
TTA-SIMD Soft Core Processors
Kati Tervo∗, Samawat Malik, Topi Leppänen and Pekka Jääskeläinen†

Tampere University, Finland
{kati.tervo,malik.samawat,topi.leppanen,pekka.jaaskelainen}@tuni.fi

∗https://orcid.org/0000-0001-6050-7100 †https://orcid.org/0000-0001-5707-8544

Abstract—Soft processors are an important tool in the Field
Programmable Gate Array (FPGA) designer’s toolkit, and their
Single Instruction Multiple Data (SIMD) organizations are an
efficient means to utilize the parallelism of FPGAs. However, the
state-of-the-art SIMD processors are hindered by the additional
logic complexity resulting from dynamic features. By minimizing
such constructs, it is possible to design soft processors that are
efficient but still flexible enough to operate within an application
domain.

To this end, we propose a family of instruction set pro-
grammable multi-issue wide SIMD soft cores. The template is
based on a highly static Transport Triggered Architecture (TTA)
and a design time customizable shuffle unit to minimize inefficient
dynamic features while remaining compiler programmable. The
cores are evaluated on the PYNQ-Z1 board against the ARM
A9 hard processor system with NEON vector extensions. The
proposed cores reach up to 2.4x performance improvement over
the ARM, can fit up to 1024 bit wide SIMD units onto the
relatively small FPGA, while still operating at above 100 MHz.
The scalability of TTA enables state of the art vector widths. The
multicore scalability of the template is preliminarily tested with
a 14-core design on a XCZU9EG FPGA customized for real-time
convolutional neural net inference.

Index Terms—Field-Programmable Gate Array (FPGA),
Transport-Triggered Architecture (TTA), Single Instruction Mul-
tiple Data (SIMD)

I. INTRODUCTION

Soft processors are an important tool in designing Field-
Programmable Gate Array (FPGA) systems. They present a
familiar level of abstraction for software-oriented engineers,
and can be used without significant hardware design knowl-
edge. Integration of a predesigned soft processor into an FPGA
design is simple, and is further simplified by FPGA Systems-
on-Chip (SoCs), where a fixed hard processor system can be
used to orchestrate execution soft processors on the FPGA
fabric.

Similarly, High-Level Synthesis (HLS) tools also lower the
barrier to entry to logic design for software engineers, but do
not remove it, as hardware design experience is still needed
for tuning the HLS implementation for good results [2].
Nevertheless, with the growing complexity of logic design
projects, additional design abstraction away from traditional
register-transfer level design is increasingly needed. Addition-
ally, lowering the initial cost of logic designs can help offload
to FPGA devices easily available in a data center context. Pre-
synthesized soft processor overlays are a simple way to take
advantage of available FPGA resources.

This work is part of the FitOptiVis project [1] funded by the ECSEL Joint
Undertaking under grant number H2020-ECSEL-2017-2-783162.

The tradeoff in the increased flexibility and ease of design
is the overhead introduced by the additional programmability
provided by the overlay. The effect of this is amplified in
FPGA designs due to the relative inefficiency of control logic
implementation compared to hardened arithmetic blocks [3].

For the same reason, it can be very beneficial to customize
the architecture for an application domain, picking simpler
static operations over complex dynamic ones. Furthermore,
aspects of the processor that do not commonly change during
an application, such as the required arithmetic precision, can
be fixed at design time. If these need to be changed between
applications, the device can be partially or fully reconfigured.

In the past, the statically scheduled Transport-Triggered
Architectures (TTAs) have been shown to deliver instruction-
level parallelism (ILP) for relatively small soft processors.
The programmer-exposed datapath of TTA can support parallel
function units with minimal added complexity [4]. However,
to the best of our knowledge, scaling TTA soft processors
for high logic utilization and throughput by occupying all
the resources available on the FPGA device has not yet been
evaluated.

In this paper, we propose a high-performance TTA-SIMD
soft processor architecture template, which utilizes data paral-
lelism by a Single Instruction Multiple Data (SIMD) organiza-
tion on top of the ILP capabilities by means of vector function
units. We make the following contributions:

• A family of TTA-SIMD soft processors with vector
function units (FU) of varying SIMD element count
and arithmetic precision, designed to scale up to a very
wide SIMD width use scenarios, while simultaneously
supporting instruction-level parallelism.

