Implementation of a Nonlinear Self-Interference
Canceller using High-level Synthesis

Sakari Lahti, Pablo Pascual Campo, Vesa Lampu, Lauri Anttila, Mikko Valkama, Timo D. Hamildinen
Faculty of Information Technology and Communications, Tampere University, Tampere, Finland
sakari.lahti@tuni.fi, pablo.pascualcampo @tuni.fi, vesa.lampu@tuni.fi,
lauri.anttila@tuni.fi, mikko.valkama@tuni.fi, timo.hamalainen @tuni.fi

Abstract—High-level synthesis (HLS) aims to improve the pro-
ductivity of digital logic design over traditional register-transfer
level (RTL) methods. This paper shows that HLS can replace
RTL when implementing a complex data path oriented signal
processing algorithm under strict throughput constraints. Our
system is a nonlinear spline-based Hammerstein self-interference
(SI) canceller for full-duplex transceiver capable of achieving
high SI suppression, while maintaining low computational com-
plexity. The achieved suppression of the SI is superb 45 dB, while
consuming 29 026 of the available LUTs, 17 992 of registers, and
655 of the DSP slices on Kintex-7 XC7K410T FPGA. Our paper
also compares the usability of two commercial HLS tools that
were used in this work.

Index Terms—FPGA implementation, full-duplex, high-level
synthesis, self-interference cancellation, software-defined radio.

I. INTRODUCTION

The increasing complexity of digital systems has driven
the industry to raise the design abstraction level to maintain
productivity. The register-transfer level (RTL) has dominated
as the principal design methodology for several decades.
However, the RTL languages are rather low-level and require
specialized knowledge. Therefore, RTL has low productivity
and the engineers are in short supply compared to modern
software methodologies.

High-level synthesis (HLS) increases the abstraction level
by using higher-level languages such as C++ and SystemC
to describe digital systems [1]-[3]. However, it has struggled
to gain widespread adoption in the industry due to perceived
worse quality of results in the past [4]. It is therefore important
to research further, whether HLS is mature enough to replace
RTL. This paper adds to that body of knowledge.

We use HLS to design a nonlinear spline-based Ham-
merstein self-interference (SI) canceller integrated in full-
duplex (FD) transceivers [5]. The algorithm is computationally
heavy, data path driven, and benefits from a highly parallel
implementation on a field programmable gate array (FPGA).
We employ two different commercial HLS tools and compare
their design flows and usability.

The rest of the paper is structured as follows: Section II
describes the theoretical background of the canceller algo-
rithm. Section III discusses the user experience with the HLS
tools, along with the required code transformations from the
algorithm to a source code suitable for efficient HLS. Section
IV shows the results of the final canceller implementation and
Section V contains our conclusions.

II. HAMMERSTEIN MODELING OF AN FD TRANSMITTER
A. The SI Problem in Full-Duplex Devices

FD technology aims at providing enhanced spectral ef-
ficiency, which is particularly sought in 5G wireless com-
munications and beyond. FD does this by the simultaneous
transmission and reception of useful information in time and
frequency [6]. However, the SI problem arises, which is the
unwanted transmit signal that is leaked in the RX chain of the
FD transceiver. The SI should be identified and removed from
the received signal [7].

Usually, FD transceivers implement a canceller (typically
analog + digital) that suppresses the SI present in the sys-
tem [8]. In this paper, we particularly focus on the HLS
implementation of the digital canceller based on [9]. The
final goal of the design is to provide sufficient levels of SI
cancellation while maintaining low complexity, feasible to be
implemented in real-time on a FPGA.

Fig. 1 shows the scheme of a complete FD transceiver,
including the TX chain at the top and the RX chain at the
bottom. The analog (RF canceller) and digital (SI regeneration
and subtraction) cancellation stages are also presented. The
digital cancellation stage estimates the transmit signal after the
nonlinear effects of the power amplifier (PA) and the memory
effects of the SI channel. After the SI signal is estimated, it
is directly removed from the received signal so that only the
useful information remains. The cancellation stage can be seen
as

zln] = r(n] + Z[n] —&[n] = r[n] + e[nl, (1)
d[n]

where d[n] is the overall received signal, r[n] is the useful
signal, z[n] is the final signal, Z[n] is the SI signal, Z[n] is
the estimated SI signal, and e[n] represents the residual error
after the cancellation, which is ideally zero.

