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1. INTRODUCTION 

Q-learning is a reinforcement learning method, originally 
developed by Watkins (1989), that observes system responses 
to given actions and uses this data to learn an optimal policy. 
Recent studies have used Q-learning to learn the model-free 
optimal feedback control in simulated environments (e.g. 
Lewis et al., 2012; Rizvi and Lin, 2017). Q-learning is studied 
in both continuous time problems and discrete-time problems. 
Q-learning and recent literature is reviewed in more detail e.g. 
by Rizvi and Lin (2017) and Kiumarsi et al (2014). However, 
only few Q-learning studies use data from real-time 
applications (e.g. ten Hagen and Kröse, 2003; Radac and 
Precup, 2018).  This study focuses on discrete-time systems 
and real-time Q-learning applications. 

It is known, that the analog-to-digital conversion causes 
quantization error in the measurements (Bennett, 1948; Gray 
and Neuhoff, 1998). Multiple studies are conducted on model-
based control and system identification with quantized 
measurements (Curry, 1970; Delchamps, 1990; Wang et al., 
2010). Schoukens et al. (1988) and Roinila et al. (2010) among 
others, study excitation signals in identification applications. 
According to them, identification results could be improved 
with an excitation signal that has a large amplitude to yield 
larger signal-to-noise-ratio or by choosing the excitation 
within the frequency range of the system. However, 
quantization in model-free optimal control has not been widely 
studied yet. Zhao et al. (2015) have studied quantization in 
finite horizon optimization problem. They model the 
quantization error into the Q-learning algorithm and solve 
model-free the optimal control problem.  

In this paper, the infinite horizon optimal control problem is 
solved using quantized control input and measurements. A 
new method for quantization error reduction is developed 
using only the exploration noise and the sample time. The rest 
of the paper is organized as follows. Q-learning for partially 
observable linear systems is reviewed in Section 2. The 
physical system studied, Quanser QUBE-Servo 2, is presented 

in Section 3. In Section 4, the connection between the 
quantization error, the exploration noise and the sample time 
is studied and a method for reducing the quantization error is 
developed. The method is illustrated both in a simulated and a 
real-time environment in Section 5. Conclusions are given in 
Section 6. 

2. Q-LEARNING FOR  PARTIALLY OBSERVABLE 
LINEAR SYSTEMS 

Linear time-invariant system model is given by Franklin et al. 
(1998) as 

{𝑥𝑥𝑘𝑘+1 = 𝐴𝐴𝑥𝑥𝑘𝑘 + 𝐵𝐵𝑢𝑢𝑘𝑘
𝑦𝑦𝑘𝑘 = 𝐶𝐶𝑥𝑥𝑘𝑘 + 𝐷𝐷𝑢𝑢𝑘𝑘

, (1) 

where 𝑥𝑥𝑘𝑘 ∈ ℝ𝑛𝑛𝑥𝑥, 𝑢𝑢𝑘𝑘 ∈ ℝ𝑛𝑛𝑢𝑢, and 𝑦𝑦𝑘𝑘 ∈ ℝ𝑛𝑛𝑦𝑦 are the state, the 
control input and the output at time 𝑘𝑘 and 𝑛𝑛𝑥𝑥, 𝑛𝑛𝑢𝑢, and 𝑛𝑛𝑦𝑦 are 
the number of states, inputs and outputs. 
Matrices 𝐴𝐴, 𝐵𝐵, 𝐶𝐶, and 𝐷𝐷 are the state transition, the input, the 
output, and the feedthrough matrices of appropriate 
dimensions. Lewis and Vamvoudakis (2011) and Rizvi and 
Lin (2017, 2019) denote a partially measurable state 𝑥𝑥𝑘𝑘 as 

𝑥𝑥𝑘𝑘 = [𝑀𝑀𝑢𝑢 𝑀𝑀𝑦𝑦]𝑥̅𝑥𝑘𝑘. (2) 

The new state 𝑥̅𝑥𝑘𝑘 is formed from a vectors 𝑢̅𝑢𝑘𝑘 and 𝑦̅𝑦𝑘𝑘 
containing old controls and old measurements as 

𝑥̅𝑥𝑘𝑘 = [𝑢̅𝑢𝑘𝑘
𝑇𝑇 𝑦̅𝑦𝑘𝑘

𝑇𝑇]𝑇𝑇

𝑢̅𝑢𝑘𝑘 = [ 𝑢𝑢𝑘𝑘−1 𝑢𝑢𝑘𝑘−2 … 𝑢𝑢𝑘𝑘−𝑛𝑛]𝑇𝑇

𝑦̅𝑦𝑘𝑘 = [ 𝑦𝑦𝑘𝑘−1 𝑦𝑦𝑘𝑘−2 … 𝑦𝑦𝑘𝑘−𝑛𝑛]𝑇𝑇
. (3) 

where 𝑛𝑛 ≤ 𝑛𝑛𝑥𝑥 is the observability index. Matrices 𝑀𝑀𝑢𝑢 and 𝑀𝑀𝑦𝑦 
in (2) are defined using the observability, controllability and 
Toeplizt matrices 𝑉𝑉𝑛𝑛, 𝑈𝑈𝑛𝑛 and 𝑇𝑇𝑛𝑛 as 

𝑀𝑀𝑦𝑦 = 𝐴𝐴𝑛𝑛(𝑉𝑉𝑛𝑛
𝑇𝑇𝑉𝑉𝑛𝑛)−1𝑉𝑉𝑛𝑛

𝑇𝑇, 𝑀𝑀𝑢𝑢 = 𝑈𝑈𝑛𝑛 − 𝑀𝑀𝑦𝑦𝑇𝑇𝑛𝑛
𝑉𝑉𝑛𝑛 = [(𝐶𝐶𝐴𝐴𝑛𝑛−1)𝑇𝑇 ⋯ (𝐶𝐶𝐶𝐶)𝑇𝑇 𝐶𝐶𝑇𝑇]𝑇𝑇

𝑈𝑈𝑛𝑛 = [𝐵𝐵 𝐴𝐴𝐴𝐴 ⋯ 𝐴𝐴𝑛𝑛−1𝐵𝐵]
(4𝑎𝑎) 
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within the frequency range of the system. However, 
quantization in model-free optimal control has not been widely 
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using only the exploration noise and the sample time. The rest 
of the paper is organized as follows. Q-learning for partially 
observable linear systems is reviewed in Section 2. The 
physical system studied, Quanser QUBE-Servo 2, is presented 

in Section 3. In Section 4, the connection between the 
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is studied and a method for reducing the quantization error is 
developed. The method is illustrated both in a simulated and a 
real-time environment in Section 5. Conclusions are given in 
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1. INTRODUCTION 

Q-learning is a reinforcement learning method, originally 
developed by Watkins (1989), that observes system responses 
to given actions and uses this data to learn an optimal policy. 
Recent studies have used Q-learning to learn the model-free 
optimal feedback control in simulated environments (e.g. 
Lewis et al., 2012; Rizvi and Lin, 2017). Q-learning is studied 
in both continuous time problems and discrete-time problems. 
Q-learning and recent literature is reviewed in more detail e.g. 
by Rizvi and Lin (2017) and Kiumarsi et al (2014). However, 
only few Q-learning studies use data from real-time 
applications (e.g. ten Hagen and Kröse, 2003; Radac and 
Precup, 2018).  This study focuses on discrete-time systems 
and real-time Q-learning applications. 

It is known, that the analog-to-digital conversion causes 
quantization error in the measurements (Bennett, 1948; Gray 
and Neuhoff, 1998). Multiple studies are conducted on model-
based control and system identification with quantized 
measurements (Curry, 1970; Delchamps, 1990; Wang et al., 
2010). Schoukens et al. (1988) and Roinila et al. (2010) among 
others, study excitation signals in identification applications. 
According to them, identification results could be improved 
with an excitation signal that has a large amplitude to yield 
larger signal-to-noise-ratio or by choosing the excitation 
within the frequency range of the system. However, 
quantization in model-free optimal control has not been widely 
studied yet. Zhao et al. (2015) have studied quantization in 
finite horizon optimization problem. They model the 
quantization error into the Q-learning algorithm and solve 
model-free the optimal control problem.  

