
An Open-Source Solution for Mobile Robot

Based Environmental Sensing

J. Grönman*, J. Viljanen*, J. Vihervaara*, and M. Saari*
* Tampere University/Pori Campus, Pori, Finland

jere.gronman@tuni.fi

Abstract - Internet of Things-based devices are equipped

with sensors and network connections to collect data and

store this data to cloud services. This collected data allows

operational decision-making processes to be based on a

more accurate picture of the current state of physical

environment than before. Existing data collection methods

often rely on sensors in fixed locations to obtain

environmental measurements. Such a solution is not very

scalable in terms of the density of the measuring points. In a

dynamic environment, the cost of maintaining such fixed-

based solutions may also be high. A more flexible solution

will be achieved by equipping an autonomous mobile robot

with sensors. Mobile robots are increasingly being used for

data-gathering in a wide range of environmental

applications. However, a robotic solution can be expensive.

In this paper, we present a low-cost solution based on open-

source components. The solution utilizes a robot operating

system, sensor and IoT-board based on open-source

implementation. By implementing a pilot project, we

concretize the potential of our approach to environmental

monitoring. Potential application areas of this solution

include the microclimate control of greenhouses and

warehouses, for example.

Keywords – environmental sensing; mobile robot; open-

source

I. INTRODUCTION

Environmental sensing includes the processes and
activities to characterize and monitor the quality of the
environment. Recent advances in environmental sensing
technologies have introduced a wide range of new
environmental sensors with reduced cost and size. This
opens new possibilities to put into service a wide variety
of smart applications which improve the efficiency of
production processes and human well-being.

The Internet of Things [1][2] connects environmental
sensors to the Internet allowing interaction between the
physical and digital world. The computer-based digital
world includes cloud services, data analytics and other
software-based intelligent services. This interaction
enables real-time data collection from the physical
environment and to store the collected data to cloud
services. Therefore, environmental sensing with IoT
approach enables a continuous view of the current state of
the environment. The collected real-time data allows
decision-making processes to be based on a more accurate
picture of the current state of physical environment than
before.

Existing environmental sensing methods often rely on
sensors in fixed locations to obtain measurements. For
example, Wireless Sensor Network have been utilized to
implement such measurement solutions [3][4]. However,
such solutions are not very scalable in terms of the density
of the measuring points. In a dynamic environment, the
cost of maintaining such fixed-based solutions may also
be high. A more flexible solution will be achieved by
equipping an autonomous mobile robot with sensors.
Mobile robots are increasingly being used for data-
gathering in a wide range of environmental applications,
because robotics is seen as a promising tool to enhance
environmental data collection [5].

Unfortunately, a fine robot-based implementation can
sometimes be too expensive. Large-scale utilization of
open-source components can offer a solution to this
problem. Open-source software and components are often
cost-competitive. In addition, open-source is a
development model that has shown many other significant
benefits in many application areas [6][7][8]. The functions
contained in an open-source implementation are
manageable. It can be ensured that the code contains only
the functionalities required for implementation. Open-
source applications can be developed with an iterative
approach. This allows implementation to be modified
during development to meet new requirements. The small-
scale development process remains flexible enough to
accept case-by-case changes. Open-source
implementations are also often reliable because of the
motivated team of experts involved in development and
testing. Obviously, the open-source approach also has its
drawbacks, as disclosed in the papers [6][7].

This paper presents a low-cost and flexible solution for
environmental sensing. The implementation is based on
open-source components. The solution utilizes a ROS
robot operating system, RuuviTag sensor and Raspberry
Pi IoT-board to achieve a low-cost solution. By
implementing a pilot project, we concretize the potential
of our approach to environmental sensing. Potential
application areas of this solution include the microclimate
control of greenhouses and warehouses, for example.
Robots can also be used in environments where it is
unsafe for humans to enter. Compact robots may also
reach places that are inaccessible to humans.

The rest of the paper is organized as follows. Section 2
introduces the backgrounds techniques of our pilot
project. It also briefly presents some related works.

Section 3 presents the pilot project. Section 4 presents the
main conclusions of the project.

II. BACKGROUNDS

A. Components of the pilot project

The mobile robot used in the pilot project is Turtlebot
2. The robot moves by adjusting the speed of the drive
wheels. The robot's movement and positioning utilize
odometry, which analyzes the distance traveled by the
drive wheels [9]. In addition, the robot has sensors to
detect obstacles. It is powered by the battery. The battery
is recharged at a docking station where the robot can dock
independently when the battery charge level is too low.
Turtlebot2 is provided with different kinds of sensors,
including Microsoft Kinect 360 3D depth camera.

ROS (Robot Operating System) [10] is an open-source
operating system developed for robot control and
management. ROS is a meta operating system that runs on
top of the Linux operating system. It has a modular
structure and is supported by a large number of special
software packages. Its role is to manage software
packages and control communication between different
processes. Software packages can be utilized in
autonomous navigation and in the design of motion paths,
for example. Its programming is not tied to a specific
programming language.

