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Abstract— Small and Medium-size Enterprises require in-
creasingly versatile robots that are capable of learning new
skills during their operating life span, in addition to the ability
to integrate themselves into human teams as a new and effective
partner. Teaching information and skills to a robot can quickly
become very complex, especially when considering that the
human partner of the robot is inexperienced in the field and
does not have access to intuitive interaction channels to train
such robots. In this work, a system is proposed that can virtually
define an assembly task, based on CAD modelling that describe
constraints between assembly parts. These constraints are then
extracted in an ontology which is automatically translated into
Simple Temporal Networks (STNs) leading to joint action plans.

Results show the automatic translation between virtual
teaching and knowledge acquired by the robot on a peg-in-
hole problem before illustrating the connection to planning for
human-robot collaborative tasks. As a proof of concept, these
developments demonstrate that a CAD guided assembly planner
circumvents the need for skilled robot programming.

I. INTRODUCTION

Small and Medium-size enterprises (SMEs) are shifting
from mass production to smaller batch production to facil-
itate developmental changes in manufacturing [1]. To this
end, the traditional industrial robot, fast and robust but also
heavy and stiff, is being replaced by smaller robots with
a design aimed towards human collaboration in a safe and
effective manner. These collaborative robots (cobots) are
teammates to which new skills will also need to be taught.
Teaching operators new skills or tasks is a routine activity,
yet not as straightforward when considering human-robot
interaction with cobots. Many underlying details, such as
action sequences or part orientation, are crucial but not
necessarily intuitive to describe to a machine. Since it cannot
be expected that operators in factory floors have a deep
understanding of the robot’s internal functioning, nor the
capability to program them, methods need to be sought to
enable fast and intuitive ways for communication.

Nowadays, robots have integrated software components
that allow the quick automation of repetitive tasks. Unfortu-
nately, this ignores the context and semantics of what is being
executed, thereby limiting the usability within a human-robot
team. In other words, it would be very hard for such a robot
to be included in a team for constructive collaboration, while
ensuring efficiency and safety.

Ontologies offer a solution to store semantic information,
enable systematic reasoning and can be edited to add knowl-
edge to the robot during its operating life span. Nevertheless,
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Fig. 1.
from a CAD model that includes all assembly parts and virtually specifies
all steps in the assembly task (displayed on a screen with the Cranfield
benchmark). Following, this is stored in an ontology to generate task plans
for a collaborative robot arm (Franka Emika’s Panda).

CAD-guided assembly planning. The virtual teaching process starts

ontologies remain complex to handle and require tools for
intuitive content management. In this paper we explore
virtual teaching for assembly tasks (see Figure 1).

The contributions in this work are as follows:

e A CAD-guided modelling approach to specify an as-
sembly task and its constraints,

o Automatic generation of semantic task knowledge in
an ontology, such as assembly parts, assembly part
properties and links between parts,

« Utilizing this semantic task knowledge for planning and
executing the assembly task in human-robot collabora-
tion.

Section II will review the main concepts involved in our
system. Section III describes the teaching phase before
connecting it to planning in Section IV. Section V then spec-
ifies the considered assembly task, the Cranfield Assembly
Benchmark [2]. Finally, Section VI discusses the approach
and its limitations, and the remaining points for future work.

II. RELATED WORK

This work aims at facilitating the transfer of knowledge to
a robot to enable human-robot teams to perform joint actions
together. Teaching is done through virtual demonstrations,
operated on a CAD model of the assembly task. First, a
review of dynamic planning, semantic systems and collabora-
tion mechanisms in human-robot teams is given to familiarize
the reader with the concepts involved in the process.

A. Human-Robot collaboration

There exists several levels of collaboration (coexistence,
assistance, cooperation, etc.) [3] but regardless, teammates



P jena_sempy

SPARQL queries

*€

t,

LOCAL
APACHE
SERVER

RDF reasoner

Fig. 2.

Visual Assembler |

CAD
Manipulation

it ROS Franka Control |

Catkin
packages

.
-

Software architecture. Composed of 4 parts. A generic library for semantic reasoning and planing. An ontology server based on Apache Jena

Fuseki. A Flask web server allowing to teach the robot new tasks. ROS packages for translating this plan into actions that the robot can execute. It is

distributed on github and included into Docker containers.

need to take each other’s action into account [4]. Moreover,
to successfully collaborate both need to share the same
understanding of the task at hand to know what the other
is about to do. In that sense communication is an important
factor for a successful task. It has been shown that bottom-
up solutions in which the robot acquires by itself a model of
knowledge and develops the capacity to communicate about
it [5] can lead to encouraging results. However, we make use
of semantics [6] to bring predictability to our system.

