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Abstract—We propose a novel instruction compression scheme
based on fine-grained programmable dictionaries. In its core is
a compile-time region-based control flow analysis to selectively
update the dictionary contents at runtime, minimizing the update
overheads, while maximizing the beneficial use of the dictionary
slots. Unlike in the previous work, our approach selects regions of
instructions to compress at compile time and changes dictionary
contents in a fine-grained manner at runtime with the primary
goal of reducing the energy footprint of the processor instruction
stream.

The proposed instruction compression scheme is evaluated
using RISC-V as an example instruction set architecture. The
energy savings are compared to an instruction scratch pad and
a filter cache as the next level storage. The method reduces
instruction stream energy consumption up to 21% and 5.5%
on average when compared to the RISC-V C extension with a
1% runtime overhead and a negligible hardware overhead. The
previous state-of-the-art programmable dictionary compression
method provides a slightly better compression ratio, but induces
about 30% runtime overhead.

I. INTRODUCTION

Although required for software-based programmability, the
instruction stream of a processor is effectively an overhead
in the big picture; it does not directly contribute to the
processing of data in computation. Since the instruction stream
in programmable processors can constitute up to 40% of total
system energy [1], [2] and up to 70% of processor core power
[3], it is appealing to focus on the minimization of its impact.

Previous work attempts to address the instruction stream
overheads at various design hierarchy levels. In code compres-
sion, the aim is to reduce the bits required by the program.
When minimizing static compression ratio (CR), redundancy
in the program image can be utilized to save storage space
in the instruction memory. On the other hand, if optimizing
dynamic CR, the goal is to reduce the total number of fetched
instruction bits in order to improve the cache hit ratio or to
reduce bit toggling, eventually improving the energy efficiency
of a software programmable processor. In that case, the focus
of the compression is on the most executed instructions.

Previous code compression approaches mainly focus on static
code size reduction with only a few works [4], [5] concentrating
on dynamic CR. In this paper, we propose a code compression
method targeted for energy efficiency by optimizing specifically
for dynamic CR. Evaluated in an embedded system scenario,

our approach achieves an average instruction stream energy
reduction of 5.5% and 21% in the best case compared to RISC-
V C extension [6] with an average runtime overhead of 1%.
Although a state-of-the-art dictionary compression method [7]
produces somewhat better dynamic compression ratios, its
runtime overhead is significantly higher, degrading execution
performance.
We identify the following key contributions in this paper:

e« A novel run-time programmable code compression

scheme,

« a static CFG analysis algorithm to group program basic

blocks into code compression regions,

o a heuristic to find most suitable instruction bundles to

place into dictionaries,

o a low-overhead decompression hardware architecture

designed for minimal programming overhead, and

« the first evaluation of a dictionary compression scheme

on the RISC-V ISA.

The rest of this paper is organized as follows. Section II
overviews the relevant previous work on instruction compres-
sion. Section III introduces background on code compression
and Section IV continues by describing the proposed method.
In Section V, the proposed method is evaluated and results are
presented. Finally, Section VI concludes the paper.

II. PREVIOUS WORK

The proposed method requires design choices on the type of
compression used, the strategies to choose the dictionary entries,
and the granularity of the dynamic control over compression.
Therefore, we review the previous work in these topics in
the following subsections. The most relevant references are
summarized in Table I.

A. Compression Types

The choice of compression type has significant impact on
compression ratios, runtime overhead, area occupation and
energy consumption. Although statistical methods such as
Huffman coding and run length encoding (RLE) typically lead
to better CR compared to dictionary-based methods, they result
in a more complex decompression logic. Wolfe and Chanin [§]
use compression based on Huffman code. During execution,
encoded instructions are fetched into a cache and decoded



[ type update granularity  compression target note year
CCRP [8] Huffman program static CR 1992
Lefurgy et al. [9] dictionary program static CR compresses instr. sequences 1997
Benini et al. [4] dictionary program dyn. CR dynamic profiling 1999
Lin et al. [10] LZW dynamic static CR on-the-fly generated code table ~ 2007
bitmask [11] dictionary + bitmask program static CR 2006
Brorsson & Collin [5] dictionary function call dyn. CR + energy 2006
Thuresson et al. [7] dictionary basic block dyn. CR 2009

TABLE I: Comparison of previous code compression methods.

for execution. Lin et al. [10] use Lempel-Ziv-Welch (LZW) to
compress program basic blocks (BBs). During compression
and decompression, a coding table is dynamically generated
and cleared upon encountering a branch target.