In this paper, the infinite horizon optimal control problem is 
solved using quantized control input and measurements. A 
new method for quantization error reduction is developed 
using only the exploration noise and the sample time. The rest 
of the paper is organized as follows. Q-learning for partially 
observable linear systems is reviewed in Section 2. The 
physical system studied, Quanser QUBE-Servo 2, is presented 

in Section 3. In Section 4, the connection between the 
quantization error, the exploration noise and the sample time 
is studied and a method for reducing the quantization error is 
developed. The method is illustrated both in a simulated and a 
real-time environment in Section 5. Conclusions are given in 
Section 6. 

2. Q-LEARNING FOR  PARTIALLY OBSERVABLE 
LINEAR SYSTEMS 

Linear time-invariant system model is given by Franklin et al. 
(1998) as 

{𝑥𝑥𝑘𝑘+1 = 𝐴𝐴𝑥𝑥𝑘𝑘 + 𝐵𝐵𝑢𝑢𝑘𝑘
𝑦𝑦𝑘𝑘 = 𝐶𝐶𝑥𝑥𝑘𝑘 + 𝐷𝐷𝑢𝑢𝑘𝑘

, (1) 

where 𝑥𝑥𝑘𝑘 ∈ ℝ𝑛𝑛𝑥𝑥, 𝑢𝑢𝑘𝑘 ∈ ℝ𝑛𝑛𝑢𝑢, and 𝑦𝑦𝑘𝑘 ∈ ℝ𝑛𝑛𝑦𝑦 are the state, the 
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Matrices 𝐴𝐴, 𝐵𝐵, 𝐶𝐶, and 𝐷𝐷 are the state transition, the input, the 
output, and the feedthrough matrices of appropriate 
dimensions. Lewis and Vamvoudakis (2011) and Rizvi and 
Lin (2017, 2019) denote a partially measurable state 𝑥𝑥𝑘𝑘 as 
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in (2) are defined using the observability, controllability and 
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and Neuhoff, 1998). Multiple studies are conducted on model-
based control and system identification with quantized 
measurements (Curry, 1970; Delchamps, 1990; Wang et al., 
2010). Schoukens et al. (1988) and Roinila et al. (2010) among 
others, study excitation signals in identification applications. 
According to them, identification results could be improved 
with an excitation signal that has a large amplitude to yield 
larger signal-to-noise-ratio or by choosing the excitation 
within the frequency range of the system. However, 
quantization in model-free optimal control has not been widely 
studied yet. Zhao et al. (2015) have studied quantization in 
finite horizon optimization problem. They model the 
quantization error into the Q-learning algorithm and solve 
model-free the optimal control problem.  

In this paper, the infinite horizon optimal control problem is 
solved using quantized control input and measurements. A 
new method for quantization error reduction is developed 
using only the exploration noise and the sample time. The rest 
of the paper is organized as follows. Q-learning for partially 
observable linear systems is reviewed in Section 2. The 
physical system studied, Quanser QUBE-Servo 2, is presented 

in Section 3. In Section 4, the connection between the 
quantization error, the exploration noise and the sample time 
is studied and a method for reducing the quantization error is 
developed. The method is illustrated both in a simulated and a 
real-time environment in Section 5. Conclusions are given in 
Section 6. 

2. Q-LEARNING FOR  PARTIALLY OBSERVABLE 
LINEAR SYSTEMS 

Linear time-invariant system model is given by Franklin et al. 
(1998) as 

{𝑥𝑥𝑘𝑘+1 = 𝐴𝐴𝑥𝑥𝑘𝑘 + 𝐵𝐵𝑢𝑢𝑘𝑘
𝑦𝑦𝑘𝑘 = 𝐶𝐶𝑥𝑥𝑘𝑘 + 𝐷𝐷𝑢𝑢𝑘𝑘

, (1) 

where 𝑥𝑥𝑘𝑘 ∈ ℝ𝑛𝑛𝑥𝑥, 𝑢𝑢𝑘𝑘 ∈ ℝ𝑛𝑛𝑢𝑢, and 𝑦𝑦𝑘𝑘 ∈ ℝ𝑛𝑛𝑦𝑦 are the state, the 
control input and the output at time 𝑘𝑘 and 𝑛𝑛𝑥𝑥, 𝑛𝑛𝑢𝑢, and 𝑛𝑛𝑦𝑦 are 
the number of states, inputs and outputs. 
Matrices 𝐴𝐴, 𝐵𝐵, 𝐶𝐶, and 𝐷𝐷 are the state transition, the input, the 
output, and the feedthrough matrices of appropriate 
dimensions. Lewis and Vamvoudakis (2011) and Rizvi and 
Lin (2017, 2019) denote a partially measurable state 𝑥𝑥𝑘𝑘 as 

𝑥𝑥𝑘𝑘 = [𝑀𝑀𝑢𝑢 𝑀𝑀𝑦𝑦]𝑥̅𝑥𝑘𝑘. (2) 

The new state 𝑥̅𝑥𝑘𝑘 is formed from a vectors 𝑢̅𝑢𝑘𝑘 and 𝑦̅𝑦𝑘𝑘 
containing old controls and old measurements as 

𝑥̅𝑥𝑘𝑘 = [𝑢̅𝑢𝑘𝑘
𝑇𝑇 𝑦̅𝑦𝑘𝑘

𝑇𝑇]𝑇𝑇

𝑢̅𝑢𝑘𝑘 = [ 𝑢𝑢𝑘𝑘−1 𝑢𝑢𝑘𝑘−2 … 𝑢𝑢𝑘𝑘−𝑛𝑛]𝑇𝑇

𝑦̅𝑦𝑘𝑘 = [ 𝑦𝑦𝑘𝑘−1 𝑦𝑦𝑘𝑘−2 … 𝑦𝑦𝑘𝑘−𝑛𝑛]𝑇𝑇
. (3) 

where 𝑛𝑛 ≤ 𝑛𝑛𝑥𝑥 is the observability index. Matrices 𝑀𝑀𝑢𝑢 and 𝑀𝑀𝑦𝑦 
in (2) are defined using the observability, controllability and 
Toeplizt matrices 𝑉𝑉𝑛𝑛, 𝑈𝑈𝑛𝑛 and 𝑇𝑇𝑛𝑛 as 

𝑀𝑀𝑦𝑦 = 𝐴𝐴𝑛𝑛(𝑉𝑉𝑛𝑛
𝑇𝑇𝑉𝑉𝑛𝑛)−1𝑉𝑉𝑛𝑛

𝑇𝑇, 𝑀𝑀𝑢𝑢 = 𝑈𝑈𝑛𝑛 − 𝑀𝑀𝑦𝑦𝑇𝑇𝑛𝑛
𝑉𝑉𝑛𝑛 = [(𝐶𝐶𝐴𝐴𝑛𝑛−1)𝑇𝑇 ⋯ (𝐶𝐶𝐶𝐶)𝑇𝑇 𝐶𝐶𝑇𝑇]𝑇𝑇

𝑈𝑈𝑛𝑛 = [𝐵𝐵 𝐴𝐴𝐴𝐴 ⋯ 𝐴𝐴𝑛𝑛−1𝐵𝐵]
(4𝑎𝑎) 
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1. INTRODUCTION 

Q-learning is a reinforcement learning method, originally 
developed by Watkins (1989), that observes system responses 
to given actions and uses this data to learn an optimal policy. 
Recent studies have used Q-learning to learn the model-free 
optimal feedback control in simulated environments (e.g. 
Lewis et al., 2012; Rizvi and Lin, 2017). Q-learning is studied 
in both continuous time problems and discrete-time problems. 
Q-learning and recent literature is reviewed in more detail e.g. 
by Rizvi and Lin (2017) and Kiumarsi et al (2014). However, 
only few Q-learning studies use data from real-time 
applications (e.g. ten Hagen and Kröse, 2003; Radac and 
Precup, 2018).  This study focuses on discrete-time systems 
and real-time Q-learning applications. 