We need to accurately construct the modeled SI signal Z[n]
so that it lies as close as possible to Z[n]. This modeling of
unknown system is described in the following subsection.

B. The Hammerstein Modeling Algorithm

Behavioral modeling refers to the estimation of the transfer
function of an a-priori unknown system or device, so that
its behavior can be replicated in the digital domain. The RF
modeling of the system is therefore simplified, requiring only

x(t) TX chain
Ifaaase:
> ¢
H Transmit
y data
SI : =
x(t) E E --------- Ny-ememene-,]
. (5] ,
E é Regenerate :
i+ O SI)
['
H- - :
r(t ' =¥ x[n]
® RX dnl g :z[rﬂ Useful
A : 7 data

Fig. 1: An illustration of a FD transceiver. Several elements of the TX and RX chain are omitted for the sake of simplicity. Note that 'RF
cancellation circuit’ refers to the analog canceller, and the SI regeneration and subtraction constitute the digital canceller.

BT SIchannel

H i
7T s

Hammerstein-based behavioral modeling

Instantaneous Linear
Nonlinearity FIR filter

x[n] I :l:{ Is[n] I T I x[n]

Fig. 2: A Hammerstein structure, where a nonlinear block is cascaded
with a linear memory filter. The top diagram presents the real system,
and the bottom diagram depicts the behavioral modeling scheme.

a mathematical formulation that comprises the relation of its
input and output [10]. To obtain this relation, the system input
signal and the signal to be modeled are required. In our case,
the input signal is z[n], and the signal to be modeled is Z[n],
contained in the received signal d[n].

Estimating the SI signal Z[n] is equivalent to modeling the
TX chain plus the SI channel of the FD transceiver. The
components along this path that cause the most distortion
are the PA and the SI channel, the former introducing an
instantaneous nonlinearity and the latter introducing memory
effects. This type of a cascaded structure is known as a
Hammerstein system, and, in general, the best approach to
model such a real system is to use a Hammerstein model [11].
This idea is depicted in Fig. 2.

We adopted a spline-interpolated look-up-table (LUT) to
model the nonlinearity and a finite impulse response filter
for the memory filter, briefly described within the next lines.
Spline interpolation divides the input range into different
regions according to two local variables called index and
abscissa [12], which can be defined respectively as

in = [lz[n]]] +1, 2)
un = |z[n]| = (in — 1). 3)

After the input magnitude is evaluated, the spline interpolation
can be implemented as

s[n] = z[n] ®, (1 + q,), 4)

where 1 € R9*! is a vector of all ones, q,, € C9*! is a vector
containing the PA model coefficients, u, = [uZ un, 1],
and ®,, € 1< reads

®, =10 0 ufC o 0], (3)

with the term uzc indexed in the i,th position of the vector,
C is the second order B-spline matrix [9], and @ is the LUT
size. Finally, the effects of the memory filter are added as

i[n] = whs,, (6)
where w,, € CM*1 contains the filter coefficients and s,, €
CM>1 i the signal regression of s[n).

As presented in eq. (1), the error signal can be extracted as
e[n] = Z[n] — Z[n], and the problem now becomes minimizing
this magnitude. One way to do so is to use the steepest gradient
descent adaptation rule [9]. With this approach, the learning
rules for the PA model coefficients q,, and the linear filter w,,
can be expressed as

VAVnJrl = Wpn + fw [n}e* [n]sn» @)
Qnt1 = dn + pg[nle[n)B] X w,, (8)

where 1, and p, are the learning rates, X,, is a diagonal
matrix containing the signal regression of the input z[n],
2, = [®] &, S \pi1] - and Mgp refers to
the number of memory taps considered.

A pseudocode example of the algorithm is shown in Alg. 1.
One iteration of this algorithm reads and outputs one sample
and updates the coefficients according to the learning rules.

III. HLS IMPLEMENTATION OF THE DIGITAL CANCELLER
A. Target platform

The canceller was implemented in an existing FD capable
testbed. The testbed included a National Instruments (NI)
universal software radio peripheral (USRP), with an integrated
FPGA device and a RF front-end, acting as a transceiver.
The FPGA was a Xilinx Kintex-7 family device XC7K410T.