ARM Thumb [12], MIPS16 [13] and RISC-V C extension
(RVC) [6] are reduced instruction sets, where a subset of
instructions are compressed by representing them with 16 bits
instead of the regular 32 bits. For each of the two instruction
modes, a separate decoding hardware is used.

Benini et al. [4] mix uncompressed (32-bit) and compressed
(8-bit) instructions in the memory. A mark of 8 bits is used to
indicate an uncompressed instruction in their dictionary scheme.
Their results indicate that fetching uncompressed instructions in
a single fetch is beneficial, which we adopt to our work. Lefurgy
et al. [9] use dictionary compression to reduce code size. They
form a single dictionary per program and align variable-length
codewords to 4-bit boundaries. Lefurgy et al. [14] split 32-bit
instructions into two parallel 32-entry dictionaries to compress
instructions in the IBM PowerPC. In our work, we also split
instructions to multiple dictionaries based on the instruction
subfields of the target architecture ISA. Seong and Mishra [11]
describe a bitmask scheme on top of dictionary compression.
This allows multiple instructions to share a single entry, if
the differences can be expressed with an XOR bitmask. This
approach is orthogonal with dictionary compression and can
be applied on top of the proposed method.

In the majority of the previous work, the preferred approach
in recent instruction memory hierarchies incorporating instruc-
tion compression is dictionary compression [4], [7], [9], [11],
[14], which we also base our work on.

B. Content Strategies

The method for finding optimal dictionary entries has
been studied as an isolated research problem. Li and
Chakrabarty [15] show that finding optimal instructions for
dictionary compression is an NP-hard problem. Thus, previous
work typically uses heuristics to select dictionary entries.

Benini et al. [4] observe that per program, the majority of
the most executed instructions in their benchmark set fits into
a dictionary of 256 instructions.

Lin et al. [10] analyze program control flow graphs (CFGs)
to identify branch blocks, also referred to as superblocks [16],
which are regions of basic blocks (BB) where a branch is only
allowed to the first BB. Our proposed approach uses code
regions similar to superblocks.

Ishiura and Yamaguchi [17] describe a field partitioning
scheme for a very long instruction word (VLIW) architecture.

They present a heuristic to approximate the best field partitions
to be compressed individually. These are formed in parallel
and iteratively merged in a greedy fashion.

To lower the dynamic cost of programming dictionaries,
Thuresson et al. [7] search for identical entries between BBs
and recursively push dictionary programming instructions to
predecessor BBs, if the programming cost there is lower. The
cost is determined by the amount of BB executions from a
trace profile. The authors do not pack immediate values, which
require fixing after compression. To avoid execution path bias,
our proposed method uses static analysis instead of dynamic.
Also, our algorithm handles immediate values and their correct
execution is verified using RTL simulations.

C. Programming Granularity

While large dictionaries can accommodate more entries,
accessing them is less energy efficient when compared to
smaller ones. This brings a trade-off: How can dictionaries
be kept small and energy-efficient, while maintaining good
static and/or dynamic CR? A solution to this is dynamic
programmability of dictionaries. However, this introduces
additional challenges to the software side: At which point in
the program to change the contents? In addition, the dictionary
contents present an additional architectural state, which must
be preserved across function calls, exceptions and context
switches.

Previous work considers updating dictionaries at differ-
ent levels of granularity during execution. Majority of the
previous work updates dictionary contents at the start of a
program [4], [8], [9], [11]. Brorsson & Collin [5] evaluate
updating dictionaries at different granularities, of which the
most fine-grained is at function-level. Their results suggest,
that dynamic CR and energy consumption can be improved
by updating dictionaries at context switches. However, as their
approach compresses all instructions, loops that do not fit into
dictionaries cause significant overheads in execution time and
energy consumption. Clearly, compressing all instructions is
harmful, when a benchmark exceeds the capacity of dictionaries
whose size is fixed at design time.

Thuresson et al. [7] update dictionaries at the granularity
of BBs. Upon entering a BB, dictionary entries can be
programmed one-by-one. In their approach, all instructions are
compressed, whereas in our proposed method only instructions
considered beneficial for improving the energy footprint are
compressed. Although the authors report execution time over-
heads of 1% from the dictionary programming, our evaluations
show that for loops that do not fit into the dictionary, the



execution time overhead is significant. To address this, our
method updates the dictionaries before loop regions.
Although relatively old, we consider the approach pro-
posed by Thuresson et al. to still be the state-of-the-art
in programmable dictionary compression. It achieves high
compression ratios with a minor runtime overhead. Therefore,
we use it as the baseline in our evaluation. It is also closest to
the proposed method in terms of dictionary control granularity.
Although there are more recent publications on instruction
compression, such as [18], to the best of our knowledge they
do not contribute on fine-grained programmable dictionaries.