It is known, that the analog-to-digital conversion causes 
quantization error in the measurements (Bennett, 1948; Gray 
and Neuhoff, 1998). Multiple studies are conducted on model-
based control and system identification with quantized 
measurements (Curry, 1970; Delchamps, 1990; Wang et al., 
2010). Schoukens et al. (1988) and Roinila et al. (2010) among 
others, study excitation signals in identification applications. 
According to them, identification results could be improved 
with an excitation signal that has a large amplitude to yield 
larger signal-to-noise-ratio or by choosing the excitation 
within the frequency range of the system. However, 
quantization in model-free optimal control has not been widely 
studied yet. Zhao et al. (2015) have studied quantization in 
finite horizon optimization problem. They model the 
quantization error into the Q-learning algorithm and solve 
model-free the optimal control problem.  

In this paper, the infinite horizon optimal control problem is 
solved using quantized control input and measurements. A 
new method for quantization error reduction is developed 
using only the exploration noise and the sample time. The rest 
of the paper is organized as follows. Q-learning for partially 
observable linear systems is reviewed in Section 2. The 
physical system studied, Quanser QUBE-Servo 2, is presented 

in Section 3. In Section 4, the connection between the 
quantization error, the exploration noise and the sample time 
is studied and a method for reducing the quantization error is 
developed. The method is illustrated both in a simulated and a 
real-time environment in Section 5. Conclusions are given in 
Section 6. 

2. Q-LEARNING FOR  PARTIALLY OBSERVABLE 
LINEAR SYSTEMS 

Linear time-invariant system model is given by Franklin et al. 
(1998) as 

{𝑥𝑥𝑘𝑘+1 = 𝐴𝐴𝑥𝑥𝑘𝑘 + 𝐵𝐵𝑢𝑢𝑘𝑘
𝑦𝑦𝑘𝑘 = 𝐶𝐶𝑥𝑥𝑘𝑘 + 𝐷𝐷𝑢𝑢𝑘𝑘

, (1) 

where 𝑥𝑥𝑘𝑘 ∈ ℝ𝑛𝑛𝑥𝑥, 𝑢𝑢𝑘𝑘 ∈ ℝ𝑛𝑛𝑢𝑢, and 𝑦𝑦𝑘𝑘 ∈ ℝ𝑛𝑛𝑦𝑦 are the state, the 
control input and the output at time 𝑘𝑘 and 𝑛𝑛𝑥𝑥, 𝑛𝑛𝑢𝑢, and 𝑛𝑛𝑦𝑦 are 
the number of states, inputs and outputs. 
Matrices 𝐴𝐴, 𝐵𝐵, 𝐶𝐶, and 𝐷𝐷 are the state transition, the input, the 
output, and the feedthrough matrices of appropriate 
dimensions. Lewis and Vamvoudakis (2011) and Rizvi and 
Lin (2017, 2019) denote a partially measurable state 𝑥𝑥𝑘𝑘 as 

𝑥𝑥𝑘𝑘 = [𝑀𝑀𝑢𝑢 𝑀𝑀𝑦𝑦]𝑥̅𝑥𝑘𝑘. (2) 

The new state 𝑥̅𝑥𝑘𝑘 is formed from a vectors 𝑢̅𝑢𝑘𝑘 and 𝑦̅𝑦𝑘𝑘 
containing old controls and old measurements as 

𝑥̅𝑥𝑘𝑘 = [𝑢̅𝑢𝑘𝑘
𝑇𝑇 𝑦̅𝑦𝑘𝑘

𝑇𝑇]𝑇𝑇

𝑢̅𝑢𝑘𝑘 = [ 𝑢𝑢𝑘𝑘−1 𝑢𝑢𝑘𝑘−2 … 𝑢𝑢𝑘𝑘−𝑛𝑛]𝑇𝑇

𝑦̅𝑦𝑘𝑘 = [ 𝑦𝑦𝑘𝑘−1 𝑦𝑦𝑘𝑘−2 … 𝑦𝑦𝑘𝑘−𝑛𝑛]𝑇𝑇
. (3) 

where 𝑛𝑛 ≤ 𝑛𝑛𝑥𝑥 is the observability index. Matrices 𝑀𝑀𝑢𝑢 and 𝑀𝑀𝑦𝑦 
in (2) are defined using the observability, controllability and 
Toeplizt matrices 𝑉𝑉𝑛𝑛, 𝑈𝑈𝑛𝑛 and 𝑇𝑇𝑛𝑛 as 

𝑀𝑀𝑦𝑦 = 𝐴𝐴𝑛𝑛(𝑉𝑉𝑛𝑛
𝑇𝑇𝑉𝑉𝑛𝑛)−1𝑉𝑉𝑛𝑛

𝑇𝑇, 𝑀𝑀𝑢𝑢 = 𝑈𝑈𝑛𝑛 − 𝑀𝑀𝑦𝑦𝑇𝑇𝑛𝑛
𝑉𝑉𝑛𝑛 = [(𝐶𝐶𝐴𝐴𝑛𝑛−1)𝑇𝑇 ⋯ (𝐶𝐶𝐶𝐶)𝑇𝑇 𝐶𝐶𝑇𝑇]𝑇𝑇

𝑈𝑈𝑛𝑛 = [𝐵𝐵 𝐴𝐴𝐴𝐴 ⋯ 𝐴𝐴𝑛𝑛−1𝐵𝐵]
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(4b) 

2.1  Optimal model-based  control  

Originating from the Bellman’s optimality principle (Bellman, 
1957), the optimal control for system (1) is the control that 
minimizes the Hamilton-Jacobi-Bellman (HJB) equation. It is 
given by Sutton et al. (2018) and Lewis et al. (2012) as 

𝑉𝑉∗(𝑥𝑥𝑘𝑘) = min
𝑢𝑢𝑘𝑘

(𝑟𝑟(𝑥𝑥𝑘𝑘, 𝑢𝑢𝑘𝑘) + 𝑉𝑉∗(𝑥𝑥𝑘𝑘+1)), (5) 

where and the one-step cost 𝑟𝑟(𝑥𝑥𝑘𝑘, 𝑢𝑢𝑘𝑘) is given as  

𝑟𝑟(𝑥𝑥𝑘𝑘, 𝑢𝑢𝑘𝑘) = 𝑥𝑥𝑘𝑘
𝑇𝑇𝑄𝑄𝑄𝑄𝑘𝑘 + 𝑢𝑢𝑘𝑘

𝑇𝑇𝑅𝑅𝑅𝑅𝑘𝑘 = 𝑦𝑦𝑘𝑘
𝑇𝑇𝑄𝑄𝑦𝑦𝑦𝑦𝑘𝑘 + 𝑢𝑢𝑘𝑘

𝑇𝑇𝑅𝑅𝑅𝑅𝑘𝑘, (6) 

where 𝑄𝑄, 𝑄𝑄𝑦𝑦 and 𝑅𝑅 are the state, the output and the control 
weighting matrices of appropriate dimensions and 𝑄𝑄 =
𝐶𝐶𝑇𝑇𝑄𝑄𝑦𝑦𝐶𝐶 and 𝑢𝑢𝑘𝑘 = ℎ(𝑥𝑥𝑘𝑘) is the control policy. 