Data: z[n], d[n]
Result: i[n]
Initialize: w,, < 0, q, < 0 ;
J 12, g 173 ;
for All the samples in x[n] do
Calculate 7,,, u,, u, as in (2), (3);
s[n] + x[n]®,(1+qn) ;
#[n] < wils, ;
e[n] < d[n] — &[n] ;
Wil & Wy + flw[n]e*[n]s,, ;
QnJrl <~ dn + Uq [n]e[n]zgxzwn 5

end
Algorithm 1: Pseudocode of the spline-based Hammer-
stein SI canceller.

NI's LabVIEW Communications version 2.0 was used in the
testbed for the control of the USRP, and to develop the
transceiver code to be run real-time on the FPGA. Addition-
ally, the LabVIEW FPGA tools were used to integrate the
canceller VHDL code.

The target operation frequency of the digital canceller was
60 MHz, with the requirement that one sample is processed ev-
ery clock cycle without strict latency restrictions. The 60 MHz
target is sufficient for narrow band signals used with the
transceiver system.

B. The Used HLS Tools

We used two commercial HLS tools to create synthesizable
RTL code for the digital canceller. We cannot disclose the
names of both tools due to license agreements. We therefore
call the first one Tool A. The second tool was Mentor Catapult
HLS [13].

Both tools accept C/C++, and SystemC as input languages
and produce synthesizable VHDL and Verilog code as output.
They both include a built-in library for fixed-point C++ data
types and use source code pragmas and graphic user interface
directives to guide the synthesis process. Both tools also sup-
port automatic RTL testbench generation from a C/C++ source
and perform equivalence checking between the simulation
behavior of the C/C++ source of the design and the produced
RTL.

C. Code Transformations and Tool Capabilities

1) Optimizations common to both tools: The starting point
was a floating point MATLAB implementation of the canceller
algorithm described in Section II. The code was first rewritten
as C++ line-for-line as closely as possible. However, a direct
conversion from an algorithm targeted for CPU is rarely
suitable for HLS. Various code transformations are required
to create an efficient hardware implementation that takes into
account the limitations and advantages of FPGAs. The first
such transformation was to convert the floating point types to
fixed-point types, as floating point arithmetic would require an
excessive amount of resources on FPGA.

Equation (2) requires determining the absolute value of the
complex variable x, which necessitates calculating a square

root. This is a complex operation, which can be simplified by
using an approximate formula [9]:

|z[n]| = amax{|Re{z[n]}|, [Tm{z[n]}[}
+8min{[Re{z[n]}[, Tm{z[n]}[},

where o and [are chosen based on selected approximation cri-
teria, such as minimum RMS error for zero-mean signals [14].

The estimation of the new nonlinear coefficient §, 1 is
complex due to the large size of 3,, and w,,. However, the
most significant memory taps in w,, are around time instant n.
We therefore excluded some high-order memory taps in the fil-
ter coefficient without having a significant loss in cancellation
performance. Consequently, the time dimension (i.e. number
of rows) in 3, and w,, was reduced, only considering five
filter taps in the update. With this approximation, the number
of real multiplications was reduced by 87%. Furthermore, all
multiplications with known zero elements in the matrices were
removed.

To achieve the required throughput of one sample per clock
cycle, all the loops in the algorithm were completely unrolled
and the main loop was pipelined with an initiation interval of
1 clock cycle. All the arrays were mapped to registers on the
FPGA to maintain fast accesses.

2) Tool A: We first utilized Tool A. All the variables
involved in arithmetic operations used the same fixed-point
precision of 30 bits, since Tool A uses the C++ standard
library’s ”complex.h” class to handle complex numbers and
the class requires that operands of arithmetic operations have
the same type.

Synthesis revealed that the algorithm used more DSP48
slices on the FPGA than available. One DSP48 slice can
handle a 25 x 18 bit multiplication, but our data were 30-bit
complex values as noted above. Thus, two DSP48 slices were
used per multiplication operation.

To reduce the number of multiplications, we lowered the
total number of taps of the linear filter from 50 to 28, enabling
the canceller to fit on the FPGA. Lowering the number of
taps reduced the cancellation result by only about 1 dB in
simulations. While this quality reduction is acceptable, to
allow the algorithm to work on other devices in different
environments, the small number of taps is undesirable.

