is not only a nonlinear mapping, a(x), of its inputs, but whose output

is also a differentiable function. Now the output y of the perceptron is continuous-valued

and can be written as [8]

y(x1, . . . , xN) = a(b+
N∑︂
i=1

wixi) . (2.21)

This nonlinear mapping, a(x), is often called the activation function. Common activation

functions include the logistic (aka sigmoid) function [8]

a(x) =
1

1 + e−x
(2.22)

and the rectifier function

a(x) = max(0, x) , (2.23)

which is also known as the rectified linear unit (ReLU) [56]. Nowadays ReLUs are one of

the most popular activation functions used in neural networks because the error gradients

propagate efficiently through multiple network layers when applying the backpropagation

algorithm. This results from the fact that the derivative with a ReLU is always the same

as long as it is positive, regardless of the value of the function [53]. In contrast, the

sigmoid function saturates to a high value when the input of the function is very positive,

and saturates to a low value when the input is very negative. A widespread saturation of
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sigmoid units often makes gradient-based optimization difficult [53].

Variants of ReLUs include the leaky rectified linear unit (LReLU) [57] and the exponential

linear unit (ELU) [58] nonlinearities. The LReLU nonlinearity, defined as

a(x) =

⎧⎨⎩ x, if x ≥ 0

0.01x, if x < 0
, (2.24)

allows for a small, non-zero gradient when the neuron is not active. This property can

help a neural network to converge faster [57]. ELU nonlinearities, defined as

a(x) =

⎧⎨⎩ x, if x > 0

ex − 1, if x ≤ 0
, (2.25)

have proven to lead to faster learning and better performance than ReLUs in deeper

networks [58].

2.5.2 Multilayer perceptron

A multilayer perceptron (MLP) is an FNN that consists of an input layer, an output layer,

and an arbitrary number of hidden layers in between [8, 9]. Each layer consists of neurons

that are, apart from the input layer, activated by an activation function such as 2.22 or 2.23.

The name of the hidden layers originates from the fact that their output is only available

within the network [8]. An MLP with a single hidden layer is, in theory, capable of modeling

any nonlinear function to any desired degree of accuracy, given enough neurons. Hence,

an MLP network is a universal function approximator [59]. However, this does not seem

to work in practice since complex tasks can theoretically require an infinite number of

neurons in a single hidden layer. In addition to the limitations of computational hardware,

training neural networks with very large hidden layers has been found to be extremely

difficult. Moreover, a more efficient approximation of any nonlinear function, i.e. the same

level of accuracy with fewer neurons in the network, can be obtained by using more than

one hidden layer [9].

MLP networks are sometimes called ‘vanilla’ neural networks, fully connected networks,

or dense networks [8, 60]. The first of these terms originates from MLPs being the tra-

ditional neural networks used in literature (as vanilla is the traditional flavor used in ice-

cream) [60]. The two other names are derived from the fact that the neurons in MLPs are

densely connected in the network, i.e., each neuron is connected to all of the neurons in

the following layer [8]. Sometimes the terms MLP and FNN are confused in the literature,

although MLPs are a subcategory of FNNs [8, 60]. Another point worth mentioning is that
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although the term MLP contains the word ‘perceptron’, an MLP network does not typically

consist of the traditional perceptrons (Equation 2.19), but instead nonlinear neuron mod-

els are used. Furthermore, even though the name might suggest that an MLP consists

of one or multiple perceptrons that have a multilayer structure, in fact the perceptrons

themselves form multiple layers consisting of one-layered perceptrons [8].

2.5.3 Convolutional neural networks

Another type of neural network, convolutional neural networks (CNNs), were first pre-

sented by LeCun et al. in 1989 when they used a CNN model for handwritten digit recog-

nition [61]. CNNs are designed to process data with a known grid-like topology, e.g.

images (a 2-D grid for grayscale images and a 3-D grid for color images) and time series

data (a 1-D grid), using M -dimensional convolutions, where M is the number of dimen-

sions for the input data grid [53]. A typical CNN consists of two parts: an arbitrary number

of convolutional layers and a fully connected network. The convolutional layers are meant

to produce a high-level representation of the input features by combining several locally

learned low-level feature representations, whereas the fully connected network is meant

to process these high-level features to perform the actual task of the network, such as

classification or regression. It is also possible to have a CNN without any fully connected

layers. These are occasionally referred to as fully convolutional neural networks [53].

Typically, the convolutional layers consist of three phases [53]. In the first phase, several

convolutions are performed in parallel to produce a set of linear activations called feature

maps. This operation can also be considered as filtering the input with a number of convo-

lutional kernels or filters. The trainable parameters of a convolutional layer are the weights

and the bias term for each of the convolutional filters. In the second phase, each feature

map is passed through a nonlinear activation function, the most common one being the

ReLU. This nonlinearity is simply meant to transform the feature maps in a nonlinear man-

ner in order to increase the expression ability of the CNN. In the third phase, subsampling

takes place as the input dimensions are shrunk by an integer factor. This is done us-

ing a pooling function, such as max pooling [53]. In max pooling, the maximum value

within a rectangular block is taken while the other values are discarded. Other common

pooling functions are average pooling and weighted average pooling, which either take

the average value or a weighted average value, respectively, within a rectangular block.

Subsampling not only improves the spatial invariance of the model but also reduces the

data size [53].

CNNs have been especially successful in image-processing tasks and have been used

extensively in the field of image processing after their breakthrough in the early 2010s

[33, 53]. Additionally, CNNs have performed well in other fields such as audio processing,

financial data processing, and natural language processing (NLP). For example, in au-
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dio processing, the good performance of CNNs in image processing can be exploited by

taking into account that multi-dimensional audio feature representations, such as spec-

trograms, can be treated as image inputs for a CNN. Thus, CNNs have also been used

increasingly in modern audio processing pipelines [11, 44].

The receptive field is the region of the neuron input that affects its output, typically in

terms of spatial location on an image or the number of samples in a time series [53].

In convolutional layers, the receptive field of a neuron is a section of the previous layer,

whereas in dense layers it is the whole previous layer. This reduces the number of exces-

sive parameters in CNN models when processing grid-like data. This, in turn, makes the

learning process faster and more efficient with large networks [53]. However, on many

occasions, the receptive field can also be regarded as the region of the input data that

affects a neuron’s output [53].

In addition to reducing the number of excessive parameters, one of the main advantages

of CNNs over MLPs for certain applications is that CNNs take the spatial structure of

the input data into account [53]. MLPs, on the other hand, treat every input value in-

dependently. Consequently, the number of trainable parameters in dense networks is

excessively large for spatially correlated data, such as images. This leads to MLPs being

more prone to learn potentially task-irrelevant characteristics for spatially structured data,

i.e., they are prone to overfit the data. For this reason, MLPs have been found particu-

larly inconvenient in image-processing tasks since they do not scale well with large image

sizes [53].

Other advantages with CNN models are that the convolution operations are spatially (or

temporally) invariant. This is also known as translation invariance. This means that if

some pattern is shifted in the input signal, it is also shifted equally in the output signal.

For example in time series data, if an event is shifted n time steps later in time in the CNN

input, the exact same output representation of this event will appear n time steps later in

the CNN output [53]. Additionally, data size is reduced in the subsampling process, which

results in CNN models being less prone to overfit the data by decreasing the number of

free parameters in the model. However, it should be pointed out that convolution is not

e.g. scale and rotation invariant. Thus, data augmentation methods such as transforming

the data into different orientations and scales has been found practical when training

CNNs [53].

2.5.4 Recurrent neural networks

A third variant of neural networks are recurrent neural networks (RNNs) [62]. What makes

RNNs distinct from the aforementioned neural networks is that RNNs are not FNNs, i.e.,

they contain connections between neurons which form loops. In the same way that CNNs

are specialized in processing grid-like data, RNNs are specialized in processing sequen-
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tial data [1, 44]. RNN models are appropriate for modeling temporal structures and

long-term dependencies in the data. Although CNNs can also process sequential data,

e.g. by using 1-D convolutions for time series data, RNNs can process much longer se-

quences than FNNs. In addition, the majority of RNNs are able to process different-length

inputs [44, 53].

Because the connections between RNN neurons form loops, RNNs cannot be trained in

the same way as FNNs by using the backpropagation algorithm directly. For this reason,

RNNs are commonly trained using a modified version of the algorithm called backpropa-

gation through time, in which the network is first unfolded over time before applying the

traditional backpropagation algorithm [1, 44].

RNNs contain distinctive properties compared to FNNs. A traditional RNN consists of

neurons called RNN cells. In RNN cells, in addition to the traditional neuron input there is

another input called the recurrent input. The same applies to the output of an RNN cell:

a recurrent output is produced alongside the traditional hidden output. These recurrent

inputs and outputs are not meant to be fed to other cells, but instead they are kept for

the cells themselves [44, 53]. Each recurrent output of an RNN cell acts as the recurrent

input of that same cell when receiving the next input sample. The basic idea behind using

these recurrent inputs and outputs within each cell is that the cell retains a memory of its

previous internal state. This memory is the basis of RNNs as it is the key factor in forming

learned connections between input samples over time [44, 53].

Furthermore, there might be cases where it is beneficial to be able to take the future

samples into account. Thus, RNNs can be extended into bidirectional RNNs which, in

addition to being able to remember past events, are able to model future temporal context.

These bidirectional networks, however, need to have the whole input sequence accessible

before processing [1, 44].

In theory, RNNs are able to remember their whole input history. However, in practice it

has been found that traditional RNNs are difficult to train to model a temporal context

that is longer than a few input samples [53]. This is because either the error gradient

starts to shrink (vanishing gradient) or to grow (exploding gradient) exponentially. Variants

such as the long short-term memory (LSTM) [63], and later its simpler version, the gated

recurrent unit (GRU) [64], have been introduced to overcome these problems. Along with

their variants, these two are the most commonplace RNN architectures nowadays [44].

Both LSTMs and GRUs have been successful in various audio processing and NLP

tasks, e.g., music analysis, speech modeling, and machine translation [44, 65]. When

comparing the two, GRU-based models have fewer parameters and are thus computa-

tionally more efficient and might need less data to generalize. GRUs are also simpler

to implement. LSTMs, on the other hand, are more complex both computationally and

implementation-wise, but may have higher expression ability with more data, which may
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lead to better performance. Typically, as with other machine-learning models, finding the

best-performing RNN model for some specific task follows the “no free lunch" theorem,

which states that one cannot deduce the best model for a task without testing the different

possibilities [44, 65].

2.5.5 Deep learning and practicalities

A hot topic in today’s research, deep learning, is simply machine learning which utilizes

deep neural networks (DNNs) [53]. A DNN, in turn, is a broad term which encompasses

all neural networks with more than one hidden layer. The deeper the network, i.e. the

more hidden layers there are, the more complex decision functions the networks are

able to learn [44, 53]. However, deeper networks require special techniques in order

to be trained properly. Probably the most prominent problem that arises when training

DNNs is the vanishing gradient problem, in which the error gradient gets exponentially

smaller layer by layer when using the backpropagation algorithm. This is because by the

chain rule, the derivative of each layer gets multiplied by the derivatives of the previous

layers. If the layer-wise derivative of even one layer is smaller than 1, the derivatives of

the subsequent layers get smaller layer by layer in the backward pass [53]. The most

common solution is to use an activation function in which the gradients flow well on the

active paths of neurons, such as the ReLU [53, 56]. Other widely-used solutions include

using residual or skip connections, which utilize shortcuts to bypass some layers, and

batch normalization, which avoids vanishing gradients by normalizing the layer inputs so

that large inputs do not reach the saturated value regions of the activation function [53].

One of the most common practical issues with neural networks is that they are prone to

overfitting. This is a side effect of the large number of trainable parameters in the net-

works, and consequently, the strong modeling capability of the models [53]. Probably

the most commonly-used technique for overfit prevention with neural networks is early

stopping, due to its efficiency and simplicity. In early stopping, a copy of the model pa-

rameters is stored after every training epoch in which the validation accuracy was better

than the best validation accuracy thus far. If the validation accuracy does not improve

for a predefined number of epochs, then the training is stopped and the model with the

best validation accuracy is selected [53]. Another popular overfit prevention techniques is

dropout. In dropout, a predetermined number of randomly selected neurons in a layer are

inactive in each training iteration. Since the neurons cannot fully rely on their previous-

layer inputs, the network is encouraged to learn alternative activation paths for the same

outputs [53].

In addition to early stopping and dropout, regularization in machine learning is another

technique for preventing overfitting. Regularization is done by imposing the Occam’s razor

principle of problem-solving on the proposed solution, which suggests that the simplest
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hypothesis that fits the data is the best [8, 53]. The most common regularization technique

is weight regularization, in which large parameter values are penalized by restricting the

possible values of the weight matrix. This, in turn, leads to a more simple function to be

fitted to the data [8].

Another practical issue when training neural networks is that neural networks are heavily

data-driven models. The training process requires lots of data and the requirement for

more data grows even more as the networks get deeper [44, 53]. Especially for smaller

data sizes, but also for larger ones, it has been found beneficial to utilize pretrained DNNs

when training neural network-based models. Instead of creating a network from scratch

and initializing the network parameters at random, one can create ones own network by

taking a whole pretrained network or some part of it, and using its parameters as the

initial values for the network. Using pretrained weights has been successful in numerous

machine-learning tasks, particularly when the task at hand is related to the task of the

pretrained network [53].

2.5.6 Autoencoders

An autoencoder is a neural network which tries to reconstruct its input as its output,

commonly used for dimensionality reduction or to remove noise [53]. Since learning a

perfect reconstruction is not often very useful, autoencoders are restricted so that they

are only able to approximately reconstruct their input. This forces autoencoder models

to learn which properties of the input data are useful for the reconstruction and which

properties are not [53].

An autoencoder typically consists of two parts: an encoder and a decoder. When train-

ing an autoencoder, the encoder attempts to produce a latent representation of the input

features which has a smaller dimensionality than the input features, whereas the decoder

tries to reconstruct the original input from the latent representation produced by the en-

coder [53]. If an autoencoder is used for dimensionality reduction, the decoder part of the

network can simply be discarded after training in order to produce compressed feature

representations. For noise removal, the encoder part of the network is trained so that it

learns noise-free characteristics of the input data. This, in turn, leads to the decoder net-

work being able to reconstruct noiseless versions of noisy input samples from the latent

representation produced by the encoder [53].

2.5.7 Generative adversarial networks

A generative adversarial network (GAN) [66] is a framework in machine learning in which

two neural networks, a generator and a discriminator, compete with each other. The gen-

erator aims to produce new data with similar characteristics as its training data, whereas
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the discriminator tries to distinguish whether the samples it receives are drawn from the

training data or produced by the generator. This is a so-called ‘zero-sum game’, in which

the gain of one network is the loss of the other network [53].

The main motivation behind the GAN setting is that as the discriminator tries to learn to

be better at correctly classifying whether its input samples are real or fake, the generator

simultaneously tries to learn a representation which is indistinguishable from real data.