B. Semantic systems

The previously mentioned planning strategies rely upon
knowledge. Knowledge that can be stored in models [7]
or ontologies for example [8]. An ontology is an XML
file gathering semantic knowledge about the robot, its en-
vironment and the tasks it’s supposed to accomplish. This
knowledge can be further altered to teach the robot new
skills [9]. Other methods include using the sensorimotor
information to physically demonstrate tasks [10], [11], and
as we will explore in this paper, 3D CAD models. They can
be used to learn low level information such as controllers
and motion plans in autonomous assembly tasks [12] or in
collaboration [13]. They can also be combined with fuzzy
logic to infer some parameters of the assembly [14]. In
our case we use the CAD model to deduce high level
knowledge, and add it to the robot knowledge base. Another
important high-level consideration in collaborative tasks is
the task allocation problem that can also make use of its own
models [15]. We address simultaneously task allocation and
scheduling within the Simple Temporal Network formalism
on which we come back later.

C. Dynamic planning

Once specified, a task can either be performed in any order
and will not require any action selection process. Or, if there
exist dependencies between sub-sequences, it will have to
be performed in a precise sequence that the robot needs to
be aware of. This type of tasks requires additional dynamic
planning features in a collaborative context. Contrarily to

traditional planning where everything has to be specified
beforehand, dynamic planning allows for more flexibility as
it takes into account the evolution of the environment and
allows the robot to react to them. Several ways to conceive
planning exists, see e.g. [16] or [17], where a Simple
Temporal Network (STN) is built to answer planning and
scheduling. It is based on the Simple Temporal Problem
defined in [18]. STNs have since then been extended in
various ways [19]. An important challenge is to build those
plans automatically [20]. The system presented in this paper
uses knowledge stored in ontologies to do so.

III. VIRTUAL DEMONSTRATION

To endow the robot with the ability to perform new tasks,
a description of this task needs to be made available to the
knowledge base. Writing such a description by hand can
quickly become cumbersome, even when using tools such
as the Protégé editor!. Writing an ontology requires a high
degree of expertise and a step learning curve for the end
user. We propose an approach to allow the user to virtually
specify the assembly task and it’s properties and have them
automatically translated into an ontology (see Figure 2). This
section describes the process of teaching the robot a new task
using the framework.

A. Modelling and Importing Models

Before virtually describing an assembly task, the parts of
that task need to be modeled before importing it into the
interface. FreeCAD?, an open source 3D CAD modeler with
surface and mesh export capability is used (see Figure ??).
Engineering design requires in-context parametric modeling
to handle the complexities of dealing with industrial assem-
bly tasks. A major issue is that a plurality of mainstream
modeling software often uses its own proprietary format.
Traditionally exported file formats include the STL [21]
file format when dealing with geometric structure and 3D

Uhttps://protege.stanford.edu/
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Fig. 3.
Selecting one part will allow to specify individual properties. Once two parts have been selected they can be linked together to indicate that they should
be assembled during the execution phase.

printing. The STEP file format is commonly used when
sharing tolerances for physical assembly components. These
file types grow in size beyond acceptable for client nodes as
they are designed to store details on workstations.

The developed environment, denoted VirtualAssembler,
uses a WebGL [22]-based graphical interface that requires
the GLTF [23] file format. Therefore, assemblies need to
be translated from the CAD software formats into GLTF
which is a compact format that is easily processed by the
GPU. The GLTF file format stores the geometry, scene,
camera, keyframes, material and textures, unlike STL which
represents a model through unit normals and vertices, in
GLTF they are defined as arrays of primitive triangles and
their attributes (e.g, colors, tex_coords, materials, etc.). This
conversion requires a robust implementation as the model
details can break off at sharp corners. Blender [24] is a
free modeling application that has utilities to perform this
conversion.

