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ABSTRACT
Nonnegative matrix factorization (NMF) is a popular approach to
model data, however, most models are unable to flexibly take into
account multiple matrices across sources and time or apply only to
integer-valued data. We introduce a probabilistic, Gaussian Process
based, more inclusive NMF-based model which jointly analyzes
nonnegative data such as text data word content from multiple
sources in a temporal dynamic manner. The model collectively
models observed matrix data, source-wise latent variables and their
dependencies and temporal evolution with a full-fledged hierarchi-
cal approach including flexible nonparametric temporal dynamics.
Experiments on simulated data and real data show the model out-
performs comparable models. A case study on social media and
news demonstrates the model discovers semantically meaningful
topical factors and their evolution.
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1 INTRODUCTION
Factor analysis is a popular approach to extract latent components
describing variable relationships within data sets, and non-negative
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matrix factorization (NMF) [14, 18] in particular has become a
prominent solution for data sets in matrix form, applicable in nu-
merous settings where measurements and their latent factors are
expected to be nonnegative, such as in several text analytics and
bioinformatics settings. However, much factor analysis work has
focused on factorization of individual matrices.

Analyzing data from multiple sources has attracted increasing
attention in the machine learning community [11]. For instance
text data such as online discussions or news articles from a single
source may not provide a sufficiently thorough understanding of
the underlying phenomena. Analyzing the factors underlying data
matrices from multiple sources jointly is a promising approach to
infer improved models that better represent the phenomena, have
better predictive performance, and allow discovery of relations and
interactions between different sources.

In addition to multiple sources, modeling temporal variation of
the phenomena from data collected over time is also often desired.
Models including flexible generative approaches such as Gaussian
Processes (GPs) [19] and their extensions have been proposed to
model temporal dynamics. Temporal analysis should ideally reveal
both variation of the underlying factor prevalences and variation
of the factors’ contents over time.

Although NMF has been widely accepted as a classical approach
when analyzing text data, to our knowledge there are only few
probabilistic matrix-factorization models that address the multiple
sources aspect or the temporal aspect, and none that address both.

We introduce a novel probabilistic non-negative matrix factor-
ization model, suitable for analysis of multiple data matrices across
sources and time, applicable to any series of nonnegative real-
valued matrices. The proposed method models the matrix data,
the underlying source-wise parameters of factor prevalence and
content, and inter-source parameters of factor relationships across
sources. Temporal dynamics of topic prevalence, topic content and
source-source interaction are modeled with a flexible (Hierarchical)
Gaussian Process Latent Variable Model (GPLVM) [12, 13, 15] based
approach. Modeling temporal dynamics with GP priors can model
smooth temporal changes without fixing a rigid parametric form
[8]. We carry out variational inference for the model.

The model has superior performance in experiments in predict-
ing held-out data. We demonstrate the model both on simulated
data and a case study on news and social media. We use a text
analytics case for simplicity of illustrating results, but the model

Full Paper Track CIKM '20, October 19–23, 2020, Virtual Event, Ireland

1035

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3340531.3411956
https://doi.org/10.1145/3340531.3411956
https://doi.org/10.1145/3340531.3411956
https://creativecommons.org/licenses/by/4.0/


applies to all similar domains with non-negative data and is not re-
stricted e.g. to integer-valued count data, unlike some text analysis
solutions.

The rest of the paper is organized as follows. Next, Section 2 de-
scribes preliminaries and related work. Sections 3 and 4 present the
basic structure of the proposed model and its variational inference.
Sections 5 and 6 describe the experiments with simulated and real
data. Section 7 provides conclusions and discussion.

2 RELATED BACKGROUND
Non-negative Matrix Factorization. NMF is a widely used data
analysis approach in domains such as bioinformatics [23], image
processing [14], and text mining [16]. In short, NMF finds an ap-
proximate decomposition of a 𝑁 × 𝐷 matrix X containing only
nonnegative element values into a product of two lower-rank ma-
trices X ≈ ZW⊤ where Z is a 𝑁 × 𝐾 matrix, W is a 𝐷 × 𝐾 matrix,
and 𝐾 is the number of latent factors, where Z and W also contain
only nonnegative values. For example in text analytics X may be
a term-document matrix of 𝑁 terms and 𝐷 documents, W can be
interpreted as a topic loading matrix of 𝐾 topics of 𝐷 documents, so
that each row w𝑑 contains the topic loadings for document 𝑑 , and
Z can be interpreted as a topic content matrix of 𝑁 terms across
the 𝐾 topics, each column z·𝑘 is a discrete distribution over terms
for topic 𝑘 . Different NMF variants use different divergences to
measure difference between X and its approximation ZW⊤ and reg-
ularize Z and W by different penalties. We adopt the form where
the model is specified by a particular noise model between ZW⊤

and the observed X and particular priors for Z and W; the latter
incorporate a hierarchical model for cross-sources and temporal
dynamics.

Related Work. Some NMF based methods have been proposed
to model temporal dynamics [21, 24] of text data or data from multi-
ple sources [4, 7, 22]; most of these are not hierarchical approaches
or deal with only one of the two aspects (multi-source or temporal).
For example, in the Joint Past-Present Decomposition Model (JPP;
[24]) at each time slice the term-document matrix is explained by
both current topics and topics at the previous time slice.