After a successful GAN training, the discriminator can be discarded and the generator is

able to produce realistic fake data. This setting has been successfully used in various

settings, such as generating realistic fake images [53].

Training GANs is a very difficult task [53, 67]. One of the main issues when training GANs

is the vanishing gradient problem. In theory, an ideal discriminator provides feedback

which the generator is able to learn from in order to improve its performance. Yet, in

practice, it is common that the discriminator is easier to optimize than the generator.

Thus, the discriminator learns significantly faster to discriminate real and fake data than

the generator is able to learn to produce realistic outputs. For this reason, the gradient of

the generator starts to diminish and the generator learns hardly anything from the output

of the discriminator [53, 67].

Goodfellow et al. [66] were aware of the vanishing gradient problem and proposed an al-

ternative cost function to alleviate the problem. However, as Arjovsky and Bottou pointed

out [67], this cost function makes the GAN model highly unstable. One way of improving

on the stability of GANs is to use Wasserstein generative adversarial networks (WGANs),

which were proposed by Arjovsky et al. [68]. In WGANs, the discrepancy measure be-

tween the real data distribution and the generated data distribution is the Wasserstein-1

distance, also known as the earth-mover’s distance. To enforce a Lipschitz constraint, the

authors proposed to clip the weights of the discriminator between -0.01 and 0.01 after

each gradient update [68].

The main benefit of using WGANs over GANs is that the discriminator is not able to

saturate and it converges to a linear function which provides clean gradients everywhere,

thus making the generator able to learn even if it does not perform well compared to the

discriminator [68]. The discriminator in a WGAN is often called a critic since instead of

providing the probability of whether the output is real or fake, it provides a scalar score

that can be interpreted as how real the output is. Another major benefit of using WGANs

is that they provide a meaningful loss metric which correlates well with the quality of the

generator’s output [68]. In contrast, the quantity of the generator loss function in GANs

correlates poorly with the generator’s output, which means that practically the only way

to find out how the generator is performing is to examine its output during the training

process. However, it should be noted that the loss value of the generator in WGANs

cannot be used to quantitatively compare different WGAN models since different critics
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involve different scaling factors [68].

2.6 Active learning

Active learning (AL) is a subcategory of machine learning in which the machine-learning

algorithm can query an information source to give labels for data points chosen by the

algorithm [69]. This information source, also known as an oracle in AL literature, is usually

a human annotator or a group of human annotators, but it can also be e.g. another

machine-learning model or a combination of human and machine labelers [69, 70]. The

key purpose of AL is to reduce the human annotation effort as much as possible, as

well as to produce a well-performing machine-learning model without using more model

training and more training data than is required. The need for AL in machine learning is

often the case when there is an abundance of unlabeled data but labeling the whole data

is too time-consuming or expensive for the given task [69, 71].

In AL, there are three common types of settings in which the AL model, commonly referred

to as the learner, will query the oracle for labels [69]. The first setting is membership query

synthesis, where the learner generates a new instance for labeling from some underlying

natural distribution [72]. For example, if an NLP dataset consists of paragraphs in written

text with a label assigned for each sentence, the learner could generate a new paragraph-

to-be-labeled by taking a few sentences of some already existing paragraph, and then

query the oracle for the label of this new paragraph. This approach has been found

practical for finite problem domains and for cases when the oracle is not a human being

[69, 72]. However, membership query synthesis can be problematic when using human

annotators. For example, there are multiple instances of situations where the queries

made by the learner are uninterpretable by human annotators [69, 70, 72].

The second setting, stream-based selective sampling, is based on an assumption that it is

inexpensive to get unlabeled data points [69]. Here, the learner goes through each data

point individually and determines which samples are queried and which are discarded.

The decision to query a data point can be based on e.g. the informativeness of the

sample. There are various informativeness measures used in AL, the most common being

the uncertainty of a given sample (see “Uncertainty sampling" below for a clarification)

[69]. The sequential manner of stream-based sampling is, among other things, useful for

applications with low memory or computing resources, since data points are processed

one at a time [69, 70].

The third setting is pool-based sampling, which is similar to stream-based sampling. The

fundamental difference between the two sampling-based scenarios is that in pool-based

sampling, the learner analyzes a pool of samples in one go instead of going through

samples one at a time. This pool can either be a subset of the data or the whole data

[70, 71]. In this approach, the basic assumption is that there is a large set of unlabeled
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data and a small set of labeled data. After evaluating the informativeness of each sample

in a pool, each element in the pool is ranked. Then, one or more of the most informative

instances are selected for labeling [70, 71]. Out of all possible query scenarios in AL, the

pool-based sampling is by far the most popular [69, 70, 71].

There are multiple strategies for how the learner chooses which data points are queried

from the oracle. It should be noted that every AL method involves some kind of infor-

mativeness measure to determine these data points. Some of the frequently used query

strategies include, but are not limited to [69, 70]:

• Uncertainty sampling or query by uncertainty : A classifier, typically an SVM or

an HMM, is initially trained using the available labeled samples. After training the

classifier, the unlabeled samples are fed to the classifier to be examined. The

unlabeled instances which the classifier is most uncertain about are then given to

the oracle for labeling. This method is the most widely used query strategy in AL,

perhaps because it is simple to understand and it does not require much effort to

implement.

• Query by committee: This query strategy is very similar to uncertainty sampling,

with the main difference between the two being that query by committee involves

multiple classifiers instead of only one. This committee of classifiers consists of

distinct classifiers trained on the available labeled data. Next, these trained classi-

fiers with competing hypotheses vote for the labels of the unlabeled samples. The

instances with the largest disagreement between the classifiers are then chosen to

be queried. Disagreement can be quantified using metrics such as vote entropy,

Kullback-Leibler (KL) divergence, entropy-based disagreement, margin-based dis-

agreement, or uncertainty sampling-based disagreement.

• Expected model change: First, an initial classification model is trained using the

available labeled samples. Then, unlabeled instances are examined one by one,

and the instances that would most change the current model are selected for label-

ing. Since the true labels for the unlabeled instances are not known, the amount

of change is calculated as an expectation over all possible labels. Typically, gradi-

ent descend-based classifiers are used in this query strategy, and the amount of

change for each label is the expected gradient length of updating the model. The

main drawback of this query strategy is that it can be computationally demanding if

the features are high-dimensional, if there is a vast number of unlabeled samples,

or if there is a large set of possible labels for the data.

• Expected error reduction: The concept is very similar to the expected model change,

and aims to give labels to the unlabeled instances that are expected to most reduce

the generalization error of the classification model. This is achieved by estimating

the expected future error of the current model over all possible labels using e.g. 0/1-
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loss or log-loss. This is one of the most computationally expensive query strategies,

since iterating through each unlabeled data point requires both retraining the model

and estimating the expected future error for all possible labels.

• Variance reduction: Rather than trying to minimize the computationally-heavy ex-

pected error directly, the generalization error can be indirectly reduced by minimiz-

ing the output variance of the classification model. Commonly, this has been found

more practical than expected error reduction in situations where there is an abun-

dance of unlabeled data. Even so, computational complexity can be an issue with a

large set of unlabeled data and with a classifier containing a substantial number of

parameters. Variance reduction has been found problematic in fields such as NLP.

• Density-weighted methods: Instead of treating all unlabeled samples equally, the

density-weighted methods take the underlying data distribution into account when

querying for new labels. This tackles one of the problems encountered in e.g. ex-

pected error reduction and variance reduction, which are both prone to querying

outliers in the data. One possible solution is to weight the informativeness of each

unlabeled instance by its average similarity to other data points in the distribution.

Density-weighting can be combined with practically any informativeness measure,

and in many tasks density-weighted query strategies have been found to be more

successful than their non-weighted counterparts. In addition, computational effi-

ciency can be increased if the densities or the similarities between data points are

precomputed and stored into memory before the AL process.

Most AL methods commonly assume that the labels given by the oracle are correct [73].

Nevertheless, even domain experts are prone to make mistakes during the labeling pro-

cess. There are a number of reasons why labeling errors, also called labeling noise,

might occur. The sources of labeling errors include the level of domain expertise of the

oracle, the difficulty of the labeling task, and the quality of the sample to be labeled [69,

73]. Furthermore, the quality of the labels are prone to change during the labeling pro-

cess. This can be the case if the labeling process is time-consuming and tedious, or if

the annotator becomes more familiar with the given task over time, for example. It is also

possible that the labeling process is arranged in such a way that the labels are slightly

biased toward some label, which can lead to accumulated labeling errors over time. Noise

in labels not only makes the learner less accurate, but it also makes the query instances

less informative [69, 73].

The most popular approach to tackle the problem of noisy labels has been to use Internet-

based crowdsourcing techniques, such as Amazon Mechanical Turk3 or other online an-

notation platforms [69, 71]. The basic idea behind crowdsourcing techniques is to value

quantity over quality by inexpensively acquiring multiple labels from non-experts, and as-

3 https://www.mturk.com/

https://www.mturk.com/
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suming that the correct label is the label that the majority voted for. The main problem with

crowdsourcing is that a significant number of annotations is required for each instance to

ensure that the given label is correct [69, 73]. Other approaches to handle noisy labels

without crowdsourcing techniques include, e.g. [73], where Bouguelia et al. propose

a two-stage AL method that handles noisy labels without the need for multiple annota-

tors. Their method significantly improved classification results compared to several other

baseline methods by first labeling instances which highly influence the learner, and then

eliminating labels which are noisy based on how much they are influenced by the changes

in the model. Other practical considerations and active research questions in AL include

taking the varying labeling costs between instances into consideration, dealing with the

changes of the quality of annotations over time, querying using multiple oracles, labeling

instances for multiple tasks simultaneously, reusing the data, and querying for repeated

labels from the same annotator [69, 70].

AL has also been used in SER as a solution to reduce annotation effort and to utilize

already existing annotations efficiently. Zhang and Schuller [74] propose two iterative AL

methods to reduce annotation effort. The first method is based on imbalanced emotional

classes in the sense that it selects for labeling instances which it predicts as a sparse

class in each iteration. The second method iteratively chooses the instances for which

it predicts a medium confidence score to be labeled. The paper demonstrated that both

methods efficiently reduced the required number of annotations. Zhao and Ma [75] pre-

sented an iterative AL algorithm which utilized conditional random fields to determine

the level of uncertainty for each unlabeled sample. The most uncertain samples were

then selected for annotation. In most cases, their method performed better than random

sampling for data selection. Abdelwahab and Busso [27] examine different AL methods

that are based on uncertainty and maximizing the diversity in the training set to simulate

limited annotated data in DNN-based classifiers. Their study shows that the tested AL

methods outperform random sampling-based methods when selecting samples for label-

ing.

As already mentioned, uncertainty sampling-based methods are the most common AL

methods due to their simplicity [69, 70]. These methods have been proven to efficiently

reduce the number of required manually annotated samples in various machine-learning

tasks, such as NLP [76] and automatic speech recognition [77]. However, as shown in

e.g., [77], a significant number of initial labels are required for the training of the base

classifier in order for it to produce reasonable outputs. Simply put, a classifier cannot

determine the uncertainty of a sample reliably if it has not been taught with a sufficient

amount of labeled data. Furthermore, the more complex a given task is, the more labeled

data are required for the initial base classifier to be trained properly [70]. Hence, an

alternative AL approach needs to be taken in order to tackle cases with a scarce labeling

budget compared to the overall size of the dataset. To this end, Zhao et al. [78] have
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proposed an AL method called medoid-based active learning (MAL), for sound event

classification. Their method was designed for cases with a limited labeling budget and

when the annotations add up to only a small portion of data. Since this is the premise

of the annotation process of the present study, MAL serves as the foundation of the AL

method used in the present experiments. This modified version of MAL is described in

further detail in Section 3.1.

2.7 Domain adaptation

Often the basic starting point for the theoretical and empirical models in machine learning

is that the training and testing data are drawn from the same data distribution [79]. Al-

though this might be the case in theory, in practice this assumption does not always hold

true. For example, the distribution of the data might change over time, or we might want to

deploy machine-learning models trained on one type of data for another type of data. In

addition, it is common that the collected data is not a fully unbiased representation of the

real-life data [79, 80]. In domain adaptation (DA), it is not assumed that the training and

testing data are drawn from the same distribution. Instead, the machine-learning model is

trained using data from one or more source domains (i.e. source data distributions) and

is then applied to a different target domain (i.e. target data distribution) [79].

The most common DA methods can be categorized into three main types, the first of

which is instance-based DA [80, 81]. Here the aim is to minimize the target domain error

by using the source domain data while correcting for sample selection bias instead of

using all the data as it is. This can be done by performing importance-weighting, in which

the aim is to weight the cost of errors for some training samples in order to make the

errors on these samples more significant than the errors on some other samples [82].

Importance-weighting can be performed either for the data by assuming covariate shift,

or for the classes by assuming prior probability shift. In the well-studied covariate shift

setting for DA, the source and target domain data distributions differ but the conditional

distributions of the model outputs are the same, i.e. the concept being learned remains

stationary [83]. In contrast, the prior probability shift setting in DA considers that the

conditional distributions of the model outputs are different [83]. One approach for the

covariate shift is to individually reweight the samples in the source domain in order to

make them as alike as possible to the samples drawn from the target domain distribution.

This is achieved by giving more weight to the source domain instances that are similar

to the target domain instances [83]. Frequently occurring alternative names for instance-

based methods in DA literature are reweighting and sample-based methods [80, 81, 83],

which both describe the core idea of these methods well.

The second type of DA methods are the feature-based methods. These methods try to

modify the feature space representations of the data so that both the source and target
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domain data represent the same distribution of features and labels. This modification

to construct a common feature space can be done either to both the source and target

domain data (e.g. [84]) or only to the source domain data (e.g. [85]). Feature-based

DA methods try to utilize the source-domain labels in the adaptation process in order to

create a classifier that performs well on the target domain data [86]. A common approach

is to simultaneously transform the source and target domain feature spaces to be as

alike as possible and to train a well-performing classifier for the labeled source-domain

data that has been transformed. In the recent years, one of the most popular ways of

doing this has been to use GANs or WGANs [53, 68]. The basic framework of GANs

and WGANs (presented in Section 2.5.7) can be adopted into DA by slightly altering the

mindset of the GANs. In GAN-based DA, the discriminator tries to distinguish whether the

samples are drawn from the source or the target distribution, whereas the generator tries

to fool the discriminator by modifying the feature representations of the source and target

domain data so that they are indistinguishable [53]. In other words, the generator tries to

find a common feature representation for the source and target domain data so that their

distributions would be similar. This generator is often the feature extractor in GAN-based

DA [53].

The third type of common DA methods are what we refer to in this text as parameter

estimation-based methods. This is probably the most diverse of the three DA method

categories, since it involves all DA methods which somehow incorporate the adaptation

process into the procedure of estimating classifier model parameters [87]. One of the

most widely used parameter estimation-based DA methods are iterative methods which

first train a model using labeled source-domain samples, and then give pseudo-labels for

some of the unlabeled target-domain data [87]. Then, a new model is iteratively trained

by adding the pseudo-labeled samples to the training set and retraining the model in each

iteration. Other methods in this category include e.g. Bayesian models where the prior

distribution is fit to the source-domain data [88].

