
Robust Audio-Based Vehicle Counting in
Low-to-Moderate Traffic Flow

Slobodan Djukanović1, Jiřı́ Matas1 and Tuomas Virtanen2

Abstract— The paper presents a method for audio-based
vehicle counting (VC) in low-to-moderate traffic using one-
channel sound. We formulate VC as a regression problem,
i.e., we predict the distance between a vehicle and the micro-
phone. Minima of the proposed distance function correspond
to vehicles passing by the microphone. VC is carried out via
local minima detection in the predicted distance. We propose
to set the minima detection threshold at a point where the
probabilities of false positives and false negatives coincide so
they statistically cancel each other in total vehicle number. The
method is trained and tested on a traffic-monitoring dataset
comprising 422 short, 20-second one-channel sound files with
a total of 1421 vehicles passing by the microphone. Relative
VC error in a traffic location not used in the training is
below 2% within a wide range of detection threshold values.
Experimental results show that the regression accuracy in
noisy environments is improved by introducing a novel high-
frequency power feature.

I. INTRODUCTION

Traffic monitoring (TM) is used to collect data about the
use and performance of roadway systems. The TM data
include estimates of vehicle count, flow rate, vehicle speed,
vehicle length and weight, vehicle class and identity via
the registration plate [1]. Traffic analysis carried out with
the collected TM data enables better use of the roadway
systems (e.g., enables drivers to be better informed about
traffic congestion and parking possibilities), law enforcement
(speeding vehicles, dangerous driving, detection of stolen
vehicles), prediction of future transportation needs, and the
overall improvement of transportation safety.

Based on the sensor type they use, current TM technolo-
gies are classified as intrusive, non-intrusive, or off-roadway
[1], [2]. Intrusive sensors are embedded in the road and they
include magnetic detectors, vibration sensors, piezoelectric
sensors and induction loops. Non-intrusive technologies im-
ply mounting sensors overhead on roadways or roadsides
and they include cameras, infrared, ultrasonic, magnetic
and acoustic sensors, Laser Infrared Detection and Ranging
(LIDAR), and Wi-Fi transceivers. The off-roadway systems
use mobile sensors installed on aircrafts or satellites.

Vision-based TM systems have several advantages with
respect to the other ones. First, they provide rich vehicle-
based information such as visual features, vehicle geometry
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and precise vehicle path. Second, a single sensor is sufficient
for detecting and classifying vehicles in multiple lanes.
Third, installing cameras to monitor roadways is cheaper and
less disruptive than installing sensors in intrusive systems.
However, there are many challenges to implement vision-
based TM systems, such as partial occlusion, shadows and
illumination variation. In addition, video processing for
the TM purpose is computationally expensive and time-
consuming [1], [3].

Audio-based TM offers numerous important advantages
with respect to the vision-based one [1]. Microphones are
less expensive, consume less energy and require less storage
space than cameras. They are not affected by visual occlu-
sions and lighting conditions. They are easier to install and
maintain, and have low wear and tear. Finally, microphones
are less distractive for drivers1.

This paper addresses vehicle counting (VC) in low-to-
moderate traffic flow using one-channel sound. To this aim,
we propose a vehicle-to-microphone distance function whose
minima correspond to vehicles passing by the microphone.
The distance function is predicted using regression and VC
is carried out via local minima detection in the predicted
distance. We propose to set detection threshold so that the
false positives and the false negatives statistically cancel each
other in total vehicle count. The obtained counting error in a
traffic location not included in training is below 2% within
a wide range of detection threshold values. In addition to
standard acoustic features, we use a novel feature obtained
by integrating a high-frequency spectrum of the considered
sound signal. Experimental results show that the regression
accuracy in noisy environments is improved by the proposed
feature. The method is trained and tested on a TM dataset
collected for the purpose of this research.

II. RELATED WORK

One of the first attempts to use the sound for automatic
estimation of traffic density is presented in [4]. The approach
recognizes temporal variations that appear in the power
signal when vehicles pass by an observation point. Vehicles
are detected based on the state transitions of a hidden Markov
model which models global temporal variations of the power
signal. Overlapping of the vehicles’ sounds is resolved by
separately processing channels from a stereo microphone.