A noteworthy example of Matrix factorization approaches is
Bayesian Group Factor Analysis (GFA) [10, 25] which analyzes data
from multiple sources (groups). GFA considers the joint data set
Y = {X1, . . . ,X𝑀 } of matrices X1 ∈ R𝑁×𝐷1 , . . . ,X𝑀 ∈ R𝑁×𝐷𝑀 .
GFA factorizes Y into matrices Z and W as Y ≈ ZW⊤ where
W = [W⊤1 . . .W

⊤
𝑀
]⊤, W𝑚 ∈ R𝐷𝑚×𝐾 and each element 𝑤𝑚,𝑘 (𝑑)

in W𝑚 is normally distributed with zero mean and a group-wise
precision parameter 𝛼𝑚,𝑘 as𝑤𝑚,𝑘 (𝑑) ∼ 𝑁 (0, 𝛼−1𝑚,𝑘 ). The precision
parameter 𝛼𝑚,𝑘 enables GFA to model shared underlying features
between groups. However, GFA has no model for temporal dy-
namics. Moreover, GFA is not designed to model non-negative
factorization and hence it can yield negative-valued factors even
for nonnegative-valued data, making it unsuitable to be directly
applied in cases when factors are required to be nonnegative e.g.
for interpretability, such as loadings and contents of topics in text
data. We use GFA as a comparison both as is and with a simple
correction for nonnegativity.

One similar work [9] tries to model the temporal dynamics but
only takes the dynamics of the left-hand side matrix 𝒁 into account,
the loading matrix𝑾 is considered static.

Another group of approaches are the models based on Poisson
factor analysis (PFA) [1, 6, 17, 28]. However, since the Poisson
distribution only models positive integers, the approaches only
model positive-integer-valued matrices but not positive real-valued
matrices; the latter occur in many domains including text mining,
e.g. real-valued term weighting such as TF-IDF is often crucial for
document representation. This paper focuses onmethods applicable
to positive real-valued matrices.

3 PROPOSED MODEL
We now present the proposed dynamic non-negative Bayesian
group factor (DNBGFA) model. For clarity we use text data terminol-
ogy (documents, terms, topics) but the model is general. DNBGFA
considers a temporal sequence of 𝑇 term-document matrices
X(1) ,X(2) , . . . ,X(𝑇 ) , sharing the same vocabulary of𝑁 terms (words).
For each time slice 𝑡 , X(𝑡 ) = [X(𝑡 )1 , ...X(𝑡 )

𝑀
] is a combined matrix of

𝑀 text sources, each X(𝑡 )𝑚 contains 𝑁 terms and 𝐷 (𝑡 )𝑚 documents,
and the total document count at time 𝑡 is 𝐷 (𝑡 ) =

∑
𝑚 𝐷

(𝑡 )
𝑚 .

For each time slice 𝑡 , the task is to approximately factorize the
𝑁 × 𝐷 (𝑡 ) term-document matrix X(𝑡 ) as

X(𝑡 ) ≈ Z(𝑡 )W(𝑡 )
⊤

(1)

where Z(𝑡 ) is a 𝑁 × 𝐾 matrix which represents the topic content
and W(𝑡 ) , a 𝐷 (𝑡 ) × 𝐾 matrix, represents the topic prevalence, and
both matrices are nonnegative. The setup is illustrated in Figure 1.
We infer the factorization as part of a hierarchical generative model
for the data.

The graphical plate model representation of the model is shown
in Figure 2. We assume a truncated-Gaussian likelihood where
each Gaussian is truncated from below at 0 as is appropriate for
nonnegative data, so that

𝑝 (X(𝑡 ) |Z(𝑡 ) ,W(𝑡 ) ) =
∏
𝑛,𝑑

𝑁 +
(
𝑥
(𝑡 )
𝑛,𝑑
|z(𝑡 )𝑛

⊤
w(𝑡 )
𝑑
, 𝜎2

)
(2)

where w(𝑡 )
𝑑

denotes the 𝑑th column of W(𝑡 ) representing the topic

prevalence in document 𝑑 , z(𝑡 )𝑛 denotes the 𝑛th row of Z(𝑡 ) repre-
senting the weight of the 𝑛th vocabulary word across the topics The
𝜎2 controls the noisiness of the observations. We set it equal for
every document in the following implementations but one can also
take the advantage of the flexibility to make a more sophisticated
model if needed. For example, a more detailed document-specific
variance 𝜎2

𝑑
representing a source-specific noise parameter can

be assigned as 𝜎𝑑 = 𝜎𝑚 (𝑑) where 𝑚(𝑑) denotes the group that
document 𝑑 belongs to.