One of the most prominent applications of DA is to utilize the adaptation process for

situations where labeled target domain data are either scarce (semi-supervised DA) or

unavailable (unsupervised DA). For instance, many of the PSP tasks discussed in Sec-

tion 2.2.2 fall within the scope of settings which involve a scarcity of labeled samples.

DA has been successfully used in a plethora of machine-learning application areas to

account for missing or scarce labeled target domain data, including e.g. speech pro-

cessing [84], computer vision [85], NLP [86], and disease diagnosis [89]. Drossos et al.

[90] presented an unsupervised DA method for acoustic scene classification (ASC). Their

method, Wasserstein distance-based domain adaptation (WDA), improved the previous

state-of-the-art DA method for ASC by changing the GAN-based adversarial setting into

a WGAN-based setting in the adaptation process. The theoretical foundation of WDA and

its training algorithm serve as the basis of the DA method of this thesis, which is a slightly
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modified version of WDA. This modified version is described in Section 3.2.

DA can also be utilized in SER as a solution to reduce the need for annotated data. Ad-

ditionally, DA can be used to address differences between training and testing corpora in

SER, including e.g. different languages, speakers, recording conditions, linguistic content,

class distributions, and sizes of corpora. Sagha et al. [23] studied a cross-lingual SER

setting using four corpora of different languages. They proposed a DA method which at-

tempts to find a common representation space for the source and target languages using

principal component analysis (PCA) and kernel canonical correlation analysis (KCCA).

First, PCA is used to map the source and target data into their principal components,

both with respect to themselves and with respect to each other. Then, KCCA is used to

select the top N dimensions that maximized the correlation between the mapped data.

Their method provided an improvement in average classification performance compared

to the state-of-the-art DA method for SER at the time. Deng et al. [31] conducted a cross-

corpus SER study using unsupervised DA. They proposed adding a Universum loss to the

reconstruction loss of an autoencoder-based classifier to ensure low reconstruction and

classification errors in both domains. Deng et al. [30] extended a popular unsupervised

deep denoising autoencoder by combining a supervised learning objective to create a

semi-supervised DA method for SER. They presented two variants, with and without skip

connections, of which, on average, the former outperformed the latter. Abdelwahab and

Busso [29] use an unsupervised neural network-based adversarial DA approach for SER.

Their method aims to learn a domain-invariant feature representation between labeled

source data and unlabeled target-domain data while maintaining a good performance on

the primary SER task.
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3. METHODS

The main research goal of the present study is to create well-performing SER model for

real-life child-centered audio recordings from a NICU. Since the premise of the present

experiments is that there is an absence of labeled data in the target corpus, traditional

machine-learning methods utilizing supervised learning cannot be used. Instead, alter-

native machine learning-based techniques, namely cross-corpus generalization, AL, and

DA, are compared in the present study. An overview of the SER system of the present

experiments is given in Figure 3.1. Note that in the figure, the source corpus and source

labels for AL are a labeled subset of the target corpus.

Source labels

Source
corpus/corpora

Target corpus

Cross-corpus
generalization

Active learning

Domain adaptation

Figure 3.1. An overview of the SER system of the present experiments. For one or
multiple source corpora with labels available, a SER classifier is either trained using AL,
DA, or cross-corpus generalization. Then, the trained classifier is tested on a separate
target corpus, which has little to no labeled data available.

In this chapter, the core methods of the present study are described. Section 3.1 depicts

the AL method used in this study, followed by a description of the DA method of the

present experiments in Section 3.2. Finally, the basic idea of cross-corpus generalization

is introduced in Section 3.3.

3.1 Medoid-based active learning

The medoid-based active learning (MAL) algorithm can be divided into three subsequent

parts:

1. Obtain a distance matrix that contains the distances between each sample in a

dataset.
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2. Perform k-medoids clustering using this distance matrix.

3. Starting from the largest cluster, annotate the medoids in a descending size order.

The rest of this section describes these parts in further detail.

3.1.1 Distance matrix in MAL

For MAL, a distance matrix that contains the distances between each pair of samples in

the dataset is required [78]. The distance metric should be chosen according to the task

MAL is intended to be used for. For example in the context of SER, the purpose of this

matrix is to store the pairwise distances between all utterances in a dataset in order to

discriminate utterances in an emotion-based feature space as well as possible. In other

words, a suitable distance metric for clustering in SER is a metric in which utterances

with similar emotional content are close to each other, whereas utterances with a clearly

distinct emotional content have a large distance between each other.

The metric used in the present experiments was selected based on pilot experiments

with MAL using existing SER datasets. To obtain the distance matrix, a 600-dimensional

utterance-level log-mel feature representation (see Section 4.2 for a detailed description)

is first used as the initial feature representation of each sample in a dataset . Then, the

600-dimensional log-mel features are compressed into a 32-dimensional latent represen-

tation using an DNN-based autoencoder with six layers. After training the autoencoder

and compressing the log-mel features using the trained autoencoder, the pairwise dissim-

ilarities between each sample in the dataset are computed from the bottleneck features.

The dissimilarity measure used in the present study is the Pearson distance, also known

as the Pearson correlation distance or simply the correlation distance. The Pearson dis-

tance, dP , between vectors a and b is defined as

dP (a, b) =
⟨a− µa, b− µb⟩
∥a− µa∥∥b− µb∥

, (3.1)

where µa and µb are the mean values of the elements of a and b, respectively [91].

Pearson distance is a commutative operation (i.e. dP (a, b) = dP (b,a)) and it produces

a distance of zero only when a and b are the same. However, it does not fulfill the third

condition of a metric, the triangle inequality, and is thus not regarded as a proper distance

function. Consequently, although the term ‘distance matrix’ is used in this thesis, the

distances described by the matrix are not mathematically exact distances.
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3.1.2 k-medoids clustering in MAL

After obtaining the distance matrix that describes the dissimilarities between each sample

in the dataset, a single sample is randomly selected as an initial starting point. This

sample is also added to a set of selected points, S. Then, data points are added one

by one to S until the set reaches a size of k, which is a user-defined positive integer.

After the initial starting point, the following data points are chosen based on farthest-first

traversal. In farthest-first traversal, the farthest sample to the current set S is chosen as

the next point to be added to S. Here, the distance from a sample, a, to the set S is

defined as

dP (a, S) = min
b∈S

dP (a, b) , (3.2)

where dP is the Pearson distance from Equation 3.1 [78]. By using farthest-first traversal,

the set S can be thought of as being a set of k data points that lie in the distance space

D as diversely as possible, where dP (a, b) ∈ D ∀a, b ∈ Rn, n ∈ Z+.

The data points in S are then used as the initial medoids for a k-medoids clustering al-

gorithm (see e.g. [92] for a detailed description), which is similar to the popular k-means

clustering algorithm. The main difference between the two algorithms is that the cen-

troids of the clusters are real samples in k-medoids, whereas they are arbitrary points

in k-means. Comparing the two, the k-medoids algorithm has proved to be better than

k-means in terms of accuracy, especially with larger datasets. One of the main disad-

vantages of k-means is that it is sensitive to outliers in the data [78, 92]. An example of

the two algorithms for randomly generated 2-D data points is depicted in Figure 3.2. In

the example, the value for k was set to 2 and the dissimilarity measure between the data

points was the squared Euclidean distance.

In the k-medoids clustering algorithm, each data point is linked to its nearest initial medoid.

Then, the medoids are iteratively updated in order to minimize the sum of the distances of

all data points to their nearest medoids. This process continues until the sum of the dis-

tances cannot be reduced by updating the current medoids in each cluster. The medoids

can be considered as the best representatives of all elements in each cluster.

3.1.3 Annotation process in MAL

After performing the k-medoids clustering algorithm, the clusters are sorted in a descend-

ing order based on the number of elements in each cluster. Then, the cluster medoids are

presented to the annotator for labeling. The medoid labels are also assigned as the pre-

dicted labels for the rest of the cluster elements in order to artificially increase the number

of labels. These predicted labels are referred to as the cluster labels. The experiments of
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 k-medoids

Cluster 1
Cluster 2
Medoids

 k-means

Cluster 1
Cluster 2
Centroids

Figure 3.2. The clusters and the cluster centroids for the k-medoids algorithm (left image)
and the k-means algorithm (right image) for randomly generated data.

the present study go beyond the original MAL paper [78] by including the case where the

cluster labels are not utilized.

The selection of k is a trade-off between the average cluster size and the accuracy of

the cluster labels. With a large k, the average size of the clusters is smaller and thus the

cluster labels are more accurate, but on the other hand, a large k results in less cluster

labels. Furthermore, since it is assumed that the annotations add up to only a small

portion of the data, a scenario in which all medoids are labeled and a new iteration of the

clustering algorithm is possible is not considered.

3.2 Wasserstein distance-based domain adaptation

In Wasserstein distance-based domain adaptation (WDA), a neural network-based classi-

fier is adapted to a target domain by using labeled data from a source domain. This neural

network-based classifier consists of two parts, a feature extractor, F , and a label classi-

fier, CL. The adaptation process of WDA involves two steps, which are demonstrated in

Figure 3.3. The first step is training the neural network using the source domain data,

DS , to obtain the source domain feature extractor, FS . The combination of the trained

neural networks FS and CL is also known as the source model. The source domain data,

DS , includes both the source domain observations, XS , and their respective labels, YS .

The second step is adapting FS for the target domain data, DT . This adapted feature

extractor is denoted as FT .

In the first step (upper image in Figure 3.3), a neural network consisting of two parts, F
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Step 1CL
F

YS

XS

Predicted
label

Step 2
CDFS

XT

XS
Predicted
domain

Figure 3.3. The two steps of the adaptation process of WDA. The first step (upper im-
age) involves training a neural network consisting of a feature extractor (F ) and a label
classifier (CL) using the source data to predict the label of the input observation. In the
second step (lower image), the network is adapted to the target data using an adversarial
training formulation.

followed by CL, is trained using DS to obtain FS using binary cross-entropy [90]

LL(x,y) = −
∑︂

(x,y) ∈ (XS ,YS)

yT log10(CL(F (x))) (3.3)

as the loss function. This is a crucial step in the adaptation process, since it is important

to obtain a model which performs well in the source domain. Following the underlying

theory of DA in [90], the upper bound of the error in the target domain is affected by three

factors. The first factor is the combined error of the ideal joint predictor, i.e., the classifier

for both the source and target domain data. This factor is often neglected in DA since it

is assumed that it is possible to obtain a model which has a small error in both domains

[79]. The second factor is the discrepancy between the distributions of DS and DT , which

the second step of the adaptation aims to minimize. The third factor is the error of the

model in the source domain. The second factor cannot be affected during the first step

of the adaptation, and the third factor cannot be affected during the second step of the

adaptation. Therefore, it is important to obtain a well-performing source model in the first

step of the adaptation process in order for the second step to be able to succeed.

In the second step (lower image in Figure 3.3), FS is adapted to DT to obtain FT by

minimizing the Wasserstein-1 distance between the distributions of DS and DT using an

adversarial training process. Following the WGAN framework (introduced in Section 2.5.7

and specified for DA in Section 2.7), FS is adapted into FT by finding a common feature

representation for DS and DT by iteratively minimizing the losses

LCD
(x, z) =

∑︂
x ∈ XS

CD(FS(x)) −
∑︂

z ∈ XT

CD(FT (z)) (3.4)
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and

LFT
(x,y, z) =

∑︂
z ∈ XT

CD(FT (z)) + LL(x,y) , (3.5)

where CD is the domain discriminator, XT are the target domain observations, and LL is

the label loss term from Equation 3.3 [90]. The parameters for CD and FT are updated

in turns, where Equations 3.4 and 3.5 are the loss functions for updating the parameters

of CD and FT , respectively. The output features of FT are the input features for CD.

Additionally, the parameters of FS serve as the initial parameters of FT . It should be

noted that FS and CL are not updated during the second step of the adaptation.

As pointed out in [90], the minimization of LCD
and LFT

(Equations 3.4 and 3.5, respec-

tively) is shown to minimize the Wasserstein-1 distance between the distributions of DS

and DT . However, since the common feature representation for DS and DT is not guar-

anteed to perform well on CL, the authors proposed to add an additional loss term to

account for the degradation of performance on CL when adapting the parameters of FT .

This additional term is the second term, LL, in Equation 3.5, and was not included in the

original WGAN paper [68]. For a detailed formulation of the WGAN algorithm in WDA,

see Algorithm 1 of [90].

As can be observed from Equations 3.3, 3.4, and 3.5, the adaptation process is unsuper-

vised since the target domain labels, YT , are not required. In addition to the unsupervised

version of WDA, a semi-supervised variant is also explored. This version utilizes a small

subset of YT during the adaptation process so that the label classification accuracy of CL

on the subset of YT is computed after each training iteration. This information is used as

the optimal model selection criterion of the adaptation process of FT so that the model

with the highest accuracy on the subset of YT is selected as the final adapted model. In

other words, the subset of YT is only used for model selection purposes and not in the

adaptation loss functions (Equations 3.4 and 3.5).

3.3 Cross-corpus generalization

In cross-corpus generalization, N ∈ Z+ labeled source datasets si are merged into one

training set, S, where ∀si ∈ S. Next, this training set is used to train a classifier using

supervised learning. Finally, the trained classifier is tested on an unlabeled target dataset

T , where T /∈ S.
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4. EXPERIMENTAL SETUP

This chapter describes the experiments conducted in the present study. First, the datasets

used in this thesis are depicted in Section 4.1. Then, the experiments conducted for four

simulation corpora and the primary audio material of the present study are described in

Sections 4.2 and 4.3, respectively. The SVM models were implemented with the Scikit-

learn framework [93] and the neural network-based models were implemented with the

PyTorch deep learning framework [94], both using the Python programming language.

4.1 Datasets

This section provides an overview of the datasets used in the present experiments. All of

the corpora except NICU-A are from now on referred to in this text as simulation corpora

in reference to them belonging to the simulation setup described in Section 4.2. The

corpora described in Sections 4.1.1, 4.1.2 and 4.1.4 are freely available and have been

widely used in the SER research community.

4.1.1 EMO-DB

The Berlin Emotional Speech Database1 (EMO-DB) [42] is well-known and is perhaps

the most widely used corpus in SER. EMO-DB consists of 535 spoken utterances with

seven emotional labels: anger, boredom, disgust, fear, joy, neutral, and sadness. The

data collection consisted of 10 professional actors (five male and five female) speaking

10 predefined, short sentences in German. The recordings were taken in an anechoic

chamber with a 48-kHz sampling frequency and they were subsequently downsampled

to a 16-kHz sampling frequency. The actors read sentences with predefined emotions,

which were also the emotional labels of the sentences. Each utterance in EMO-DB has

only one label.

After obtaining the recordings, a data cleaning process was conducted using 20 test sub-

jects in a listening experiment. The test subjects were only allowed to listen to each utter-

ance once before deciding on the emotional state and the naturalness of the utterance.