In [5] and [6], vehicle detection based on the short-time
energy is performed. From the smoothed logarithmic energy,

1Drivers change their behaviour when they see a camera since they
mistake it for a radar.
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VC is carried out by detecting peaks via a peak picking
algorithm. Spurious peaks due to horns are eliminated by
spectral filtering of the sound signal. Features extracted from
this signal are used to classify the vehicles into heavy,
medium and light categories.

In [7], an unsupervised approach for detecting approaching
cars, referred to as Auto++, was proposed. The authors
recognized the challenges of the lack of temporal structure of
vehicular noise and complex acoustic noise characteristics,
which can be further emphasized by low-quality sound
recording devices. To address these challenges, a novel
robust feature is proposed, top-right frequency, which rep-
resents maximum frequency whose power reaches a certain
threshold. The added value of this approach is possibility
to be implemented on devices with low CPU and memory
requirements, such as smartphones, allowing its users to
detect oncoming vehicles.

The use of microphone arrays for VC and motion direction
estimation is considered in [8] and [9]. The authors in
[8] use sound delay in three microphones for these tasks.
Small-aperture microphone array is used in [9] and spatial
coherence is used to select the useful bands for determining
the vehicle direction, counting vehicles and estimating their
moving direction.

III. PROPOSED VEHICLE COUNTING

A. Assumptions

The road situation considered in our research is limited
to one-direction two-lane roads. No assumptions are made
regarding the speed of the vehicles, nor it is estimated. The
recorded sound is defined as a mixture of the sound produced
by vehicles to be counted and the environmental noise, which
can include the sound of other vehicles not to be counted
(due to vicinity of other roads), weather conditions (no wind
to moderate wind, no rain) as well as sound reflections of
vehicles to be counted (e.g., due to walls by the road).

B. Dataset collection, preprocessing and splitting

A dataset (audio-video recordings of the road traffic) has
been recorded using a GoPro Hero5 Session camera. It was
installed on a sidewalk, at a safe distance of at least 0.5 m
from the road and at the height of around 1.2 m. Figure
1 presents sample images from the camera in six different
two-lane one-direction roads in Prague, Czech Republic. The
roads are located away from the city centre, but are within
the innermost tariff zones P, 0 and B [10]. We have picked
various camera positions (both sides of the road and different
angles of the camera with respect to the road) in order not
to be sensitive to the actual camera position. The dataset
acquisition took place from September to November 2019.

The recorded video material is divided into 422 short, 20-
second non-overlapping video clips using the Format Factory
application (version 4.9.0). The number of video clips per
location is 15, 32, 26, 112, 65 and 172 (Fig. 1, left to right,
top to bottom). The sound files (44100 Hz sampling rate,
WAV format, 32-bit float PCM) have been extracted from

Fig. 1. Data acquisition at six different locations in Prague.

the video clips using Audacity (version 2.3.2), a free open-
source application for recording and editing sound. The total
material includes 1421 vehicles passing by the microphone,
making an average of 303 vehicles/hour/lane.

Annotation data contain the pass-by-microphone times of
all vehicles. We record the relative time from the beginning
of the file, measured in seconds with a two-decimal precision.
Precise annotations are obtained by visual screening, i.e., by
identifying a video frame when a vehicle starts to exit the
camera view, which is approximately the moment when it is
closest to the microphone. Five vehicle classes are considered
in the annotation: motorcycles, cars, vans, buses and trucks.

The dataset is split into two parts. The first part, referred
to as VC-PRG-1:52, corresponds to the first five recording
locations in Fig. 1 and it consists of 250 sound files (20-
second segments) with 841 vehicles in total. The second part,
referred to as VC-PRG-6, corresponds to the sixth location
(last image in Fig. 1), it contains 172 sound files with 580
vehicles in total. VC-PRG-1:5 will be used to evaluate the
proposed method via the standard k-fold cross validation
where all five locations will be included in both the training
and the testing phase, whereas VC-PRG-6 will be used for
evaluation on data collected at a location not considered
in the training. The dataset is available for download at
http://cmp.felk.cvut.cz/data/audio_vc.

C. Features

The proposed VC approach is based exclusively on audio
cues. When a vehicle is directly in front of the microphone,
the energy of the corresponding sound signal will reach a
local maximum [4]–[6], i.e., a peak in the energy gives an
indication about the presence of a vehicle. However, peaks
in energy are also induced by other vehicles (in vicinity of
other roads), by wind or some other source.

The features will be calculated from a sound signal x(n),
where n = 1, 2, . . . , N represents discrete time variable and
N is the signal length. Description of the features follows,
along with the implementation details.

