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Introd

» Goals:
1. Construct a general 3D mode of the asteroid from observations
2. Determine rotation parameters
3. Determine asteroid surface reflectivity
» Methods for shape representation:
1. Parametric representation
> Simply connected surfaces
2. Level set methods

> Object represented as a level set of an implicit function
» Can be represent any surface
» Computationally demanding

3. Statistical methods

» Data contains unknown systematic errors

Matti Viikinkoski Reconstruction of irregular bodies from multiple data sources



Parametric representation

» Real spherical harmonics of degree [ and of order m:
P/™(cos ) cosmep if m>0
Y™ = < P(cos0) ifm=0
P (cos ) sin(myp) if m <O0.
where P/™ is a Legendre polynomial.

» The usual way to represent a general 3D shape is to expand
each coordinate function as a linear combination of spherical

harmonics:
xo=> a"Y" (1)
y =20"y" (2)
z =gy (3)
» However, this representation is too unstable to used in
inversion

» Excessive regularization is needed to make it work
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Parametric representation

» A better way is to generalize the usual representation for
star-shaped objects:

z(0, p) = e?%) sin(6) cos(p)

x(0,¢) = { y(0, ) = e“ O TR sin(6) cos(p) (4)
2(0, p) = eU0:2)+e(0:9) cos(h),
where
= a"y"
b =Yy
¢ =Ty

» Not as general as the (1), but general enough.
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Regularization methods

Asteroid shape reconstruction is a typical inverse problem,
regularization is needed

>

Truncation of spherical parametric representation has a
regulative effect

The usual representation for starliked shapes can be obtained
by setting b = ¢ = 0 in the parameterization (4).

Considering a star-shaped surface as our basic shape, the
intuitively obvious measure for shape complexity is a weighted
norm of coefficients {b;,,} and {c;,}. To this effect, we define

l,m

Local smoothing by penalizing divergence from local convexity
Physical regularization that strives to align the principal axis
of maximum moment of inertia with the rotation axis of the
object
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Possible data sources

Lightcurves
Profile contours

Interferometry

vV V. Vv Y

Doppler radar images
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Lightcurves

» Lightcurve is the brightness of an asteroid as a function of the
time
» Depends on asteroid shape and surface reflectivity
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>

View direction w, illumination direction wq are the directions
of the sun and the earth as seen from the asteroid

Solar phase angle is the angle between w and wy

A surface patch ds with a normal vector n is visible and
contributing to the total brightness, if both w-n and wy - n
are positive

Surface scattering law is assumed to be a combination of
Lommel-Seeliger and Lambert laws:

S = ﬂ ~+ cppho,
M+ pho
where = w - n, pg = wp - n and c is a constant.

Total brightness of the asteroid is

/ Sds,
At

where the integral is over the visible part of the surface.

Matti Viikinkoski Reconstruction of irregular bodies from multiple data sources



» For actual computations, a parametric surface is triangulated

» Triangulation can be easily constructed by transfering a
standard triangulation on the unit sphere to the surface using
the parameterization

» Visibility of each surface facet is determined by raytracing
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Profile contours

» Boundary curves obtained from adaptive optics images
ra. observed with ADONIS SK band
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Figure: Kleopatra ao images by Hestroffer et al.

» Duo to adaptive optics artifacts, only boundary contains
reliable information
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Profile contours




Profile contours

>

>

Object B is projected to the view plane, and the boundary
curve is extracted.

A distance d(e, Py) between a point Py and a line segment e
with endpoints P; and P» is defined as follows: Let d;(e, Pp)
be the perpendicular distance of the point Py from the line
defined by P, and P if its projection is inside the line
segment. Letting da(e, Py) be the smallest of distances
between the point Py and P;, and between the point P and
P>, we may set

d(e, P()) = min{d1 (6, P()), dQ(e, Po)}
Goodness-of-fit measure between the model boundary 9B and
a set s of the observed boundary points ; is defined as
follows:

2 . .
X5 eg%mim (e,54) + : min (e, )
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Profile contours

» Displacement of the profile contour with respect to the
observed contour in the viewing plane is assumed to be
unknown. The optimal offset parameters are determined

during the inversion algorithm.

e

e ™
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Interferometry

» Interferometric curves obtained from Hubble space telescope's
fine guidance sensor(HST /FGS)

» An interferometric curve is obtained by projecting the image
of the object on the plane-of-sky to one of the orthogonal
HST/FGS axes

» The response function S(x) of the HST/FGS can be
calculated by convolving the brightness distribution I(u,v) of
the projected image of the object with the template transfer
function T'(x) of the instrument:

1
S(z) :yo+L//I(u,v)T($0+$—uCOS’y+vsin7)dudv,

L= //I(u,v)dudv

is the total brightness of the visible part of the object and ~ is
the angle between the image axis and the FGS axis.

where
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Inte metry

» Parameters xg and yg are the location offset values of the
object with respect to the FGS coordinates and are
determined during optimization

» The template transfer function T'(x) cannot be written in
analytical form and is thus given as a set of sampled values.
To obtain a continuous function, the transfer function is
linearly interpolated between the sampled points.
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Figure: Typical s-curves obtained from the HST/FGS
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Optimization

» General Goodness-of-fit measure
X* = Xie + Mo + A2Xae + AaN?

where x7,, X;2;c and X2, are the fits obtained from the
lightcurves, profile contours and S-curves, respectively.

» Analytic derivatives of x? with respect to shape parameters
aim, bim and ¢, can be calculated

» X2 is minimized using Levenberg-Marquart optimization
algorithm
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Examples:Hermione

» 41 lightcurves

» 4 boundary curves
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Examples:Hermione
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Examples:Hermione
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Examples:Hermione
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Examples:Kleopatra

Assumed to an bifurcated asteroid, a dogbone-like shape
18 Boundary curves
46 Lightcurves

18 Interferometric curves

vV vVv.v. v Yy

Data contains systematic errors
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Examples:Kleopatra
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Figure: Model fit to the lightcurves




Examples:Kleopatra

A fit obtained from lightcurves and profile contours only. Note the
almost convex shape.
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Examples:Kleopatra
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Examples:Kleopatra




Examples:Kleopatra

Figure: An example of discrepancy between data obtained from AQO
images and S-curves
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Examples:Kleopatra
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Conclusions

» Shape inversion of general (not necessarily star-shaped)
asteroid is possible

» More data is needed for reliable reconstruction

» Systematic errors in the data make error analysis challenging
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