Utterances with an emotion recognition rate of less than 80% and overall naturalness of

1 Available at: http://emodb.bilderbar.info/index-1024.html

http://emodb.bilderbar.info/index-1024.html
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less than 60% were left out of the corpus.

4.1.2 eNTERFACE

The eNTERFACE2 corpus [95] is an audiovisual emotion database. eNTERFACE con-

sists of 1287 video samples with six emotion categories: anger, disgust, fear, joy, sad-

ness, and surprise. The video samples of the final version of the corpus incorporate

recordings from 42 test subjects (eight female) from 14 different nationalities. The record-

ings were conducted in an office environment with predefined spoken content in English,

with two human experts judging the quality of the spoken utterance. Only the audio tracks,

which were recorded with a 48-kHz sampling frequency, were used in this study.

Each test subject listened to six successive short stories, each of them evoking a par-

ticular emotion. There were five different utterances for each short story as reactions to

the given situation. After every short story, the subject was able to read, memorize and

pronounce one of the proposed utterances, one at a time. If the expressed emotion was

agreed on by both the human experts, the utterance was added to the dataset. Otherwise,

the subject was asked to try again. If the test subject was not able to perform the correct

emotion after a few attempts even with the help of the human experts, the utterance was

left out of the dataset and the experiments continued with the next utterance.

4.1.3 FESC

The Finnish Emotional Speech Corpus (FESC) used in this study was originally created

as the emotion study material for a study by Airas and Alku [43]. Nine native-speaking

Finnish professional actors (five male and four female) portrayed emotions of five different

categories: neutral, sadness, joy, anger, and tenderness. The emotions were chosen so

that they could be clearly separated in the valence-arousal space. The speech material

was a text passage of 83 words of Finnish prose, in which different emotions could be

easily expressed. The actors were asked to pronounce the text passage ten times with a

given emotion, leading to a total of 50 recitations for each actor and a total of 450 spoken

passages altogether. The text passages in a given emotion were in a semi-random order,

wherein the same emotion was never repeated twice in a row. The recordings were

conducted in an anechoic chamber with a sampling rate of 48 kHz.

Since the audio files of FESC were considerably longer than the audio files of the other

corpora used in this study, the spoken passages were split into utterances according to

the procedure described in Appendix A. After splitting the audio data of the corpus into

separate utterances using this procedure, there were a total of 4254 utterances with an

average length of 4.41 seconds. The emotional labels of the utterances were the same

2 Available at: http://www.enterface.net/results/

http://www.enterface.net/results/
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as the labels of the spoken passages the utterances were taken from.

4.1.4 RAVDESS

The Ryerson Audio-Visual Database of Emotional Speech and Song3 (RAVDESS) [96] is

a multimodal database of emotional speech and song, including a total of 7356 record-

ings. Only 1440 of these recordings were used in the present study, since the recordings

containing anything other than speech were discarded. Altogether 24 professional ac-

tors (12 male and 12 female) spoke in a North American accent covering eight different

emotional labels: neutral, calm, happy, sad, angry, fearful, surprise, and disgust. All of

the actors were native English speakers. The recordings took place in a professional

recording studio with a sampling rate of 48 kHz.

All emotional conditions except neutral were vocalized at two levels of emotional intensity,

normal and strong. The actors expressed two distinctive neutral statements in a given

emotion multiple times, all of which were later reviewed by three investigators. Any clips

containing lexical errors or irrelevant gestures in the video recordings were removed.

Out of the remaining clips, the best two takes as agreed through the consensus of the

investigators were selected for the corpus. After post-processing the selected clips, the

corpus was extensively validated for reliability.

4.1.5 NICU-A

The FinEst NICU Audioset (NICU-A) was collected as a part of the APPLE study, and is

the primary audio material for which our SER system was aimed to be deployed on. The

overall goal of the study is to examine the effect of parental proximity and communication

on a child’s development for prematurely born children. Only the recordings from Turku

University Hospital and only those in which both parents had Finnish as their mother

tongue were included the present study. For each family that took part in the research

project, the recording process of the preterm babies’ sound environment was conducted

at a NICU using the LENA4 recorder. LENA consists of both software and a recording

device, and is considered as the standard for measuring vocal interactions with children

up to three years in age. In the recording process, the recorder was set next to the child,

either in the vest pocket that comes together with the device or without the vest. For the

recordings, the single family rooms of the NICU served as the recording environment. In

these rooms, the sound environment was moderately quiet since, apart from family mem-

bers, there were only nurses and doctors occasionally visiting the rooms while carrying

out healthcare routines. Parents and nurses were instructed to keep the recorder near the

baby in all situations. Data from each child consists of a continuous 16-hour recording.

3 Available at: https://zenodo.org/record/1188976
4 For further details, see: https://www.lena.org/

https://zenodo.org/record/1188976
https://www.lena.org/
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By utilizing the broad-class speaker diarization output produced by the LENA software

[97], the 16-hour recordings were split into utterances. An important sidenote is that

the audio segments with tags Male Adult Far (MAF) and Female Adult Far (FAF) were

included in the present study, although the majority of studies that involve the use of

LENA-produced timestamps discard the audio segments which are tagged as ‘far’. Fur-

thermore, Cristia et al. [98] even suggest to exclude the ‘far’ categories from considera-

tion for most purposes due to their inferior quality compared to the segments which are

tagged as ‘near’. However, the audio segments with tags MAF and FAF were included in

the present experiments based on a validity study for the same data, which verified that

the recordings with LENA-produced tags MAF and FAF had a valid quality compared to

the recordings with tags Male Adult Near (MAN) and Female Adult Near (FAN) [99]. This

is probably due to the highly-controlled recording conditions (one medium-sized room)

with limited environmental noise.

The data consisted of 43 families with a total of 688 hours of audio. Following the split of

the 16-hour recordings into utterances based on the speaker diarization output produced

by the LENA software, audio files shorter than 0.6 s were discarded. After removing the

shortest utterances, the total number of utterances was 129,007 with an average length of

1.57 seconds (approximately 56 hours of speech). The recordings had a 16-kHz sampling

frequency.

Two professionals familiar with the research project carefully selected 35 families for the

training data (average age of approximately 33.3 gestational weeks (GW) with a standard

deviation of 0.6) and eight families for the test data (average age of approximately 33.4

GW with a standard deviation of 0.3). The criterion for the selection was to maximize the

representativeness of both data sets in terms of covariates such as child health, parental

presence etc. After pre-processing the data of NICU-A, both the training set and test set

were partially annotated using an annotation platform that the present author specifically

developed for this purpose.

4.1.6 NICU-A annotation procedure

For the training data, samples were selected for annotation using MAL. Similar to the AL-

based experiments in Section 4.2.3, the log-mel features of the full unlabeled training set

(101,813 samples) were compressed into a 32-dimensional feature representation using

an autoencoder. The training and validation data for the autoencoder were based on a

random split of the unlabeled training set into two sets with a ratio of 80:20 utterances.

After compressing the features, the MAL algorithm was performed for each of the 35

training set families separately. After the clustering algorithm, the medoid samples were

annotated in a descending order based on the cluster size, independent of the family.

Two annotators, a professional familiar with the research project and the author of this
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thesis, performed labeling for distinct subsets of the training data, except for the first 200

samples that were annotated by both in order to measure the inter-rater reliability of the

annotations.

For the test data, gold standard annotations were derived by having three speech or

clinical experts familiar with the research project to perform annotations for a randomly

selected subset of the test data (27,194 samples). These samples were the same for

each annotator. The final labels were determined by performing majority voting for the

three labels from each annotator. The samples for which a majority agreement could not

be determined were removed from the test set. The labeled data of the test set will be

referred to in this text as the gold standard data.

In the annotation process, the annotators were given two distinct tasks for each utterance.

The tasks were to select between two classes for arousal (high/low) and to select between

three classes for valence (positive/neutral/negative). These tasks were presented in a

random order for each utterance. It was also possible to label the utterance as erroneous

if the emotional content of speech could not be inferred by the annotator, such as audio

samples corrupted by noise, overlapping speakers, very short utterances, and samples

without any speech at all. The utterance was played before each separate task and the

user was able to replay utterances without any restrictions. The annotation could be

stopped and resumed at any time. Also, the annotator was able to go to the previous

utterance at any given time.

Figure 4.1. A screenshot of the annotation platform for the test data.

As an addition for the test data, a 10-second segment of the preceding audio context

was played together with each utterance. This context was meant to assist in the annota-



48

tion by helping the annotators to obtain a contextual understanding of the communicative

situation. However, the annotators were instructed to assign labels based on only the

utterance following the context. It was possible to replay the utterance with and without

the context with no restrictions. Figure 4.1 shows a screenshot of the text-based user

interface of the annotation platform for the test data. The annotation process took ap-

proximately six working days for the training data and three working days for the test data

altogether when the working time of all annotators was combined. For the training data,

the annotation process took approximately 19 seconds for each audio sample. For the

test data, the annotation lasted for approximately 40 seconds for each audio sample.

After the annotation processes for the training and test data, and after performing majority

voting for the test data, all samples which were labeled as erroneous were removed from

the data. After removing the erroneous files, the sizes of the labeled training set and

the gold standard set were 5198 samples and 345 samples, respectively. When the

sizes of these sets are compared to the total number of samples, the labeled training set

corresponds to approximately 4% and the gold standard set to approximately 0.3% of all

samples in NICU-A. Table 4.1 shows the class distributions of the training set and the

gold standard set. By labeling all samples belonging to a cluster based on the cluster’s

medoid label, the size of the labeled training set was increased to 33,979 samples for the

AL-based experiments involving cluster labels.

Table 4.1. The class distributions of the annotated training set and the gold standard set
of NICU-A.

 Valence  Arousal 

positive neutral negative high low 

Training set 1509 3391 298 3165 2033 

Gold standard set 120 214 11 89 256 

 

To determine an estimate of the inter-rater reliability, Cohen’s kappa was used for the

training data (two annotators) and Fleiss’ kappa was used for the gold standard data

(three annotators). For further details about both kappa scores, see e.g. [100]. For the

training data, the first 200 samples were the same for both annotators to determine a

kappa score. After removing the files which were labeled as erroneous, the kappa scores

for valence and arousal were 0.78 and 0.64, respectively. The kappa score was 0.77 for

a binary decision whether a sample was erroneous or not. For the gold standard data,

the kappa score was 0.48 for valence and 0.28 for arousal after removing erroneous files.

The kappa score was 0.51 for the binary decision for the erroneous files. The kappa

scores for the labels of the gold standard data indicate that annotating the given type of

real-world audio data even for binary or ternary emotion categories is not an easy task.

Based on the inter-rater agreement rates, the annotators agreed more on the valence

ratings of the test samples than they did for arousal. Thus, verbal expression of valence

can be regarded as more transparent in NICU-A than that of arousal.
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The notable difference between the kappa scores of the training data and the gold stan-

dard data may be explained by the nature of the MAL algorithm, which tries to group data

points together which are similar in the valence-arousal space. Since the medoid samples

were annotated in a descending order based on the cluster size, the first 200 samples for

which the kappa score of the training data was computed were the medoid samples of the

largest clusters. Based on the MAL algorithm, these 200 samples were the most acous-

tically distinct samples in the training data. Thus, assigning a label for the medoids of

these clusters is, in theory, easier than assigning a label for medoids of smaller clusters.

This can also be observed by comparing the kappa score of the first 40 samples and the

last 40 samples of the 200 mutual samples for arousal after removing the erroneous files.

The kappa score for arousal was 0.95 for the first 40 samples and 0.59 for the last 40

samples. By having a larger number of mutual annotated samples for the two annotators

of the training data, the kappa scores of the training samples would most likely be closer

to the corresponding scores of the gold standard data. The finding also demonstrates

the inherent difficulty in annotating a random sample of real-world speech for emotional

content.

4.2 Simulation setup

The labels for NICU-A were not available at the beginning of the study. Thus, a simulation

setup for experimenting with the four already available SER corpora (EMO-DB, eNTER-

FACE, FESC, and RAVDESS) was built to simulate different strategies for deploying a

SER system on a new unannotated corpus so that, once acquired, the most promising

method candidates could be applied to labeled subset of NICU-A. Figure 4.2 depicts a

block diagram of the six different simulation setup scenarios in which EMO-DB is used

as an example of a simulated test corpus for which prior labels would not be available.

These same tests were also conducted for the three other simulation corpora in a similar

manner.

Log-mel, GeMAPS, and eGeMAPS features (described in Section 2.3) were used in all

experiments except DA-based experiments where only log-mel features were used based

on their superior performance in pilot experiments. For the log-mel features, 40 mel filters

were used with a Hann window using a 30-ms window size and 10-ms shifts. To get

constant-dimensional utterance feature representations, the functionals consisting of the

mean, variance, skewness, kurtosis, min, max, and range were taken from the time series

of the log-mel features. Additionally, first and second order delta features for the log-mel

features were extracted, and the functionals of mean, variance, skewness, and kurtosis

were applied to both delta features. This resulted in a 600-dimensional feature vector for

the log-mel features. The 62- and 88-dimensional GeMAPS and eGeMAPS features were

extracted using the openSMILE toolkit [14].
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Figure 4.2. A block diagram of the different simulation setup experiments for EMO-DB as
the test corpus.

The features for each corpus were normalized using z-score normalization in order to

have zero mean and unit variance for each of the features at corpus level. As suggested

by Schuller et al. [17], normalization at speaker level was also tested. However, initial

experiments indicated that normalization in the context of a speaker very rarely worked

better than normalization across the whole corpus. Thus, corpus normalization was used

in the present study.

Following Schuller et al. [17], the emotional labels were mapped into the quarters of the

valence-arousal plane as shown in Figure 4.3. This same emotional mapping has been

used in multiple SER studies (e.g. [19], [20], [21], [23], [24], [25]). Although a few SER

studies map disgust into high arousal (e.g. [22]), the majority of SER studies map disgust

into low arousal. Therefore, disgust was mapped to low arousal in the present study.

Furthermore, initial experiments suggested that an SVM classifier is able to discriminate

arousal better if disgust was mapped into low arousal in the training data. The mapping of

the emotional labels into the quarters of the valence-arousal plane was made to simplify

the classification task into two binary classifications (see beginning of Section 2.2.3 for

further details).

The primary evaluation measure of valence and arousal classification accuracy used in

the present study is unweighted average recall (UAR %), occasionally referred to as un-

weighted accuracy, which is defined as the mean of the class-specific recalls [1]. UAR is

a measure commonly used in PSP, since it ignores the number of occurrences of each

class in the dataset, which can be highly imbalanced in PSP tasks. The chance level for

UAR is the reciprocal of the total number of classes. For example, in two-class problems
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Figure 4.3. The mapping of emotions into the quarters of the valence-arousal plane in
the simulation setup.

the chance level is 50% UAR, and in three-class problems the chance level is 33.3%

UAR [1]. In addition, the standard error of the mean (SEM) [101] is reported for the

AL-based experiments. The SEM is defined as

SEM =
σ√
n
, (4.1)

where σ is the standard deviation of the classification accuracies, and n is the number of

independent observations.