1) Short-term energy: Short-term energy (STE) of x(n)
is calculated as

STE(m) =
1

Nw

Nw∑
n=1

x2(n + (m− 1)Nh), m = 1, . . . ,M

(1)

2PRG in VC-PRG-1:5 stands for Prague.

http://cmp.felk.cvut.cz/data/audio_vc


where Nw and Nh represent the window and hop lengths,
respectively. The STE length M equals the number of hops,
i.e., M = bN−Nw

Nh
c + 1, where b·c is the round-down

operator. In [5], the authors use Hamming window and an
STE smoothing with a lowpass Bessel filter in order to
remove high frequency fluctuations.

2) Top-right frequency: Top-right frequency (TRF) [7]
represents maximal frequency whose power reaches a pre-
defined threshold T, i.e.

TRF(m) = max (fJX(m, f) ≥ T K) , f ∈ [0, fmax] , (2)

where X(m, f) represents a time-frequency power distribu-
tion of x(n), f is the frequency, m discrete time variable,
and J·K is the Iverson bracket defined as

JSK =

{
1, statement S is true
0, otherwise.

We will calculate X(m, f) as the spectrogram, the squared
modulus of the short-time Fourier transform (STFT) [11].

As a vehicle gets closer to the microphone, the energy
across all frequency components rapidly increases, reaching
a maximum when the vehicle passes by the microphone. This
trend holds also for the signal’s TRF (white solid line in Fig.
2). The TRF maxima (dotted lines in Fig. 2) correspond to
moments when vehicles pass by the microphone.

Fig. 2. Spectrogram (log-amplitude scale) and time-varying TRF of the
signal.

3) High-frequency power: In this paper, we introduce a
new VC feature, calculated as the power of a high-frequency
portion of the signal spectrum, and hence referred to as high-
frequency power (HFP):

HFP(m) =

∫ fmax

f=fmin

X(m, f)df, (3)

where fmin and fmax represent minimal and maximal
considered frequencies, respectively. fmax can be set to
maximum spectral frequency (half of the sampling frequency
according to the Nyquist criterion), whereas fmin is set so
that a low-frequency part of the spectrum, which includes the
background noise, is skipped. Figure 3 (top) presents high-
frequency (above 6 kHz) portion of the spectrogram of the
same signal as in Fig. 2, whereas the bottom plot depicts
the proposed HFP feature. The HFP peaks due to vehicles
passing by the microphone are much more prominent than
the TRF ones.

Fig. 3. Top: High-frequency (above 6 kHz) portion of the spectrogram
(log-amplitude scale). Bottom: High-frequency power feature.

4) Log-mel spectrogram: Log-mel spectrogram (LMS)
represents the short-term power spectrum of a sound signal
projected to a reduced set of frequency bands and converted
to logarithmic magnitude. It represents the standard acoustic
feature for audio analysis tasks [12].

5) Implementation of features: All the features possess
the time dimension, i.e., STE, TRF and HFP are 1-D time
functions, whereas LMS is a 2-D function with time as one
dimension. The TRF, HFP and LMS features are based on
STFT, hence their time dimension depends on the number
of window positions in the STFT calculation. In this paper,
we use Nw = 4096 and Nh = 0.4Nw = 1638 samples,
which with 20-second audio files sampled at 44100 Hz gives
the time-length of all features of 539 samples. In addition,
Nmel = 64 mel bands are used in the LMS calculation, so
this feature’s shape is 64 × 539. Hamming window is used
in the STFT calculation. In the HFP feature, (fmin, fmax) =
(6000 Hz, 22050 Hz).

Prior to using the STE, TRF and HFP features, we filter
them to eliminate high-frequency oscillations. To that end,
we apply two successive moving average (MA) filters, first
with the length of 11, then of 5 samples. After the filtering,
these features are normalized to zero mean and unit variance.
Finally, at each time instant n, we do not consider the values
of STE, TRF and HFP only at n, but also at K preceding and
K following values, i.e., at each time instant, we consider
2K + 1 successive values of these features. The boundary
values have been handled by quadratic extrapolation3. In this
paper, K = 10. Therefore, the total number of features is
3(2K + 1) + Nmel = 127.

3For example, at n = 1, the first K out of 2K + 1 values of a feature
F (n) are obtained are extrapolating the values F (1), F (2), . . . , F (K+1).



