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ABSTRACT

For autonomous unmanned surface vehicles (USV) opera-
tions, it is important to be able to observe the surroundings
using visual information. Water segmentation is a task where
the water surface is recognized and separated from every-
thing else. The algorithm performing the segmentation must
be robust, because safety is the most important feature of
autonomous USVs. This is especially challenging in many
USV applications, where the rapidly changing weather and
lighting conditions can cause significant distribution shifts. In
this study, we analyze the robustness of different color spaces
(e.g., RGB and HSV) for water segmentation and consider
how to use different color channels in training and testing
to maximize the robustness. We evaluate the segmentation
performance on a challenging completely unseen test dataset,
recorded in vastly different conditions and with different
equipment.

Index Terms— Water Segmentation, Deep Learning, Au-
tonomous Navigation

1. INTRODUCTION

Autonomous unmanned surface vehicles (USV) are often
used for different types of missions, such as transportation,
which includes navigating on the pathway, and search and res-
cue missions, in which the focus is finding an object within
the search area. For these types of missions, maintaining
safety is the most important feature of a USV. Therefore, it is
important to be able to observe the surroundings using visual
information, which can be used to perform water segmenta-
tion. Water segmentation is the process, in which the water
surface is recognized and separated from stationary or mov-
ing objects. The purpose of water segmentation is to offer
a USV the perception capabilities needed to detect nearby
objects, such as other surface vessels, swimmers, docks, and
obstacles, like rocks or shoreline.
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To ensure safe operation, the algorithm performing the
segmentation must be robust. For the scope of this study, ro-
bustness is defined as the ability of an algorithm to adapt to
different conditions, which can often cause significant distri-
bution shifts to the input data, lowering the water segmenta-
tion accuracy. Therefore, the algorithm must be robust even
in unseen situations that can be caused by a limited training
set, changing weather and lighting conditions, or a change of
camera equipment. Such changes usually decrease the per-
formance of the algorithm, so it is important to study how to
minimize such performance degradation.

In this study, we analyze the effect of different color
spaces (e.g., RGB, HSV) for water segmentation and pro-
pose simple, yet effective ways to use and combine different
color channels in training and testing to maximize the robust-
ness. As we demonstrate, the performance of the algorithm
improves by finding the best combination of different color
channels. We evaluate the segmentation performance on a
completely unseen test dataset, recorded in different condi-
tions and with different camera equipment compared to the
training data as shown in Figure 1. The training is done with
a hand-annotated dataset of 300 images recorded with a Go-
Pro4 Session camera, and the testing is done with 50 images
from a USV and 50 images from an unmanned aerial vehicle
(UAV) recorded with different cameras. Also, the training set
is recorded during winter and the testing set during summer,
which leads to significant changes in the scenery.

2. RELATED WORK

Semantic image segmentation, or pixel-level classification,
aims at grouping together the image regions belonging to the
same semantic category and assigning each pixel to one of
the categories [1]. Semantic segmentation plays an important
role in different image understanding tasks. While some ap-
plications aim at fine-grained labeling [2, 3], a simpler task of
road segmentation has gained a lot of attention due to various
applications in Advanced Driver Assistance Systems (ADAS)
and self-driving cars. State-of-the-art algorithms rely on dif-
ferent deep learning approaches [3, 4, 5, 6].



For autonomous marine operations, water segmentation
is a task with a similar importance as road segmentation for
self-driving cars. However, as efforts on the development of
USVs have not been as extensive as those for self-driving
cars, the research on water segmentation is still sparse. Most
of the existing works on water segmentation rely on low-level
features, which have been utilized with Decision Forests [7],
Expectation Maximization [8], and Support Vector Machines
[9]. Bovcon et al. use an inertial measurement unit to assist
the segmentation method proposed in [8]. Lopez-Fuentes et
al. [10] apply deep learning for water segmentation to de-
tect floods in rivers. In our previous work [11], we published
a water segmentation dataset collected in Finnish lake envi-
ronment along with deep learning based segmentation results.
This study extends the previous work by examining the effects
of different color spaces on the segmentation accuracy.