4.2.1 Within-corpus experiments

In the within-corpus experiments, each of the four simulation corpora were examined in-

dividually. The purpose of these experiments was to get an estimate of the accuracy that

is achievable if labels for the entire dataset were available for classifier training and evalu-
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ation. For the experiments, an SVM classifier with an RBF kernel was used together with

log-mel, GeMAPS, and eGeMAPS features. The labeled data of each simulation corpus

were randomly split into a training set and a test set in a ratio of 85:15. A binary classifi-

cation for valence (positive/negative) and arousal (high/low) was performed separately.

Imbalances in the training data class distributions were countered by weighting each sam-

ple inversely proportional to its class frequency in the data. Optimal SVM hyperparame-

ters were selected for each feature type and for both classification tasks individually. The

SVM hyperparameters that were optimized were the box constraint, C, and the kernel

scale parameter, γ. To find a suitable value for C and γ, a grid search was performed by

testing all possible combinations of C ∈ [0.6, 0.7, . . . , 10.0] ∪ [20.0, 40.0, . . . , 200.0] ∪
[500.0, 103, 104, 105, 106] and γ ∈ 1

dimf
[0.5, 0.6, . . . , 4.0], where dimf is the dimension-

ality of the features. These values were selected based on initial tests on the data. For

each combination of C and γ, 5-fold cross-validation was performed on the training set

using UAR as the accuracy metric to find the best-performing combination. Then, these

optimal values for C and γ were used to train the SVM on the training data. Finally, this

trained SVM was used to find the accuracy of the model on the test set.

4.2.2 Cross-corpus generalization

The cross-corpus generalization tests consisted of two separate settings: one-to-one and

three-to-one cross-corpus generalization. For the settings, the former number refers to

the number of corpora that are used for training, whereas the latter number refers to

the number of corpora that are used for testing. For both settings, an SVM classifier

with an RBF kernel was trained to discriminate between positive/negative valence and

high/low arousal using all three different feature types, similar to the procedure described

in Section 4.2.1. Again, class balance weights were used to address the imbalances in the

labels. The purpose of these cross-corpus generalization experiments was to investigate

the classification performance of a SER system when it is trained on one or several SER

corpora and tested on some other SER corpus.

In the one-to-one setting, all of the different scenarios were examined where one SER

corpus was used as the training set and another corpus was used as the test set. Now

the best-performing hyperparameters were not found using grid search, but instead the

optimal values for C and γ from the within-corpus experiments were used. The SVM clas-

sifier was trained using these hyperparameters on the training corpus and its performance

was tested on the test corpus.

The three-to-one setting covered all scenarios in which three of the four simulation cor-

pora were used as the training set and the fourth corpus was used as the test set. Here

the optimal values for C and γ were found using the cross-validated grid search depicted

in Section 4.2.1. The SVM classifier was then trained using these hyperparameters on
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the three training corpora and tested on the test corpus.

4.2.3 Experiments using active learning

The AL-based experiments using MAL were conducted in a within-corpus manner. In

pilot experiments regarding MAL, the aim was to experiment with different dissimilarity

measures and to find a suitable value for k (see Section 3.1 for further details) by ex-

perimenting with the simulation corpora. Additionally, since the labels for NICU-A the

were not available during these preliminary tests, rather than trying to search for methods

which work the best for each simulation corpus separately, the core idea was to find and

develop methods which perform well in general. Furthermore, the effect of different label-

ing budgets on the overall classification performance was inspected, bearing in mind that

the premise of the labeling process of this thesis is that the annotations amount to only a

small part of the data.

In pilot experiments, a suitable value for k was found to be N
3

, where N is the number of

samples in the corpus. This can be interpreted as meaning that the average size of the

clusters is three. An important observation was that the clustering algorithm worked bet-

ter with lower-dimensional features than with higher-dimensional features. Consequently,

based on initial experiments the generally best-performing dissimilarity measure was

found to be the Pearson distance (Equation 3.1) that was computed for 32-dimensional

features which were compressed from the 600-dimensional log-mel representation using

an autoencoder. The encoder part of the autoencoder consisted of three dense layers

with output dimensionalities of 512, 512, and 32. These three layers were followed by

ELU nonlinearities (Equation 2.25). For the first two layers, a dropout of 10% was used.

The decoder part is simply a mirrored version of the encoder.

After finding out an optimal dissimilarity measure and an optimal value for k in the pre-

liminary experiments, simulated annotations were performed for the simulation corpora.

An autoencoder was trained separately for each simulation corpus using the MSE loss

function (Equation 2.20). For the training, the same split into two sets from Section 4.2.1

was performed for the simulation corpora. The larger set was further split into a training

set and a validation set so that the overall ratio between the training, validation, and test

set was 70:15:15. Early stopping with patience of 300 epochs was used, and the best

model according to the validation loss was chosen as the optimal autoencoder. The net-

work was trained using a batch size of 1024 and using the Adam optimization algorithm

[102] with a learning rate of 10−4.

For the simulated annotations, labeling budgets of 3%, 6%, and 10% of the total samples

in a corpus were tested. The same training samples as in Section 4.2.1 were used for

computing the distance matrix and for performing the label predictions. Experiments with

and without assigning the label of the medoid as the label of all the cluster members were
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carried out. It should be noted that the simulated annotation process used in the present

study assumes that the annotator does not give erroneous labels. Labels for both valence

and arousal were given for each annotated sample in the simulated annotations.

After the simulated annotation process, the annotated samples were used as the training

set for an SVM classifier with an RBF kernel. Similar to the aforementioned experiments,

two SVMs were trained separately to distinguish between positive/negative valence and

high/low arousal using class balance weights. All of the three feature types defined in Sec-

tion 4.2 were compared separately and the optimal hyperparameters for the SVM were

taken from the within-corpus experiments described in Section 4.2.1. The same test set

as in the within-corpus experiments was then used to test the classification performance

of the trained classifier.

4.2.4 Experiments using domain adaptation

The DA-based tests involving WDA were conducted in similar one-to-one and three-to-

one settings as in the cross-corpus generalization experiments in Section 4.2.2. In the

one-to-one adaptation setting, one SER corpus acted as the source data and another

corpus acted as the target data. In the three-to-one adaptation setting, three of the four

SER corpora acted as the source data and the fourth corpus acted as the target data.

All of the different adaptation experiments were conducted for both valence and arousal

separately.

In pilot experiments, different network structures for the feature extractor, the label clas-

sifier, and the domain classifier were experimented with. In a similar manner as in the

AL-based experiments, the purpose was not to find optimal network structures for each

setting separately, but instead the goal was to search for generally well-performing net-

work structures for the simulation corpora. Also, different input features were experi-

mented with. The best-performing features were found to be the 600-dimensional log-mel

features. These log-mel features were used as the input for the feature extractor, F ,

which consisted of three dense layers with output dimensionalities of 512, 512, and 256.

The first two of these layers were followed by a LReLU nonlinearity (Equation 2.24) and

a dropout layer with a dropout of 40%. All of the three layers were followed by batch

normalization. Instead of SVM classifiers used in the other simulation setup settings,

the label classifier, CL, was a neural network which consisted of three dense layers with

output dimensionalities of 256, 256, and 2. The first two layers were followed by LReLU

nonlinearities and a dropout of 30%. The last layer was followed by a softmax nonlinearity

to get the class probabilities. The domain classifier, CD, consisted of four dense layers

with output dimensionalities of 512, 512, 256, and 1. The first three layers were followed

by ReLU nonlinearities.

After finding well-performing network structures and features in the preliminary tests with
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the simulation corpora, experiments were conducted using these network structures and

features. Each simulation corpus was split into a training, validation, and test set with

a ratio of 70:15:15. The same split was used as in the autoencoder training of Section

4.2.3. For the first stage of the adaptation process, i.e. training F and CL on the source

data to obtain the source model, the labeled training and validation sets of the source

data were used for model training. The labeled test set of the source data was then

used for model selection purposes. For the second stage of the adaptation process, i.e.

adapting F for the target data, the training data was the full unlabeled source data and

the unlabeled training set of the target data. To find optimal hyperparameters for the

adaptation process, the labeled validation set of the target corpus was used to test the

performance of the adaptation. Although it is possible to find optimal hyperparameters for

the adaptation without the labeled validation set of the target corpus, this validation set

was used to significantly speed up the hyperparameter selection process. The test data

for the second stage of the adaptation process was the labeled test set of the target data.

For the first stage of the adaptation process in the one-to-one adaptation setting, the

labeled training set and validation set of the source corpus was used to train F and CL.

Early stopping was used with a patience of 100 epochs to obtain the optimal source

model. The early stopping criterion was the classification accuracy on the test set of the

source corpus. A similar procedure was used with the feature extractor training for the

three-to-one adaptation setting, with the only difference being that the training, validation,

and test sets for the source data were the combined training, validation, and test sets of

the three source corpora. The Adam optimizer was used with a learning rate of 10−4.

A batch size of 256 was used in all parts of the DA process. For each possible variant

of the source data, a separate source model was trained for both valence and arousal.

This model was then used for all of the DA experiments involving the same source data,

including both the unsupervised and semi-supervised variant of WDA.

For the second stage of the adaptation process, CD was trained for four minibatches in

a row. For every fifth minibatch, the parameters of the adapted feature extractor, FT ,

were updated. The parameters of CD were updated with the RMSProp optimizer [103]

as suggested by Arjovsky et al. in the original WGAN paper [68]. The Adam optimizer

was used to update the parameters of FT . For all experiments, a learning rate of 5 · 10−5

was used for updating the parameters of CD. For FT , a learning rate of 5 · 10−5 was

used in the one-to-one adaptation setting, and a learning rate of 3 · 10−5 was used in the

three-to-one adaptation setting.

To assist CD at the start of the adaptation process, a predefined number of head start iter-

ations were given for CD before its parameters and the parameters of FT were updated in

turns. In the one-to-one adaptation setting, the tests involving EMO-DB and eNTERFACE

as the source corpus used 100 head start iterations. For the tests involving FESC and

RAVDESS as the source corpus, 500 head start iterations were used. In all three-to-one



56

adaptation settings 1000 head start iterations were used.

Following [90], the unsupervised variant of WDA was trained until the first term in Equa-

tion 3.5 was saturated. For the semi-supervised variant of WDA, the labels of a small

randomly selected subset of the target corpus training samples (5% of the size of the

corpus) were utilized. This labeled subset was used to determine the classification accu-

racy of the combination of FT and CL after each epoch, and the model with the highest

classification accuracy on this subset was then selected for testing. The labeled subset of

the target corpus was also tested to be utilized in the adaptation loss functions (Equations

3.4 and 3.5) during the adaptation process, but it turned out to systematically worsen the

adaptation results. Hence, this approach was left out of the semi-supervised WDA exper-

iments. After optimal adaptation hyperparameters and model parameters were found, the

performance of the adapted model was tested on the test set of the target corpus.

4.3 Experiments with NICU-A

Once functioning practices had been established on the simulation setup and the labels

for NICU-A had been acquired, similar tests as in Section 4.2 were conducted on the new

data. Again, all three feature types (log-mel, GeMAPS, and eGeMAPS) were used for

all tests except DA-based experiments where only log-mel features were used based on

their superior performance in pilot experiments. Since the labels for valence in NICU-A

were categorized into three classes, the three label categories were merged into two for

the cases of binary classification for valence. Considering that the researchers in the

APPLE study were interested in the proportion of positive valence over other types of

valence, the ‘neutral’ and ‘negative’ classes for valence were merged into ‘neutral’ for the

two-class experiments. Thus, the binary classification with valence regarding NICU-A was

between positive and neutral valence. Consequently, the mapping depicted in Figure 4.3

was modified accordingly for the simulation corpora for the cross-corpus generalization

and DA tests involving NICU-A to include the utterances with label ‘neutral’ in the non-

positive valence samples, and treating this class as the ‘neutral’ class.

4.3.1 Active learning experiments with NICU-A

In the AL-based experiments for NICU-A, optimal values for C and γ of the SVM classifier

for each of the three feature types were determined using a grid search and a 5-fold

cross validation for the labeled training data, similar to the procedure described in Section

4.2.1. This was done separately for both the labeled training set of 5198 samples and the

extended training set of 33,979 samples including the cluster labels from MAL. Then, the

optimal hyperparameter values were used to train an SVM model with an RBF kernel.

Class balance weights were used in the SVM training process. The trained SVM model
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was then used to determine the accuracy of the model on the gold standard data. In

addition to the two binary decisions for valence and arousal, a three-class classification

setting for valence (positive/neutral/negative) was also tested. For this three-class setting,

the SVM was trained using the “one vs. all” multiclass SVM method.

4.3.2 Cross-corpus generalization experiments with NICU-A

For the cross-corpus generalization experiments, similarly to the cross-corpus experi-

ments of Section 4.2.2, two settings were explored with NICU-A: one-to-one and four-to-

one cross-corpus generalization. In the one-to-one setting, each of the four simulation

corpora were used individually as the as the training set. In the four-to-one setting, all

of the four simulation corpora were used as the training set. The gold standard data of

NICU-A was used as the test set in both settings. For the two settings, optimal values for

C and γ for each of the three feature types were determined using a similar grid search

as in the within-corpus experiments. Again, an SVM classifier with an RBF kernel was

used, and class balance weights were utilized in the SVM training process.

4.3.3 Domain adaptation experiments with NICU-A

For the DA-based experiments, one-to-one and four-to-one adaptation settings were ex-

amined. In each of the one-to-one adaptation settings, one of the four simulation corpora

was used as the source corpus to-be-adapted to NICU-A. A similar data split and source

model training procedure as described in Section 4.2.4 was used for the simulation cor-

pora for both valence and arousal using the same hyperparameter values. Then, the

feature extractor of the source model was adapted and tested in a similar manner as in

the experiments of Section 4.2.4. Similarly, in the four-to-one adaptation setting, all of the

four simulation corpora were used as the source data and NICU-A was used as the target

data. The training, validation, and test set for the four source corpora was the combination

of the respective sets for each source corpus.

The training data for the second stage of the adaptation process was the full unlabeled

data from the source data together with the 96,615 unlabeled training samples of NICU-

A. To find optimal hyperparameters for the adaptation process, the 5,198 labeled training

samples were used as the validation data. The unsupervised and semi-supervised vari-

ants of WDA were trained according to the procedure described in Section 4.2.4, with the

classification accuracy on the 5,198 labeled training samples being used as the model

selection criterion for the semi-supervised variant.

