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Abstract

This paper presents a numerical study on the earthquake analysis of a concrete gravity dam. The numerical approach is based on
the multiple pre-embedded discontinuity finite element method. The equations of motion with the ground motion excitation, static
self-weight, hydrostatic reservoir load and the hydrodynamic reservoir loads as the boundary conditions are solved with explicit
time stepping. Mass proportional damping is used instead of the usual stiffness proportional damping since the latter drastically
decreases the critical time step of explicit time integration. The Koyna dam with the genuine accelerograms recorded during the
1967 earthquake is analyzed as the numerical example. The simulation results agree with the previously reported results by other
studies, i.e. similar crack propagation in the monolith is predicted here.
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1. Introduction

Failure analysis of gravity dams is a task of utmost importance in Civil and Geotechnical Engineering. One of the
most challenging aspects therein is to predict the cracking behavior of a concrete dam under earthquake induced
ground motion. This has been the topic of many numerical studies (Lee and Fenves 1998; Alembagheri 2016; Udni
and Bouafia 2015; Chopra and Chakrabarti 1972 & 1973, for example) since the Koyna earthquake (1967), which
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lead to extensive damage of the nearby Koyna gravity dam Chopra and Chakrabarti (1973). Most of these studies are
based on damage-plasticity models, which model the cracking in a smeared sense, as a localized deformation.

In the present study, we apply the embedded discontinuity finite elements approach in analyzing a concrete dam
under hydrostatic loading due to reservoir with an overflow situation and due earthquake ground motion. The
embedded discontinuity approach, which enriches the standard finite element with a displacement discontinuity, is
superior to continuum damage and plasticity models in crack description while retaining the computational efficiency
of continuum models. The purpose of this 2D numerical study is to demonstrate the performance of the specific model
for concrete by Saksala (2018) in the earthquake analysis of a gravity dam, namely the Koyna dam during the 1967
earthquake.

2. Theory of the concrete fracture model

Concrete fracture is described by the embedded discontinuity approach. In this method, the crack is represented by
a displacement discontinuity embedded inside a finite element. In the present multiple discontinuity version (Saksala
2018), three intersecting discontinuities are pre-embedded (before analysis) inside each finite element parallel to its
edges. For the constant strain triangle (CST) element, the displacement, u, and strain, g, fields can be written as
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where a/ is the displacement jump vector, N, and u! are the standard interpolation function and displacement
vector at node i (summation applies on repeated i), and H; and 51. is the Heaviside and Dirac’s delta function at
discontinuity k& with normal n, . Moreover, ¢, is a functlon that restricts the effect of the displacement jump o,
within the corresponding finite element facilitating the treatment of the essential boundary conditions. It should be
mentioned that the gradient of the displacement jump is assumed zero here, i.e. constant mode I and II discontinuity
is adopted. Equations (1) specify also how functions ¢ and normals ny are calculated based on interpolation functions.

Next, a model controlling the crack opening and the corresponding traction vector for each crack needs to be
specified. Here, the plasticity inspired model by Saksala (2018) is employed for solving the displacement jump (crack
opening) and traction vector updates. This model is specified by following components
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where my; is the unit tangent vector of discontinuity i, «;,; are the are the internal variable and its rate related to the
softening law for a discontinuity, and o and s are the tensile strength and the viscosity of the material. Moreover, 4; is
the softening modulus of the exponential softening rule, and parameter g controls the initial slope of the softening
curve and is calibrated by the mode I fracture energy Gi.. Finally, # is a parameter that controls the effect of shear
(mode-II) component of the traction vector. The evolution of the traction vectors is based on the Cauchy expression
of traction as an inner product between the stress tensor and the crack normal. This relation, defining the stress-strain
relationship as well, reads
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where T = (VN, ®u/ )", i.e. the regular finite element strain tensor, which is kept constant during local iteration.

The material behavior thus described is locally isotropic and linearly elastic until the tensile strength is reached
after which the model described by Equations (2) governs the post-peak softening process. The last inequalities in
Equations (2) are the classical Kuhn-Tucker conditions that impose the consistency. This formulation enables to solve
Equations (2) with standard methods of computational plasticity while the rate-dependency of concrete is
accommodated by viscosity.

3. Solution of equations of motion with ground motion BC

The global equations of motions with the ground motion boundary condition are solved with explicit time marching
in a standard manner. Hence, the system of equations and the forward Euler based scheme to proceed further in time
are written as

Mii, +Cu,+f.