There are some earlier studies on effects of color space on
image classification and segmentation. However, the choice
of a particular color space is largely application dependent.
For instance, color pixel classification [12] and soccer im-
age analysis [13] have been done using a hybrid color space.
YCbCr color space has been used for skin detection [14].
Other analysis on skin detection found that RGB color space
was the model that gave the best results [15]. Further stud-
ies suggested that, skin pixel classification using a Bayesian
model gave the best results using LAB color space [16]. The
effect of different color spaces was studied in segmentation of
aerial images over planted fields, suggesting that a reduction
in the complexity of the segmentation procedure is achiev-
able when it is operating on a single color space domain [17].
Automatic segmentation of image into natural objects based
on different color space models was studied in [18], resulting
that RGB color space is the best color space representation
for the set of the images used. Furthermore, importance of
color spaces for image classification was investigated in [19],
suggesting that using several different color spaces as input
to individual networks significantly improves the result. To
best of our knowledge, this is the first work that examines the
effect of using and combining different color spaces on water
segmentation performance.

3. METHODS AND EXPERIMENTS

3.1. Color space conversion

In this paper, we analyze the the effect of different color
spaces, namely RBG, HSV, and grayscale, for water seg-
mentation. The original images were in RGB format and
we converted them into grayscale and HSV color spaces as
described below.

3.1.1. RGB to grayscale conversion

RGB values were converted to grayscale values by forming a
weighted sum of the R (red), G (green), and B (blue) compo-

nents:

grayscale = a ·R+ b ·G+ c ·B.
For a, b and c we used values: a = 0.2989, a = 0.5870,
c = 0.1140. These values come from the BT.601 standard for
use in colour video encoding, where they are used to compute
luminance from an RGB-signal [20].

3.1.2. RGB to HSV conversion

HSV presentation of an image consists of H (hue), S (satu-
ration), and V (value) components. From RGB components,
maximum (M ), minimum (m), and chroma (C) values can be
obtained as:

M = max(R,G,B),

m = min(R,G,B),

C =M −m.

The hue component, presented it in degrees [0◦, 360◦], is cal-
culated as:

H ′ =


undefined, if C = 0
G−B
C mod 6, if M = R

B−R
C + 2, if M = G

R−G
C + 4, if M = B

H = 60◦ ·H ′.
Value component is calculated as V = M , while saturation
component is defined as:

S =

{
0, if V = 0
C
V , otherwise

Hue distinguishes the color of the source, saturation distin-
guishes a pure spectral light from a pastel shade of the same
hue and value describes the brightness of an area.

3.2. Network architecture

The network architecture used for water segmentation is
based on the KittiSeg road segmentation model [4], which
employs a fully convolutional deep learning architecture [2]
and was originally developed for self-driving cars. KittiSeg
consists of a VGG-16 [21] based encoder which performs fea-
ture extraction, and a segmentation decoder, which performs
the actual water segmentation.

In this work, we follow the same architecture, but replace
the encoder with a lighter and faster version, as originally pro-
posed in [11]. The encoder architecture is derived from the
VGG16 architecture by reducing the number of convolution
layers. The lightweight encoder is composed of 5 convolu-
tional layers with 32, 64, 128, 256, and 512 filters, respec-
tively. These layers were randomly initialized [22], i.e., no
pretraining was used.



set rotations training images validation images
1 [0◦] 240 60
2 [0◦, 180◦] 480 120
3 [0◦, 90◦, 180◦, 270◦] 960 240

Table 1. Set numbers for different rotations and correspond-
ing number of images

Then, we employed a segmentation decoder following the
approach proposed in [2]. Given the feature maps produced
by the encoder, a series of three transposed convolution lay-
ers are used to upsample the output [23]. Those features are
first processed by a 1 × 1 convolution layer and then added
to the partially upsampled results. The output of the network
corresponds to the probability of each pixel depicting a re-
gion that contains water. Since the classification problem at
hand is a two-class problem, water / not water, the predicted
probability can be thresholded in different ways to finetune
the behavior of the model according to the needs of each ap-
plication, e.g., to minimize the false negatives.