A further problem with Tool A was that it was unable to
schedule the algorithm with the requirement of one output
sample per clock cycle. This was due to the coefficients q,, and
w,, creating a data feedback dependency: They are updated at
the end of the multi-cycle pipeline but are required at the
beginning of the pipeline for the next sample, forcing the
next input to wait for the coefficient update. An example
of this situation is shown in Fig. 3a. The problem can be
solved by adding registers to the data feedback path (Fig. 3b),
balancing the latency with the forward data path. This changes
the numerical properties of the algorithm slightly, but poses no
degradation of the cancellation performance. However, despite
adding feedback registers, Tool A still failed to schedule the
algorithm.

(©))

Register Op.B Register Register —J»

(a)

Register |«

Register Register

Register >

(W)

Fig. 3: Data feedback problem in the pipeline (a). Fixing the problem
with feedback registers (b).

TABLE I: Resource usage of the canceller on the Kintex-7
XC7K410T FPGA

DSP48s LUTs Registers Total slices
Total 1540 254200 508400 63550
Used 655 29026 17992 12323
Percentage 43% 11% 4% 19%

3) Catapult HLS: We next used Catapult HLS to syn-
thesize the canceller making the appropriate changes to the
C++ source code. Catapult HLS contains a custom class for
complex numbers, which allows arithmetic operations between
fixed-point numbers of different bit widths. The fixed-point
types were now always chosen in accordance to the DSP48
slices, where the multiplicants have a maximum size of 18 and
25 bits. This enabled reducing the bit widths of most variables,
resulting in a significantly lower DSP48 usage. This, in turn,
allowed increasing the number of linear filter taps back to 50.
Catapult HLS was also able to perform scheduling after adding
the two delay registers to the data feedback path.

However, the canceller was unstable, as running it even for
a short time on FPGA made the output to saturate. Analysis
showed that the problem was caused by the default rounding
mode used by the HLS tool, which is truncation. By changing
the rounding mode of key variables to convergent rounding,
the saturation problem vanished.

IV. RESULTS

The resource usage of the digital canceller is shown in Table
I. With only 43% of the available DSP48s used, there is still a
considerable amount of space left for other operations on the
FPGA, which highlights the relatively low complexity of the
optimized implementation.

The algorithm was tested independently in the testbed to
better validate its functionality. The transmitter and receiver
chains were connected together with a wire and a 40 dB
attenuator, which allows the SI signal to leak into the receiver
attenuated. The signal used in the measurements was a widely
used OFDM signal with a bandwidth of 10 MHz, which is
suitable to reveal the nonlinear behavior of the transceiver
system. The output power of the transmitter was adjusted

—E—Received signal
—&— Signal after DSIC
Device noise floor | |

Inband

Out of band Out of band

-20

-30

Normalized Power [dB]

-40

|

I

|

1
25 -20 -15 -10 -5
Frequency [MHz]

Fig. 4: The power spectral density of the received signal, signal after
the digital canceller stage, and the receiver noise floor.

to +16 dBm to ensure a heavily nonlinear behavior of the
transmitter PA. The center frequency was 2.45 GHz, and the
transmit signal was frequency shifted by -15 MHz.

Fig. 4 illustrates the inband cancellation capabilities of the
algorithm. It shows the power spectral densities of the received
signal, the signal after the digital canceller, and the device
noise floor. The signals are scaled so that the received signal
inband power lies at 0 dB. It can be seen that the inband
cancellation of the SI is around 45 dB, even with considerable
amount of nonlinearity distorting the received signal. With less
nonlinear distortion, it is possible to reach inband cancellations
of up to 47 dB. Furthermore, the signal after the canceller can
reach within 1 dB of the device noise floor if the transmit
power is reduced or the analog cancellation of the SI is
increased. For reference, [15]-[17], have demonstrated digital
SI cancellations of 44 dB, 43 dB and 35 dB, respectively.

V. CONCLUSION

This study underlined that even though HLS can provide
an expedient stepping stone from algorithm to RTL descrip-
tion, the process still requires understanding hardware design
principles. At this point, it is unrealistic to assume that
an efficient hardware implementation can be done without
explicitly considering the properties of the target platform. Our
experiences with the different HLS tools also show that even
though they often boast similar properties on the surface, the
choice of the tool can make a significant difference between
the success and failure of a project.