III. CODE COMPRESSION FOR ENERGY-EFFICIENCY

In this section, we discuss the effects of dictionary compres-
sion design choices on energy-efficiency. Previous work on
code compression has mostly concentrated on optimizing for
static CR, while the potential for reducing energy consumption
has received less attention. Our proposed method primarily
targets dynamic compression ratio. Compared to previous
work, our approach allows fine-grained dynamic control of
dictionary contents, while keeping the runtime overhead low
by not compressing all instructions. Ideally, in terms of energy-
efficiency, the dictionaries should be as small as possible, while
still providing a good dynamic CR. Compressing instructions
requires fetching from both the main memory hierarchy as
well as the dictionary, resulting in a higher total number of
bits fetched compared to uncompressed instructions. However,
as fewer bits are fetched from the expensive main memory,
improvements in both energy consumption and performance
are possible, since the dictionary accesses are assumed to be
faster and consume less energy.

Here, we consider the dictionary or dictionaries to be pro-
grammable. Even though programmability can add complexity
to the compression software, it can improve the compression
ratio if instruction mixes vary significantly between different
program phases [7].

A. Dictionary Sizing and Instruction Subfields

In order to decrease redundancy in instruction compression,
instruction subfields such as immediate, opcode or register
index fields can be compressed individually. Here, it makes
sense to group together bits belonging to the same subfield [17].
As some subfields are not used in all instructions and some
only use a small number of their possible bit combinations,
these subfields can have good compression ratios even with
relatively small dictionaries compared to the number of total
bit combinations they can represent. For energy-efficiency,
dictionaries should be kept as small as possible while still
maintaining good compression ratios.

B. Should All Instructions Be Compressed?

In addition to programmability, the issue of limited amount
of dictionary entries can be alleviated by allowing both
uncompressed and compressed instructions in program code.
Consider a region of code that is executed only once. If the
entries between instructions in the region are not shared, the

region should not be compressed; fetching and writing the
entries into a dictionary in addition to fetching the compressed
instructions for them only increases execution time and energy
consumption. Another harmful case can be found in program
inner loops: if all of the entries of a loop cannot fit into a
dictionary and uncompressed instructions are not allowed, the
dictionary will have to be programmed at each iteration of the
loop, causing significant overheads.

C. Dictionary Entry Selection

Selecting the set of instructions to store in the dictionary
per program poses a problem: when the total number of
unique instructions in a program increases, a fixed size
dictionary can accommodate a smaller portion of them. If
the target is minimizing static CR, then selecting entries by
their static occurrence is a valid criteria. For minimizing
dynamic CR, the most executed instructions should be chosen
as dictionary entries. Compressing an instruction occurring only
once requires more space than its uncompressed version. In
terms of energy consumption, the overhead of programming an
instruction to the dictionary should not consume more energy
than is saved by executing it as compressed.

D. Bundling

Although allowing uncompressed instructions could be
beneficial for energy consumption and execution time, it raises
a practical issue of laying out varying width instructions in
memory. Fig. 2 compares placement options in a scheme,
where instructions have a fixed amount of different templates.
If the compressed and uncompressed instruction widths are
not divisible by each other, padding bits must be used. As
the instruction fetch word size is fixed at design time, the
instruction template should minimize or completely eliminate
the amount of padding bits.

In Fig. 2a the memory width is aligned to compressed in-
structions and uncompressed instructions are padded. However,
this adds an execution time overhead, as an uncompressed
instruction now requires fetching multiple words.

In another approach illustrated in Figures 2b and 2c, the
instruction word width is selected so that either an uncom-
pressed instruction or a bundle of p compressed instructions
can be fetched in one word. This has the advantage of constant
number of fetches required for both instruction types. However,
it can require padding bits depending on the relationship of
uncompressed and compressed instruction sizes. Moreover, a
full bundle requires p consecutive compressible instructions.
This leads to a design choice: unless p consecutive compressible
instructions are found, the bundle is discarded, or the bundle
size must be somehow indicated.