• Evaluation of the processor family with OpenCL bench-
marks, comparing against the ARM A9 hard processor in
the used SoC.

• A soft core design case study of a Convolutional Neural
Network (CNN) accelerator as a case study of a domain-
specific multicore design using the SIMD TTA template.

The rest of the paper is organized as follows. In Section II,
we present an overview of the TTA processor design paradigm
with a focus on FPGA implementations. This is followed
by Section III, introducing the scalable TTA-SIMD soft core
template. Next, in Section IV, the synthesis results and the
performance of the proposed architectures is evaluated. In
Section V, we present the CNN accelerator based on the TTA-
SIMD approach. This is followed by an overview of previous
work as well as our conclusions from this work.



Fig. 1: Simplified view of the wide-SIMD TTA template.

II. TRANSPORT-TRIGGERED ARCHITECTURES

TTA processors have been studied extensively as application
or domain specific co-processors, but most of the focus has
been on ASIC implementations. In early studies [5], the TTA
paradigm was proposed as an improvement on Very Long
Instruction Word (VLIW) processors that reduced Register File
(RF) and bypass network complexity.

Like the parallel operations in VLIW, TTA instructions
are composed of parallel moves, specifying a data transport
typically from one port of a FU or RF to another. TTA moves
are fine grained, each transferring a single operand. Operation
execution can be started once the other operands are in place
with a move to a specified trigger port.

Since the operands can be transferred directly from FU
ports, the RF does not necessarily need to be accessed, as
in traditional write-back bypassing but without additional
bypassing logic. Furthermore, if every RF read of a value can
be eliminated, the value doesn’t need to be written to the RF at
all. This is prohibitively difficult to implement in traditional
architectures, as it would require dynamically checking if the
result register is read between the operation and the next write
to it [6].

Despite the similarities to VLIW, the RF simplification
generalizes to also simple scalar cores. A comparison against
MicroBlaze showed that TTAs can add ILP with little over-
head, in particular thanks to the simple register file [4].
However, the very explicit instruction format leads to long
instruction words. While the required instruction memory size
tends to be larger, TTA binaries had fewer total instructions
than the MicroBlaze processors thanks to increased ILP.

Overall, TTAs have streamlined instruction decoding thanks
to the lack of dynamic control features, such as hardware
bypassing, and can use simpler RFs with greater efficiency.
This is of particular benefit on FPGAs, as their memory
primitives are limited, with at most two write ports. Increasing
port count requires the data to be duplicated in more than one
memory primitive [7], [8].

III. TTA-SIMD SOFT CORE TEMPLATE

The original TTA approach provides scalable support for
ILP. However, for high throughput, it is essential to support

data level parallelism (DLP) as well. In this section, we de-
scribe a soft core template with wide SIMD arithmetic, shown
in Figure 1. The template was designed using an extended
version of the TTA-based Co-design Environment (TCE) [9],
with additional features for SIMD architectures [10]. TCE
includes a compiler and a cycle-accurate simulator that retarget
automatically to the designed architectures, and can be used to
generate a synthesizable RTL implementations of the designs.

A. Datapath

The datapath of the TTA-SIMD template consists of two
sets of busses; one for the scalar FUs used primarily for
address calculation and branching, and another for SIMD FUs,
typically responsible for most of the number crunching. The
busses are not fully connected: redundant and rarely-needed
connections have been removed to reduce the logic utilization.

The two halves share an instruction word, and execute in
lockstep. To ensure that address calculation does not slow
down the SIMD datapath, there are two identical scalar
Arithmetic-Logic Units (ALUs). The operation set for these
ALUs is minimal: basic arithmetic, comparison and logic
operations, and a 4-cycle barrel shifter. The vector ALU is
left customizable in the template: Its operations, operation
latencies, and the SIMD width are selected per application.

B. SIMD Interlane Communication

A common source of complexity in SIMD processors is
the communication between the SIMD lanes. In the proposed
design, this connectivity has been reduced to its absolute
minimum. The only direct communication between the SIMD
and scalar busses is through two FUs, one for a scalar-to-SIMD
broadcast operation and another for SIMD-to-scalar element
extraction operation. To reduce the implementation complexity
further, a third FU contains a set of pre-selected shuffle
operations with constant indices. This is a major simplification
over a full shuffle crossbar.