3.3. Training setup

The dataset used for training is Tampere-WaterSeg dataset
[11] publicly available at http://urn.fi/urn:nbn:fi:att:eafdb99c-
4396-4591-80e0-24219875b5b6. It consists of 600 labeled
HD-quality (1920 × 1080 pixels) images that contain views
from a USV on a lake. The dataset was recorded with GoPro
Hero 4 Session camera during wintertime in Tampere, Fin-
land. Thus, the images depict snowy conditions and they con-
tain three subcategories: open lake, channel area, and dock-
ing situations, 200 images each. In this paper, we followed
the training phase of the test setup 7 defined in [11]. This al-
lowed us to use data from all the three different subcategories
for training the model.

For these images, we performed conversions from RGB
color space to HSV and grayscale color spaces resulting in 9
different training sets (RGB, R, G, B, HSV, H, S, V and gray).
In addition, we increased the number of training and valida-
tion images by adding different rotations of the images. We
added horizontally and vertically flipped images as described
in Table 1 to obtain three different training sets for each con-
sidered color space. Thus, we used a total of 27 different
training sets for training our segmentation model.

In addition to the cross-entropy loss function, we used fo-
cal loss [24] to train our model. Focal loss reduces the rel-
ative loss for well-classified examples putting more focus on
hard, misclassified samples. Cross-entropy (CE) and focal
loss (FL) are defined as follows:

CE(pt) = −log(pt),
FL(pt) = −(1− pt)

γ log(pt).

In our experiments, we set γ = 1. Using both loss functions

for each training set, we ended up having a total of 54 differ-
ent training setups.

3.4. Test setup

For testing, we collected two different sets of images. The
first set, named “USV”, was recorded with Xiaomi Yi 4K+
Action camera from the same USV as the training images.
The images were downsampled from 3840× 2160 to 1920×
1080 pixels. The test set was recorded on a clear summer
day. As we used snowy images for training, the conditions
were very different (Fig. 1). Also the point of view is slightly
different between training and testing data.

Our second test set, named “UAV”, was recorded with an
unmanned aerial vehicle flying above water with a DJI Phan-
tom 4 Pro camera facing strictly downwards. This creates
a completely different setup compared to the training setup.
The aim of these tests is to determine how the trained model
behaves with slightly different data (USV in different condi-
tions) and completely different data (USV vs. UAV). Specif-
ically, we analyze how the used color space affects the seg-
mentation accuracy.

We tested models by converting the test images into the
same color space as the model was trained with. The num-
ber of test images is 50 for both USV and UAV sets. The
images were annotated accurately by marking the water areas
using polygons [25]. We will make the test sets available with
Tampere-WaterSeg dataset.

In addition, we formed different ensemble classifiers in
order to test different combinations of color channels. In this
approaches, we calculated the average of the outputs from
multiple different models before determining if a pixel is clas-
sified as water or non-water. We formed different ensembles
including the average of the output from R, G and B mod-
els, and the average of the output from all trained models for
one rotation set. We also formed one ensemble consisting
of three classifiers that obtained the best scores on the test
set to demonstrate the results that can be obtained using this
method.

4. RESULTS AND DISCUSSION

We formed receiver operating characteristic (ROC) curves
and calculated the area under curve (AUC) for each test
setup. The ROC-curves for all color spaces for both USV and
UAV sets in the setup that includes rotation set 1 and focal
loss are provided in Figure 1. The AUC scores for all the
different test setups are presented in Table 2.