B. Interacting with Models

The VirtualAssembler makes use of Flask [25], a python-
based micro web framework and Three.js [26] a javascript
library based on WebGL, used to integrate 3D model visu-
alization into browser applications. This interface provides
two types of control schemes:

o A 3D graphical drag and drop system.

o Standard GUL

Using the drag and drop system the user can select pairs
of objects in the 3D view that are to be assembled together

Interaction in the VirtualAssembler. Each part can be moved around separately and the camera can be moved to increase visibility of the scene.

(see Figure 3). The selection procedure uses a ray caster
to get intersection points on the ray from the camera to
the pointer. The standard GUI allows the user to select
parts from a list and access their various properties. Here,
the user can define whether a part is a peg or contains
holes and shafts. In addition, the user can also mate parts
with others and determine their mating properties without
graphical interaction. Once the user has specified as many
steps in the assembly process as deemed necessary, the
planner can be evoked to generate the entire action sequence.

C. Exporting Ontologies

All the information gathered from the VirtualAssembler
is loaded into an ontological database. Once stored this data
can be used for future assembly tasks together with the basic
ontology file written using the Protege Editor [27]. Pieces of
interest include:

o The parts involved in the assembly.

o Properties that could help the robot place or grasp.

o Links between parts.

The conversion is two-fold. First, on the Flask server, each
part is converted into a JSON object together with the links
between them that have been previously specified by the
user. That JSON object is sent to the Resource Description
Framework (RDF) reasoner where properties such as shape
are taken into account to generate a complete specification
than is then used as the basis for a plan. Once the ontology
file is generated, it needs to be manually imported into the
ontology server holding all the information. The server is an



Apache Jena Fuseki server [28], providing the SPARQL [29]
protocols needed to manage the data. SPARQL is a query
language for data within the RDF format, that same format
used to store ontologies.

IV. INTERACTIVE PLANNING

We use NetworkX [30], a python library to manipulate
graphs which are used to model simple temporal networks
(STNs). STNs are directed graphs, where nodes (time vari-
able) represent events corresponding to different phases of an
assembly, and edges (time constraints) are temporal intervals
between nodes. A solution is reached when all time variables
have been assigned a completion time that satisfies all
constraints in the netwwork. The interactive planner has two
main components, the planner and the dispatcher. The plan-
ner is used to perform most of the computation work off-line,
the design of which is based on the implementation described
in [31]. The dispatcher reacts to temporal conflicts within the
original plan to ensure the robot adapts to unexpected events.

A. Establishing a Complete Plan

First, the ontology needs to be translated into a graph that
captures the temporal information of the task. Algorithm 1
shows the transition between the information contained in an
ontology file and a Simple Temporal Problem, first step of
the planning stack.

Data: Name of a skill
Result: Generate a simple Temporal Problem ready to
be sent to the planner
begin
nodes = []; assemblies = [];
steps = retrieve_assembly_steps(skill);
foreach step do
‘ assemblies.append(retrieve_links(step));
end
step_id = 0;
while assemblies not empty do
list_tasks = find_min_constrained(assemblies);
assemblies = assemblies - list_tasks;
foreach link in list_tasks do
‘ nodes.append(create_node(link));
end
create_edges(nodes);
end

end
Algorithm 1: SPARQL queries are sent to the ontology
server to retrieve the necessary information. The reasoner
then generates the assembly nodes and uses constraints to
deduce the edges between them.

Assemblies correspond to time points and parts involved
in several assemblies will generate the time constraints as to
what should be done first. The reasoner uses the information
it has about the parts to deduce the order of actions.

B. Interacting with the Plan

At this point, the information seen on the screen is
what the robot will expect to happen. It is very important
in a collaborative environment that all parties know what
other agents are about to do. The robot will announce the
step it is about to undertake but humans do not have this
requirement, with our current developments this would lead
to an unreasonable cognitive load. Updated while the actions
are taken, if the user decides to modify the plan it can do
so using the VirtualAssembler. The agent responsible for a
specific assembly step in the robot planning module can be
changed.

C. Dispatching a plan

Once a plan has been compiled off-line it is ready to
be dispatched. In previous works we had discussed policies
to solve the task allocation problem [27]. At run time the
robot is the master and will thus choose a valid set of task
assignments giving its teammate a list of actions doable at
the time while holding a similar list for itself. Each node of
the graph corresponds to an assembly action command and
contains the names of the peg and the part it should fit in.