The key idea is to generate the factor matrices in a way that flex-
ibly ties them over time, topics, and sources, without restricting the
time dependency to a pre-given form; we generate the dependen-
cies (covariance matrices) as functions of latent variables that are
draws from flexible nonparametric time series models, as detailed
in Sections 3.1 and 3.2.
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Figure 1: Illustration of the DNBGFA model. A sequence of non-negative matrices X(1) , ...,X(𝑇 ) is factorized into Z(1) , ...,Z(𝑇 )

and W(1) , ...,W(𝑇 ) while modeling temporal dependencies of factors.

3.1 Topic Content
To enforce non-negativity of the topic content matrix, each element
𝑧
(𝑡 )
𝑘,𝑛

of Z(𝑡 ) is parameterized by a softmax transformation

𝑧
(𝑡 )
𝑘,𝑛

=
exp(𝜂 (𝑡 )

𝑘,𝑛
)∑𝑁

𝑛′=1 exp(𝜂
(𝑡 )
𝑘,𝑛′
)

(3)

which ensures the summation of word proportions of each topic∑𝑁
𝑛′=1 𝑧

(𝑡 )
𝑘,𝑛′

is equal to 1. Note that we will model magnitude of
numbers in observed matrices by the loading matrices, hence we
can without loss of generality fix the sums as above. Similar trans-
formations are often used in text mining models [3, 20].

GPLVM based model. For each term 𝑛, the variable 𝜼𝑛 =

[𝜂 (1)1,𝑛 . . . 𝜂
(1)
𝐾,𝑛

. . . 𝜂
(𝑇 )
1,𝑛 . . . 𝜂

(𝑇 )
𝐾,𝑛
]⊤ controls topic content and the de-

pendencies between its elements represent dependencies across
sources and time. We model them in a nonparametric approach
by a Gaussian process latent variable model (GPLVM) which lets
us model temporal dynamics in a flexible way. In a GPLVM, the
parameters of a Gaussian distribution are constructed by a draw
from another GP :[

𝜂
(1)
1,𝑛𝜂

(2)
1,𝑛 . . . 𝜂

(𝑇 )
1,𝑛 . . . 𝜂

(1)
𝐾,𝑛

. . . 𝜂
(𝑇 )
𝐾,𝑛

]⊤
∼ N

(
0, 𝚺𝜂

)
(4)

where

Σ𝜼 = K𝜼 + 𝜖𝜼I (5)

and K𝜼 consists of elements

K (𝜂)
𝑘,𝑙
(𝑡𝑖 , 𝑡 𝑗 ) = k (𝜂)0 (𝑡𝑖 , 𝑡 𝑗 )𝛿𝑘,𝑙 + k

(𝜂)
𝑘,𝑙
(𝑡𝑖 , 𝑡 𝑗 ) (6)

where𝑘 , 𝑙 are topic indices and k (𝜂)0 (𝑡𝑖 , 𝑡 𝑗 )𝛿𝑘,𝑙 is a kernel function
which governs the within topic consistency over time, k (𝜂)

𝑘,𝑙
(𝑡𝑖 , 𝑡 𝑗 )

governs the topic-topic interaction, and 𝜖𝜼 controls noisiness.
The kernel k (𝜂)0 can be formed by an arbitrary kernel function of

time slices 𝑡𝑖 , 𝑖 = 1, . . . ,𝑇 . In this paper, we use RBF kernel which
is defined as

𝑟𝑏 𝑓(𝜉,𝜄) (𝑡𝑖 , 𝑡 𝑗 ) = 𝜄2 × 𝑒
−||𝑡𝑖−𝑡 𝑗 | |2

𝜉2 (7)

where hyperparameters 𝜉 and 𝜄 control dependencies over time.
This is a nonparametric time series model for the changing of the
term 𝑛 over time in topic 𝑘 . As in GPs, no specific functional form
is assumed for behavior over time, only that values at similar time
points are correlated as described.

k (𝜂)
𝑘,𝑙
(𝑡𝑖 , 𝑡 𝑗 ) controls topic-topic interactions not only within a

time-slice but also across two different time-slices. We construct it
as

k (𝜂)
𝑘,𝑙
(𝑡𝑖 , 𝑡 𝑗 ) = 𝑒−𝜆𝜂 |𝑡𝑖−𝑡 𝑗 |𝑟 (𝑡𝑖 )𝑘

𝑟
(𝑡 𝑗 )
𝑙

(8)

which consists of an exponential time decay term 𝜆𝜂 ∼ 𝐺𝑎𝑚𝑚𝑎(𝑎, 𝑏)
and products 𝑟 (𝑡𝑖 )

𝑘
𝑟
(𝑡 𝑗 )
𝑙

that control topic-topic interactions of top-
ics 𝑘 and 𝑙 across time in a more flexible way: for each topic the
vector r𝑘 = [𝑟 (𝑡1)

𝑘
, . . . , 𝑟

(𝑡𝑇 )
𝑘
]⊤ is drawn as a realization of a GP as

r𝑘 ∼ 𝐺𝑃 (0,Σr) , Σr = Kr + 𝜖𝑟 I (9)

where Kr consists of elements

K (𝑟 ) (𝑡𝑖 , 𝑡 𝑗 ) = k (𝑟 )0 (𝑡𝑖 , 𝑡 𝑗 ) (10)

and 𝜖𝑟 controls noisiness. Large values of the product 𝑟
(𝑡𝑖 )
𝑘

𝑟
(𝑡 𝑗 )
𝑙

strengthen the dependency k (𝜂)
𝑘,𝑙
(𝑡𝑖 , 𝑡 𝑗 ) between two time slices
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whereas small values of the product decrease the dependency, al-
lowing new topic content to emerge.