D. Proposed method

For the VC purpose, we propose to use a function analyt-
ically defined as follows:

d(l)(t) =

{∣∣t− T (l)
∣∣ , ∣∣t− T (l)

∣∣ < Td

Td, elsewhere,
(4)

where T (l) represents the moment when the l-th vehicle
passes by the microphone and Td is the distance threshold.
Function d(l)(t) has the form of a clipped distance of a
vehicle, driven at uniform speed, from the microphone, and is
depicted in Fig. 4 (top). Hence, d(l)(t) will be referred to as
clipped vehicle-to-microphone distance (CVMD) of the l-th
vehicle. With multiple vehicles, each vehicle is characterized
by a V-shape profile and CVMD takes the general form

D(t) = min{d(1)(t), d(2)(t), . . . , d(Nv)(t)}, (5)

where Nv represents the number of vehicles in the corre-
sponding sound signal. CVMD for the signal considered in
Figs. 2 and 3 is presented in Fig. 4 (middle), whereas the
case when two vehicles are apart by less than 2Td seconds is
presented in Fig. 4 (bottom). The value of CVMD is either
the distance to the nearest vehicle or Td.

Fig. 4. Clipped vehicle-to-microphone distance (x- and y-axis are in
different scale). Top: One vehicle. Middle: Vehicles are apart by at least
2Td seconds. Bottom: Vehicles are less than 2Td seconds apart.

Fig. 5. Classification of local minima in the predicted distance.

The CVMD function allows us to distinguish between the
sounds produced by vehicles passing by the microphone
and other sounds for which the V-shape distance profile
does not make sense. It is predicted using a regression
procedure having as input the features described in Section
III-C. The regression implementation details follow soon.
Figure 5 depicts an example of the regression output (orange
line) for a given ground truth CVMD (blue line). Our VC
approach is to detect local minima in the predicted distance
which surpass a detection threshold (dashed line in Fig. 5).
However, not every local minimum surpassing the threshold
is associated with a vehicle passing by the microphone
(see the red dot in Fig. 5). An additional requirement for
a minimum-to-vehicle association is that a local minimum
occurs within the corresponding V-shape profile. To that end,
we define vehicle pass-by interval (VPI) which will represent
a basis for deciding whether a local minimum corresponds
to a vehicle passing by the microphone (VPI is presented
in Fig. 4 (bottom)). Therefore, we define two criteria which
will allow us to classify the detected local minima:

C1: local minimum surpasses the detection threshold,
C2: local minimum occurs within a VPI.

A local minimum satisfying both C1 and C2 corresponds
to a correctly detected vehicle, or a true positive (TP) (blue
dots in Fig. 5). On the other hand, a local minimum satisfying
C1 and not C2 corresponds to a false positive (FP) (red dot
in Fig. 5), whereas a local minimum satisfying C2 and not
C1 corresponds to a false negative (FN) (green dot in Fig.
5). The total number of detected vehicles equals the sum of
the TPs and the FPs.

1) Implementation details: In our experiments, for dis-
tance threshold we adopt Td = 0.75 s4. We apply the support
vector machine (SVM) approach for the CVMD regression,
more precisely the ε-support vector regression (ε-SVR). The
free parameters in the model are C (penalty parameter of
the error term) and ε (controls the width of the ε-insensitive
zone, used to fit the training data, i.e. determines the accuracy
level of the approximated function) [13]. A grid search on
C and ε values yielded the optimal values of Copt = 1 and
εopt = 0.05. Further reducing the ε value would increase the
model complexity and lead to overfit [14].

The SVR is implemented using the sklearn.svm.SVR
procedure from the scikit-learn library for machine learn-
ing in Python. Peak detection is performed using the
scipy.signal.find peaks procedure (SciPy v.1.3.0
library for Python), with all parameters set to default values
except for the peak prominence set to 0.05. Prior to peak de-
tection, we filter the SVR results to eliminate high-frequency
oscillations (three successive MA filters with lengths 7, 5 and
3).

Method implementation in Python is available for down-
load at http://cmp.felk.cvut.cz/data/audio_
vc.