In case the human undertakes an assembly step, the robot
needs to update the plan accordingly. To send feedback we
use the VirtualAssembler interface in which it is possible to
specify that a step has been completed.

V. TASK EXECUTION

We use ROS and movelt with the Panda arm, a 7 degrees
of freedom robotic arm from Franka Emika. The teaching
phase is illustrated with the Cranfield Benchmark assembly.
It involves ten parts. Some of which are identical in shape
and size, and need to be assembled in a specific order
to correctly complete the task, while other steps can be
completed independently of one another.

A. Cranfield Benchmark Assembly

The general rules of interest considered in the ontology
(see Figure 4) to establish a plan are:

o Whether the part is a peg or contains holes,

o Properties of the parts, such as its size and its shape (or

the shape of its holes),

o Links between the parts, indicating an assembly step.

Let us consider a subset of the Cranfield Assembly bench-
mark (see Figure 4). Assembly 1 and 2 are the insertions of
the two square pegs into the front plate. Assembly 3 is the
separator coming on top of them. Their properties can be
annotated in the virtual assembler as shown in Figure 3.

The plan associated with this subset will then be composed
of three nodes, one for each assembly. Assemblies 1 and 2
are independent and are thus not linked by an edge but each
of them is linked to the Assembly 3 as they need to be
inserted before the separator.

During the execution, the Assembly will initially be left
out and the robot will only display the 2 first ones. According
to the policy it will suggest to the human which agent should
be responsible for which task.
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Fig. 5.

Top: Our workspace where a human agent can perform a task
together with the Panda arm from Franka Emika. Detection of those
AprilTags through ROS.

Each node contains the type of instruction to be sent to
the robot. In this case we only consider assembly tasks, as
well as the list of parts involved in the step.

B. Visual Tracking

To increase the versatility of our approach we do not
require parts in the assembly task to be placed in any specific
location on the working surface. Therefore it is necessary to
include a visual sensor to perceive the current state of the

environment.

In order to facilitate real time tracking and identification
of all relevant parts in the assemble task we placed AprilT-
ags [32] of varying sizes on each part. Visual detection of
an apriltag within the camera frame reveals the position and
orientation of the part assigned the number tag (see Figure
5). This information can then used to update a digital twin
contained within the planning scene of the robot.

VI. DISCUSSION

Semantic annotations and 3D CAD model manipulation.
The system in its current form allows for 3D CAD model
annotation by the user. While this enables to specify relevant
task knowledge and part properties, in most cases these have
to be specified by a person. The choice of what to include
and what to ignore is difficult to answer, as this depends on
the task and the functionality of the system. For example, in
the case of the Cranfield assembly, hole positions in the face-
plate were hard coded in the ontology. Alternatively, these
can be extracted automatically from CAD data or detected
by a vision system.

Creating a plan. Some parts of an assembly task are more
complex as they belong to both categories (peg and hole)
simultaneously. For example, the pendulum in the Cranfield
benchmark behaves as a peg with the pendulum head it, the
pendulum also has a hole so that it can be attached to the rest
of the assembly. Completely automating the assembly plan
can lead to errors due ambiguity of some parts and unknown



constraints. The interactive planner is thus an important
feature that enables the user to specify constraints and resolve
ambiguities prior to automating the rest of the assembly plan.

Reasoning about a plan. Defining every piece of knowl-
edge the robot would have to know to be fully autonomous
can become an intractable task. Moreover, even though
defining new pieces of knowledge to integrate into the current
state of the knowledge base is possible, the reasoning module
is still fixed. Thus, it cannot take new types of tasks into
account. For example the needs of an engine assembly would
not be covered by the Cranfield assembly developments.
This assembly task differs significantly and defining such
complex task would lead to introducing new constraints that
cannot be handled by the reasoner. Future work will therefore
generalize our reasoner to accept modules defined externally.

VII. CONCLUSION

This work proposed a system to plan and execute shared
assembly tasks between human and robot. Assembly tasks
are extracted from a CAD model that describes relationships
between individual parts and its properties, and is translated
to an ontology for automated task plan reasoning. The
interaction with the CAD model allows to add semantics
to the parts for interactive planning. The capabilities of the
system are illustrated with the Cranfield assembly benchmark
which shows how the planner could use the information
received after teaching.
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