C. Memory System

Each core has a set of static local memories in the template
with two disjoint address spaces: data for the OpenCL
buffers and command queue, and param, for the stack.
data can be accessed either by scalar or aligned SIMD
accesses, while param is solely scalar. To simplify the LSU
implementation, the memory operations to the data address
space were divided into two LSUs, one for aligned vector
accesses, and another for scalar accesses. The scalar LSU
shares its port with the AXI bus to the host processor.

IV. EVALUATION

We created a set of benchmarks to show the programma-
bility of design instances targeting an application domain to
evaluate the presented architecture. The benchmark set consists
of vector addition, polynomial, matrix multiplication, 64-tap
FIR, 5-by-5 convolution filter, and Sobel edge detection.

For these benchmarks, we selected four vector ALU oper-
ations: addition, subtraction, multiplication, multiply-add and
left shift, and four shuffle operations with static indices.



A total of 16 machines were made by changing SIMD
element width and count. The 4x8b machine and the 128x32b
machine were discarded, as they were too narrow and wide,
respectively, to be supported by the TCE compiler.

The tests were executed with the pocl OpenCL runtime [11].
In addition to supporting ARM, pocl has a driver for TTAs
designed with TCE. For more accurate performance mea-
surements, the benchmarks were executed on TTA processors
synthesized for the FPGA. The compilation and the runtime
environment of the TTA processors and the ARM comparison
were identical, save for the device drivers in pocl.

Hand-vectorized benchmarks were implemented as OpenCL
C kernels using explicit vector datatypes with parametrized
arithmetic precision and vector width. The benchmarks were
ran on a cycle-accurate simulator. As expected, the cycle count
roughly halves every time the SIMD lane count is doubled.

For vectors of up to 16 elements, shuffles were implemented
with standard OpenCL C swizzle notation. However, OpenCL
C supports vector datatypes of only up to 16 elements [12].
Wider shuffles were implemented with a Clang compiler
intrinsic __builtin_shufflevector. This custom ex-
tension aside, the benchmark code was ensured to be portable,
and free of architecture-specific intrinsic calls.

A. Synthesis Results

The subset of processors that could fit on a Zynq Z7020
FPGA were synthesized, prioritizing clock frequency. Despite
the relatively small size of the device, SIMD lane widths of
up to 1024 bits could be realized. The results can be seen in
Figures 2 and 3. In addition to LUTs, the processors consumed
76 RAM blocks, 3 DSP blocks for every 32-bit multiplier
and 1 DSP block for every 16- or 8-bit multiplier. While the
maximum clock frequency decays with wider SIMD lanes, we
consider the attained frequencies to be good for the device in
question.

In order to analyze the resource utilization on a component-
by-component basis, the machines with 8-bit arithmetic were
synthesized out-of-context at a 100 MHz clock frequency,
while keeping the RTL hierarchy intact. The lower frequency
is to make sure all machines reach timing closure despite
the lack of cross-hierarchy optimizations. Additionally, an FU
with a naive implementation of a generic shuffle operation was
synthesized for comparison.

As can be seen in Figure 4, the vector FUs take up the most
of the LUTs on wide machines, followed by the interconnect.
The interconnect, data memory, and vector FUs grow linearly
with the lane count, with the exception of the shuffle FU, of
which growth fits better to a quadratic function with a small
(< 0.1) second-degree coefficient. The generic shuffle unit
fits a similarly quadratic function, but with a more significant
(> 3.9) second-degree coefficient. The 128x8b constrained
shuffle FU used 2561 LUTs, less than half of the 32x8b generic
shuffle, while a 128x8b generic shuffle used over 72782, 136
percent of the available LUTs of the Zynq Z7020 device.

The other components, divided here to processor and mem-
ory interface, are roughly constant across the architectures.

Included in this group are the instruction fetch and decode
stages, which require less than 470 LUTs, or 9 percent of the
smallest architecture and 1.4 percent of the largest. Thus, as
expected, with wider SIMD widths, the relative programma-
bility overhead decreases.