Assuming the system (1) is controllable, Franklin et al. (1998) 
solve the optimal control policy as 

𝑢𝑢𝑘𝑘 = ℎ(𝑥𝑥𝑘𝑘) = 𝐾𝐾∗𝑥𝑥𝑘𝑘, (7) 

where 𝐾𝐾∗ ∈ ℝnu×nx is the optimal control gain matrix given as 

𝐾𝐾∗ = −(𝑅𝑅 + 𝐵𝐵𝑇𝑇𝑋𝑋𝑋𝑋)−1𝐵𝐵𝑇𝑇𝑋𝑋𝑋𝑋, (8)  

and 𝑋𝑋 is the algebraic Riccati equation solution  

𝑋𝑋 = 𝐴𝐴𝑇𝑇𝑋𝑋𝑋𝑋 − 𝐴𝐴𝑇𝑇𝑋𝑋𝑋𝑋(𝑅𝑅 + 𝐵𝐵𝑇𝑇𝑋𝑋𝑋𝑋)−1𝐵𝐵𝑇𝑇𝑋𝑋𝑋𝑋 + 𝑄𝑄. (9) 

2.2  Q-learning for partially observable linear systems 

According to Watkins (1989) the optimal Q-function can be 
defined for any optimal control problem as 

𝑄𝑄∗(𝑥𝑥𝑘𝑘, 𝑢𝑢𝑘𝑘) = 𝑟𝑟(𝑥𝑥𝑘𝑘, 𝑢𝑢𝑘𝑘) + 𝑉𝑉∗(𝑥𝑥𝑘𝑘+1). (10) 

Inserting (10) into (5) shows that the optimal policy also 
minimizes the optimal Q-function. The resulting equation can 
be inserted back into (10). It yields the Q-Bellman optimality 
equation  

𝑄𝑄∗(𝑥𝑥𝑘𝑘, 𝑢𝑢𝑘𝑘) = 𝑟𝑟(𝑥𝑥𝑘𝑘, 𝑢𝑢𝑘𝑘) + min
𝑢𝑢𝑘𝑘

(𝑄𝑄∗(𝑥𝑥𝑘𝑘+1, 𝑢𝑢𝑘𝑘+1)). (11) 

The Q-function for linear systems is solved by Lewis and 
Vamvoudakis (2011) and Rizvi and Lin (2017, 2019) as 

𝑄𝑄(𝑥̅𝑥𝑘𝑘, 𝑢𝑢𝑘𝑘) = 𝑧𝑧𝑘̅𝑘
𝑇𝑇𝑇𝑇𝑧𝑧𝑘̅𝑘 = 𝑟𝑟(𝑦𝑦𝑘𝑘, 𝑢𝑢𝑘𝑘) + 𝑧𝑧𝑘̅𝑘+1

𝑇𝑇𝑇𝑇𝑧𝑧𝑘̅𝑘+1, (12) 

𝑊𝑊𝑇𝑇𝜙𝜙(𝑧𝑧𝑘̅𝑘) = 𝑟𝑟(𝑦𝑦𝑘𝑘, 𝑢𝑢𝑘𝑘) + 𝑊𝑊𝑇𝑇𝜙𝜙(𝑧𝑧𝑘̅𝑘+1), (13) 

where 𝑟𝑟(𝑦𝑦𝑘𝑘, 𝑢𝑢𝑘𝑘) is given in (6) and 𝑧𝑧𝑘̅𝑘 is formed with the new 
state 𝑥̅𝑥𝑘𝑘 in (3) and with the current policy 𝑢𝑢𝑘𝑘 as 

𝑧𝑧𝑘̅𝑘 = [𝑥̅𝑥𝑘𝑘
𝑢𝑢𝑘𝑘

] ∈ ℝ𝑛𝑛𝑧̅𝑧 and 𝑛𝑛𝑧̅𝑧 = 𝑛𝑛(𝑛𝑛𝑢𝑢 + 𝑛𝑛𝑦𝑦) + 𝑛𝑛𝑢𝑢. (14)  

The symmetric kernel matrix 𝑇𝑇 in (12) is defined as 

𝑇𝑇 = [
𝑀𝑀𝑢𝑢

𝑇𝑇 0
𝑀𝑀𝑦𝑦

𝑇𝑇 0
0 𝐼𝐼

] [𝐴𝐴
𝑇𝑇𝑋𝑋𝑋𝑋 + 𝑄𝑄 𝐴𝐴𝑇𝑇𝑋𝑋𝑋𝑋
𝐵𝐵𝑇𝑇𝑋𝑋𝑋𝑋 𝐵𝐵𝑇𝑇𝑋𝑋𝑋𝑋 + 𝑅𝑅] [𝑀𝑀𝑢𝑢 𝑀𝑀𝑦𝑦 0

0 0 𝐼𝐼]

= [
𝑡𝑡11 𝑡𝑡12
𝑡𝑡21 𝑡𝑡22

⋯
𝑡𝑡1𝑛𝑛𝑧̅𝑧
𝑡𝑡2𝑛𝑛𝑧̅𝑧

⋮ ⋱ ⋮
𝑡𝑡𝑛𝑛𝑧̅𝑧1 𝑡𝑡𝑛𝑛𝑧̅𝑧2 ⋯ 𝑡𝑡𝑛𝑛𝑧̅𝑧𝑛𝑛𝑧̅𝑧

] = [
𝑇𝑇𝑢𝑢𝑢𝑢 𝑇𝑇𝑢𝑢𝑦̅𝑦 𝑇𝑇𝑢𝑢𝑢𝑢
𝑇𝑇𝑦̅𝑦𝑢𝑢 𝑇𝑇𝑦̅𝑦𝑦̅𝑦 𝑇𝑇𝑦̅𝑦𝑢𝑢
𝑇𝑇𝑢𝑢𝑢𝑢 𝑇𝑇𝑢𝑢𝑦̅𝑦 𝑇𝑇𝑢𝑢𝑢𝑢

] . (15)

 

where 𝑇𝑇𝑢𝑢𝑢𝑢 ∈ ℝ𝑛𝑛𝑢𝑢𝑥𝑥𝑛𝑛𝑢𝑢, 𝑇𝑇𝑢𝑢𝑢𝑢,  𝑇𝑇𝑢𝑢𝑦̅𝑦, 𝑇𝑇𝑦̅𝑦𝑦̅𝑦 ∈ ℝ𝑛𝑛𝑛𝑛𝑛𝑛, 𝑇𝑇𝑢𝑢𝑢𝑢 ∈ ℝ𝑛𝑛𝑛𝑛𝑛𝑛𝑢𝑢 and 
𝑇𝑇𝑦̅𝑦𝑢𝑢 ∈ ℝ𝑛𝑛𝑛𝑛𝑛𝑛𝑦𝑦 are matrix elements of 𝑇𝑇. The matrix 𝑇𝑇 is  
expressed in (13) in a vector form using its scalar elements as 

𝑊𝑊 = [𝑡𝑡11, 2𝑡𝑡12,⋯ , 2𝑡𝑡1𝑛𝑛𝑧̅𝑧, 𝑡𝑡22,⋯ ,2𝑡𝑡2𝑛𝑛𝑧𝑧,⋯ , 𝑡𝑡𝑛𝑛𝑧̅𝑧𝑛𝑛𝑧̅𝑧]
𝑇𝑇. (16) 

The quadratic basis vector 𝜙𝜙(𝑧𝑧𝑘̅𝑘) ∈ ℝ(𝑛𝑛𝑧̅𝑧(𝑛𝑛𝑧̅𝑧+1)/2) is given as 
𝜙𝜙(𝑧𝑧𝑘̅𝑘) = [𝑧𝑧1̅

2, 𝑧𝑧1̅𝑧𝑧2̅,⋯ , 𝑧𝑧1̅𝑧𝑧𝑛̅𝑛𝑧̅𝑧, 𝑧𝑧2̅
2, 𝑧𝑧2̅𝑧𝑧3̅, ⋯ 𝑧𝑧2̅𝑧𝑧𝑛̅𝑛𝑧̅𝑧 , ⋯ , 𝑧𝑧𝑛̅𝑛𝑧̅𝑧

2 ]𝑇𝑇, (17) 

where 𝑧𝑧𝑚̅𝑚 is the 𝑚𝑚th element of 𝑧𝑧𝑘̅𝑘. 