For the second stage of the adaptation process in the one-to-one adaptation settings, a

learning rate of 5 · 10−5 was used in all experiments. Exceptions to this rule were when

FESC was used as the source corpus for valence and with RAVDESS as the source
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corpus for arousal, where a learning rate of 7 · 10−5 was used for both due to its superior

performance with the validation data. The number of head start iterations was 600 in

all cases, except with FESC as the source corpus, where 800 head start iterations were

used due to better performance with the validation data. For the four-to-one adaptation

settings, 1000 head start iterations were used with learning rates of 7 · 10−5 for valence

and 6 ·10−5 for arousal. All other hyperparameters in the DA-based experiments were the

same as described in Section 4.2.4. After the second stage of the adaptation process,

the performance of the adapted model was then evaluated on the gold standard data.
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5. RESULTS

In this chapter, the results of the experiments described in Chapter 4 are presented and

discussed. First, the results for the simulation setup experiments are reported in Section

5.1, after which the results for the experiments with NICU-A are presented in Section 5.2.

Finally, the results of Sections 5.1 and 5.2 are summed up and discussed in Section 5.3.

All of the given accuracies are in UAR (%).

5.1 Results on the simulation setup

The results of the experiments that were conducted on the simulation corpora are pre-

sented in this section. The results of the within-corpus experiments are reported in Sec-

tion 5.1.1, followed by the results of the cross-corpus generalization experiments in Sec-

tion 5.1.2. Then, the results of the AL-based experiments are given in Section 5.1.3,

followed by the results of the DA-based experiments in 5.1.4. Finally, Section 5.1.5 sum-

marizes the results of the simulation setup.

5.1.1 Results for the within-corpus experiments in the simulation

setup

The results for the within-corpus experiments on the simulation corpora are presented in

Table 5.1. The reported accuracies are the classification accuracies on the test set of

each corpus. Additionally, the mean value for each of the three feature types is reported

for both valence and arousal.

In the within-corpus experiments, the log-mel features had the best average performance

for both valence and arousal, although GeMAPS and eGeMAPS features came relatively

close despite their small dimensionality. For valence, the GeMAPS features achieved

2.0 percentage points UAR lower mean accuracy than the log-mel features, whereas for

arousal, the eGeMAPS features achieved only 0.1 percentage points UAR lower mean

accuracy than the log-mel features. For the corpus-specific experiments, the classifica-

tion of arousal with RAVDESS was the only irregularity, since, in that case, the eGeMAPS

features outperformed the log-mel features. The distinctly lower classification accuracy

for eNTERFACE (approximately 10 percentage points UAR lower accuracy for valence
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Table 5.1. The test set accuracies for the within-corpus experiments of the simulation
setup. The highest accuracy feature-wise is highlighted.

UAR (%) Valence Arousal 

log-mel GeMAPS eGeMAPS log-mel GeMAPS eGeMAPS 

EMO-DB 80.0 79.6 72.6 96.2 94.0 93.9 

eNTERFACE 70.9 67.6 69.9 74.3 74.2 74.2 

FESC 87.5 85.8 85.9 91.2 85.7 90.2 

RAVDESS 84.8 82.1 84.4 86.5 83.5 89.2 

mean 80.8 78.8 78.2 87.0 84.4 86.9 

 

 

and approximately 13 percentage points UAR lower accuracy for arousal when compared

to the mean accuracy) may be explained by the different nature of the corpus compared

to the other corpora. The speakers in eNTERFACE were not professional actors and

the expressed emotions were not predefined, but instead the emotions were evoked from

listening to short stories. Moreover, these speakers were from multiple different nation-

alities. Another observation is that arousal is easier to classify than valence, which has

been noted in, e.g., [5] as well.

The results of Table 5.1 are comparable to those of earlier literature. For example, the

best result for arousal with EMO-DB reaches the level of 96.2% UAR which is similar to

the best results reported in earlier literature for the same corpus (e.g., 97.8% UAR by [32]

and approximately 97% UAR by [17]). However, it should be noted that the division of

data intro training and test sets is not exactly identical between the studies. As can be

observed from the results, SER is a difficult task even when labeled data are available.

5.1.2 Results for the cross-corpus generalization experiments in

the simulation setup

Tables 5.2 and 5.3 show the results for the one-to-one and three-to-one cross-corpus

generalization experiments (Section 4.2.2), respectively. What can be observed from

the one-to-one cross-corpus generalization experiments in Table 5.2 is that there is a

significant drop in the classification accuracies compared to the within-corpus results of

Table 5.1, which indicates that cross-corpus SER is a difficult task. For example, the

best one-to-one cross-corpus generalization classification accuracy for EMO-DB when

classifying arousal is approximately 20 percentage points UAR lower than the respective

result from the within-corpus experiments. Additionally, what can be seen is that it is

difficult to know beforehand that which training corpus and which features work the best

for a given corpus. The lower-dimensional GeMAPS and eGeMAPS features worked

generally better than log-mel features. The only two exceptions were the classification

of arousal with FESC and EMO-DB, where FESC with log-mel features was the best
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training corpus for EMO-DB and vice versa. However, the choice between GeMAPS

and eGeMAPS features and the optimal training corpus is still a difficult task even if log-

mel features were ruled out. Furthermore, there seems to be correlation between better

performance and the train and test corpora belonging to Germanic languages. As can

be seen from Table 5.2, in most of the tests the best training corpus for a corpus with a

Germanic language is also a corpus with a Germanic language.

Table 5.2. The classification accuracies for the simulation corpora in the one-to-one
cross-corpus generalization experiments of the simulation setup. The best classification
accuracy for each corpus is highlighted and the mean value for each of the feature types
for each simulation corpus is given for both valence and arousal.

UAR (%) Valence Arousal 

Test 
corpus 

Training 
corpus 

log-mel GeMAPS eGeMAPS log-mel GeMAPS eGeMAPS 

 
 

EMO-DB 

eNTERFACE 56.8 58.6 61.7 50.2 62.3 55.0 

FESC 53.8 55.8 56.9 76.5 67.5 69.0 

RAVDESS 59.1 54.8 56.6 65.2 74.2 72.4 

mean 56.6 56.4 58.4 64.0 68.0 65.4 

 
 

eNTERFACE 

EMO-DB 52.1 53.1 55.4 52.5 60.1 57.8 

FESC 48.1 43.3 44.4 62.4 61.2 58.6 

RAVDESS 54.0 53.7 56.1 60.1 63.6 62.9 

mean 51.4 50.0 51.9 58.4 61.6 59.8 

 
 

FESC 

EMO-DB 55.7 61.9 60.3 68.9 65.2 66.0 

eNTERFACE 48.4 48.1 50.7 65.9 61.0 48.7 

RAVDESS 56.9 60.8 60.1 68.0 63.0 61.5 

mean 53.7 56.9 57.0 67.6 63.1 58.7 

 
 

RAVDESS 

EMO-DB 53.3 53.3 55.5 62.9 75.7 73.2 

eNTERFACE 53.4 52.3 53.9 61.5 71.9 64.6 

FESC 54.5 63.7 60.8 69.8 70.2 71.2 

mean 53.8 56.4 56.7 64.7 72.6 69.7 

 

The three-to-one cross-corpus generalization results of Table 5.3 further demonstrate the

difficulty of cross-corpus SER discussed in the previous paragraph. As can be seen,

when using three SER corpora as the training set the best classification accuracies drop

even more from those depicted in Table 5.2. For example with FESC, the best result

for valence was 61.9% UAR in the one-to-one experiments, whereas it was 58.7 % UAR

in the three-to-one experiments. As with the one-to-one experiments, the classification

results are on many occasions close to or below chance level, especially when classifying

valence. On average, the eGeMAPS features performed best when classifying valence

(mean accuracy of 57.7% UAR), and the log-mel features gave the best results when

classifying arousal (mean accuracy of 68.3% UAR).

These three-to-one cross-corpus generalization results were also in line with similar ear-

lier studies in the field. For example when classifying valence with EMO-DB as the test

corpus using eGeMAPS features, the achieved classification accuracy is 59.8% UAR,
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Table 5.3. The test corpus accuracies for the three-to-one cross-corpus generalization
experiments of the simulation setup. The highest accuracy feature-wise is highlighted and
the mean value for each of the feature types is given.

UAR (%) Valence Arousal 

Test corpus log-mel GeMAPS eGeMAPS log-mel GeMAPS eGeMAPS 

EMO-DB 53.6 59.3 59.8 68.1 69.6 67.5 

eNTERFACE 49.7 50.0 51.6 62.3 61.7 60.1 

FESC 54.8 56.2 58.7 71.4 63.5 60.8 

RAVDESS 57.4 60.2 60.8 71.5 70.4 70.5 

mean 53.9 56.4 57.7 68.3 66.3 64.7 

 

 

 
whereas an accuracy of 60.5% UAR was achieved by [24] with EMO-DB using the same

features. However, it should be pointed out that the training corpora between the studies

were different. Also, for example when classifying arousal with eNTERFACE as the test

corpus using log-mel features, the obtained accuracy of 62.3% UAR is close the median

accuracy of approximately 64% UAR by [17] and the accuracy of 58.2% UAR by [20], even

though the training corpora and the used features were different between the studies.

When comparing the best results of the one-to-one and three-to-one cross-corpus gen-

eralization experiments, the only case when an SVM trained with three SER corpora beat

the SVMs trained on individual corpora was when classifying arousal with FESC when

using the log-mel features. However, when comparing the results of the three-to-one ex-

periments and the mean values of the one-to-one results, the three-to-one setting gives

better results overall. This suggests that a training set consisting of multiple SER corpora

yields a better classifier in general than a training set consisting of an individual randomly

chosen SER corpus. Furthermore, the three-to-one setting is a safer choice than the

one-to-one setting since it is difficult to know beforehand that which corpus and which

features should be used in the one-to-one setting to obtain better performance than in the

three-to-one setting. A further study would be needed to better understand the selection

of optimal features and an optimal training corpus or corpora for cross-corpus general-

ization. What can be deduced from both cross-corpus generalization experiments is that

there is clearly a need for other methods such as AL or DA in order to obtain better re-

sults, particularly with more complex SER data such as real-life recordings where the aim

is to interpret the emotional state of the speaker.

5.1.3 Results for the active learning experiments in the simulation

setup

Tables 5.4 and 5.5 present the results for the AL experiments of Section 4.2.3 for va-

lence and arousal, respectively. The given classification accuracies for different labeling
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budgets are reported both with and without the cluster labels. Since the medoids are

initialized at random which affects the results, the average of the classification accuracies

of five consecutive experiments is reported together with the SEM (Equation 4.1) where

n = 5 in our case.

Table 5.4. The results for the AL tests for valence in the simulation setup, both with and
without the cluster labels. The mean accuracy of five experiments and the SEM are given,
where the highest mean accuracy for each labeling budget is highlighted.

UAR (%), mean accuracy ± SEM Valence 

Corpus Data 
annotated 

Annotated 
samples 

Cluster 
labels 

log-mel GeMAPS eGeMAPS 

 
 
 

EMO-DB 

 

3% 
 

16 
No 59.9 ± 1.7 54.2 ± 1.1 54.8 ± 1.1 

Yes 61.5 ± 1.8 56.4 ± 2.1 58.3 ± 1.6 
 

6% 
 

32 
No 66.7 ± 2.2 69.6 ± 1.4 61.8 ± 0.9 

Yes 67.0 ± 0.9 66.9 ± 1.4 66.3 ± 2.0 
 

10% 
 

54 
No 70.6 ± 2.2 69.6 ± 2.0 66.0 ± 2.3 

Yes 67.6 ± 2.0 63.9 ± 0.9 65.3 ± 2.2 

 
 
 

eNTERFACE 

 

3% 
 

39 
No 50.9 ± 0.2 49.3 ± 0.8 49.3 ± 0.6 

Yes 54.1 ± 0.7 50.3 ± 0.3 51.9 ± 0.5 
 

6% 
 

77 
No 54.6 ± 0.9 50.9 ± 0.4 52.8 ± 1.0 

Yes 56.5 ± 0.9 53.8 ± 0.4 57.1 ± 0.7 
 

10% 
 

129 
No 55.7 ± 0.9 54.1 ± 0.9 56.0 ± 0.4 

Yes 60.2 ± 0.6 52.8 ± 0.3 56.1 ± 0.8 

 
 
 

FESC 

 

3% 
 

128 
No 64.7 ± 0.6 66.6 ± 0.6 66.1 ± 0.6 

Yes 65.7 ± 0.1 68.7 ± 0.5 69.3 ± 0.2 
 

6% 
 

255 
No 70.9 ± 0.4 71.1 ± 0.4 70.5 ± 0.5 

Yes 71.5 ± 0.7 73.1 ± 0.5 73.0 ± 0.9 
 

10% 
 

425 
No 74.4 ± 0.2 74.7 ± 0.5 76.3 ± 0.5 

Yes 73.6 ± 0.2 74.8 ± 0.5 73.8 ± 0.4 

 
 
 

RAVDESS 

 

3% 
 

43 
No 63.3 ± 1.5 58.3 ± 1.1 54.5 ± 0.9 

Yes 62.7 ± 1.2 60.2 ± 1.8 60.8 ± 2.1 
 

6% 
 

86 
No 63.5 ± 0.7 64.0 ± 0.8 63.4 ± 0.4 

Yes 63.9 ± 0.7 64.1 ± 0.3 62.1 ± 0.5 
 

10% 
 

144 
No 71.5 ± 0.9 68.3 ± 1.0 66.8 ± 0.8 

Yes 70.6 ± 0.9 66.8 ± 0.8 66.9 ± 0.5 

 

 

The results of the AL tests in Tables 5.4 and 5.5 show the effect of the increase in the

number of annotations. Generally, when comparing labeling budgets of 3% and 6%,

there is a significant increase (e.g., approximately 5.2 percentage points UAR on average

for valence) in classification accuracy when the number of annotations is doubled. In

addition, there is a major increase in classification accuracy when comparing labeling

budgets of 6% and 10% (e.g., approximately 2.5 percentage points UAR on average for

valence), albeit this increase is not as large as when comparing labeling budgets of 3%

and 6%. It is also worth pointing out that the classification accuracies do not increase

monotonically when increasing the number of annotations. In some of the tests there

was no benefit when increasing the labeling budget from 3% to 6%, but in all cases there

was an increase in accuracy when increasing the labeling budget from 3% to 10%. This
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suggests that for some corpora and with certain features there is a critical number of

labels that needs to be exceeded in order to increase the classification accuracy when

using MAL and the chosen dissimilarity metric.

Table 5.5. The results for the AL tests for arousal in the simulation setup, both with and
without the cluster labels. The mean accuracy of five experiments and the SEM are given,
where the highest mean accuracy for each labeling budget is highlighted.