B. Comparison with ARM
A subset of TTA-SIMD soft core instances selected for

synthesis was used to execute the benchmarks on the FPGA
SoC. For comparison, the same benchmarks were run on the
ARM Cortex-A9 processor with the NEON vector extension
also present on the SoC, clocked at 650 MHz. Both TTA and
ARM execution was single-core, and kernel execution time
was measured, excluding buffer transfers, and averaged from
32 subsequent executions of the kernel for each benchmark and
architecture. On ARM, the benchmarks were ran for all vector
widths, and the best average runtime was selected as the result
for a given arithmetic precision. While the longer instruction
word of the TTA machines makes the binaries larger, the TTA
binaries have fewer instructions due to the added parallelism,
mitigating the size increase to an average of 163 percent.

Figure 5 shows the performance comparison between the
TTA processors and the ARM hard processor system. The
32x32b architecture performs equal or better than ARM for
all benchmarks, despite the 6.2x difference in clock frequency,
with a 2.4x improvement for the polynomial benchmark. While
the architectures with narrower arithmetic fall short of overall
improvement, both still show modest improvement on some
benchmarks, primarily sobel and polynomial.

C. Register File Efficiency
In order to illustrate the benefit of the TTA programming

model on RF logic utilization efficiency, we will compare
our architecture with a similar VLIW machine. To reduce
the number of FUs and to get a more fair comparison, we
will merge the vector broadcast, shuffle, and extract FUs
into a single one, leaving us with three vector FUs. To
simultaneously serve three FUs with two input operands and
one result, the RF needs three write ports and six read ports.
To implement this with the 1 write, 3 read port distributed
RAM primitives present on the FPGA with the Live Value
Table (LVT) approach [7], the design would need six copies
of the primitive: doubled to get six read ports, tripled to get
three write ports. A two-issue RF would only need four copies.

The distributed RAM utilization of our 1024-bit register files
is 1544 LUTs or about 4 percent of the largest cores. All else
being equal, five additional copies of the RF would increase
the logic utilization of our core by about 20 percent. If we were
to merge the vector datapath into two function units, the 2-
issue VLIW RF would need three additional copies, leading to
a 12 percent increase. Note that additional logic is needed for
the LVT itself and the multiplexers used to select the correct
values, so the resource usage increase would likely be higher.

V. REAL TIME APPLICATION CASE STUDY

In order to study the scalability limits of the TTA-SIMD
approach on larger FPGAs, we designed a TTA soft core



64 128 256 512 1024
SIMD lane width (bits)

0

5000

10000

15000

20000

25000

30000

35000

LU
T 

ut
iliz

at
io

n

8-bit arithmetic
16-bit arithmetic
32-bit arithmetic

Fig. 2: LUT utilization of
the synthesized processors.

64 128 256 512 1024
SIMD lane width (bits)

0

20

40

60

80

100

120

140

160

M
ax

im
um

 fr
eq

ue
nc

y 
(M

Hz
)

8-bit arithmetic
16-bit arithmetic
32-bit arithmetic

Fig. 3: Maximum clock fre-
quency of the synthesized
processors.

8 16 32 64 128
SIMD lanes

0

5000

10000

15000

20000

25000

30000

35000

LU
T 

ut
iliz

at
io

n

1.00x
1.40x

2.09x

3.57x

6.60xShuffle FU
Interconnect
Vector FUs
Data memory
Other components
AXI interface

Fig. 4: Utilization break-
down for 100 MHz synthe-
sis of 8-bit machines.

4 8 16 32 64 128
SIMD lane count

2 1

1

2

4

8

Re
la

tiv
e 

ru
nt

im
e

8-bit arithmetic
16-bit arithmetic
32-bit arithmetic

Fig. 5: TTA performance relative to best
corresponding ARM result. Dashed lines in-
dicate average of benchmarks for that SIMD
width and arithmetic precision.

for a CNN inference application that can utilize the three
common forms of computational parallelism: ILP through a
multiple-issue architecture, DLP with SIMD FUs, and thread
level parallelism by a multicore design.

We also used customized operations and data types, which,
together with a high degree of parallelism, is essential in
reaching competitive computation performance in FPGA-
based implementations.

The single core architecture was designed using TCE,
and was based on an earlier design called AivoTTA, which
was originally optimized for ASIC implementation [13]. Two
object recognition CNN applications implemented in C were
augmented with intrinsic calls for the custom operations.