IV. SUPERBLOCK-BASED CODE COMPRESSION

Since the main objective of the proposed method is energy-
efficiency, the leading philosophy is to keep the decompression
and control hardware simple by moving much of the control
of the decompression logic to software. We also expect



C

linking ]

[ source code 1
C comptlation ]
[ assembly code ]
E BB & CF('B analysis j

L program binary code

instruction memory
header 01
uncompressed 1
compr. bundle 10
compr. bundle 10
uncompressed 11
| uncompressed |

header

[ T ] [fil_amount_field[0[1]

log,(max_dict_size)+2

entries after header

[dictcm>] *=* [ dictl | dict0
compressed bundle
[Cinstr<p> |«ss[ instrl | instr0 [1]0|

[idx1 ] idx0

\

instruction fetch

decompress

is_branch

instr_from_ifetch

HU Y

fill_amount_field B

pc_set_i
is_compressed
is_last_in_bundle

is_compressed
0 [o—Z——
' —
is_header

is_header

fil_amount

> write_dict

fill_col .
I is_branch

is_header

fill_amount_reached

2xecuting_bundle

bundle_counter

BUNDLE_SIZE

is_branch
is_last_in_bundle

filling_dict
is_header

is_compressed

B deliver_compressed is_last_in_bundle

instr_from_ifetch

write_dict

instr_from_ifetch

NOP

deliver_compressed N0 1/

instr_to_decoder

Fig. 1: Overview of the proposed method. Contributions of this work are coloured blue. Dictionary frames created at compile time are
programmed into dictionaries. Compressed and uncompressed instructions are read from memory during execution.

1 A

=2 | o

B C

O|lm|>

instruction width.

(b) Aligned to a multiple of compressed

oo. N A

B C .
D

(a) Aligned to com-
pressed instruction

width. width.

(¢) Aligned to uncompressed instruction

Fig. 2: Alignment of memory width with instruction bundles.

compressing inner loops to provide most benefits, as they

are typically program hot spots.

An overview of the proposed method is presented in Fig. 1.
At compile time, a CFG is analyzed for each function. From
the CFGs, our algorithm analyzes BBs belonging to loops and
groups them into compression regions similar to superblocks
[16]. For each region, a dictionary frame is created, if it is
evaluated as profitable for dynamic CR. This is done with a
heuristic algorithm which selects bundles of instructions to
compress based on an occurrence-cost metric.

During execution, the start of dictionary programming must
be indicated. In our implementation, this is a special header
instruction that conveys the number of entries to fill. Although it
uses an unused encoding in the RISC-V ISA, it does not require
modifications to the core itself, as the header is not conveyed



to the instruction decoder, but is handled inside the dictionary
decompressor. The header is followed by the dictionary entries
to be filled. After a dictionary frame is programmed into the
dictionary, compressed and uncompressed instructions can both
be executed.

Next, the compile time algorithm used to compress instruc-
tion binaries is explained. It is followed by a description of
the decompression and dictionary hardware designs.

A. Bundle-Aware Compression Algorithm

As a consequence of allowing uncompressed instructions
in program code and concurrently requiring only one fetch
per instruction, our approach bundles compressed instructions
as shown placed inside the instruction memory in Fig. 1. To
keep the fetch control logic straightforward, instructions in the
memory are aligned to fixed boundaries according to Fig. 2c.
That is, a fetched word can only contain either an uncompressed
instruction or a bundle of m compressed instructions. Otherwise,
its instructions are left uncompressed. As a result, an instruction
can exist both as uncompressed and compressed in different
addresses of a program and even inside a BB.

The proposed compression algorithm is described as pseudo
code in Fig. 3. First, a CFG is constructed for each function in
an input program. From the CFG, nested loops are identified.
Correctness of program execution relies on regions being
entered only from a single entry point. This allows not having to
duplicate the dictionary header code at each location branching
into the region. There can be multiple branches out of the
region, as the end of a region is not indicated.

As a function call can cause the dictionary frame to be
updated, regions with calls in them are not compressed. This
is to avoid programming the dictionaries during each iteration
of loops, if a function is called from them. Even though
all functions are not compressed, we do not assume this
during compression, as we perform region analysis per function
assuming all functions are not available for a whole program
analysis.

We divide full instructions into subfields and compress them
individually, as this seems to allow better compression in our
preliminary estimations. The algorithm first calculates static
occurrences in the region for each instruction subfield defined
by the user. For a bundle, the cost of adding new entries is
defined as

N
cost, = Z n (1
n=1

where N is the number of consecutive instructions for a
bundle and r, is the amount of new entries over all subfields in
the instruction to be added to the dictionaries to compress the
bundle. Next, an occurrence-cost score,. is calculated using

cost,

2)

SCore e =

where cost, is calculated using Eq. 1 and s is the number of
static occurrences in the whole region for the entry candidates
in the bundle.