Like k (𝜂)0 , the kernel k (𝑟 )0 can be computed given time slices 𝑡𝑖 ,
𝑖 = 1, . . . ,𝑇 with an RBF kernel shown in equation (7). Noisiness
variables 𝜖𝜂 and 𝜖𝑟 could be given priors or be used as hyperparam-
eters, we did the latter for simplicity.

The kernel k (𝜂)0 is identical in different topics, hence it acts as a
regularizing term controlling word (dis)similarities within topics
over time whereas k (𝜂)

𝑘,𝑙
models flexibility of topic-topic interactions.

3.2 Topic Prevalence
Similar to the topic content model, to enforce non-negativity, each
𝑤 (𝑑) (𝑡 )

𝑚,𝑘
of W(𝑡 ) is sampled from a truncated normal distribution

with mean 0 and a source-wise variance 𝑒𝛼
(𝑡 )
𝑚,𝑘 :

𝑤 (𝑑) (𝑡 )
𝑚,𝑘
∼ 𝑁 + (0, 𝑒𝛼

(𝑡 )
𝑚,𝑘 ) . (11)

The source-wise latent variables 𝛼 (𝑡 )
𝑚,𝑘

which control the sparsity of
topic in data sources𝑚 and time slices 𝑡 are again a realization of a
GPLVM [

𝛼
(1)
1,𝑘 . . . 𝛼

(𝑇 )
1,𝑘 , . . . , 𝛼

(1)
𝑀,𝑘

. . . 𝛼
(𝑇 )
𝑀,𝑘

]⊤
∼ N(0, 𝚺𝜶 ) (12)

where
Σ𝜶 = K𝜶 + 𝜖𝜶 I (13)

and K𝜶 consists of elements

K (𝛼)𝑚,𝑛 (𝑡𝑖 , 𝑡 𝑗 ) = k (𝛼)0 (𝑡𝑖 , 𝑡 𝑗 )𝛿𝑚,𝑛 + k
(𝛼)
𝑚,𝑛 (𝑡𝑖 , 𝑡 𝑗 ) (14)

where k (𝛼)0 (𝑡𝑖 , 𝑡 𝑗 )𝛿𝑚,𝑛 is a kernel function governs the within
source consistency of topic prevalence over time and k (𝛼)𝑚,𝑛 (𝑡𝑖 , 𝑡 𝑗 )
governs the cross-source interactions.

The cross-source interactions 𝑘 (𝛼)𝑚,𝑛 (𝑡𝑖 , 𝑡 𝑗 ) are constructed as

𝑘
(𝛼)
𝑚,𝑛 (𝑡𝑖 , 𝑡 𝑗 ) = 𝑒−𝜆𝛼 |𝑡𝑖−𝑡 𝑗 |𝑠

(𝑡𝑖 )
𝑚 𝑠

(𝑡 𝑗 )
𝑛 (15)

where 𝜖𝛼 controls noisiness and the matrix is otherwise again
composed of products of two terms, an exponential time decay term
with decay variable 𝜆𝛼 ∼ 𝐺𝑎𝑚𝑚𝑎(𝑐, 𝑔) and the products 𝑠 (𝑡𝑖 )𝑚 𝑠

(𝑡 𝑗 )
𝑛

that control correlation sources across time in a flexible manner,
by generating for each source𝑚 the vector s𝑚 = [𝑠 (1)𝑚 , . . . , 𝑠

(𝑇 )
𝑚 ]⊤

from an independent GP as

s𝑚 ∼ N(0,Σs) , Σs = K𝑠 + 𝜖𝑠 I (16)

where Ks consists of elements

K (𝑠) (𝑡𝑖 , 𝑡 𝑗 ) = k (𝑠)0 (𝑡𝑖 , 𝑡 𝑗 ) (17)
and 𝜖𝑠 controls noisiness.
As before, covariances k (𝛼)0 and k (𝑠)0 are obtained by RBF kernel,

whose hyperparameters control time depencency; we used RBF. For
the noisiness parameters 𝜖𝛼 , and 𝜖𝑠 could again be given their own
priors but for simplicity we kept them as hyperparameters.