A. Core Architecture

The core vector operation in the design is the vector
multiply-add (MADD) FU. It computes 32 convolutions on the
same output feature map, enabling weight sharing. The MADD
unit multiplies a vector of 32 8-bit pixels and multiplies that
with a vector of 16-bit weights or the same weight for all
elements. Finally, the result is added to 32-bit inputs for
accumulation.

The neural network activation function is applied to the con-
volution result. To avoid complex activation functions but keep
the activation function flexible, we decided to only support
linear interpolation in this design. Linear interpolation consists
of a multiplication and an addition, and can be performed
vector-wise on the multiply-add unit. The interpolation unit
produces the coefficients and offsets for the linear convolution.
The precalculated points are loaded from memory, so the
choice of activation function is defined by software.

This design uses shuffles to shift values from an aligned
load to adjacent convolution windows to save on memory
bandwidth and LSU complexity, as well as for 2x subsampling.
The design uses reduced shuffles rather than a full shuffle
crossbar.

In the ASIC design, the vector shift unit was split across four
FUs, and the 4-pixel interleave operation was in its own unit.
For the FPGA implementation, these were merged together to

reduce the number of connections to the interconnect network
and to reduce fanout from control signals to the FUs.

In TTAs, RFs are the second lowest level in the software
accessible data memory hierarchy; the FU port registers are the
lowest. One of the most interesting features of the design case
in terms of FPGA implementation is its simplified RFs enabled
by the TTA programming model. All the general purpose RFs
in the design have only a total of two ports; a single read and
a single write port. There are four RFs in total: two 32-bit
RFs, one 256-bit and one 1024-bit RF.

B. Results

In order to measure scalability to FPGAs with different sizes
and speed grades, we synthesized designs for two different
Xilinx Zynq devices: The medium-size Z7020 (speedgrade
-1) and a larger Ultrascale+ device, XCZU9EG (-2) with
approximately 7 times the LUT count of the Zynq Z7020.

The clock frequency and utilization results can be seen in
Table I. In addition to the TTA cores and AXI interconnect
IP, the results for the Zynq Z7020 device include IPs for
processing the input video stream from HDMI, overlaying the
detections to the video stream and outputting the to an HDMI
sink. This corresponds to 14 percent of the LUT usage of that
design. Even without the video pipeline, the design would
not fit a third core, and the impact on maximum frequency
is negligible. The TTA processor on the Zynq Z7020 design
reached a clock frequency of 145 MHz, while the UltraScale+
design was clocked at 300 MHz.

The theoretical maximum performance (assuming that a
MADD operation is issued every cycle) is 18.9 GOPS for
the Zynq Z7020 design, and 273 GOPS for the UltraScale+
design. In practice, however, this is limited by the efficiency of
compiler scheduling and the latency of the memory accesses.
The measured performance from fully executing one frame of
CNN inference with the face detection network was 3.7 GOPS
and 48.5 GOPS, respectively. The primary bottleneck in the
design is the lack of a cache between the TTA processors and
the main memory, where the image is being read.



TABLE I: FPGA utilization of the designs. Percentages indicate
utilization relative to the total FPGA capacity.

Component LUT DSP blocks RAM blocks
Zynq Z7020, 2 TTA cores

TTA cores 25811 (48.5 %) 72 (32.7 %) 64 (45.7 %)
Video pipeline 6077 (11.4 %) 0 1 (0.7 %)

AXI interconnect 8501 (16.0 %) 0 0
Total 40408 (76.0 %) 72 (33 %) 65 (46.4 %)
Zynq UltraScale+ XCZU9EG, 14 TTA cores

TTA cores 165327 (60.3 %) 504 (20 %) 434 (47.6 %)
AXI interconnect 45469 (16.6 %) 0 0

Total 210770 (76.9 %) 504 (20 %) 434 (47.6 %)

C. Real Time Demonstrator

We created two real time FPGA demonstrators with the TTA
design. On the Zynq 7020 board, additional components in-
terfaced with an HDMI stream for a standalone demonstrator.
On the Zynq Ultrascale+ ZCU102 board, this was handled on
Linux running on ARM.

