
Jamming and Classification of Drones Using
Full-Duplex Radios and Deep Learning

Karel Pärlin∗, Taneli Riihonen†, Gaspar Karm∗, and Matias Turunen†
∗Rantelon, Tallinn, Estonia
†Tampere University, Finland

e-mail: karel.parlin@rantelon.ee, taneli.riihonen@tuni.fi,
gaspar.karm@rantelon.ee, matias.turunen@tuni.fi

Abstract—The emerging full-duplex (FD) radio concept is set
to double the spectral efficiency of commercial wireless networks,
but it also has potential applications in the defense and security
domains. In the form of multifunction military full-duplex radios
(MFDRs), the FD capability could enable armed forces to conduct
simultaneous electronic attacks, electronic support measures, and
tactical communications. This paper demonstrates the feasibility
of simultaneous jamming and reconnaissance of drones’ remote
control (RC) systems using a prototype MFDR. Alongside, we
apply deep learning in the form of a convolutional neural network
(CNN) for classifying the RC signals and analyze the effect of
FD operation on the classification performance.

I. INTRODUCTION

Recent advances in full-duplex (FD) radio research have
enabled concurrently receiving and transmitting on the exact
same frequencies. Such operation, as compared to the conven-
tional half-duplex (HD) mode, improves the spectral efficiency
of wireless communications and consequently enhances the
network throughput in commercial systems [1]. In addition,
FD radios can also reform the cyber battlefield by facilitating
simultaneous combinations of electronic attacks, electronic
support, and tactical communication [2], [3]. Several practi-
cal works have already demonstrated the feasibility of such
concepts in laboratories [4]–[6]. We consider herein the appli-
cation of the FD radio technology for countering the emerging
threats caused by remotely operated aerial vehicles [7]–[9].
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Fig. 1. Military full-duplex radios could be used to simultaneously detect
and jam adversary drones’ remote control systems, therefore benefiting from
improved situational awareness and enhanced jamming techniques.

This research work was supported in part by the Academy of Finland under
the grant 315858, in part by the Finnish Scientific Advisory Board for Defence
(MATINE), and in part by the Estonian Ministry of Defence.

The objectives of this work are to study the practical
feasibility of simultaneously receiving and jamming the remote
control (RC) signals of unmanned aerial vehicles/systems
(UAV/Ss)—referred to as ‘drones’ herein—using FD radio
technology and then to classify the intercepted signals using
machine learning. The challenge is illustrated in Fig. 1.
The RC signals received and classified during simultaneous
jamming could be used to, e.g., locate the adversary or tailor
the jamming waveform against the specific UAS. We propose
the application of deep learning in the form of convolutional
neural networks (CNNs) for the accurate classification of
different RC protocols. Through measured and simulated re-
sults, we demonstrate the CNN model’s feasibility to identify
commercial drone RC signals in HD and FD modes.

II. SIGNAL DETECTION AND CLASSIFICATION

Deep learning has recently enjoyed significant success in
various research areas that focus on feature extraction from
raw input data [10], [11] and these advances have not gone
unnoticed in the wireless communications research. Methods
based on CNNs have been proposed for modulation recog-
nition [12], wireless signals’ classification [13], transmitter
fingerprinting [14], radar classification [15] and, also, drone
classification from radar micro-Doppler signatures [16], to
name but a few. However, to the best of our knowledge, studies
into drone RC signal classification have not been reported.

A. Architecture

Several radio-frequency (RF) signal representation and pre-
processing methods have been proposed for deep learning-
based signal classification purposes. These include simply
using the complex-sampled time series of the signal without
any preprocessing [17], the amplitude and phase difference
representation [18], and the spectrogram-based method [18].
When considering the time-series representation, the wide
bandwidth of the 2.4GHz unlicensed radio band, in which
many commercial drones operate, renders high computational
complexity and can also degrade the overall classification
accuracy [19]. In addition, time-series signal representation in
deep learning methods for signal classification has been shown
to have negative impacts on the overall classification accuracy
for signals with frequency offsets, which could complicate the
classification of the frequency-hopping signals at hand [19].
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Fig. 2. The architecture of the convolutional neural network (CNN) used in this work for the spectrogram-based detection and classification of unmanned
aerial vehicle (UAV) or ‘drone’ remote control (RC) signals after suppressing the self-interference (SI) caused by simultaneous same-band jamming.

The characteristics of typical drone RC systems, i.e., fre-
quency hopping over a wide bandwidth, different channel fre-
quencies, bandwidths and transmission times across different
protocols, suit the spectrogram-based representation, as it is
not sensitive to frequency offsets and phase shifts. In this work,
we therefore rely on the spectrogram-based representation. In
particular, the time-frequency evolution of the 80MHz input
signal is split into smaller spectrograms of size 64 × 64 pixels
that are input to the CNN. Thus, the time and frequency
coverage of the spectrograms is chosen to be 6.5ms and
5MHz, respectively, in order for each of the different drone
remote control signals analyzed in this paper to fit inside the
spectrograms. The input is also normalized, as this enhances
spectrogram-based classification accuracy [20].