The models of topic content and prevalence in the previous sec-
tion and this section are highly analogous just like matrices Z(𝑡 )

and W(𝑡 ) have highly analogous roles. The differences are the dif-
ferent way to enforce non-negativity, and the different role of topics

Algorithm 1 Variational EM Procedure
Require:

X(1) . . .X(𝑇 ) : Observed matrices
𝐾 : number of topics
𝜎𝑑 : Hyper-parameters (likelihood)
k (𝜂)0 , k (𝑟 )0 , 𝜖𝑟 , 𝜖𝜂 , 𝑎, 𝑏: Hyper-parameters (content)
k (𝛼)0 , k (𝑠)0 , 𝜖𝑠 , 𝜖𝛼 , 𝑐, 𝑔: Hyper-parameters (prevalence)

Ensure:
1: for iter← 1 to maxit do
2: E-step: update 𝜼,𝜶 ,W
3: M-step: update r, s, 𝜆𝜂 , 𝜆𝛼
4: end for
5: return 𝜼,𝜶 ,W, r, s, 𝜆𝛼 =0

and sources: in the previous section correlations were modeled by
GPLVMs for each term across topics and time slices, here correla-
tions are modeled by GPLVMs for each topic across sources and
time slices. This establishes a flexible framework for factorization
of matrices related across sources and time. The factorizations at
each time slice (i.e., the parameter posteriors) are learned based on
both the hierarchical prior and the likelihood.

The hierarchical prior lets the model handle cases where at some
time slices no documents belonging to a source exist; we test this in
an experiment in Section 5. If a source is known to be inactive (not
just missing) at some time slices, such as birth/death of sources,
it can be specified into the priors e.g. by larger 𝜖𝛼 , if such expert
knowledge is available.

4 VARIATIONAL INFERENCE
To deliver time-efficient inference, we derive variational inference
algorithms. Approaches such as Gibbs sampling are possible, here
we focus on the variational approach. The inference constructs a
variational posterior distribution 𝑞 for each parameter of interest;
update rules for parameters of the 𝑞 distributions are given below.
We update the parameters in an EMmanner, as shown in Algorithm
1. Inference algorithms are further described.

4.1 Topic Content Variables 𝜼 and Topic
Sparsity Sariables 𝜶

A Laplace’s method based inference [26] is used. The variational
distribution 𝑞(𝜼 (𝑡 )𝑛 ) = N(𝜼 (𝑡 )𝑛 |m𝜼 (𝑡 )𝑛

,−∇2 𝑓 (m
𝜼 (𝑡 )𝑛
)−1) where the

mean m
𝜼 (𝑡 )𝑛

is set to the value of the MAP solution which maximizes
the joint log-probability 𝑓 defined as

𝑓 (𝜼𝑛) =∑
(𝑡 )

𝐸𝑞 (w)
[
log𝑝 (x(𝑡 )𝑛 |z

(𝑡 )
𝑛 ,w(𝑡 ) )

]
+ 𝐸𝑞 (r)

[
log𝑝 (𝜼 (𝑡 )𝑛 |r)

]
. (18)

In this work, we obtained the m
𝜼 (𝑡 )𝑛

= argmax
𝜼 (𝑡 )𝑛

𝑓 (𝜼 (𝑡 )𝑛 ) using an
optimizer called simulated annealing (SANN) [2]. The covariance
matrix ∇2 𝑓 (m

𝜼 (𝑡 )𝑛
) is the Hessian matrix of 𝑓 evaluated at the point

m
𝜼 (𝑡 )𝑛

.
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Figure 2: Graphical representation of the DNBGFA model. Noisiness parameters 𝜖𝜂 , 𝜖𝑟 , 𝜖𝑠 , 𝜖𝛼 not shown for clarity.

Inference of 𝜶 is similar, the variational distribution 𝑞(𝜶𝑘 ) is
N(𝜶𝑘 |m𝜶𝑘 ,−▽2 𝑓 (m𝜶𝑘 )−1) and the corresponding objective func-
tion 𝑓 (𝜶𝑘 ) is

𝑓 (𝜶𝑘 ) =∑
(𝑡 )

𝐸
𝑞

(
w(𝑡 )
𝑘

) [log 𝑝 (w(𝑡 )
𝑘
|𝜶𝑘 )

]
+ 𝐸𝑞 (s)

[
log𝑝 (𝜶 (𝑡 )𝑛 |s)

]
(19)

4.2 Topic Content Correlation r and Sparsity
Correlation Tendencies s

To carry out the posterior inference of the variables r and s describ-
ing the topic-specific content and source-wise sparsity correlation
tendencies, we adapted a recently developed framework proposed
by Damianou et al. [5] which is able to capture the complexity of the
interactions between latent variables. In the framework, auxiliary
variables u(𝑟 ) and r𝑢 are induced. The joint probability related to r
is then expanded, written as

𝑁∏
𝑛=1

𝑝 (𝜼𝑛 |u
(𝑟 )
𝑛 , r, r𝑢 )𝑝 (u(𝑟 )𝑛 |r𝑢 )𝑝 (r) (20)

where 𝑝 (𝜼𝑛 |u
(𝑟 )
𝑛 , r, r𝑢 ) = N(𝜼𝑛 |an, Σ

∗
𝜂 ) with an = K𝜂𝑢K (𝑟 )𝑢

−1
u𝑛

and Σ∗𝜂 = Σ𝜂 − K𝜂𝑢K (𝑟 )𝑢
−1
K𝑢𝜂 . The pseudo-inputs

r𝑢 = [𝑟 (1)𝑢 , . . . , 𝑟
(𝑇 )
𝑢 ]⊤ are the constructing variables of u(𝑟 ) , that

is,

𝑝 (u(𝑟 )𝑛 |r𝑢 ) = N(u(𝑟 )𝑛 |0,K
(𝑟 )
𝑢 ), (21)

where K (𝑟 )𝑢 consists of elements

K (𝑟 )𝑢 (𝑡𝑖 , 𝑡 𝑗 ) = 𝑒−𝜆𝜂 |𝑡𝑖−𝑡 𝑗 |𝑟
(𝑡𝑖 )
𝑢 𝑟

(𝑡 𝑗 )
𝑢 + 𝑘 (𝜂)0 (𝑡𝑖 , 𝑡 𝑗 ) . (22)