Input compression regions
Output dictionary frames
n = consecutive instructions required for a bundle

1: for all region in regions do

2: while dictionaryFrame not full and BBsToHandle do

3: while true do

4: groupValid = True

5: bestGroup = None

6: i, newEntriesRequired, bestScore = 0

7 while i < region.instructions.length do

8: candidateBBGroup = region.instructions[i:i+n-1]

9: for instruction in candidateBBGroup do

10: if instruction not isFirstIn(candidateBBGroup) then
11: break

12: end if

13: for all subfield in instruction do

14: if subfield.encoding not in dictionaryFrame[fieldIdx] then
15: newEntriesRequired += 1

16: end if

17: end for

18: end for

19: if candidateBBGroup.fitsInto(dictionaryFrame) then
20: for all unique entry in candidateBBGroup.entries do
21: numOccurrences += entry.occurrencesIn(region)
22: end for

23: else

24 groupValid = False

25: end if

26: if groupValid then

27: score = numOccurrences/newEntriesRequired
28: if score < bestScore then

29: bestGroup = candidateBBGroup

30: bestScore = score

31: end if

32: end if

33: i+=n

34: end while

35: if bestGroup != None then

36: dictionaryFrame.addEntriesFrom(bestGroup)

37: else

38: break

39: end if

40: end while

41: end while

42: end for

Fig. 3: Pseudocode to create dictionary frames

For loop regions, the algorithm starts from the innermost
loops. Since the algorithm assumes to not have information
on loop iteration counts in the general case, all instructions of
an inner loop are placed into the dictionary if they fit. This is
based on the assumption that inner loop levels are likely to be
executed more than outer levels. Upon encountering the first
loop level that does not completely fit into the dictionary, that
loop is partially placed into the dictionary using the algorithm
presented in Fig. 3.

As branch targets can end up in new locations after
compression, branch instructions require fixing accordingly.
Moreover, branch targets are problematic, as their immediates
may have the same encoding as an instruction with another
template. For this reason we always reserve an individual entry
for each subfield when compressing a branch. Moreover, as
RISC-V utilizes PC relative branching, two branches with the
same target address cannot use the same entries.

B. Low Overhead Decompression Hardware

While program binaries are compressed at compile time in
software, hardware is responsible for decompressing instruc-
tions and programming the dictionary entries upon a header
instruction. Fig. 1 illustrates the decompression logic used
in conjunction with the proposed method. The logic is fairly
straightforward, as the complexity of program flow analysis
is moved to the compiler. The instruction fetch unit fetches
instructions and examines the two least significant bits to



| dict 2 dict_l dict 0 [| | dict2 dicl dict0

width | 8b 156 7b || enwies | 4 64 3

TABLE II: Evaluated dictionary parameters.

check for header and compressed instructions. A header stalls
execution until the dictionaries are programmed, after which
the execution falls through to the next instruction after the last
entry.

C. Design Considerations

For maximizing locality, an option would be to store
the dictionary entries directly in consecutive addresses after
the header instruction. This allows fast programming of the
dictionary as no branching is required to obtain the dictionary
entries. However, this is not optimal for loops. Although
programming the dictionary is fast in this approach, later
iterations of a loop require a branch over the dictionary entries.
We locate the dictionary entries after the header instructions, as
we assume that a loop region is not entered frequently, keeping
the overhead low.

Design parameters for the proposed compressor listed in
Table II are manually selected by observing the different
instruction templates in the RISC-V ISA [6]. In preliminary
evaluations, a bundle size of three instructions provided best
results. This translates to a compressed instruction width of
10 bits, as this allows a bundle of three instructions with no
padding bits, when the two compression bits are concatenated
to a bundle. A large portion of the RISC-V base instruction
set opcodes use very similar encodings, requiring few entries
for a dictionary. This 7-bit opcode field is then compressed
individually. As pointed out by Waterman [19], the majority
of immediates used in RISC-V programs are small. Thus, the
most significant eight bits of immediates, which are also the
most significant bits in the RISC-V immediate encoding, are
compressed as one group. The remaining 15 bits are compressed
together. Dictionary entry amounts are exhaustively searched
from all combinations that result in a compressed width of 10
bits.

V. EVALUATION

We evaluate the proposed compression method by integrating
it to an embedded system consisting of a processor core and
an SRAM-based on-chip instruction memory as illustrated in
Fig. 4. A RISC-V implementation called zero-riscy [3] is used
as the example processor core. Details are listed in Table III.
In all evaluations, the 32 kB instruction memory configured
in the zero-riscy implementation is used. The SRAM energy
consumption is estimated using CACTI-P [20].

In order to evaluate the method in different memory hierarchy
configurations, we compare against a small direct-mapped filter
cache [21]. Filter caches are commonly used to improve the
instruction locality of data oriented workloads with good energy
efficiency due to their relatively simple hardware logic. An
open-source implementation [22] by Saljooghi et al. is used
for this purpose. The instruction memory access time is set to
one clock cycle.