The architecture of the proposed CNN model is outlined in
Fig. 2. Similarly to efficient object recognition models [11],
the spectrogram is passed through a stack of convolutional
layers that have filters with very small receptive fields. To
classify which of the categories (background interference and
noise or one of the RC signals) the 64 × 64 spectrogram
contains, it is passed through three consecutive convolutional
layers, followed by two fully connected layers. In each of
the convolutional layers, the convolution stride is 1 pixel and
the receptive field is 3 × 3 pixels. The spatial padding of
convolutional-layer inputs is such that the spatial resolution is
preserved after the convolution. All convolutional layers are
equipped with the rectified linear unit (ReLU) activation func-
tion that has been shown to speed up training in comparison
to other activation functions [10]. Each convolutional layer is
followed by a max-pooling layer for spatial pooling.

The two fully connected layers are followed by a softmax
classifier that computes the probability of each class label over
all classes. In order to prevent overfitting, dropout is used
with a coefficient of 0.5 that has been shown to be close to
optimal for a wide range of applications [21]. The model is
implemented using open source TensorFlow machine learning
framework [22] and Keras deep learning library [23].

B. Training

The CNN model was trained to classify between four
categories: ‘Noise’, ‘Taranis’, ‘Lightbridge’, or ‘Phantom 2’.
The data for training the model was recorded by connecting
the RCs to a digital receiver one-by-one. The samples were
recorded with different attenuation levels between the RC

transmitter and the receiver in order to diversify the train-
ing dataset. During data collection, FD jamming and self-
interference (SI) cancellation were not used. The noise class,
unlike the three RC classes, was trained with an antenna at
the 2.4GHz band in order to capture authentic background
transmissions. The noise samples were recorded in an urban
environment iteratively through reinforced learning to mini-
mize the false positive classification of the RCs.

Figure 3 gives examples of the time–frequency representa-
tions belonging to the classes that were used for training the
CNN. The training dataset consists of 63,600 spectrograms,
wherein 57,000 spectrograms represent the noise class and
each remote controller is characterized by 2,200 spectrograms.
The model was trained with a batch size of 128 using the
Adam optimization algorithm, which updates the weights of
the network adaptively to minimize classification errors [24].

Noise Taranis Lightbridge Phantom 2

Fig. 3. Each spectrogram is 64 by 64 pixels, has a time duration of 6.5ms,
and covers a frequency bandwidth of 5MHz. The ‘Noise’ class includes also
co-channel interference, e.g., from WiFi/Bluetooth, and partial RC waveforms.

III. EXPERIMENTAL SETUP

In order to verify the feasibility of simultaneous FD jam-
ming and classification, we carried out experiments in a labora-
tory environment. The measurement setup simulates a scenario
where an unauthorized drone is being remotely controlled
and a prototype military full-duplex radio (MFDR) is used
to simultaneously jam and intercept the RC link as shown in
Fig. 4. All of the devices involved in the measurements are
connected through coaxial cables instead of using antennas.
This provides a controlled environment in which all sources
of interference, besides the devices under test, are eliminated.
Also, this ensures precise control and measurement of the
power levels during the experiments and that the jammer does
not cause any unlawful collateral interference to its vicinity.
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Fig. 4. The measurement setup, where both transmitters were enclosed
in electromagnetic interference (EMI) shielding boxes to prevent wireless
leakage from reaching the analog canceller and the digital transceiver.

A. Experimental Full-Duplex Transceiver

The MFDR prototype is built on top of a high-quality
vector signal transceiver (PXIe-1073) that receives and records
signals in a 80MHz bandwidth (120MHz sampling rate) with
duration of 50ms. A separate jammer with output power of
43 dBm is used to generate and transmit a 80MHz wide linear
chirp jamming signal that acts as SI for signal surveillance
at the receiver. In order to suppress the jamming signal, SI
cancellation is implemented in three stages. At the first stage,
a circulator is used together with 30 dB of attenuation imme-
diately after the jammer to imitate transmit–receive antenna
isolation of approximately 60 dB. Typically drone jammers,
and in fact the jammer used in these measurements, use
highly directional antennas. Therefore, taking into account the
recent research in transmit–receive antenna isolation [25], it
is plausible that such separation could be achieved. Passive
isolation is followed by an active analog SI canceller [26]
and, finally, the residual SI is suppressed digitally [27].

B. Remote Control Systems

Three different drone RC systems were used separately
to provide the signals-of-interest in the measurements. The
RCs were FrSky Taranis X9D Plus, DJI Phantom 2, and DJI
Phantom 3 Advanced. Each of these RC systems makes full
use of the 2.4GHz industrial, scientific, and medical (ISM)
band through frequency hopping. The remote controllers’
output powers adhere to the 20 dBm limit of the ISM band.
In order to emulate different remote controller signal strengths
(or link distances), a variable attenuator was used between
the remote controller and the receiving front-end. The remote
controller signal was attenuated in the range of −80 dB to
−110 dB with 5 dB steps.