These results suggest that the color does not seem to be an
important factor for USV set and often just individual chan-
nels works as well or better than RGB and HSV color spaces.
For the UAV set, the outcome is completely opposite since
only RGB and HSV color spaces achieve high performance
and all the other sets lead to mediocre scores. This can mean



USV UAV
Color cross-entropy focal loss cross-entropy focal loss
channel set 1 set 2 set 3 set 1 set 2 set 3 set 1 set 2 set 3 set 1 set 2 set 3
RGB 0.9540 0.8683 0.8041 0.8567 0.7660 0.7906 0.9207 0.9483 0.9482 0.9325 0.9026 0.9402
R 0.9564 0.9279 0.8846 0.9613 0.9161 0.9125 0.7730 0.8071 0.7049 0.7123 0.7591 0.7249
G 0.9533 0.9245 0.9208 0.9538 0.9552 0.7878 0.5345 0.7434 0.4959 0.7130 0.7091 0.6316
B 0.9060 0.9648 0.8924 0.9599 0.8605 0.8808 0.6475 0.6347 0.7748 0.7063 0.6831 0.6755
HSV 0.7936 0.7730 0.6280 0.7788 0.6825 0.7741 0.9189 0.9457 0.9504 0.9377 0.9533 0.9580
H 0.6387 0.5111 0.4504 0.6145 0.4651 0.4810 0.7869 0.8536 0.8951 0.7234 0.8318 0.8490
S 0.7468 0.6584 0.5510 0.6845 0.6868 0.6067 0.5430 0.7966 0.7560 0.6418 0.7709 0.8668
V 0.9535 0.9378 0.9314 0.9567 0.9631 0.9420 0.7574 0.7574 0.7068 0.7536 0.8022 0.6738
gray 0.9343 0.9521 0.9141 0.9624 0.9228 0.9098 0.7064 0.8278 0.6804 0.7206 0.7517 0.6666

Table 2. AUC scores for different rotations and loss-functions.

a) b) c)

Fig. 1. a) top row: training images, bottom left: USV test image, bottom right: UAV test image b) ROC-curves for USV, set 1,
focal loss c) ROC-curves for UAV, set 1, focal loss

channel USV UAV
combination CE FL CE FL
R+G+B 0.9618 0.9639 0.7465 0.7287
ALL 0.9430 0.9500 0.8288 0.8257
TOP3 0.9704 0.9629

Table 3. AUC scores for ensembles of classifiers

that the classification on UAV set relies on color information,
possibly due to the varying illumination conditions (e.g., sun
reflections) that are encountered in this test set.

Furthermore, rotations do not seem to increase the accu-
racy on the USV test set. This can be explained by the fixed
position of elements in images, the bow of the USV is always
on the bottom of the image and the sky is on top. The sit-
uation is different in the UAV test set, where the UAV can
basically face any direction. Therefore, augmenting the train-
ing set with various rotations can indeed lead to significant
improvements in the UAV test set.

The AUC scores for the ensemble classifiers are presented
in Table 3 using rotation set 1. The important findings are
that in the USV test set the combination R, G and B channels

provides better results than any single channel or RGB chan-
nel. Also combining all the channels provides good results.
For the UAV neither of these combinations do not provide
the best results, but when three channels with highest perfor-
mance are combined, the results are better than for any single
channel. The TOP3 test shows that by finding the best combi-
nation of color channels, the results can be further improved
significantly.

5. CONCLUSIONS

This study concludes that semantic water segmentation can be
performed for a diverse range of conditions, which can differ
significantly compared to the training setup, with good re-
sults, given that the appropriate color space is used. The find-
ings also demonstrates that the commonly used RGB color
space might not always be the the best possible choice, as it is
outperformed in 10 out of 12 different test setups. These find-
ings also hint to further research direction on developing ro-
bust color-based ensembles, since carefully selecting a com-
bination of different color spaces can yield to better results
than any model trained on a single color space.
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