The posterior is then approximated with
𝑁∏
𝑛=1

𝑝 (𝜼𝑛 |u
(𝑟 )
𝑛 , r′, r𝑢 )𝑞(u(𝑟 )𝑛 )𝑞(r′) (23)

where r′ = [𝑟 (1)1 . . . 𝑟
(1)
𝑘

. . . 𝑟
(𝑇 )
1 . . . 𝑟

(𝑇 )
𝑘
]⊤; 𝑞(r′) is a Gaussian dis-

tribution 𝑞(r′) = N(r′ |mr′, Sr′) where the variational mean vector
mr′ and covariance matrix Sr′ are obtained via maximizing an ob-
jective function F̂ (r′) −𝐾𝐿 (𝑞(r′) | |𝑝 (r′)) which is a Jensen’s lower
bound of the marginal likelihood, with respect to mr′ and Sr′ to-
gether with r𝑢 .

We have

F̂ (r′) =
∑𝑁
𝑛=1 𝜼

⊤
𝑛 W(𝑟 )𝜼𝑛
−2 +

𝑁 log ©­«
𝜖
−(𝐾×𝑇 )
𝜂 |K (𝑟 )𝑢 |

1
2

(2𝜋)
(𝐾×𝑇 )

2 |𝜖−2𝜂 𝚿
(𝑟 )
2 +K

(𝑟 )
𝑢 |

1
2

ª®¬+
𝑡𝑟

(
K
(𝑟 )
𝑢

−1
𝚿
(𝑟 )
2

)
−𝜓 (𝑟 )0

2𝜖2𝜂/𝑁
(24)

where the matrices involved are computed as

W(𝑟 ) = 𝜖−2𝜂 I(𝐾×𝑇 ) − 𝜖−4𝜂 𝚿
(𝑟 )
1

(
𝜖−2𝜂 𝚿

(𝑟 )
2 +K

(𝑟 )
𝑢

)−1
𝚿
(𝑟 )
1
⊤
, (25)

𝜓
(𝑟 )
0 = m⊤r′mr′ + 𝑡𝑟 (Sr′), (26)

𝚿
(𝑟 )
1 = r𝑢m⊤r′ ◦ D(𝜂𝑢) , (27)

𝚿
(𝑟 )
2 = D(𝑢𝜂) ◦ r𝑢

(
mr′m⊤r′ +𝑇𝑟 (Sr′)

)
r⊤𝑢 ◦ D(𝜂𝑢) , (28)

Sr′ =
(
𝚺r′
−1 + 𝑑𝑖𝑎𝑔(𝝃r′)

)−1
, (29)
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where

D(𝜂𝑢) = 1𝐾 ⊗


1 . . . 𝑒−|1−𝑇 |𝜆𝜂

. . .

𝑒−|𝑇−1 |𝜆𝜂 . . . 1

 (30)

and D(𝑢𝜂) = D(𝑢𝜂)
⊤. Note that ◦ denotes Hadamard product and

⊗ denotes Kronecker product.
For the parameters s which define the tendency of the topics’

sparsity to correlate, the inference is done in a similar manner by
imposing u(𝑠) and s𝑢 . The variational distribution 𝑞(s′) related
parameters {ms′, 𝝃s′, s𝑢 } are obtained via optimizing the objective
function F̂ (s′) − 𝐾𝐿 (𝑞(s′) | |𝑝 (s′)). The computation of F̂ (s′) is
similar to the computation of (r’) via replacing corresponding vari-
ables.

4.3 Time Decay Parameters 𝜆𝜂 and 𝜆𝛼
Here we obtain the point estimates of 𝜆𝜂 and 𝜆𝛼 by optimizing the
following objective functions:

𝑓 (𝜆𝜂 ) = 𝐸𝑞 (𝜼)𝑞 (r)

[∑
𝑛

log𝑝 (𝜼𝑛 |r, 𝜆𝜂 )
]
+ log𝑝 (𝜆𝜂 |𝑎, 𝑏) (31)

and

𝑓 (𝜆𝛼 ) = 𝐸𝑞 (𝜶 )𝑞 (s)

[∑
𝑘

log𝑝 (𝜶𝑘 |s, 𝜆𝛼 )
]
+ log𝑝 (𝜆𝛼 |𝑐, 𝑔) (32)

which can be done by standard optimizers, here we again use the
SANN optimizer.