The RC systems exhibited the following characteristics dur-
ing our experiments. FrSky Taranis X9D Plus hops among 47
frequency channels with 1.5MHz spacing between the center
frequencies of adjacent channels and has a dwell time of 9ms,
which is the time interval between each transmitted packet.
The packet transmission time itself is actually lesser, 4.75ms.
DJI Phantom 2 hops among 36 frequency channels with dwell
time of 7ms, packet transmission duration of 1.6ms, and
has a spacing of 2MHz between adjacent channels’ center
frequencies. DJI Phantom 3 Advanced uses DJI Lightbridge
protocol with 34 different channels, spacing of approximately
2MHz, dwell time of 14ms, and transmission duration of
2.15ms. In principle, the differences in these parameters and
modulation bandwidths is what enables the CNN model to
classify between the protocols based on the spectrograms.

IV. EXPERIMENTAL RESULTS

In this paper, we focus mainly on the classification results,
acknowledging that both analog and digital SI cancellation
stages contribute 40 dB to 45 dB of SI suppression [27]. The
classification of ‘Phantom 2’ RC signals is illustrated in Fig. 5.
Without any SI, the packets are easily detected by the model,
unlike when relying only on passive isolation as then the model
is completely blinded. After analog cancellation, the model is
already able to detect signals of interest in certain frequency
ranges because of the canceller’s frequency selectivity. After
digital cancellation, the RC signals are accurately detected
regardless of the used channel and the results resemble the
situation without SI.

0 4 9 14 19
2380.0

2440.0

2500.0

Phantom 2

0 4 9 14 19
2380.0

2440.0

2500.0

0 4 9 14 19
2380.0

2440.0

2500.0

0 4 9 14 19
2380.0

2440.0

2500.0

−150

−100

−150

−100

−150

−100

−150

−100

F
re

q
u
en

cy
[M

H
z]

p
ow

er
sp

ec
tr

a
l

d
en

si
ty

[d
B

m
/

7
k
H

z]

Time [ms]

Fig. 5. Top–down: Example signal classification (a) without SI, (b) with SI
and only passive isolation, (c) after analog SI cancellation, and (d) after digital
SI cancellation. The bounding boxes indicate classification.
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Fig. 6. Remote controller signal detection probability without SI, with SI and
only passive isolation, after analog cancellation, and after digital cancellation.

Figure 6 illustrates the measured and reference simulated
signal detection probabilities Pd after each of the SI can-
cellation stages. The model is incapable of detecting any of
the RC signals without active SI cancellation. Depending on
the remote controller, the CNN is more or less successful in
classifying the RC signals after analog cancellation at good
signal-to-noise ratios (SNRs). However, digital interference
cancellation substantially improves the detection probability
and allows to detect the RC signals already at poor SNRs.
Nevertheless, when compared to the results without SI from
FD jamming, the probability of detection is slightly (2–5 dB)
hampered by FD operation.

In general, the simulated and measured results are fairly
similar, except for the analog cancellation stage. The simula-
tions were carried out using a frequency-swept signal so that
its power was constant and matched to the average measured
power of the SI at the respective stage. However, because the
analog canceller exhibits considerable frequency selectivity,
the residual SI after the analog cancellation stage does not
have constant power over the whole frequency band. Thus,
in frequency ranges with more effective SI cancellation, the
empirical probability of detection is better than in simulations
and vice versa. This results in the more gentle slope of
detection probability over the measured attenuation range.

The classification accuracy of the CNN model is tabulated
in Fig. 7. The confusion matrices are calculated using the
combined measurements that were carried out with attenuation
values of 80 dB to 90 dB in order to emphasize the effect
of residual SI rather than poor SNR. Similarly to the results
presented in Figs. 5 and 6, the cases without SI limit the
accuracy that can be achieved by using the FD operation mode.
However, the results in Fig. 7 also illustrate the robustness
of the CNN-based classification model. Regardless of the SI
level, the false alarm or incorrect classification rate remains
low. This is partly because the measurements were done in a
laboratory environment without the presence of other signals,
in addition to the residual SI, that could trigger false alarms.

V. CONCLUSION

In this work, we have demonstrated the feasibility of com-
bining simultaneous jamming and reconnaissance of drone
remote control (RC) signals using full-duplex (FD) radio tech-
nology and deep learning. We have proposed a convolutional
neural network (CNN) based signal classification method that
utilizes time–frequency domain data to classify drone RC
signals that typically hop in frequency over a wide bandwidth.
We have analyzed the impact of residual self-interference (SI)
at different stages of the FD radio on the performance of
the CNN model through measurements and simulations. Both
measured and simulated results indicate that residual SI de-
grades the classification accuracy and probability of detection
to some extent. Nevertheless, given that the classification in the
FD operation mode comes at almost no cost to the jamming
efficiency, the FD mode can be highly advantageous compared
to conventional half-duplex (HD) operation, where jamming
needs to be ceased during reconnaissance.
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Fig. 7. The measured classification accuracy of the convolutional neural network model under good signal-to-noise ratio conditions (combined measurements
made with attenuation values 80dB to 90dB). The model is capable of discerning with high accuracy between frequency-swept interference (or residual
thereof) and the different drone remote control signals. The combination of analog and digital self-interference cancellation enables the model to achieve
classification accuracy similar to that without any interference.
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