Rizvi and Lin (2017, 2019) solve the model-free discrete-time 
Linear Quadratic Regulator (LQR) problem by identifying the 
kernel matrix 𝑇𝑇 in (15) from data using (12) or (13). The 
optimal policy that minimizes (12) is derived as 

𝑢𝑢𝑘𝑘 =  −(𝑇𝑇𝑢𝑢𝑢𝑢)−1[𝑇𝑇𝑢𝑢𝑢𝑢 𝑇𝑇𝑢𝑢𝑦̅𝑦] 𝑥̅𝑥𝑘𝑘. (18) 

This is equal to inserting (2) and (8) into (7).  

2.3  Policy and value iteration to solve the LQR problem  

Policy and value iteration (PI and VI) algorithms run policy 
and value updates until the optimal policy is found. They are 
initialized at 𝑗𝑗 = 0. The initial policy is chosen randomly, but 
it must be stabilizing for PI. Here, the value update step 
updates the weight matrix 𝑊𝑊. Lewis et al. (2012) denote the 
weight matrix 𝑊𝑊 in (16) as 𝑊̂𝑊𝑗𝑗+1so that 

𝑊̂𝑊𝑗𝑗+1
𝑇𝑇 φ𝑘𝑘 = 𝜇𝜇𝑘𝑘. (19) 

where the data and the regression vector 𝜇𝜇𝑘𝑘 and φ𝑘𝑘 are given 
for PI as 

φ𝑘𝑘 = 𝜙𝜙(𝑧𝑧𝑘̅𝑘) − 𝜙𝜙(𝑧𝑧𝑘̅𝑘+1)
𝜇𝜇𝑘𝑘 = 𝑟𝑟(𝑦𝑦𝑘𝑘, 𝑢𝑢𝑘𝑘)

. (20) 

and for VI using the old weight matrix 𝑊̂𝑊𝑗𝑗 as  

φ𝑘𝑘 = 𝜙𝜙(𝑧𝑧𝑘̅𝑘)
𝜇𝜇𝑘𝑘 = 𝑟𝑟(𝑦𝑦𝑘𝑘, 𝑢𝑢𝑘𝑘) + 𝑊̂𝑊𝑗𝑗

𝑇𝑇𝜙𝜙(𝑧𝑧𝑘̅𝑘+1)
. (21) 

The weight 𝑊̂𝑊𝑗𝑗+1 is updated with recursive least squares (RLS) 
and the policy update step updates the policy 𝑢𝑢𝑗𝑗+1,𝑘𝑘 with (18). 
The updated control policy is applied in the system during 
learning with an added exploration noise 𝜖𝜖𝑘𝑘. Lewis et al. 
(2012), among others, add it to the control input to ensure the 
persistence of excitation (PE) condition and the convergence 
of the kernel matrix 𝑇̂𝑇𝑗𝑗+1. The value and policy updates are 
repeated until the weight 𝑊̂𝑊𝑗𝑗+1 convergences so that ‖𝑊̂𝑊𝑗𝑗+1 −
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𝑊̂𝑊𝑗𝑗‖ ≤  𝜀𝜀𝑗𝑗, where 𝜀𝜀𝑗𝑗 is a small constant. Lewis and 
Vamvoudakis (2011) use a discounting factor 𝛾𝛾 in (5) to 
reduce the noise bias effects, but Rizvi and Lin (2017) prove 
that choosing 𝛾𝛾 < 1 does not guarantee the closed-loop system 
stability so therefore discounting is not used here. 

2.4 Recursive least squares value update 

Franklin, et al (1998) define the one-step RLS update as 

𝐿𝐿𝑖𝑖+1 = 𝜆𝜆−1𝑃𝑃𝑖𝑖φ𝑘𝑘(𝑎𝑎−1 + 𝜆𝜆−1φ𝑘𝑘
𝑇𝑇𝑃𝑃𝑖𝑖φ𝑘𝑘)−1

𝑊̂𝑊𝑗𝑗+1,𝑖𝑖+1 = 𝑊̂𝑊𝑗𝑗+1,𝑖𝑖 + 𝐿𝐿𝑖𝑖+1(𝜇𝜇𝑘𝑘 − φ𝑘𝑘
𝑇𝑇𝑊̂𝑊𝑗𝑗+1,𝑖𝑖)

𝑃𝑃𝑖𝑖+1 = 𝜆𝜆−1(𝐼𝐼 − 𝐿𝐿𝑖𝑖+1φ𝑘𝑘
𝑇𝑇)𝑃𝑃𝑖𝑖

, (22) 

where 𝐿𝐿𝑖𝑖+1, 𝑃𝑃𝑖𝑖+1 and 𝑊̂𝑊𝑗𝑗+1,𝑖𝑖+1   are the update, the covariance 
and the weight matrices at index 𝑖𝑖 + 1 and 𝜆𝜆 is a RLS 
discounting factor. For regular RLS 𝜆𝜆 = 1 and 𝑎𝑎 = 1.  

For the value update, the index 𝑖𝑖 is set as 𝑖𝑖 = 0 and the weight 
𝑊̂𝑊𝑗𝑗+1,𝑖𝑖 is set as the previous weight 𝑊̂𝑊𝑗𝑗 and the covariance 
matrix 𝑃𝑃0 is set as 𝑃𝑃0 = 𝛿𝛿𝛿𝛿, where 𝛿𝛿 is a large scalar (Franklin 
et al., 1998). Each update step 𝑖𝑖 the weight 𝑊̂𝑊𝑗𝑗+1,𝑖𝑖+1 is updated 
with (22) using new measurements. The regression φ𝑘𝑘 and 
data vector 𝜇𝜇𝑘𝑘 are formed from the measured data using (20) 
or (21) and (3), (14) and 𝑢𝑢𝑘𝑘+1is calculated with (18) using 
the current policy. Updates stop when the weight 𝑊̂𝑊𝑗𝑗+1 has 
converged so that ‖𝑊̂𝑊𝑗𝑗+1,𝑖𝑖+1 − 𝑊̂𝑊𝑗𝑗+1,𝑖𝑖‖ ≤  𝜀𝜀𝑖𝑖, where 𝜀𝜀𝑖𝑖 is a 
small constant.  (Rizvi and Lin, 2017, 2019). 

3. THE QUANSER QUBE-SERVO 2 SYSTEM  

Apkarian et al. (2016) derive a continuous-time system model 
for the Quanser QUBE-Servo 2 experiment (Fig. 1). The state 
𝑥𝑥 is chosen as 𝑥𝑥 = [𝜃𝜃 𝜔𝜔]𝑇𝑇 , where 𝜃𝜃 is the angular position 
of the disk load (𝑟𝑟𝑟𝑟𝑟𝑟) and 𝜔𝜔 = 𝜃̇𝜃 is the angular velocity 
(𝑟𝑟𝑟𝑟𝑟𝑟 𝑠𝑠⁄ ). With voltage as the input 𝑢𝑢 and angular position 𝜃𝜃 as 
the output 𝑦𝑦, the marginally stable system model with 
numerical parameters is  

{𝑥̇𝑥 = [𝜃̇𝜃
𝜃̈𝜃] = [0 1

0 −10.0485] 𝑥𝑥 + [ 0
239.2509] 𝑢𝑢

𝑦𝑦 = [1 0]𝑥𝑥
. (23)  

Block diagram in Fig. 1 shows the system connected to the 
computer. The data acquisition device (DAQ) works as an 
interface and it communicates via MATLAB. The DAQ uses 
an encoder and a decoder to process data. The angular position 
𝜃𝜃 is measured as encoder counts using a chosen sample time 
𝑑𝑑𝑑𝑑 (𝑠𝑠). The quadrature decoder generates 2048 counts per 
revolution (Apkarian et al, 2016). Therefore, one count 
corresponds to 2𝜋𝜋 2048⁄ 𝑟𝑟𝑟𝑟𝑟𝑟 ≈ 0.0031 𝑟𝑟𝑟𝑟𝑟𝑟. This resolution 
leads to uniformly quantized output. Xu et al. (2015) and Zhao 
et al. (2015) define the quantized output 𝑦𝑦𝑘𝑘