UAR (%), mean accuracy ± SEM Arousal 

Corpus Data 
annotated 

Annotated 
samples 

Cluster 
labels 

log-mel GeMAPS eGeMAPS 

 
 
 

EMO-DB 

 

3% 
 

16 
No 83.5 ± 0.8 83.3 ± 1.0 82.0 ± 1.3 

Yes 88.5 ± 0.2 79.2 ± 0.9 80.1 ± 0.8 
 

6% 
 

32 
No 90.1 ± 0.5 82.2 ± 0.7 81.6 ± 0.7 

Yes 93.8 ± 0.6 87.7 ± 1.1 89.0 ± 0.9 
 

10% 
 

54 
No 94.1 ± 0.8 85.6 ± 1.0 84.2 ± 1.3 

Yes 92.3 ± 0.6 85.0 ± 0.3 85.5 ± 0.5 

 
 
 

eNTERFACE 

 

3% 
 

39 
No 56.6 ± 1.6 61.6 ± 0.2 65.6 ± 0.8 

Yes 58.8 ± 1.4 64.8 ± 1.4 63.0 ± 1.6 
 

6% 
 

77 
No 55.3 ± 0.9 63.8 ± 0.9 61.6 ± 1.1 

Yes 58.7 ± 0.1 61.5 ± 0.6 61.4 ± 0.5 
 

10% 
 

129 
No 63.5 ± 1.1 68.6 ± 0.5 69.3 ± 0.3 

Yes 66.2 ± 0.4 68.9 ± 0.5 66.2 ± 0.8 

 
 
 

FESC 

 

3% 
 

128 
No 71.8 ± 0.4 65.3 ± 0.7 72.4 ± 1.1 

Yes 73.2 ± 0.1 70.0 ± 0.6 73.8 ± 0.6 
 

6% 
 

255 
No 77.5 ± 0.4 73.5 ± 0.5 76.7 ± 0.7 

Yes 79.6 ± 0.3 74.3 ± 0.7 78.0 ± 0.5 
 

10% 
 

425 
No 82.0 ± 0.4 74.3 ± 0.3 78.3 ± 0.2 

Yes 83.4 ± 0.2 77.9 ± 0.3 80.2 ± 0.2 

 
 
 

RAVDESS 

 

3% 
 

43 
No 77.8 ± 0.4 76.8 ± 0.2 75.7 ± 1.1 

Yes 76.6 ± 0.8 76.1 ± 0.3 75.0 ± 0.6 
 

6% 
 

86 
No 79.7 ± 0.1 77.0 ± 0.8 78.1 ± 0.8 

Yes 77.1 ± 0.8 74.9 ± 0.3 73.7 ± 0.8 
 

10% 
 

144 
No 82.1 ± 0.4 78.9 ± 0.7 78.6 ± 0.4 

Yes 80.2 ± 0.6 77.1 ± 0.5 76.9 ± 0.9 

 

 

 

 

For the majority of the AL experiments, the use of all medoid cluster samples as labeled

data (instead of just using the medoids as samples) led to accuracy gains. This gain was

most noticeable and frequent with smaller labeling budgets. For example with valence,

the mean classification accuracy increased by approximately 2.3 percentage points UAR

when cluster labels were used. However, already when the number of annotations was

10% of the total number of samples in a corpus, more than half of the accuracies were

higher without the cluster labels. Furthermore, the gain in accuracy was mostly negligible

for the cases when it was beneficial to use the cluster labels when the labeling budget

was 10%. This indicates that in many cases the cluster labels are able to provide an

increase in accuracy, but most likely in situations when the labeling budget is very small.

An important observation is that the use of cluster labels did not work well with all of the

simulation corpora. This can be seen most evidently with the experiments conducted on
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RAVDESS where the use of the cluster labels provided inferior results for the majority of

classifications compared to not using the cluster labels. One explanation to this may be

the choice of the dissimilarity measure that was used with MAL, which was the Pearson

distance for the autoencoder-compressed log-mel features. Since one of the principal

ideas of the AL experiments was to find a dissimilarity measure that performs well in

general with the simulation corpora, it is possible that the chosen dissimilarity measure

does not work well with all SER corpora. An optimal solution accuracy-wise would be

to find the best-performing dissimilarity measure for all corpora and for both valence and

arousal individually.

Overall, when comparing different features in the AL experiments the results varied largely

depending on the corpus, the classification task, and the number of annotations. What

can be observed is that the AL results did not follow the within-corpus experiments of Ta-

ble 5.1, where the log-mel features performed the best in almost all experiments for both

valence and arousal. This implies that each of the features needs to be tested separately

in order to find the best-performing classifier for the AL-annotated data, which can easily

lead to problems with overfitting when only a small amount of AL data are available for

training and performance evaluation. Also, the comparison between the AL experiments

and the within-corpus baseline results reveals that MAL with a labeling budget of 10%

gives on average approximately 11 percentage points UAR lower accuracy for valence

and 6 percentage points UAR lower accuracy for arousal. On the other hand, the com-

parison between MAL with a labeling budget of 10% and the cross-corpus generalization

experiments gives on average approximately 7 percentage points UAR higher accuracy

for valence and approximately 10 percentage points UAR higher accuracy for arousal for

MAL.

Furthermore, we tested the classification accuracy for valence and arousal using labeling

budgets of L ∈ [2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 30, 40]% of the number of samples in each

simulation corpus to better showcase the dependency between the labeling budget and

the classification accuracy. This was done for the log-mel features, which performed the

best on average for the AL tests. The figures representing these tests are presented in

Figures 5.1 and 5.2. In the figures, the mean classification accuracy of five experiments

and the SEM is reported to counter the effect of randomness in the medoid initialization.

Also, the within-corpus classification accuracy for the log-mel features is included in the

figures to give a reference accuracy for cases when the labels for the whole training data

are available. The cluster labels of MAL are not used in the experiments regarding the

figures.

Again, it can be clearly seen from Figures 5.1 and 5.2 that on average the classification

accuracy grows most rapidly when the labeling budget is small, and the growth starts to

slow down as the number of annotations increases. This further emphasizes the impor-

tance of increasing the number of annotations when the number of annotated samples
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Figure 5.1. The classification accuracy on the test set for valence with the simulation
corpora using different labeling budgets.

is small in order to obtain a better classifier. When investigating further, for the majority

of the simulation corpora a labeling budget of approximately 5% is already sufficient to

provide a higher accuracy for both valence and arousal than the best individual results

found in the cross-corpus generalization experiments in Section 5.1.2. Overall, a labeling

budget of 40% of the number of samples in a corpus leads to classifier performance that

is close to the within-corpus baseline results.

An important observation from Figures 5.1 and 5.2 is that, in all of the cases, the accuracy

does not grow monotonically when the number of annotated samples increases. Another

unintuitive finding is that in many cases the SEM is larger with more annotations than it

is with less annotations. Intuitively, the classification accuracy should grow monotonically

when the number of annotations is increased and the variance of the accuracies should

decrease when more samples are annotated. However, this may be due to the selected

dissimilarity measure and the properties of the MAL method. As already stated before,

the dissimilarity measure used in the present study was selected because it performed

the best on average for all simulation corpora and for both valence and arousal. However,

the chosen metric does not perform equally well for all of the simulation corpora. By using

the chosen metric together with farthest-first traversal, the initial medoids chosen by the

algorithm should correspond to data points which lie in the distance space as diversely

as possible. Since the chosen distance function does not perform well with some of the

corpora, sometimes the medoids chosen by the algorithm are not well representative of

the test data sample distribution after the algorithm has chosen the most obviously dis-
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Figure 5.2. The classification accuracy on the test set for arousal with the simulation
corpora using different labeling budgets.

tinct data points according to the distance measure. In other words, MAL systematically

selects poor medoid candidates after a number of samples. This can perhaps be seen

most evidently with the classification of valence with EMO-DB in Figure 5.1, where MAL is

able to select an optimal subset of the training data which even outperforms the baseline

result, after which the accuracy starts to decrease as the number of annotations grows.

At other times, the first medoids chosen by the algorithm are not well representative of

the test data, but then after some number of samples the chosen medoids start to be

representative of the test data. An example of this can be seen with the classification

of arousal with eNTERFACE in Figure 5.2, where, at first, the accuracy plot does not

grow monotonically and the variance of the accuracies varies considerably. However,

after approximately 100 labeled samples the plot starts to grow almost monotonically and

the variance of the accuracies does not change significantly as the number on annotated

samples increases. Out of the simulation corpora, the selected dissimilarity measure

performed the best with FESC. This can be seen both from the behavior of the mean

value (almost monotonically increasing for both valence and arousal) and the relatively

small values for the SEM throughout the plots regarding FESC in Figures 5.1 and 5.2.
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5.1.4 Results for the domain adaptation experiments in the

simulation setup

The results for the one-to-one and three-to-one DA experiments are shown in Tables 5.6

and 5.7, respectively. As can be seen from both tables, the semi-supervised variant of

WDA consistently beat the unsupervised variant in all DA experiments. This implies that

the criterion to select the optimal adapted model is better in the semi-supervised variant.

In the unsupervised variant, there is no specific method to determine when to stop the

adaptation process other than the saturation of the first term in Equation 3.5. Although the

saturation of this term is one way of describing the state of the adaptation process, it does

not guarantee an optimal point at which to stop the process since the optimal state of the

adaptation can also be before or after the saturation of the term. Moreover, the adaptation

process is not guaranteed to succeed even if the term saturates. However, by carefully

selecting the hyperparameters for the adaptation process, it is possible to obtain a suc-

cessful adaptation for the vast majority of adaptation iterations. In the semi-supervised

variant, the classification accuracy on the subset of the target corpus data is clearly a

better criterion to select an optimal adapted model during the adaptation process.

Table 5.6. The DA test results for the one-to-one adaptation setting in the simulation
setup, both for the unsupervised and the semi-supervised variant of WDA. The best clas-
sification accuracy for each target corpus is highlighted for valence and arousal.

UAR (%) Valence Arousal 

Target 
corpus 

Source 
corpus 

unsupervised semi-
supervised 

unsupervised semi-
supervised 

 
EMO-DB 

eNTERFACE 65.9 67.1 62.1 64.2 

FESC 58.9 60.3 78.1 78.9 

RAVDESS 65.8 66.3 79.7 82.6 

 
eNTERFACE 

EMO-DB 49.0 51.8 59.0 61.1 

FESC 43.6 45.4 59.8 60.3 

RAVDESS 50.1 52.7 64.0 64.4 

 
FESC 

EMO-DB 59.6 60.4 70.7 73.4 

eNTERFACE 46.1 49.4 69.3 70.1 

RAVDESS 62.5 63.6 72.2 74.2 

 
RAVDESS 

EMO-DB 52.1 52.6 73.5 75.8 

eNTERFACE 56.2 57.9 74.3 76.6 

FESC 61.8 62.0 75.5 77.1 

 

Comparing the DA experiments and the cross-corpus generalization experiments, the

one-to-one adaptation results for the unsupervised variant of WDA surpassed the results

of the one-to-one cross-corpus generalization tests in almost all the scenarios. Addition-

ally, the three-to-one adaptation results for the unsupervised variant were better than the

three-to-one cross-corpus generalization results in the majority of different cross-corpus

generalization settings. This suggests that DA can be a practical tool to assist in the



69

utilization of some SER corpora to provide classification models for other SER corpora

when labels are scarce or there are no labels available.

Table 5.7. The DA test results for the three-to-one adaptation setting in the simulation
setup, both for the unsupervised and the semi-supervised variant of WDA. The best clas-
sification accuracy for each target corpus is highlighted for valence and arousal.

UAR (%) Valence Arousal 

Target 
corpus 

unsupervised semi-
supervised 

unsupervised semi-
supervised 

EMO-DB 55.4 56.3 69.5 70.3 

eNTERFACE 51.9 52.3 61.7 62.2 

FESC 62.4 63.5 72.8 74.1 

RAVDESS 62.0 62.4 77.7 78.0 

 

 

 

However, when comparing the DA results and the AL results, AL with a labeling budget

of 3% was almost always better than the semi-supervised variant of WDA which in turn

was consistently better than the unsupervised variant. An important sidenote is that the

semi-supervised variant of WDA utilized a labeling budget of 5%. This suggests that it is

often more beneficial to annotate data using MAL and use these annotations directly for

training a model instead of annotating data for DA purposes.

It should be noted that the DA results presented here are not the most optimal results

corpus-wise. The aim was not to search for optimal network structures for each adaptation

setting individually. Instead, the goal was to test the performance of DA using network

structures which perform well in all settings. Also, it should be noted that the inclusion of

eNTERFACE in the three-to-one adaptation setting worsened the results slightly in all of

the three-to-one DA experiments where eNTERFACE was included in the source corpora.

However, the corpus was decided not to be left out of the three-to-one DA experiments

to avoid cherry-picking of the most suitable corpora, since the optimal source corpora for

any new corpus cannot be known beforehand.

5.1.5 Summary of the results of the simulation setup

Figure 5.3 summarizes the results of the simulation setup for the log-mel features. These

features were selected for the summary since they were used in all of the tests, and, in

addition, they were the best-performing features on average. For simplicity, the classifica-

tion accuracies for valence and arousal have been merged and averaged for each distinct

method. The results involving MAL are shown as a function of annotated data samples,

whereas the other results are shown as a reference.

The one-to-one scenarios for the cross-corpus generalization and DA tests have been left

out of the figure, since their three-to-one counterparts gave better results on average. An

interesting observation is that, although the majority of AL tests with a labeling budget of
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Figure 5.3. The averaged simulation setup results for valence and arousal for the log-
mel features. The results involving MAL are shown as a function of the percentage of
annotated data samples, other results are shown as a reference.

10% led to better performance without the cluster labels, the average accuracy of the AL

tests with a labeling budget of 10% is higher with the cluster labels than without them.

Based on the results of the simulation setup altogether, MAL is superior compared to

cross-corpus generalization and WDA when there are annotations available and number

of annotations is scarce compared to the overall size of the dataset. When comparing

WDA and cross-corpus generalization, WDA provided better results on average. Further-

more, the unsupervised variant of WDA worked better than cross-corpus generalization

when there were no labels available.

5.2 Results on NICU-A

The results for the AL-based experiments for NICU-A are shown in Table 5.8. The given

accuracies are the classification accuracies on the gold standard data for the three feature

types in three different classification scenarios.

In the AL-based experiments, contrary to the simulation setup results of Tables 5.4 and

5.5, the binary classification accuracy for valence was (on average) higher than it was for

arousal. This may be explained by the fact that the kappa score for arousal was lower

than the kappa score of valence in both the training data and the gold standard data.

For both valence and arousal, the GeMAPS and eGeMAPS features achieved a higher

mean accuracy than the log-mel features. Moreover, it can be observed that the use of

cluster labels in MAL increased the classification accuracy in binary classifications for
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Table 5.8. The classification accuracies for the AL-based experiments for NICU-A. The
highest accuracy in each scenario is highlighted.

UAR (%) 
 

Valence 
(2 classes) 

 

Valence 
(3 classes) 

 
Arousal Cluster 

labels 
Features 

 
No 

log-mel 70.9 44.2 68.5 

GeMAPS 71.0 48.8 69.3 

eGeMAPS 71.9 53.9 65.8 

 
Yes 

log-mel 68.2 48.1 67.0 

GeMAPS 73.4 45.5 68.9 

eGeMAPS 72.9 45.0 67.6 

 

 the GeMAPS and eGeMAPS features with an average of approximately 1.2 percentage

points UAR. Furthermore, the three-class classification accuracy for valence was higher

than chance level (mean 47.6% UAR) but considerably lower than that of the two-class

classification for valence (mean 71.4% UAR). In addition to the classification task being

more difficult in itself, the low number of negative training samples in the three-class

setting was not only highly imbalanced compared to the number of neutral and positive

training samples (see Table 4.1), but also insufficient for the SVM classifier to learn a

proper classification bound between the three classes.