int,t
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t+1
where M, C and K are, respectively, the lumped mass matrix, the damping matrix and linear elastic stiffness matrix,
fi is the internal force vector depending on the displacement and velocity, L is the influence matrix for the ground
motion accelerationii® , and fox is the external force vector containing contributions from the self-weight of the dam
and the hydrostatic forces due to reservoir. Rayleigh mass proportional damping is used in (4), i.e. C = aM with
being the proportionality factor. The reason for mass, instead of stiffness, proportional damping is that the stiffness
proportional damping drastically decreases the critical time step of explicit time integration. Finally, u,,u,,ii, are the
displacement, velocity and acceleration vectors at time ¢. The influence matrix is calculated with the linear elastic
stiffness matrix by L = -Ku'K,, where Ku and K, are the parts of the stiffness matrix corresponding to the
superstructure and the support nodes, respectively (Villaverde 2009). The hydrodynamic forces are accounted for with
the added mass technique by Westergaard (1933).
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Fig. 1. (a) Dimensions and boundary conditions of the Koyna dam model under quasi-static loading; (b) the finite element mesh with 5364 CST
triangles.
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Fig. 2. (a) crack propagation when p,¢ = 195 kPa; (b) crack propagation when p,r =260 kPa.
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Fig. 3. (a) Dimensions and boundary conditions of the Koyna dam model; (b) the finite element mesh with 5364 CST triangles; (c) the horizontal
accelerogram; (d) vertical accelerograms for simulations.
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4. Numerical examples
4.1. Koyna dam under quasi-static loading

The first example concerns the Koyna dam under self-weight, full reservoir load and an overflow situation shown
in Fig. 1. The material properties for concrete (taken from Jirasek and Zimmerman (2001)) and the model parameters
are as follows: E =25 GPa, v= 0.2, p= 2643 kg/m?, 6i = 1 MPa, Gi. = 200 N/m, s = 0.1 MPas/m, and = 0.75. The
overflow pressure is increased linearly during simulation until cracks develop. The simulation results at two stages of
crack propagation due to increasing in overflow-induced pressure are shown in Fig. 2.

According to the crack propagation results presented in terms of the crack opening magnitude, the first crack
appears at the upstream corner of the base where the bending (tensile) stress is at its maximum. Then, the second crack
appears higher in the upstream face and propagates into the monolith with a curved trajectory. This secondary crack
is roughly similar to that reported by Jirasek and Zimmermann (2001) in their numerical study.
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Fig. 4. Simulation results: (a) crack opening magnitude at t =2.8 s; (b) at t = 3.93 s; (¢) at the end of analysis in deformed mesh (magnification =
100); (d) the dam crest horizontal movement as a function of time.

4.2. Koyna dam under static and dynamic loading

The second example concerns the Koyna dam under the ground accelerations recorded during the 1967 earthquake
as well as the self-weight and the hydrostatic reservoir load. The dam dimensions, boundary conditions and finite
element mesh are illustrated in Fig. 3. The reservoir height is 91.75 m.

The material properties (taken from Abaqus Examples Guide 2014) for concrete and the model parameters are as
follows: £ =31 GPa, v=0.15, p=2643 kg/m’, 6; = 2.4 MPa, Gi. = 200 N/m, s = 0.1 MPas/m, and 8= 0.75. As for
the Rayleigh damping proportionality factor, Abaqus Example Guide (2014) is followed assuming 3% fraction of
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critical damping for the first mode of vibration of the dam. This, with the @, = 18.61 rad/s for the Koyna dam (see
Abaqus 6.14 Example Guide), gives o =2-0.03@; = 1.12.

According to the simulation results in Fig. 4a, the dam fails first at its upstream corner of the base where the bending
(tensile) stress due to the hydrostatic reservoir load is at its maximum. Then, when the heavier oscillations in the
ground motion due to the earthquake start, a crack initiates at the geometry induced stress concentration on the
downstream face, as can be observed in Fig. 4a and b. This crack propagates further to upstream direction and, after
reaching the half way through the monolith, branching occurs (Fig. 4c). However, the main branch of the crack does
not reach the upstream face of the dam. Moreover, some secondary cracking is attested in Fig. 4c. Most of these
cracking events took place during the major oscillations in the ground motion, i.e. between 2 and 5 seconds of time,
after which the cracks remained stable. Generally, the cracking behavior predicted here agrees with the results reported
by Lee and Fenves (1998) and Abaqus Example Problems Guide (2014).

As to the horizontal crest movement plotted in Fig. 4d, the irreversible nature of the present crack model is attested
in the results as the final displacement of the crest oscillates around 1.5 mm of final upstream displacement.

4. Conclusion

A computational framework for numerical analysis of dam fracturing was presented in this paper. The crack
modelling approach was based on the multiple embedded discontinuity finite elements. As the discontinuities are pre-
embedded parallel to the edges of each triangle element in the mesh, this approach is somewhat similar to the cohesive
interface element approach. However, in contrast to the cohesive zone elements, here the extra variables, i.e. the crack
opening vectors, are totally local in nature so that they can either be eliminated by static condensation or treated
similarly as the plastic strain tensor in plasticity models. Thereby, the present approach is computationally cheaper
than cohesive zone interphase element methods.

The present model was tested in simulations of the Koyna dam under quasi-static loading due to full reservoir and
an overflow and under the earthquake that lead to extensive damage of the monolith in 1967. The simulation results
demonstrated that the present approach can predict the salient features of a gravity dam under both the quasi-static
loading and seismic excitation. Specifically, the cracking behavior predicted here is generally similar to the one
predicted with damage-plasticity models by previous studies. Therefore, the present approach could be a tool in
earthquake engineering, especially after a future extension to 3D.
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