4.4 Topic Prevalence W
The truncated normal distribution preserves the Gaussian-Gaussian
conjugacy, therefore, the variational distribution can can be ob-
tained analytically:

𝑞

(
w(𝑡 )
𝑑

)
= N+ (w(𝑡 )

𝑑
|mw𝑑 , 𝜎

2Sw𝑑 ) (33)

where we have

mw𝑑 = Sw𝑑𝐸𝑞 [Z(𝑡 )
⊤]x(𝑡 )

𝑑
(34)

and

Sw𝑑 =

(
𝐸𝑞

[
Z(𝑡 )

⊤
Z(𝑡 )

]−1
+ Σ−1

𝛼
(𝑡 )
𝑑

)−1
. (35)

5 SIMULATION EXPERIMENTS
We evaluate the proposed model both on simulated and on real
data. We focus on cases where individual matrices are relatively
small, so that good modeling assumptions become crucial for strong
predictive performance. In this section we first compare the model
with other approaches using artificial data in the same range as
our collected data, simulated from an underlying DNBGFA model
with 𝑡 = 1, ..., 10, 𝑁 = 200, each 𝐷 (𝑡 )𝑚 = 20 and hyper-parameters:
k (𝜂)0 = k (𝛼)0 = 𝑟𝑏 𝑓(0.1,100) , k

(𝑟 )
0 = k (𝑠)0 = 𝑟𝑏 𝑓(1,0.1) , 𝜖𝑟 = 𝜖2 = 1,

𝜖𝜂 = 𝜖𝛼 = 0.1, 𝑎 = 𝑐 = 1, 𝑏 = 𝑔 = 10, 𝜎 = 0.01. The above RBF kernel
parameters emphasize time dependency in the simulated data.

We compare the proposedmethod DNBGFA to six other methods:
NMF, GFA and its variant denoted NGFA, JPP, and an integer-based
method denoted DTM, as described below.

In these experiments as well as the case studies, the data are
real-valued and we focus on comparing methods that are appli-
cable to such real-valued data; therefore, NMF, GFA and JPP are
selected as comparison methods designed for real-valued data. In
contrast to the above methods, methods that are restricted to inte-
gers [6, 27, 28] are not readily applicable to real-valued data. We
will compare to one such method, Dynamic Topic Model (DTM)
[3] as a prominent example of integer-restricted dynamic methods;
due to its restriction to integer data, DTM’s model building is here
based on integer-rounded observations. We compare performance
of the methods in two scenarios below.

Partial Article. In this scenario, we simulate a situation where
only partial content of articles are observed and we aim to predict
the rest. A model built from the observed document parts is used
to predict left-out content of the same documents. This scenario
corresponds e.g. to using news RSS feed snippets to predict the
news content, or using abstracts to predict the content of full-text
research articles.

We simulate the scenario by leaving a randomly selected 10% of
the content of each document vector x(𝑡 )

𝑑
in the training data set. In

detail, each column of the training term-document matrix X(𝑡 )
𝑡𝑟𝑎𝑖𝑛

is generated by a multinomial draw. For each document vector
x(𝑡 )
𝑑

column (document) x = [𝑥1, . . . , 𝑥𝑁 ]⊤ of the original matrix
X(𝑡 ) , denote the total term occurrence by | |x| |1 and the vector of
term occurrence proportions by x/| |x| |1; we fill the corresponding
column of 𝑋 (𝑡 )

𝑡𝑟𝑎𝑖𝑛
as the count vector of 0.10 · | |x| |1 trials from the

distribution x/| |x| |1. The resulting training matrix contains 10% as
many term occurrences as the original.

After training a model (DNBGFA, NMF, GFA, NGFA, DTM and
JPP) to obtain the underlying topic content and topic prevalence
matrices, the left-out term-document matrices of complete articles
𝑋 (𝑡 ) are then estimated by ˜𝑋 (𝑡 ) ≈ 𝑍 (𝑡 )

𝑡𝑟𝑎𝑖𝑛
𝑊
(𝑡 )
𝑡𝑟𝑎𝑖𝑛

⊤
× 10, where the

multiplier scales the prediction to the size of left-out data.
Interpolating Missing Data. In this scenario, we leave out the

entire term-document matrix out of the 10 time slices, and we repeat
the scenario 10 times leaving out a different time slice each time.
The task is to estimate the missing slice given its time index and
number of documents. For NMF, GFA and NGFA, the missing matrix
is estimated using the result of the previous time slice, where topic
loadings of an unseen document are estimated by average loadings.
We have also tried to use the result from the next time slice and
the performance is very similar. As DTM does not directly allow
missing time slices we train it with the missing slice omitted and
predict using the result from the previous time slice.

For DNBGFA, the matrices of the left-out time slice 𝑍 (𝑡 ) and
𝑊 (𝑡 ) are directly estimated from the hierarchical model based on
the time index of the held-out slice, thus the missing matrix 𝑋 (𝑡 )
can be directly estimated.