Table 5.9. The classification accuracies for the cross-corpus generalization experiments
for NICU-A as the test corpus. The highest accuracy for valence and arousal is high-
lighted.

UAR (%) Valence Arousal 

Training corpus log-mel GeMAPS eGeMAPS log-mel GeMAPS eGeMAPS 

EMO-DB 48.5 53.8 53.4 64.1 63.7 62.7 

eNTERFACE 56.8 52.7 50.2 63.1 64.3 64.1 

FESC 45.3 57.3 54.9 56.3 68.3 70.8 

RAVDESS 50.4 53.8 53.3 64.3 62.0 58.7 

All simulation corpora 42.9 54.9 56.8 61.3 64.4 65.5 

 

 

 
Table 5.9 presents the one-to-one and four-to-one cross-corpus generalization results for

all three feature types. The cross-corpus generalization results show that there is a se-

vere mismatch between the statistical properties of the data of the simulation corpora

and NICU-A when classifying valence. For example, this can be observed when com-

paring the best result for valence in the cross-corpus generalization experiments (57.3%

UAR) and the best result for valence in the AL-based experiments (73.4% UAR). For va-

lence, the lower-dimensional GeMAPS and eGeMAPS features clearly outperformed the

log-mel features but the results were distinctly lower than in the AL-based experiments.

For arousal, there was plenty of variation in the best-performing features for the different

training corpora. Surprisingly, the classification accuracy for arousal with FESC as the
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training corpus together with the eGeMAPS features (70.8% UAR) was higher than the

best accuracy from the AL-based experiments (69.3% UAR). This implies that the statis-

tical properties of FESC together with the eGeMAPS features had a smaller mismatch

to the gold standard data compared to the labeled training data of NICU-A using the

eGeMAPS features. However, it is likely that this might have partially happened due to

pure coincidence since the respective accuracies for GeMAPS and log-mel features are

higher in the results of Table 5.8 than they are in the results of FESC in Table 5.9.

Table 5.10. The classification accuracies for the DA-based experiments for NICU-A as
the target corpus. The highest accuracy for valence and arousal is highlighted.

UAR (%) Valence Arousal 

Source corpus unsupervised semi-
supervised 

unsupervised semi-
supervised 

EMO-DB 49.7 51.3 71.0 73.2 

eNTERFACE 57.0 58.0 67.2 68.6 

FESC 46.9 47.4 61.6 63.1 

RAVDESS 57.1 57.7 66.5 68.4 

All simulation corpora 53.2 53.5 71.0 71.3 

 

 

 

Table 5.10 shows the results of the one-to-one and four-to-one DA experiments for NICU-

A. The DA-based classification results are better than the results of the cross-corpus

generalization experiments for the most part, but, e.g., the classification model for va-

lence with EMO-DB and FESC was clearly not able to adapt properly to NICU-A data.

However, considering that the input features to the DA model were the log-mel features,

both the unsupervised and the semi-supervised variant of WDA were consistently able

to outperform the results of the cross-corpus generalization experiments regarding the

log-mel features in Table 5.9. Similar to the results of the DA-based experiments in the

simulation setup, the semi-supervised variant of WDA was consistently better than the

unsupervised variant with an average gain of approximately 1.1 percentage points UAR.

For valence, the DA method did not provide a major improvement over the classification

accuracies of the cross-corpus generalization experiments, but for arousal some of the

model adaptations yielded a significant improvement over the AL and cross-corpus gen-

eralization results of Tables 5.8 and 5.9, respectively. Unexpectedly, the best adapted

model for arousal outperformed all other methods tested with NICU-A with an accuracy

of 73.2% UAR.

For valence, the best-performing classification model for the gold standard data was an

SVM that was trained with GeMAPS features using the cluster labels from MAL. For

arousal, the best-performing model was a neural network that was adapted to NICU-

A data using semi-supervised WDA with EMO-DB as the source corpus. These models

achieved classification accuracies of 73.4% UAR and 73.2% UAR for valence and arousal,

respectively. To further inspect the reliability of these models, the confusion matrices for

the models are presented in Figure 5.4. As can be seen from the figure, there are no



73

neutral positive
Predicted label

neutral

positive

T
ru

e
la

b
el

0.760 0.240

0.292 0.708

Valence

0.3

0.4

0.5

0.6

0.7

(a) Confusion matrix for valence.

low high
Predicted label

low

high

T
ru

e
la

b
el

0.723 0.277

0.258 0.742

Arousal

0.3

0.4

0.5

0.6

0.7

(b) Confusion matrix for arousal.

Figure 5.4. The normalized confusion matrices for valence and arousal using the best-
performing classification models for NICU-A. For valence, the best model was an SVM
trained with GeMAPS features using the cluster labels from MAL. For arousal, the best
model was a neural network that was adapted using semi-supervised WDA with EMO-DB
as the source corpus.

major differences between the accuracies on both the diagonal and the off-diagonal. This

indicates that these models do not systematically favor one label over the other when

performing predictions.

5.3 Discussion of the results

Cross-corpus generalization, AL, and DA were compared for SER in the simulation setup

using four already existing SER corpora in cases with little to no labeled data in the test

corpus. The simplest of these methods, cross-corpus generalization, did not work very

well in the experiments. As can be seen from the summary of the simulation setup results

of Figure 5.3, training a classification model with one or multiple SER corpora and using

the model on some new corpus is not generally the best solution to address the absence

of labeled data in SER. This was also the case in the extensive cross-corpus SER study

conducted by Schuller et al. [17], where cross-corpus generalization led to mediocre

SER performance. What was observed in the present experiments was that for cross-

corpus generalization, it is better (on average) to combine multiple corpora than to use

one corpus as the training set when applying the model to new data from a new domain.

By using alternative methods such as AL and DA, the performance of SER models in

the simulation setup was increased in cases with little to no labeled data compared to

the results of cross-corpus generalization. For situations when there are no labeled data

available, the unsupervised variant of WDA was the best alternative out of the tested

methods. On the other hand, when a small number of labeled samples were available,

MAL turned out to be the best method. By looking at the summary of the simulation setup
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results of Figure 5.3, MAL outperformed both the unsupervised variant of WDA and its

better-performing semi-supervised variant already with a labeling budget of 3%. What

can also be observed from Figure 5.3 is that the performance of MAL increases as the

number of annotated samples increases.

When comparing the results of the simulation setup and the results on NICU-A, there were

notable differences in the results of the two setups. Although the results for valence were

better in the AL-based tests than in the cross-corpus generalization and DA tests, the

same trend did not follow for arousal. In the tests regarding arousal for NICU-A, the best-

performing models in cross-corpus generalization and DA provided better classification

performance than the best-performing models in the AL-based tests.

For the best-performing model in cross-corpus generalization outperforming the best

model in the AL-based tests with NICU-A, it is probable that this might have partially hap-

pened due to pure coincidence based on the results of Table 5.9. However, there might

be several reasons why the best-performing DA model outperformed the best AL-based

model, contrary to the results of the simulation setup. One explaining factor for this might

be that the MAL algorithm benefits from consistent labels. Annotating similar clusters

differently during the annotation process of MAL might lead to strong confusion between

the annotated classes, which was also observed in [78]. Therefore, it might be that the

relatively low inter-rater reliability score with NICU-A (Section 4.1.6) lowered the classi-

fication performance with MAL more than it did with WDA. Another explaining factor for

the differences between the findings of the simulation experiments and the experiments

with NICU-A could be that the expressed emotions are realistic in NICU-A, whereas the

expressed emotions were acted in the majority of the simulation corpora. This might

potentially degrade the performance of MAL more compared to WDA because realistic

emotions might be more difficult to be grouped together into similar clusters than acted

emotions. This is because emotional categories in acted emotions are more evidently

distinguishable from each other than they are with realistic emotions [3, 16].

Regarding the best-performing classification models on NICU-A, the best model for va-

lence was an SVM that was trained with GeMAPS features using the cluster labels from

MAL. For arousal, the best model was a neural network classifier that was adapted to

NICU-A data using semi-supervised WDA with EMO-DB as the source corpus. Based on

the results of the best-performing models on NICU-A in Figure 5.4, it seems that these

models are suitable for analyzing the emotional content of speech for the child-centered

audio recordings recorded in a NICU at Turku University Hospital.

As for the most suitable features, it was observed that the log-mel features achieved

the best accuracy on average. The performances of the low-dimensional GeMAPS and

eGeMAPS features were comparable to, and, in many cases, even better than the higher-

dimensional log-mel features. This was also in line with the results of Eyben et al. [32],
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who found that the low-dimensional GeMAPS and eGeMAPS features surpassed or came

close to the performance of many high-dimensional feature sets in SER.

When comparing the time that it takes to fine-tune neural network architectures and hy-

perparameters of WDA and the time that it takes to annotate samples for MAL, it is con-

siderably faster to annotate enough samples (approximately 3% of the size of the corpus)

for any of the simulation corpora for MAL to outperform WDA than it is to fine-tune WDA to

work well with any given target corpus. However, with very large datasets such as NICU-

A with 129,007 unlabeled samples, it takes approximately twice the time to annotate 3%

of the data than it takes to fine-tune neural network architectures and hyperparameters

for WDA. This states that if there is not enough time and resources to annotate a sig-

nificant number of samples, WDA is the best alternative of the tested methods. On the

other hand, already with a very moderate human annotation effort, MAL leads to sim-

ilar or better performance than cross-corpus generalization and WDA. What should be

noted is that although a labeled subset of each target corpus was used in the present ex-

periments to validate the success of the adaptation for WDA, it is possible to find optimal

hyperparameters for WDA even without labeled data from the target corpus, albeit it takes

a somewhat longer time to fine-tune the hyperparameters without any labeled data from

the target corpus.

Finally, it is important to point out that although many unsupervised and semi-supervised

AL and DA methods are considered to have little to no time expenses (e.g., [72], [78],

[88], [104], [105], [106], [107]), what is almost always left out of consideration in AL and

DA literature is that the development and implementation of these models can be very

time-consuming. Experiences from the present study suggest that better results could

be achieved if the time spent on developing and fine-tuning these models would be used

to simply annotate data of the target corpus for use in traditional supervised learning

methods. However, testing and developing unsupervised and semi-supervised AL and

DA methods is essential for these methods to be further developed.
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6. GENERAL DISCUSSION

In the present work, a system which is able to perform large-scale analysis of the emo-

tional content of real-life child-centered audio recordings from a NICU was created. Cross-

corpus generalization, AL, and DA were examined as mechanisms for deploying a SER

system for a novel dataset that has no a priori labels for emotion classes of interest. For

situations when there are no labeled data available for the target corpus, the WGAN-

based DA method used in the present experiments outperformed the cross-corpus gen-

eralization approach. When classifying valence, with a moderate number of samples la-

beled, the k-medoids clustering-based AL method used in the present study was superior

compared to both cross-corpus generalization and DA. This applied both to simulations

conducted on already existing SER corpora and to experiments conducted on the primary

audio material of the study, NICU-A. However, the same trend followed for the classifica-

tion of arousal only in the simulations but not for the experiments on NICU-A, where DA

resulted in slightly better results compared to AL. Furthermore, the results showcase that

the earlier proposed MAL [78] for AL and WDA [90] for DA can be successfully applied to

real-life SER scenarios.

In order to further improve the cross-corpus generalization and DA performance of the

present experiments, a separate study should be conducted on how to select optimal

training or source corpora for the specific methods used in the present experiments. Ad-

ditionally, the cross-corpus generalization experiments revealed that it is in general better

to combine multiple SER corpora than it is to use only one corpus as training set. There-

fore, a larger number of SER corpora as the training set than what was used in the present

experiments should also be tested. In addition, utilizing pretrained SER models should

be further investigated.

Other future improvements are to test alternative AL and DA methods. For example, CNN-

based image processing DA methods could be applied directly for multidimensional audio

feature representations such as log-mel spectrograms. Also, other feature representa-

tions than the features used in the present experiments should be studied. Furthermore,

what should be tested in the simulation setup is that different levels of noise could be

added to the simulated annotations in the AL method, since the current setup assumed

that the annotator is always correct. Thereby e.g. the dissimilarity metric in the AL method

could be further developed to be more robust to labeling noise.
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One observation with NICU-A was that the annotations had a relatively low inter-rater

agreement rate. Although the annotation task for the emotional content of real-life audio

recordings is in itself difficult, there is room for improvement in the annotation process

of the present study. To obtain more consistent labels between different annotators in

related future studies, more thorough and unequivocal instructions on how to determine

that which label should be given for each utterance should be given for each annotator.

In addition, the annotators should discuss together about samples that have turned out to

be difficult to annotate in order to find a common policy on how to annotate these kinds

of samples. A comprehensive set of audio samples and their respective ground truth

labels that would be given as self-study material for each annotator before performing

annotations could also help in establishing common ground for the annotation process

between each annotator.

For future SER research, larger annotated datasets are required in order to better uti-

lize recent state-of-the-art models which are highly data-driven [11]. Even though creat-

ing large SER datasets manually is difficult and expensive, improving existing machine-

learning methods and developing new reliable automated tools for audio analysis can be

a solution to obtain large-scale annotated SER corpora [4, 11]. Also, realistic large-scale

data should be used more often when developing new SER methods since results on

small-scale acted data from clean recording environments can be highly optimistic com-

pared to real-life performance [3, 17, 40]. Besides, some models that are created using

acted speech might not even work with real-life data since, in addition to different record-

ing conditions, there is a severe mismatch between the way emotions are portrayed in

acted speech and realistic speech [41, 42, 43].
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APPENDIX A: THE PROCEDURE FOR SPLITTING AUDIO

SAMPLES OF FESC INTO UTTERANCES

First, the audio signal was highpass-filtered with 50 Hz as the passband cut-off frequency

to remove noise. Second, after filtering, the short-time energy (STE) of the signal was

calculated using a 250-ms sliding Hamming window. The STE of a time domain signal is

defined as

STE =
N−1∑︂
n=0

[x(n)w(m− n)]2 , (A.1)

where x(n) is the time domain signal, w(n) is the windowing function, m is the time index

of the block of samples in the windowing function, and N is the total number of samples in

the time domain signal [2]. Third, after calculating the STE of the signal, median filtering

was performed with a window length of 1.0 seconds to smooth out the STE. Fourth,

a threshold of 1
40

of the median value of the median filtered STE was chosen as an

indication of speech. The time instants with an STE greater or equal to this threshold

were considered as time instants with speech. Because speech does not typically contain

pauses that are longer than 250 ms [108], a silence threshold of 250 ms was chosen. If

speech was not present for more than 250 ms, it was considered as a pause in speech.

Finally, the audio clips were split into separate utterances at the midpoints of the pauses

in speech. To avoid having audio clips that don’t contain speech, e.g. a person inhaling

or exhaling, any audio clips that were shorter than 1.0 seconds were discarded.
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