4We did not carry out a detailed analysis of the influence of the Td value
on the method performance. Td = 0.75 is adopted based on a comparison
of performances obtained with a few smaller and a few larger values.

http://cmp.felk.cvut.cz/data/audio_vc
http://cmp.felk.cvut.cz/data/audio_vc


IV. EXPERIMENT

The proposed method is evaluated by calculating the TP,
FP and FN probabilities, denoted as pTP, pFP and pFN, re-
spectively. These probabilities are calculated versus detection
threshold varying from 0 to Td in steps of ∆Td = 1%Td. In
addition to these probabilities, we will calculate normalized
area under the curve (NAUC) pTP as follows:

NAUC =

∑Imax−1
i=0 pTP(i∆Td)∆Td

Td
, (6)

where pTP(i∆Td) represents the value of pTP obtained for
detection threshold i∆Td, whereas Imax is the number of
detection thresholds, in our case 100. Clearly, the bigger
NAUC the better, and NAUC = 1 is the optimal value.

The proposed method requires selecting the detection
threshold. The natural choice would be a point where pFP
and pFN coincide since then, in statistical sense, the FPs
and the FNs cancel each other so that the total number
of detected vehicles equals the true number of vehicles.
Therefore, another evaluation metric will be introduced,
equal false probabilities (EFP), as a value EFP = pFP = pFN.
Having in mind the discrete nature of detection threshold,
EFP will be calculated as

EFP = pFP(Imin∆Td), (7)

where

Imin = argmin
i

|pFP(i∆Td)− pFN(i∆Td)|. (8)

As opposed to NAUC, the smaller EFP the better. Ideally,
EFP = 0.

Finally, let us define relative VC error (RVCE) as

RVCE =
|N true

v −Nest
v |

N true
v

× 100 [%], (9)

where N true
v and Nest

v represent the true and the estimated
number of vehicles in the considered dataset.

A. Regression with all features

Figure 6 depicts the TP, FP and FN probabilities obtained
after regression with all features. With low detection thresh-
olds, criterion C1 is rarely met, resulting in low pTP and
high pFN. An opposite situation is obtained for high detection
thresholds, when majority of detected local minima surpass
the threshold. In that case, pFP also rises since numerous false
minima will also surpass the threshold. The NAUC and EFP
values are presented in Table I (Setup I). In addition to EFP,
we report the minimal absolute difference between pFP and
pFN, i.e.

∆EFP = |pFP(Imin∆Td)− pFN(Imin∆Td)|, (10)

with Imin defined in (8).
The TP probability is high for a wide range of detection

threshold values. For example, pTP exceeds 90% and 94% for
thresholds above 46%Td and 71%Td, respectively. Detection
threshold corresponding to EFP (pFP = 5.52% and pFN =
5.45%) equals 78%Td and is shown in Fig. 6 (dashed line).
For this threshold value, pTP = 94.55%.

Fig. 6. TP, FP and FN probabilities. Dashed line corresponds to detection
threshold where pFP = pFN.

B. Regression with feature combinations - Ablation study

To see how the exclusion of features affects the regression
performance, we repeat the experiment from Section IV-
A with different feature combinations. More precisely, we
consider four sets of features, each obtained by leaving out
exactly one feature from the feature set. The corresponding
probability curves are presented in Fig. 7, whereas the NAUC
and EFP metrics are given in Table I (Setup II). Clearly, the
exclusion of LMS (dash-dot line in Fig. 7 and the last com-
bination in Setup II in Table I) affects performance the most.
There are no significant differences in performances of the
other three combinations. TRF+HFP+LMS is characterized
by the biggest NAUC of all feature combinations in Table I.

Having identified the LMS as the most critical feature,
we repeat the experiment with i) two-feature combinations,
one of them being LMS, and ii) LMS alone. The results are
presented in Fig. 8 and Table I (Setups III and IV). The best
performance in terms of both NAUC and EFP is obtained
with HFP+LMS. Moreover, this feature combination outper-
forms all other combinations in Table I in terms of EFP.
Finally, the NAUC performance of LMS alone is notably
worse than those of other combinations, which can be also
seen in Fig. 8 (solid line).

Fig. 7. TP, FP and FN probabilities for three-feature combinations.

C. Method generalization

In this experiment, the method is trained on VC-PRG-1:5
and tested on VC-PRG-6. The location corresponding to VC-
PRG-6 differs from those of VC-PRG-1:5 in a road-noise
barrier erected on the other side of the road, which causes
undesirable acoustic reflection. We consider all features and
two best performing combinations (TRF+HFP+LMS and



Fig. 8. TP, FP and FN probabilities for combinations of LMS with other
features and LMS alone.