Results. For both scenarios, we repeat the process 20 times to
account for stochasticity in data generation and in training meth-
ods, the root mean square error (RMSE) between predicted matrix
content and true left-out content is employed as the performance
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Figure 3: Performances are compared with averaged RMSE. Error bars are the variances of the mean value. DNBGFA attains
the lowest average RMSE and outperforms other approaches in all four experiments (a)-(d), and for all cases over 𝐾 (number
of topic on the horizontal axis).

measure and pairwise t-tests between DNBGFA and other meth-
ods are then conducted to verify if the differences are statistically
significant. Results can be found in Figure 3. In all cases DNBGFA
achieves clearly smaller prediction error than other methods, and
the differences between DNBGFA and other methods are statisti-
cally significant (𝑝 < 0.01).

6 CASE STUDY: FINNISH NEWS AND SOCIAL
MEDIA

We apply the model to data from three text sources in 12 time
slices (months) from September 2011 to August 2012, including
Helsingin Sanomat (a Finnish newspaper), Finnish Twitter Census
(www.finnishtwitter.com) and Suomi24 (Finnish online forum; we
take text from sections Talous (Economics) and Yhteiskunta (Soci-
ety)). We remove stop-words and rare terms, lemmatize the text,
then form TF-IDF weighted term-document matrices from the pro-
cessed text.

Comparative Study. A comparison study is presented here,
analogous to the two scenarios in Section 5 but with the above-
mentioned data. For each experiment, we randomly sample 20 docu-
ments from each source and each time slice. The hyper-parameters
are set as in the section 5 Results are shown in Figure 3. DNBGFA

again outperforms other methods and differences are statistically
significant.

Case Study: Exploratory Analysis of Topic Evolution. We
further apply the proposedmodel to a subset of the above-mentioned
dataset which contains the 150 longest documents from each time
slice and each text source, yielding 5400 documents in total and
1286 terms after removing rare words and stop words. Figure 4
displays two example topics of the posterior analysis, showing
their prevalence and topic content across time slices. The topic
content evolution is extracted from the posterior of 𝜂 (terms with
highest loadings for each time slice are shown) and the prevalence
is extracted from posterior of 𝛼 (controlling ability of the topic
to appear in documents; higher value yields higher chance to ap-
pear). Both of these topics start from low prevalences in September
and October 2011, rise rapidly in November 2011, and continue
with greater prevalences thereafter. Both topics have roughly equal
prevalence across the sources (Suomi24 social media, Helsingin
Sanomat news and Twitter), but the prevalences have differing
time behavior. Prevalence in Twitter attains a peak fastest for both
topics; for the Media topic Twitter prevalence has only one broad
peak whereas for the Education topic there are three peaks. Preva-
lence in Helsingin sanomat shows two peaks for the Media topic,
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Figure 4: Evolution over time of topic content and topic sparsity (prevalence) in different sources: (a) evolution of the content
of topic ‘Media’ in Finnish news and social media, (b) evolution of topic sparsity for the topic ‘Media’, (c) evolution of the
content of topic ‘Education’ in Finnish news and social media, (d) evolution of topic sparsity for the topic ‘Education’.

and noisy behavior for the Education topic. Prevalence in Suomi24
has a single peak for the Media topic in February 2012, and two
peaks in December 2011 and July 2012 for the Education topic.
Both topics are sensible in terms of their content and experience
reasonable variation of prevalence and content over time. For ex-
ample, in Figure 4 (a) the top words are all relevant to media but
each time slice emphasizes a different aspect of media. It seems
that time slices 09.2011, 21.2011, and 05.2012 focus more on news
(contain words ‘read’, ‘reporter’ and ‘paragraph’) and time slices
02.2012 and 08.2012 focus more on social media (containing words

‘Facebook’, ‘source’ and ‘computer’). Similarly, in Figure 4 (c) the
top words refer to education with different time slices emphasizing
different aspects, for example the time slice 03.2012 04.2012 empha-
sizes performance evaluation (containing words ‘positive’, ‘exam’
and ‘task’) whereas 04.2012 focuses more on education as a public
service (containing words ‘service’, ‘child’ and ‘city’). Our approach
allows smooth changing of topic content, for example in Figure 4
(a) the word ‘media’ appears in adjacent time slices 11.2011 and
12.2011 of the Media topic, but with less prevalence in the latter.
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7 CONCLUSIONS AND DISCUSSION
We introduced DNBGFA, a probabilistic NMF-based model that en-
ables flexible modeling of temporal dynamics usingmultiple sources
of data across data sources (domains) and time slices. Novelties in-
clude a Softmax+GP prior and overall structure of the hierarchical
model; the model is a novel solution to address temporal dynamics
and multiple sources at the same time. The hierarchical structure
lets the model incorporate prior knowledge, especially underlying
structure of source-source interactions and temporal dynamics, to
inference, in addition to the data. The model achieved better gener-
alization ability (ability to predict left-out data) than comparable
models in realistic scenarios.The case study showed the model en-
ables discovery of topic evolution and interactions. The model is
applicable beyond text data to nonnegative matrices with multiple
sources and temporal dynamics.

Our contributions are 1. Hierarchical modeling of topics shared
across sources and time and topics unique to sources or time slices;
2. Discovering temporal dynamics of both topic content and preva-
lence; 3. Comparative studies using both simulated data and real-
world data; 4. A real-world demonstration using data from three
Finnish text sources.
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