32 bits

2

RISC-V ISA | IMC
issue width 1

instruction width
pipeline stages

TABLE III: Features of the zero-riscy core used in the evaluation.

instruction fetch l

"""""""""" zero-riscy core

instruction instruction

memory cache H uncompressed
SRAM line size 4B : instruction
32kB

block size 16B }

dictionary decompressor

Fig. 4: Evaluation setup.

Benchmark applications from CHStone [23] are compiled
using the GCC-based compiler shipped with the zero-riscy
core. The jpeg benchmark is left out of the evaluation as
its data does not fit into the 32kB data memory in zero-
riscy. Benchmark loop characteristics are shown in Table V.
Disassembled program binaries are used as input for the
compressor and execution traces from RTL simulation are
used to evaluate the dynamic CR and energy consumption.

We compare to the previous state-of-the-art by implementing
the algorithm by Thuresson et al. used in the FlexCore processor
[7] since it has the finest dictionary programming granularity
and is closest to the proposed method. In order to provide
another interesting reference point, we compile the benchmarks
utilizing the RISC-V Compressed (RVC) [6] instruction set
extension.

A. Compression Ratios and Runtime Overhead

Static compression ratios are listed in Table VI. On average,
RVC reaches a static CR of 0.75, whereas the proposed method
results in larger code than the original with a static CR of 1.12
on average. This stems from one of the subfield dictionaries
having significantly more entries compared to the two others.
In our approach, entries are always programmed to the field
dictionaries in parallel. As the entries to be programmed are

80%
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adpcm aes  blowfish  gsm mips  motion

mRVC ™ Thuresson etal. ' proposed

Fig. 5: Dynamic compression ratio. Lower is better.

20%

(J 0
15%
10%
5%
0% [ |

adpcm aes blowfish  gsm mips motion sha avg.

B RVC ®Thuressonetal. © proposed

Fig. 6: Runtime overhead.
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baseline RVC proposed

no cache LI1-2 L1-32 L1-128 | no cache L1-2 L1-32 L1-128 | no cache
adpcm 91502 1099 % 643 % 287 % | 843 % 91.0 % 487 % 69 % 83.6 %
aes 24698 100.7 % 184 % 53 % 85.7 % 853 % 121 % 44 % 70.1 %
blowfish | 729960 1027 % 752 % 1.5 % 79.4 % 78.9 % 571 % 02 % 69.4 %
gsm 14586 1106 % 156 % 75 % 81.2 % 69.8 % 11.6 % 5.6 % 84.5 %
mips 25420 1249 % 470% 1.5 % 84.5 % 1071 % 152 % 1.1 % 91.4 %
motion 2202 1146 % 223 % 21.8% | 929 % 1103 % 180 % 173 % | 714 %
sha 689790 1059 % 75 % 0.1 % 73.2 % 85.6 % 4.5 % 0.1 % 44.8 %
avg. 1097 % 272 % 33 % 82.8 % 88.7 % 174 % 1.6 % 72.0 %

TABLE IV: Memory access amounts.

. . . . instructions instructions
concatenated 1pt(:> a full instruction WOI‘d.S gnd placed into in loops (%)  executed in loops (%)
memory, the bit indexes for the smaller dlctlonar.les are.left adpom o 773
unused after there are no more entries for those dictionaries. aes 334 80.7

Dynamic CR per benchmark for the evaluated methods is ZIS‘I)I‘iVﬁSh g;z‘ 38?
presented in Fig. 5. RVC achieves the smallest reduction in mips 358 635
fetched dynamic bits, a geometric mean CRgy,mic of 0.83. Due motion 16.0 79.8
to the instruction prefetcher of the zero-riscy implementation, sha 257 93.7

there is a small overhead in runtime caused by RVC, as
instructions are sometimes fetched during branches.

The algorithm by Thuresson et al. achieves the best CR 4yamic
with a geometric mean of 0.69. However, the runtime overhead
caused by the dynamic dictionary programming is significant:
1.31x compared to uncompressed execution on average. This is
due to large loops whose entries do not fit into the dictionaries,
forcing costly dictionary programming at each iteration of
the loop. The proposed compression achieves on average
a CRyynamic of 0.72. This is somewhat higher than that of
Thuresson et al., but it should be noted that their method
uses dynamic program profiling, whereas our method is based
on static CFG analysis and focuses on inner loops to reduce
compression bias in data-dependent program flows. As the
method of Thuresson et al. compresses all instructions and
partially shares dictionary entries between BBs, it achieves
better compression ratios than the proposed method. However,
the frequent dictionary programming and the requirement to
compress all instructions causes a significant execution time
overhead, whereas the proposed approach allows uncompressed
instructions and hoists dictionary programming code outside of
loops, leading to significantly smaller execution time overhead

TABLE V: Benchmark characteristics.