The cores were connected to the hard processor system with
master and slave AXI buses, so that the host processor can
control the accelerators and the accelerators can read the input
from off-chip memory. Each of the accelerators have their own
instruction and data memory, as the block RAM consumption
did not necessitate sharing memories.

VI. RELATED WORK

Vector processors on FPGAs have been studied in-
depth in the literature, primarily as coprocessors to vendor-
supplied scalar processors such as NIOS 2 and MicroBlaze.
VESPA [14] and VIPERS [15] are similar processors, based
on the same instruction set. However, VESPA allows for
custom instruction subsetting, while VIPERS has modified its
instruction set to fit an FPGA implementation better.

VEGAS [16] and VENICE [17] are presented as an im-
provement over VESPA and VIPERS, as they replace the
RF and memory system with a unified scratchpad, and add
fracturable ALUs. Instead of a full shuffle crossbar, they use
a pipelined three-cycle Benes network [18].

Like VEGAS and VENICE, the commercial MXP pro-
cessor [19] has multistage shifting networks between the
ALUs and the banked scratchpad memory to handle element
alignment. Kapre [20] has compared MXP and ARM exe-
cution on the Zynq 7020 SoC. Kapre’s results average a 25
percent improvement over the best ARM runtime with 32-
bit arithmetic, and a 73 percent improvement over ARM with
8-bit arithmetic. The differences range from an 11 percent
decrease of performance for 32-bit 4-tap filter, to a 3.95x
increase for 8-bit vector addition. While utilization numbers
are not presented, the SIMD width of MXP is limited to 512
bits, at a frequency of 110 MHz.

Another data parallel approach with recent popularity in
the literature [21]–[24] is Single Instruction, Multiple Thread
(SIMT) architectures, more commonly used in graphics pro-
cessing units. The most interesting work, performance-wise,
is FGPU [25], [26]. It outperforms MXP by a factor of 11
in matrix multiplication in ideal conditions, but the results for

other benchmarks are less dramatic, and FIR is equally fast on
the two architectures. It can scale up to 8 compute units with
a total of 64 processing elements on the Zynq 7045 FPGA,
which is more that twice as large as the one used in our work.

Reducing a shuffle crossbar by customizing it for the
application has previously been explored at least by Raghavan
et al. [27]. They presented six reduced crossbar varieties for
different application domains, such as FFT and GSM. Our
work shows that the approach can be generalized to other
applications.

To the best of our knowledge, the work presented by Kapre
is closest work to what we propose, with similar methodolo-
gies executed on the same FPGA device. While Kapre sees
greater improvements, particularly with 8-bit arithmetic, our
scalability optimizations allow us to reach a SIMD width that
is twice as wide while maintaining a similar clock frequency
to MXP.

While VLIW has been fairly popular as a soft processor
template [28]–[31], to our knowledge there have not been
FPGA implementations of SIMD VLIW machines or other
multiple-issue SIMD soft processors. This may be due to
the increased complexity of the RF in operation-triggered
multiple-issue machines, easily leading to a 4x increase in RF
utilization compared to a single-issue machine. The proposed
TTA-based template enables a multiple-issue architecture with
RFs that are as simple as with a single-issue machine.

VII. CONCLUSION

We proposed a SIMD-TTA template for soft processors
designed to scale to high SIMD lane counts and to utilize high-
degrees of ILP with efficient FPGA utilization. Even in the
small FPGA used in our evaluation, we show that architectures
based on this template can support up to 1024-bit SIMD lanes,
surpassing the closest competition, the MXP soft processor.
In comparison with the ARM hard processor system on the
board, despite the more than 6x slower clock frequency, our
architectures with 32-bit arithmetic reach up to 2.4x speedups
with the equal ease of programmability of via OpenCL.

In order to evaluate the scalability of the template to larger
FPGAs and to demonstrate a real-time scenario, we presented
a case study with application-specific optimizations targeting
CNN inference. Scalability was demonstrated on a Zynq
UltraScale+ board which could fit 14 cores reaching up to
48.5 GOPS while running a face-detection network.

These results demonstrate that the SIMD-TTA template is
useful for offloading applications from the SoC and capable of
implementing challenging real-time applications. It simplifies
the RF compared to the closest static multiple-issue contender,
the traditional VLIW processor, by 12 to 20 percent.