TABLE I
NAUC AND EFP METRICS FOR THE VC METHOD TRAINED AND TESTED

ON VC-PRG-1:5. ∆EFP = min |pFP − pFN|.

Setup # Features NAUC EFP [%] (∆EFP [%])

I All features 0.773 5.52 (0.07)

II

TRF+HFP+LMS 0.775 5.09 (0.06)
STE+HFP+LMS 0.766 5.68 (0.23)
STE+TRF+LMS 0.770 4.99 (0.10)
STE+TRF+HFP 0.721 10.91 (0.06)

III
STE+LMS 0.748 5.49 (0.09)
TRF+LMS 0.764 5.40 (0.02)
HFP+LMS 0.772 4.43 (0.09)

IV LMS 0.719 5.75 (0.07)

HFP+LMS) from Table I. The results are presented in Fig. 9
and Table II. As in Table I, TRF+HFP+LMS provides the
biggest NAUC, whereas HFP+LMS provides the smallest
EFP.

Fig. 9. TP, FP and FN probabilities for the case when different datasets
are used for training and testing.

With respect to the first experiment, detection thresholds
corresponding to EFP changed from 78%Td to 74%Td (all
features), 78%Td to 75%Td (TRF+HFP+LMS) and 81%Td

to 79%Td (HFP+LMS). In that sense, HFP+LMS is charac-
terized by the most stable behaviour.

In Fig. 10, we present the RVCE values for detec-
tion thresholds within [50%Td, Td]. In terms of RVCE,
HFP+LMS (red line) significantly outperforms the other
two combinations. Namely, its RVCE is below 2% within
[74%Td, 85%Td], as opposed to [70%Td, 76%Td] (all fea-
tures, blue line) and [72%Td, 80%Td] (TRF+HFP+LMS,
green line). Arrows in Fig. 10 indicate the threshold ranges
where RVCE < 2%. For the EFP thresholds obtained in

TABLE II
NAUC AND EFP METRICS FOR THE VC METHOD TRAINED ON

VC-PRG-1:5 AND TESTED ON VC-PRG-6.

Features NAUC EFP [%] (∆EFP [%])

All features 0.702 8.45 (0.34)
TRF+HFP+LMS 0.729 6.72 (0.17)
HFP+LMS 0.695 6.55 (0.17)

the first experiment, RVCE = 2.76% (all features), 1.21%
(TRF+HFP+LMS) and 0.52% (HFP+LMS). Difference in
performance is much more striking with very high thresholds.
For example, for the highest value of threshold, RVCE =
18.62% (all features), 15.86% (TRF+HFP+LMS) and 7.24%
(HFP+LMS).

Fig. 10. Relative VC error for the case when different datasets are used for
training and testing. Arrows delimit intervals where RVCE is below 2%.

This experiment stresses the importance of introducing the
HFP feature in the case of higher environmental noise. By
analyzing the behaviour of the 1-D features (STE, TRF and
HFP), we may conclude that HFP is much more robust to
environmental noise than STE and TRF, i.e., it produces less
false peaks than the latter two. This is illustrated in Fig. 11,
which depicts these features of two sound files recorded at
the same location, one with low (top plot) and the other with
high environmental noise (bottom plot). In addition to being
robust to environmental noise, the HFP peaks are narrower
than those of STE and TRF, which provides a capability of
improved separation of close vehicles.

V. CONCLUSIONS
We proposed a method for sound-based vehicle counting

in low-to-moderate traffic flow. The method is based on a
novel vehicle-to-microphone distance function which allows
us to distinguish between the sounds due to vehicles passing
by the microphone and all other sounds. The proposed
distance is predicted using standard acoustic features and one
novel feature which improves prediction robustness in noisy
environments. The robustness is manifested in a very low
counting error within a wide range of detection threshold
values when testing is performed for a traffic location not
considered in training.

The future research will aim to identify and resolve
error-causing situations in the proposed method, such as
sound occlusion due to vehicles passing by the microphone
simultaneously. We will also consider other regression ap-
proaches, such as recurrent neural networks, which enable



Fig. 11. STE, TRF and HFP features in low-noise (top plot) and high-
noise environment (bottom plot). Red arrows in the bottom plot indicate the
positions of acoustic-noise (false) peaks..

accurate modelling of the sequential data. Finally, other
traffic monitoring issues, such as vehicle speed estimation,
will be addressed.
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