Our real-time HLS implementation of the digital canceller
achieved a 45 dB inband cancellation of the SI signal, which
is on par with state-of-the-art. The FPGA resource usage was
moderate with the DSP48 slices being the most heavily utilized
component type by 43% of the total available. We conclude
that HLS methodology can be used to realize a complex
data path oriented signal processing algorithm under strict
throughput constraints, without resorting to RTL techniques.

[1]

[2]

[3]

[7]

[8]

[9]

[10]
[11]

[12]

[13]

[14]

[15]

[16]

(171

REFERENCES

P. Coussy, D. D. Gajski, M. Meredith, and A. Takach, “An introduction
to high-level synthesis,” IEEE Design Test of Computers, vol. 26, no. 4,
pp- 8-17, July 2009.

H. Ren, “A brief introduction on contemporary high-level synthesis,”
in 2014 IEEE International Conference on IC Design Technology, May
2014, pp. 1-4.

J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang,
“High-level synthesis for FPGAs: From prototyping to deployment,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 30, no. 4, pp. 473-491, April 2011.

G. Martin and G. Smith, “High-level synthesis: Past, present, and future,”
IEEE Design Test of Computers, vol. 26, no. 4, pp. 18-25, July 2009.

D. Bharadia, E. McMilin, and S. Katti, “Full duplex radios,” in ACM
SIGCOMM computer communication review, vol. 43, no. 4. ACM,
2013, pp. 375-386.

D. Korpi, “Full-duplex wireless: Self-interference modeling, digital
cancellation, and system studies,” Ph.D. dissertation, Tampere University
of Technology, Dec. 2017.

A. Sabharwal, P. Schniter, D. Guo, D. W. Bliss, S. Rangarajan, and
R. Wichman, “In-band full-duplex wireless: Challenges and opportuni-
ties,” IEEE Journal on Selected Areas in Communications, vol. 32, no. 9,
pp. 1637-1652, Jun 2014.

M. Z. Waheed, P. P. Campo, D. Korpi, A. Kiayani, L. Anttila, and
M. Valkama, “Digital cancellation of passive intermodulation in FDD
transceivers,” in 2018 52nd Asilomar Conference on Signals, Systems,
and Computers. 1EEE, Oct 2018, pp. 1375-1381.

P. Pascual Campo, D. Korpi, L. Anttila, and M. Valkama, “Nonlinear dig-
ital cancellation in full-duplex devices using spline-based Hammerstein
model,” in IEEE Global Communications Conference (GLOBECOM),
Dec. 2018.

F. M. Ghannouchi and O. Hammi, “Behavioral modeling and predistor-
tion,” IEEE Microwave magazine, vol. 10, no. 7, pp. 52—-64, Nov 2009.
L. Ding, “Digital predistortion of power amplifiers for wireless applica-
tions,” Ph.D. dissertation, Georgia Institute of Technology, 2004.

M. Scarpiniti, D. Comminiello, R. Parisi, and A. Uncini, “Hammerstein
uniform cubic spline adaptive filters: Learning and convergence proper-
ties,” Signal Processing, vol. 100, pp. 112-123, 2014.

“Catapult high-level synthesis.” [Online]. Available: https://www.
mentor.com/hls-1p/catapult-high-level-synthesis/

R. G. Lyons, Understanding digital signal processing. Pearson Educa-
tion India, 2004.

Y. Kurzo, A. Burg, and A. Balatsoukas-Stimming, “Design and Imple-
mentation of a Neural Network Aided Self-Interference Cancellation
Scheme for Full-Duplex Radios,” in 2018 52nd Asilomar Conference
on Signals, Systems, and Computers, Oct 2018, pp. 589-593.

M. Chung, M. S. Sim, J. Kim, D. K. Kim, and C.-B. Chae, “Prototyping
real-time full duplex radios,” IEEE Communications Magazine, vol. 53,
no. 9, pp. 56-63, Sep 2015.

M. Aghababaeetafreshi, D. Korpi, M. Koskela, P. Jadskeldinen,
M. Valkama, and J. Takala, “Software defined radio implementation of a
digital self-interference cancellation method for inband full-duplex radio
using mobile processors,” Journal of Signal Processing Systems, vol. 90,
no. 10, pp. 1297-1309, Oct 2018.