[adpcm aes blowfish gsm mips motion sha avg
RVC 078 0.71 0.76 0.74 0.73 0.80 0.76 0.75
Thuresson et al. | 1.28 1.25  1.11 191 1.82 123 153 142
proposed 1.06 117 1.15 1.07 1.10 1.10 1.19 1.12

TABLE VI: Static compression ratio. Lower is better.

of only 1% on average.

B. Energy Consumption

In order to evaluate system energy consumption, we obtain
the SRAM instruction memory access energy values from Cacti
[20]. Cache numbers and the overhead from the additional
hardware are evaluated by implementing the proposed method
in SystemVerilog and synthesizing it with the Synopsys Design
Compiler using a 28 nm process. As the cache size is small, it is
implemented with flip-flops instead of SRAM. Power estimates
are obtained for the synthesized design using switching activity
information files (SAIFs) produced with Modelsim.

As the approach by Thuresson et al. results in a 31%
overhead in execution time, we consider this prohibitively
large in terms of performance, even though it reaches a slightly



better dynamic CR on average when compared to our proposed
method. Thus, we do not implement it in hardware and exclude
it from the energy evaluations.

Energy estimates relative to zero-riscy with no RVC are
presented in Fig. 7. Compared to RVC, the proposed approach
reaches on average a 5.5% energy reduction in the instruction
stream. The best reduction of 21% is achieved in sha.

In gsm, the proposed method consumes more energy than the
baseline. This is due to a frequently executed loop containing
a function call. Our algorithm is not able to compress this
loop due to the call, resulting in an overhead from the idling
compression logic. This stems again from the program analysis
being limited to function CFGs and motivates future research on
a whole-program analysis. In mips, our current loop detection
algorithm is not able to identify the complex main loop
structure. Without these cases, the average energy reduction
over RVC is 11%.

The zero-riscy core including the decompressor reaches a
maximum clock frequency of 1.38 GHz, which is actually 5%
better than the baseline, due to the removal of the instruction
prefetcher required by RVC. The chip area used by the
dictionary decompressor is 4100 um?. The latency of the
dictionary decompressor component was (.36 ns with its critical
path starting from the dictionary addressing logic and ending
in the instruction out port. Critical path of the whole core is
not in the decompressor, but in the multiplication unit.

VI. CONCLUSIONS

In this paper, we presented a novel programmable code
compression scheme to minimize the dynamic compression
ratio. We proposed an algorithm to divide an input program
CFG into compression regions. As our approach places com-
pressed and uncompressed instructions interleaved in memory,
we proposed an algorithm to greedily bundle compressible
instructions driven by an occurrence-cost metric.

The proposed compression method was evaluated on a RISC-
V processor system with individual dictionaries for instruction
subfields. Compared to RVC, our approach reduced instruction
stream energy consumption by 5.5% on average and 21% in
the best case with only an average 1% runtime overhead.

In the future we plan to investigate whole-program algo-
rithms to more efficiently treat loops with function calls as well
as evaluate the method with static multi-issue architectures.

ACKNOWLEDGMENTS

The authors would like to thank their funding sources:
Tampere University of Technology Graduate School and
Academy of Finland (decision #331344). This work is part
of the FitOptiVis project [24] funded by the ECSEL Joint
Undertaking under grant number 783162.

REFERENCES

[1] M. Collin and M. Brorsson, “Low power instruction fetch using profiled
variable length instructions,” in Proceedings of the IEEE International
Systems-on-Chip Conference (SOC), 2003.

[2] Y. Lee, R. Avizienis, A. Bishara, R. Xia, D. Lockhart, C. Batten, and
K. Asanovi¢, “Exploring the tradeoffs between programmability and
efficiency in data-parallel accelerators,” in International Symposium on
Computer Architecture (ISCA), 2011.

[3]

[4

=

[5]

[6]

[7]

[8]

[9

—

[10]

(1]

(12]
[13]

[14]

[15]

[16]

(171

[18]

[19]

[20]

[21]

[22]

[23]

[24]

P. D. Schiavone, F. Conti, D. Rossi, M. Gautschi, A. Pullini, E. Flamand,
and L. Benini, “Slow and steady wins the race? A comparison of ultra-low-
power RISC-V cores for internet-of-things applications,” in Proceedings
of International Symposium on Power and Timing Modeling, Optimization
and Simulation (PATMOS), 2017.