𝑞𝑞  and control 𝑢𝑢𝑞𝑞𝑞𝑞
𝑞𝑞  as 

𝑦𝑦𝑘𝑘
𝑞𝑞 = 𝑞𝑞(𝑦𝑦𝑘𝑘) = ∆𝜃𝜃 ∙ (⌊𝑦𝑦𝑘𝑘 ∆𝜃𝜃⁄ ⌋  + 1 2⁄ )

𝑢𝑢𝑞𝑞𝑞𝑞
𝑞𝑞 = 𝑞𝑞(𝑢𝑢𝑞𝑞𝑞𝑞) = ∆𝑢𝑢 ∙ (⌊𝑢𝑢𝑞𝑞𝑞𝑞 ∆𝑢𝑢⁄ ⌋ + 1 2⁄ ) , (24) 

where ⌊𝑦𝑦𝑘𝑘 ∆𝜃𝜃⁄ ⌋ and ⌊𝑢𝑢𝑞𝑞𝑞𝑞 ∆𝑉𝑉⁄ ⌋ are floor functions of 𝑦𝑦𝑘𝑘 ∆𝜃𝜃⁄  and 
𝑢𝑢𝑞𝑞𝑞𝑞 ∆𝑢𝑢⁄  and the output quantization interval ∆𝜃𝜃  is  

 

Fig. 1. Block diagram of the Quanser QUBE-Servo 2 system  

 

Fig. 2. Sample time and quantization 

∆𝜃𝜃= 0.0031 𝑟𝑟𝑟𝑟𝑟𝑟. For simulations, the input quantization 
interval ∆𝑢𝑢 was chosen as ∆𝑢𝑢= 0.0001 𝑉𝑉. Quantized control 
𝑢𝑢𝑞𝑞𝑞𝑞 in (24) and Fig.1 is computed with (18) using a quantized 
state 𝑥̅𝑥𝑞𝑞𝑞𝑞 = [𝑢̅𝑢𝑞𝑞𝑞𝑞

𝑇𝑇 𝑦̅𝑦𝑞𝑞𝑞𝑞
𝑇𝑇 ]𝑇𝑇, where 𝑢̅𝑢𝑞𝑞𝑞𝑞 and 𝑦̅𝑦𝑞𝑞𝑞𝑞  are given as 

𝑢̅𝑢𝑞𝑞𝑞𝑞 = [ 𝑢𝑢𝑞𝑞(𝑘𝑘−1) 𝑢𝑢𝑞𝑞(𝑘𝑘−2) … 𝑢𝑢𝑞𝑞(𝑘𝑘−𝑛𝑛)]𝑇𝑇

𝑦̅𝑦𝑞𝑞𝑞𝑞 = [ 𝑦𝑦𝑘𝑘−1
𝑞𝑞 𝑦𝑦𝑘𝑘−2

𝑞𝑞 … 𝑦𝑦𝑘𝑘−𝑛𝑛
𝑞𝑞 ]𝑇𝑇 . (25) 

4. REDUCING THE QUANTIZATION ERROR 

According to Xu et al. (2015) and Zhao et al. (2015), the 
quantization in (24) causes error in the Bellman equation in 
(12). A dither signal could be added between the system and 
the analog-to-digital converter to reduce the quantization error 
(Schuchman, 1964; Widrow and Kollar 2008). Here, the 
exploration noise is a dither signal, but it is only possible to 
insert it into the control input. A method to reduce the 
quantization error with the exploration noise is developed. 

4.1 Quantization, sample time and exploration noise 

The sample time, exploration noise and their connection to the 
quantization noise is studied. Each test starts from the same 
initial position and the data is collected for 20 time steps.  The 
control gain is chosen as 𝐾𝐾 = −[0.5 0.5 0.5 0.5] and the 
input saturation is set as [−7 𝑉𝑉, 7𝑉𝑉]. The exploration noise is 
added to the control input and it is an uniform random noise 
between [– 𝐴𝐴𝜖𝜖 𝑉𝑉, 𝐴𝐴𝜖𝜖 𝑉𝑉], where 𝐴𝐴𝜖𝜖 is the exploration noise 
amplitude. Fig. 2. shows 3 tests, where  𝐴𝐴𝜖𝜖 = 1 and the sample 
time 𝑑𝑑𝑑𝑑 is 0.002 𝑠𝑠, 0.01 𝑠𝑠 or 0.1 𝑠𝑠. 
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𝑊̂𝑊𝑗𝑗‖ ≤  𝜀𝜀𝑗𝑗, where 𝜀𝜀𝑗𝑗 is a small constant. Lewis and 
Vamvoudakis (2011) use a discounting factor 𝛾𝛾 in (5) to 
reduce the noise bias effects, but Rizvi and Lin (2017) prove 
that choosing 𝛾𝛾 < 1 does not guarantee the closed-loop system 
stability so therefore discounting is not used here. 

2.4 Recursive least squares value update 

Franklin, et al (1998) define the one-step RLS update as 

𝐿𝐿𝑖𝑖+1 = 𝜆𝜆−1𝑃𝑃𝑖𝑖φ𝑘𝑘(𝑎𝑎−1 + 𝜆𝜆−1φ𝑘𝑘
𝑇𝑇𝑃𝑃𝑖𝑖φ𝑘𝑘)−1

𝑊̂𝑊𝑗𝑗+1,𝑖𝑖+1 = 𝑊̂𝑊𝑗𝑗+1,𝑖𝑖 + 𝐿𝐿𝑖𝑖+1(𝜇𝜇𝑘𝑘 − φ𝑘𝑘
𝑇𝑇𝑊̂𝑊𝑗𝑗+1,𝑖𝑖)

𝑃𝑃𝑖𝑖+1 = 𝜆𝜆−1(𝐼𝐼 − 𝐿𝐿𝑖𝑖+1φ𝑘𝑘
𝑇𝑇)𝑃𝑃𝑖𝑖

, (22) 

where 𝐿𝐿𝑖𝑖+1, 𝑃𝑃𝑖𝑖+1 and 𝑊̂𝑊𝑗𝑗+1,𝑖𝑖+1   are the update, the covariance 
and the weight matrices at index 𝑖𝑖 + 1 and 𝜆𝜆 is a RLS 
discounting factor. For regular RLS 𝜆𝜆 = 1 and 𝑎𝑎 = 1.  

For the value update, the index 𝑖𝑖 is set as 𝑖𝑖 = 0 and the weight 
𝑊̂𝑊𝑗𝑗+1,𝑖𝑖 is set as the previous weight 𝑊̂𝑊𝑗𝑗 and the covariance 
matrix 𝑃𝑃0 is set as 𝑃𝑃0 = 𝛿𝛿𝛿𝛿, where 𝛿𝛿 is a large scalar (Franklin 
et al., 1998). Each update step 𝑖𝑖 the weight 𝑊̂𝑊𝑗𝑗+1,𝑖𝑖+1 is updated 
with (22) using new measurements. The regression φ𝑘𝑘 and 
data vector 𝜇𝜇𝑘𝑘 are formed from the measured data using (20) 
or (21) and (3), (14) and 𝑢𝑢𝑘𝑘+1is calculated with (18) using 
the current policy. Updates stop when the weight 𝑊̂𝑊𝑗𝑗+1 has 
converged so that ‖𝑊̂𝑊𝑗𝑗+1,𝑖𝑖+1 − 𝑊̂𝑊𝑗𝑗+1,𝑖𝑖‖ ≤  𝜀𝜀𝑖𝑖, where 𝜀𝜀𝑖𝑖 is a 
small constant.  (Rizvi and Lin, 2017, 2019). 