In the future, we plan to explore enhanced soft multicore
support on top of OpenCL. Additionally, we believe the
the customization effort of TTA-SIMD soft processors can
be eased by automated design space exploration, as was
preliminary shown with AEx [32] for scalar TTA cores.



REFERENCES

[1] Z. Al-Ars, T. Basten, A. de Beer, M. Geilen, D. Goswami,
P. Jääskeläinen, J. Kadlec, M. M. de Alejandro, F. Palumbo, G. Peeren,
and et al., “The FitOptiVis ECSEL project: Highly efficient distributed
embedded image/video processing in cyber-physical systems,” in Pro-
ceedings of the 16th ACM International Conference on Computing
Frontiers, ser. CF ’19, 2019, p. 333–338.

[2] S. Lahti, P. Sjövall, J. Vanne, and T. D. Hämäläinen, “Are we there
yet? A study on the state of high-level synthesis,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 38,
no. 5, pp. 898–911, 2018.

[3] H. Wong, V. Betz, and J. Rose, “Quantifying the gap between FPGA and
custom CMOS to aid microarchitectural design,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 22, no. 10, pp. 2067–
2080, 2013.

[4] P. Jääskeläinen, A. Tervo, G. P. Vayá, T. Viitanen, N. Behmann,
J. Takala, and H. Blume, “Transport-triggered soft cores,” in 2018 IEEE
International Parallel and Distributed Processing Symposium Workshops
(IPDPSW). IEEE, 2018, pp. 83–90.

[5] H. Corporaal, Microprocessor Architectures: from VLIW to TTA. John
Wiley & Sons, Inc., 1997.

[6] J. Hoogerbrugge and H. Corporaal, “Register file port requirements of
transport triggered architectures,” in Proceedings of the 27th annual
international symposium on Microarchitecture, 1994, pp. 191–195.

[7] F. Anjam, S. Wong, and F. Nadeem, “A multiported register file with
register renaming for configurable softcore VLIW processors,” in 2010
International Conference on Field-Programmable Technology. IEEE,
2010, pp. 403–408.

[8] B.-C. C. Lai and J.-L. Lin, “Efficient designs of multiported memory
on FPGA,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 25, no. 1, pp. 139–150, 2016.

[9] O. Esko, P. Jääskeläinen, P. Huerta, C. de La Lama, J.Takala, and J. Mar-
tinez, “Customized exposed datapath soft-core design flow with compiler
support,” Int. Conf. on Field Programmable Logic and Applications
(FPL), 2010.

[10] M. Järvelä, “Vector operation support for transport triggered archi-
tectures,” Master’s thesis, Tampere University of Technology, Finland,
2014.

[11] P. Jääskeläinen, C. S. de La Lama, E. Schnetter, K. Raiskila, J. Takala,
and H. Berg, “pocl: A performance-portable OpenCL implementation,”
International Journal of Parallel Programming, vol. 43, no. 5, pp. 752–
785, 2015.

[12] OpenCL 1.2 API Specification, Khronos OpenCL Working Group,
revision 19.

[13] J. IJzerman, T. Viitanen, P. Jääskeläinen, H. Kultala, L. Lehtonen,
M. Peemen, H. Corporaal, and J. Takala, “AivoTTA: an energy efficient
programmable accelerator for CNN-based object recognition,” in Pro-
ceedings of the 18th International Conference on Embedded Computer
Systems: Architectures, Modeling, and Simulation, 2018, pp. 28–37.

[14] P. Yiannacouras, J. G. Steffan, and J. Rose, “VESPA: Portable, scalable,
and flexible FPGA-based vector processors,” in Proceedings of the 2008
International Conference on Compilers, Architectures and Synthesis for
Embedded Systems, ser. CASES ’08. ACM, 2008, pp. 61–70.

[15] J. Yu, C. Eagleston, C. H.-Y. Chou, M. Perreault, and G. Lemieux,
“Vector processing as a soft processor accelerator,” ACM Transactions
on Reconfigurable Technology and Systems (TRETS), vol. 2, no. 2, pp.
1–34, 2009.