L. Benini, A. Macii, E. Macii, and M. Poncino, “Selective instruction
compression for memory energy reduction in embedded systems,” in
Proceedings of the International Symposium on Low Power Electronics
and Design (ISLPED), 1999.

M. Brorsson and M. Collin, “Adaptive and flexible dictionary code com-
pression for embedded applications,” in Proceedings of the International
Conference on Compilers, Architecture and Synthesis for Embedded
Systems (CASES), 2006.

A. Waterman, Y. Lee, D. A. Patterson, and K. Asanovic, “The RISC-V
instruction set manual, volume I: Base user-level ISA,” EECS Department,
UC Berkeley, Tech. Rep. UCB/EECS-2011-62, 2011.

M. Thuresson, M. Sjélander, and P. Stenstrom, “A flexible code com-
pression scheme using partitioned look-up tables,” in High Performance
Embedded Architectures and Compilers (HiPEAC, Berlin, 2009.

A. Wolfe and A. Chanin, “Executing compressed programs on an
embedded risc architecture,” in Proceedings of the Annual International
Symposium on Microarchitecture (MICRO), 1992.

C. Lefurgy, P. Bird, I.-C. Chen, T. Mudge, and T. Mudge, “Improving
code density using compression techniques,” in Proceedings of the Annual
International Symposium on Microarchitecture (MICRO), 1997.

C. H. Lin, Y. Xie, and W. Wolf, “Code compression for VLIW embedded
systems using a self-generating table,” Transactions on Very Large Scale
Integration Systems, vol. 15, no. 10, Oct 2007.

S. Seong and P. Mishra, “A bitmask-based code compression technique
for embedded systems,” in International Conference on Computer Aided
Design (ICCAD), 2006.

S. Segars, K. Clarke, and L. Goudge, “Embedded control problems,
Thumb, and the ARM7TDML,” IEEE MICRO, vol. 15, no. 5, Oct 1995.
K. KISSELL, “MIPS16: High-density MIPS for the embedded market,”
Silicon Graphics MIPS Group, 1997.

C. Lefurgy, E. Piccininni, and T. Mudge, “Evaluation of a high
performance code compression method,” in Proceedings of the Annual
International Symposium on Microarchitecture (MICRO), 1999.

L. Li, K. Chakrabarty, and N. A. Touba, “Test data compression using
dictionaries with selective entries and fixed-length indices,” Transactions
on Design Automation of Electronic Systems, vol. 8, no. 4, Oct. 2003.
W. M. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter,
R. A. Bringmann, R. G. Ouellette, R. E. Hank, T. Kiyohara, G. E. Haab,
J. G. Holm, and D. M. Lavery, “The superblock: An effective technique
for VLIW and superscalar compilation,” The Journal of Supercomputing,
vol. 7, May 1993.

N. Ishiura and M. Yamaguchi, “Instruction code compression for appli-
cation specific VLIW processors based on automatic field partitioning,”
in Proceedings of International Workshop on Synthesis and System
Integration of MIxed Technologies (SASIMI), 1997.

W. J. Wang and C. H. Lin, “Code compression for embedded systems
using separated dictionaries,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 24, no. 1, pp. 266-275, 2016.

A. Waterman, Improving Energy Efficiency and Reducing Code Size with
RISC-V Compressed, 2011.

S. Li, K. Chen, J. H. Ahn, J. B. Brockman, and N. P. Jouppi, “CACTI-P:
Architecture-level modeling for SRAM-based structures with advanced
leakage reduction techniques,” in Proceedings of the International
Conference on Computer-Aided Design, Nov. 6-10 2011.

J. Kin, Munish Gupta, and W. H. Mangione-Smith, “The filter cache:
an energy efficient memory structure,” in Proceedings of the Annual
International Symposium on Microarchitecture (MICRO), 1997.

V. Saljooghi, A. Bardizbanyan, M. Sjilander, and P. Larsson-Edefors,
“Configurable RTL model for level-1 caches,” in Proceedings of the
NORCHIP conference, 2012.

Y. Hara, H. Tomiyama, S. Honda, and H. Takada, “Proposal and quanti-
tative analysis of the CHStone benchmark program suite for practical
C-based high-level synthesis,” Journal of Information Processing, vol. 17,
Oct. 2009.

Z. Al-Ars, T. Basten, A. de Beer, M. Geilen, D. Goswami, P. Jiiskeldinen,
J. Kadlec, M. M. de Alejandro, F. Palumbo, G. Peeren, and et al.,
“The FitOptiVis ECSEL project: Highly efficient distributed embedded
image/video processing in cyber-physical systems,” in Proceedings of
the ACM International Conference on Computing Frontiers, 2019.