3. THE QUANSER QUBE-SERVO 2 SYSTEM  

Apkarian et al. (2016) derive a continuous-time system model 
for the Quanser QUBE-Servo 2 experiment (Fig. 1). The state 
𝑥𝑥 is chosen as 𝑥𝑥 = [𝜃𝜃 𝜔𝜔]𝑇𝑇 , where 𝜃𝜃 is the angular position 
of the disk load (𝑟𝑟𝑟𝑟𝑟𝑟) and 𝜔𝜔 = 𝜃̇𝜃 is the angular velocity 
(𝑟𝑟𝑟𝑟𝑟𝑟 𝑠𝑠⁄ ). With voltage as the input 𝑢𝑢 and angular position 𝜃𝜃 as 
the output 𝑦𝑦, the marginally stable system model with 
numerical parameters is  

{𝑥̇𝑥 = [𝜃̇𝜃
𝜃̈𝜃] = [0 1

0 −10.0485] 𝑥𝑥 + [ 0
239.2509] 𝑢𝑢

𝑦𝑦 = [1 0]𝑥𝑥
. (23)  

Block diagram in Fig. 1 shows the system connected to the 
computer. The data acquisition device (DAQ) works as an 
interface and it communicates via MATLAB. The DAQ uses 
an encoder and a decoder to process data. The angular position 
𝜃𝜃 is measured as encoder counts using a chosen sample time 
𝑑𝑑𝑑𝑑 (𝑠𝑠). The quadrature decoder generates 2048 counts per 
revolution (Apkarian et al, 2016). Therefore, one count 
corresponds to 2𝜋𝜋 2048⁄ 𝑟𝑟𝑟𝑟𝑟𝑟 ≈ 0.0031 𝑟𝑟𝑟𝑟𝑟𝑟. This resolution 
leads to uniformly quantized output. Xu et al. (2015) and Zhao 
et al. (2015) define the quantized output 𝑦𝑦𝑘𝑘

𝑞𝑞  and control 𝑢𝑢𝑞𝑞𝑞𝑞
𝑞𝑞  as 

𝑦𝑦𝑘𝑘
𝑞𝑞 = 𝑞𝑞(𝑦𝑦𝑘𝑘) = ∆𝜃𝜃 ∙ (⌊𝑦𝑦𝑘𝑘 ∆𝜃𝜃⁄ ⌋  + 1 2⁄ )

𝑢𝑢𝑞𝑞𝑞𝑞
𝑞𝑞 = 𝑞𝑞(𝑢𝑢𝑞𝑞𝑞𝑞) = ∆𝑢𝑢 ∙ (⌊𝑢𝑢𝑞𝑞𝑞𝑞 ∆𝑢𝑢⁄ ⌋ + 1 2⁄ ) , (24) 

where ⌊𝑦𝑦𝑘𝑘 ∆𝜃𝜃⁄ ⌋ and ⌊𝑢𝑢𝑞𝑞𝑞𝑞 ∆𝑉𝑉⁄ ⌋ are floor functions of 𝑦𝑦𝑘𝑘 ∆𝜃𝜃⁄  and 
𝑢𝑢𝑞𝑞𝑞𝑞 ∆𝑢𝑢⁄  and the output quantization interval ∆𝜃𝜃  is  

 

Fig. 1. Block diagram of the Quanser QUBE-Servo 2 system  

 

Fig. 2. Sample time and quantization 

∆𝜃𝜃= 0.0031 𝑟𝑟𝑟𝑟𝑟𝑟. For simulations, the input quantization 
interval ∆𝑢𝑢 was chosen as ∆𝑢𝑢= 0.0001 𝑉𝑉. Quantized control 
𝑢𝑢𝑞𝑞𝑞𝑞 in (24) and Fig.1 is computed with (18) using a quantized 
state 𝑥̅𝑥𝑞𝑞𝑞𝑞 = [𝑢̅𝑢𝑞𝑞𝑞𝑞

𝑇𝑇 𝑦̅𝑦𝑞𝑞𝑞𝑞
𝑇𝑇 ]𝑇𝑇, where 𝑢̅𝑢𝑞𝑞𝑞𝑞 and 𝑦̅𝑦𝑞𝑞𝑞𝑞  are given as 

𝑢̅𝑢𝑞𝑞𝑞𝑞 = [ 𝑢𝑢𝑞𝑞(𝑘𝑘−1) 𝑢𝑢𝑞𝑞(𝑘𝑘−2) … 𝑢𝑢𝑞𝑞(𝑘𝑘−𝑛𝑛)]𝑇𝑇

𝑦̅𝑦𝑞𝑞𝑞𝑞 = [ 𝑦𝑦𝑘𝑘−1
𝑞𝑞 𝑦𝑦𝑘𝑘−2

𝑞𝑞 … 𝑦𝑦𝑘𝑘−𝑛𝑛
𝑞𝑞 ]𝑇𝑇 . (25) 

4. REDUCING THE QUANTIZATION ERROR 

According to Xu et al. (2015) and Zhao et al. (2015), the 
quantization in (24) causes error in the Bellman equation in 
(12). A dither signal could be added between the system and 
the analog-to-digital converter to reduce the quantization error 
(Schuchman, 1964; Widrow and Kollar 2008). Here, the 
exploration noise is a dither signal, but it is only possible to 
insert it into the control input. A method to reduce the 
quantization error with the exploration noise is developed. 

4.1 Quantization, sample time and exploration noise 

The sample time, exploration noise and their connection to the 
quantization noise is studied. Each test starts from the same 
initial position and the data is collected for 20 time steps.  The 
control gain is chosen as 𝐾𝐾 = −[0.5 0.5 0.5 0.5] and the 
input saturation is set as [−7 𝑉𝑉, 7𝑉𝑉]. The exploration noise is 
added to the control input and it is an uniform random noise 
between [– 𝐴𝐴𝜖𝜖 𝑉𝑉, 𝐴𝐴𝜖𝜖 𝑉𝑉], where 𝐴𝐴𝜖𝜖 is the exploration noise 
amplitude. Fig. 2. shows 3 tests, where  𝐴𝐴𝜖𝜖 = 1 and the sample 
time 𝑑𝑑𝑑𝑑 is 0.002 𝑠𝑠, 0.01 𝑠𝑠 or 0.1 𝑠𝑠. 

 
 

     

 

 

Fig. 3. Quantized output variance as a function of the 
exploration noise amplitude with different sample times  

 

Fig. 4. SNR with different sample times and noise amplitudes 

 

Fig. 5. MSE with different sample times and noise amplitudes 

 

Fig. 6. Norm of the error between the optimal and the learned 
gain 𝐾𝐾∗ and 𝐾𝐾𝑉𝑉𝑉𝑉  with different exploration noise amplitudes 
and sample times  

 

Fig. 7. Norm of the error between the optimal and the learned 
gain 𝐾𝐾∗ and 𝐾𝐾𝑃𝑃𝑃𝑃  (NaN values with dt = 0.002 s) 

According to Gray and Neuhoff (1998), the quantization 
interval ∆ is ordinarily small when the number of quantization 
levels is large. Quantization levels are the values the quantized 
output can have and here the number of quantization levels is 
infinite. However, the number of quantization levels in Fig. 2 
are 4, 44 and 7910 from top to bottom respectively. It is seen 
(see Fig. 2 top) that the value of the quantized output might not 

change between samples if the amount of quantization levels 
is small, or, put differently, the quantization interval ∆𝜃𝜃 is 
large compared to values the actual output can have. Widrow 
and Kollar (2008) mention that the quantization noise can be 
assumed white, but small sample times demand smaller 
quantization intervals for this assumption to be valid. 

The variance of the quantized output is computed using 
different sample times and exploration noise amplitudes and 
the results are shown in Fig. 3. The figure shows that the 
variance is increased when the exploration noise amplitude 
and the sample time increase. The number of quantization 
levels increases when the variance increases, since the output 
can obtain values from a larger range. This is also seen in Fig. 
2. 

Gray and Nehoff (1998), and Widrow and Kollar (2008) give 
the signal-to-quantization-noise ratio (SNR) as 

𝑆𝑆𝑆𝑆𝑆𝑆 = 10 log10(var(𝑌𝑌) 𝐸𝐸[(𝑞𝑞(𝑌𝑌) − 𝑌𝑌)2]⁄ ) (26) 

with Y as the output signal and 𝑞𝑞(𝑌𝑌) the quantized signal. The 
signal-to-quantization-noise ratio is computed for the different 
datasets (Fig. 4). The ratio increases when the noise amplitude 
and sample time increase. This means that the quantization 
noise can be reduced in comparison to the actual signal when 
the sample time and exploration noise amplitude are increased. 