[16] C. H. Chou, A. Severance, A. D. Brant, Z. Liu, S. Sant, and G. G.
Lemieux, “VEGAS: Soft vector processor with scratchpad memory,” in
Proceedings of the 19th ACM/SIGDA international symposium on Field
programmable gate arrays, 2011, pp. 15–24.

[17] A. Severance and G. Lemieux, “VENICE: A compact vector processor
for FPGA applications,” in 2012 International Conference on Field-
Programmable Technology. IEEE, 2012, pp. 261–268.

[18] V. E. Beneš, “Optimal rearrangeable multistage connecting networks,”
Bell system technical journal, vol. 43, no. 4, pp. 1641–1656, 1964.

[19] A. Severance and G. G. Lemieux, “Embedded supercomputing in FPGAs
with the VectorBlox MXP matrix processor,” in Proceedings of the
Ninth IEEE/ACM/IFIP International Conference on Hardware/Software
Codesign and System Synthesis. IEEE Press, 2013, p. 6.

[20] N. Kapre, “Optimizing soft vector processing in FPGA-based embedded
systems,” ACM Transactions on Reconfigurable Technology and Systems
(TRETS), vol. 9, no. 3, p. 17, 2016.

[21] K. Andryc, M. Merchant, and R. Tessier, “FlexGrip: A soft GPGPU
for FPGAs,” in 2013 International Conference on Field-Programmable
Technology (FPT). IEEE, 2013, pp. 230–237.

[22] P. Duarte, P. Tomas, and G. Falcao, “SCRATCH: An end-to-end
application-aware soft-GPGPU architecture and trimming tool,” in Pro-
ceedings of the 50th Annual IEEE/ACM International Symposium on
Microarchitecture, 2017, pp. 165–177.

[23] J. Kingyens and J. G. Steffan, “A GPU-inspired soft processor for
high-throughput acceleration,” in 2010 IEEE International Symposium
on Parallel & Distributed Processing, Workshops and Phd Forum
(IPDPSW). IEEE, 2010, pp. 1–8.

[24] S. Collange, “Simty: generalized SIMT execution on RISC-V,” in First
Workshop on Computer Architecture Research with RISC-V (CARRV
2017), 2017.

[25] M. Al Kadi, B. Janssen, J. Yudi, and M. Huebner, “General-purpose
computing with soft GPUs on FPGAs,” ACM Transactions on Recon-
figurable Technology and Systems (TRETS), vol. 11, no. 1, pp. 1–22,
2018.

[26] M. Al Kadi, B. Janssen, and M. Huebner, “FGPU: An SIMT-architecture
for FPGAs,” in Proceedings of the 2016 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, 2016, pp. 254–263.

[27] P. Raghavan, S. Munaga, E. R. Ramos, A. Lambrechts, M. Jayapala,
F. Catthoor, and D. Verkest, “A customized cross-bar for data-shuffling
in domain-specific SIMD processors,” in International Conference on
Architecture of Computing Systems. Springer, 2007, pp. 57–68.

[28] G. Payá-Vayá, R. Burg, and H. Blume, “Dynamic data-path self-
reconfiguration of a VLIW-SIMD soft-processor architecture,” in Work-
shop on Self-Awareness in Reconfigurable Computing Systems (SRCS),
2012, p. 26.

[29] M. Purnaprajna and P. Ienne, “Making wide-issue VLIW processors
viable on FPGAs,” ACM Transactions on Architecture and Code Opti-
mization (TACO), vol. 8, no. 4, pp. 1–16, 2012.

[30] Y. Lei, Y. Dou, J. Zhou, and S. Wang, “VPFPAP: A special-purpose
VLIW processor for variable-precision floating-point arithmetic,” in
2011 21st International Conference on Field Programmable Logic and
Applications. IEEE, 2011, pp. 252–257.

[31] F. Anjam, M. Nadeem, and S. Wong, “A VLIW softcore processor with
dynamically adjustable issue-slots,” in 2010 International Conference
on Field-Programmable Technology. IEEE, 2010, pp. 393–398.

[32] A. Hirvonen, K. Tervo, H. Kultala, and P. Jääskeläı̈nen, “AEx: Au-
tomated customization of exposed datapath soft-cores,” in 2019 22nd
Euromicro Conference on Digital System Design (DSD). IEEE, 2019,
pp. 35–42.