Gray and Neuhoff (1998) define the mean-squared error 
(MSE) for a small quantization interval ∆ approximately as 
∆2 12⁄ . For the given system output it should be 
approximately (0.0031 𝑟𝑟𝑟𝑟𝑟𝑟)2 12⁄ = 8.0083 ⋅ 10−7 𝑟𝑟𝑟𝑟𝑟𝑟. Fig 
4 shows the MSEs between the quantized and actual outputs 
of the different datasets. In fact, all of the MSEs are close to 
the computed value. Even though changing the sample time 
and the exploration noise reduces the quantization noise in 
comparison to the actual signal (as was seen in Fig. 3 and Fig. 
4), the absolute size of the quantization interval ∆𝜃𝜃  and the 
absolute size of the quantization error is not reduced. 

4.2 Choosing the sample time and exploration noise  

The initial gain and the kernel matrix are chosen stabilizing for 
both PI and VI. To assure the stability, they are not selected 
randomly here, but instead a small gain is computed using (2), 
(7) and (8) with the discretized model (23) and 𝑅𝑅 = 1 and 
𝑄𝑄 = [5 0

0 0], if 𝑑𝑑𝑑𝑑 ≥ 0.01 or 𝑄𝑄 = [0.1 0
0 0], if 𝑑𝑑𝑑𝑑 < 0.01. PI 

and VI learning algorithms are initialized with 𝑄𝑄𝑦𝑦 = 1 and 
𝑅𝑅 = 1. 

A simulator with input and output quantization and input 
saturation is used with different exploration noise amplitudes 
and sample times. The norm of the error between the final 
learned gain 𝐾𝐾𝑃𝑃𝑃𝑃 or 𝐾𝐾𝑉𝑉𝑉𝑉  and the optimal gain 𝐾𝐾∗ is computed 
for each sample time and noise amplitude (Fig. 6 and Fig. 7). 
The error becomes smaller with larger noise amplitudes and 
sample times in this application. This result is expected due to 
results in Fig. 3 and Fig. 4 as the quantization error becomes 
proportionally smaller compared to the signal.  
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While in the simulated environment the performance can be 
improved by increasing the sample time and noise amplitude, 
in the real-time system control should be within ± 10 𝑉𝑉. The 
time constant 𝜏𝜏 of the system is approximately 𝜏𝜏 = 0.13 𝑠𝑠 and 
the system developers use a sample time 𝑑𝑑𝑑𝑑 =
0.002 𝑠𝑠 (Apkarian et al., 2016). Applying larger noise 
amplitudes long term could also harm the system. The 
exploration noise is chosen as an uniform random noise 𝜖𝜖𝑘𝑘 ∈
[−5 𝑉𝑉, 5𝑉𝑉] and the sample time as 𝑑𝑑𝑑𝑑 = 0.01 𝑠𝑠. This choice is 
supported by the earlier results, but it is also chosen so that it 
is physically possible to use it in the real-time system. 

5. CONTROL RESULTS WITH THE CHOSEN 
EXPLORATION NOISE AND SAMPLE TIME 

PI and VI are used in a simulated model without disturbances 
(original simulator) and in a simulated model with added input 
and output quantization and other disturbances (modified 
simulator). The exploration noise, the sample time and the 
initial stabilizing gain 𝐾𝐾0 were chosen in Section 4.2. 
Convergence limits 𝜀𝜀𝑖𝑖 and 𝜀𝜀𝑗𝑗 were chosen as 𝜀𝜀𝑖𝑖 = 𝜀𝜀𝑗𝑗 = 10−7 
for the original simulator and 𝜀𝜀𝑖𝑖 = 𝜀𝜀𝑗𝑗 = 10−5 for the modified 
simulator. PI and VI are initialized with 𝑄𝑄𝑦𝑦 = 1 and 𝑅𝑅 = 1. 

The results with the original and modified simulator are shown 
in Fig.8. It shows the control gain 𝐾𝐾𝑗̂𝑗 at each time 𝑘𝑘. The gain 
𝐾𝐾𝑗̂𝑗 is the gain at iteration 𝑗𝑗 defined as 𝐾𝐾𝑗̂𝑗 =
−(𝑇𝑇𝑢𝑢𝑢𝑢,𝑗𝑗)−1[𝑇𝑇𝑢𝑢𝑢𝑢,𝑗𝑗 𝑇𝑇𝑢𝑢𝑦̅𝑦,𝑗𝑗]. Table 1 lists the converged gains 
𝐾𝐾∞. The first row of the table, the reference gain, is computed 
using (2) and (8) in (7) with 𝑄𝑄 = 𝐶𝐶𝑇𝑇𝑄𝑄𝑦𝑦𝐶𝐶. Near optimal 
control is learned during every run, so the success rate for both 
algorithms in a simulated environment is 100 %. 

Then, Gaussian random noise was added before the 
quantization in the modified simulator to model the 
measurement noise and other disturbances. Three different 
variances were tested (Fig. 9) and only the largest one lead to 
unstable learning. Value iteration tolerates the noise more than 
policy iteration in this application. 

Results on how the real-time system worked with the chosen 
exploration noise and sample time during 200 s run are given 
in Fig. 10 and Fig. 11. It is seen, that while the learning 
algorithms were stable in the simulated environment each run, 
in the real-time environment they can become unstable. 
Learning in the real-time environment was deemed successful 
if it remained stable within 200 s, while it might have not 
reached the optimal value. The real-time learning was run 30 
times for both policy and value iteration. Success rate within 
these runs for policy iteration was 5 30⁄ ≈ 17 % and for value 

Table 1.  Learned gains when simulator is used 

Algorithm Output feedback gain 𝐾𝐾∞ 
LQR ref. [−0.1395 −0.0706 −6.6362 5.7039] 

PI RLS orig. [−0.1395 −0.0706 −6.6377 5.7054] 
PI RLS mod. [−0.1358 −0.0683 −6.4770 5.5655] 
VI RLS orig. [−0.1395 −0.0706 −6.6382 5.7058] 
VI RLS mod [−0.1387 −0.0708 −6.6064 5.6820] 

 

Fig. 8. Learned gain when no disturbances (left) and when 
quantization and saturation are present (right) 

 

Fig. 9. Disturbances added to the system.  

 

Fig. 10. Unsuccessful real-time learning 

 

Fig. 11. Successful real-time learning 

iteration 10 30⁄ ≈ 33 %. One explanation for the difference 
between these percentages is that PI needs a stabilizing policy, 
but the disturbances in the real-time environment cause error 
in the policies, making the system marginally stable or 
unstable.  
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In this case, the frequency of the exploration noise could be 
designed to be in the frequency range of the system. It would 
increase the signal-to-quantization-noise ratio as shown in 
some identification studies earlier (e.g. Roinila et al, 2010). 
Besides this, it is important to develop algorithms that are 
adaptive and reactive so that changes in the environment are 
also considered during control. Vincent and Sun (2012) define 
a reactive system as a system that can sense the environment 
and react to the changes by an adaptive control algorithm.  

6. CONCLUSIONS 

Larger exploration noise amplitudes and sample times lead to 
larger variance in the quantized output and increase the signal-
to-quantization-noise ratio and therefore reduce the effects of 
the quantization noise in the Q-learning algorithms. The new 
method was proven to work in the simulated environment, but 
it was not reliable in the real-time environment as it would still 
lead to instability on some of the test runs. 

In small-scale real-time applications the exploration noise 
amplitude can be increased, if the larger amplitude does not 
cause danger or damage. However, the control voltage is often 
constrained and the large variance in the control input can 
damage the system. Similarly, larger sample time can make the 
Q-learning algorithm react to changes slower as each control 
action is implemented after one time step. Therefore, future 
research must find new ways to reduce the quantization error, 
e.g. by studying the frequency domain characteristics of the 
exploration noise. 
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