Raspberry Pi is an open-source IoT board for
providing a complete Linux computer at a very low cost
[11]. It is a card-sized minicomputer that can operate also
with the power of a battery. Raspberry Pi provides an
interface for sensors and actuators through the general
purpose I/O pins. Sensors can also be connected to it via
wireless connections such as Bluetooth. For control
purposes, it can be connected wirelessly via a WLAN port
by using a secure shell (SSH) session, for example.

RuuviTag is an IoT-sensor including a circuit board
that comes with a waterproof and breathable plastic
housing. The circuit board contains a sensor for measuring
ambient temperature, relative humidity and barometric
pressure. In addition, the circuit board includes its own
sensor for measuring acceleration. It is powered by a
battery that is promised to function for a few years. For
communication purposes, the circuit board includes a
Bluetooth chip that enables communication with other
devices, such as smartphones or Raspberry Pi. RuuviTag
does not have its own IP address. If its data must be read
via the Internet, it must be connected via Bluetooth to a
Raspberry Pi-based Internet server, for example,
RuuviTag is able to communicate with Raspberry Pi with
the help of an open-source Python library. Above all,
RuuviTag has an open-source firmware. This way it can
be customized to suit the needs of the application area, as
is done in the paper [12].

InfluxDB [13] is an open-source time series database
that provides storage of automatic measurements of
Ruuvitag parameters, including the results of calculations
as well as assigning a timestamp to each measurement.

Grafana is a program that can be used to easily create
graphical control screens [14]. Grafana is an open-source

and free program. Grafana is designed for use with time
series databases and it supports many different time series
databases, such as InfluxDB. Grafana was originally made
for monitoring data centers, but its use has spread to other
industries.

B. Related studies

There are several studies on mobile robots [15][16].
Several studies also exist to deploy mobile robots for
environmental sensing both indoor and outdoor. Here are
some of them briefly outlined. However, a few studies
focus on the research area from an open-source
perspective.

The study [17] demonstrated the mobile platform in a
laboratory experiment of measuring air-change
effectiveness. By comparing the measurements from the
mobile platform and those from a standard dense sensor
network, they showed that the automated mobile sensing
approach was able to determine the air-change
effectiveness with high spatial granularity and accuracy.
The paper [18] presets a study where three prototype
robots were used to monitor pollution. The robots were
capable to autonomously navigate in real urban
environments. Different kinds of sensors were integrated
into these robots for environmental sensing. Because the
solution used sophisticated technology, it could not be
considered a low-cost solution.

The study [19] presents a robotics platform for
performing environmental monitoring in data centers.
They present a platform based on the Robot Operating
System, in which a mobile robot is able to autonomously
navigate in a data center room for executing
measurements at different locations. They observed that
the robot avoided fixed and dynamic obstacles
successfully. The paper [20] proposes a robot for human
rescue operation in an environment which is unsuitable for
any human intervention. The robot is capable of
autonomous operation by being guided using sensors. The
robot is mounted with sensors that help it navigate while
operating autonomously. The Sensors also enables the
robot to detect a human in need of rescue. The robot was
designed for rescue operations by allowing a minimal
threat to human life.

III. IMPLEMENTATION

Initially, the robotics solution was configured for a
healthcare pilot. The pilot focused on an autonomous
mobile robot that could assist nurses in their work. In this
study, a modified version was made outlining a solution to
various practical cases where a robot can operate when a
human is not capable of those conditions, for example
oxygen-free warehouses, hazard or hot/cold areas of the
industry.

The goal was to create a robotics solution with an
autonomously operating mobile robot capable of utilizing
IoT devices and sensors. The solution supports browser-
based implementation and the robot is remotely
controllable. It is possible to connect different sensors to
the unit, including temperature, humidity, motion or light
sensors. The implementation follows open-source
principles and the robotics solution utilizes software found

on the official ROS website. The user interface is
implemented according to the current web design trends
by using HTML5, CSS and JavaScript.

The robot platform used is the Turtlebot 2 mobile
robot with Kinect Xbox 360 3D sensor. The mobile robot
is controlled by a Raspberry Pi 3 Model B+ computer that
has an open-source ROS operating system developed for
robot control. The mobile robot operates in a wireless
network, moves autonomously within a defined area, and
can be tracked and controlled remotely. The robotics
solution is also capable of utilizing the information
transmitted by IoT devices and sensors. The user interface
is designed to work in a web browser and can be accessed
also from a touch screen mounted on the robot.
Information content can be displayed in the user interface.
RuuviTag is connected via Bluetooth to the Raspberry Pi
and the collected data is transferred to the Influx database.
The stored data can be visualized by the Grafana software.
The Grafana software runs on a website, which is
accessible to all devices of the same wireless LAN on a
browser basis.

When configurating the robotic solution, a base map
must first be created for the area. The map is created by
using the RViz (ROS Visualization) software that uses the
robot's sensor data to visualize the area. With the RViz
software the user can monitor the robot's movements on
the map in real time. By combining this with the live
image produced by the camera, the new area can be
mapped entirely from a remote device via a wireless
network. Because the RViz software is constantly
updating the map image, one option was to use the
program on a VNC (Virtual Network Computing)
connection.

ROS consists of processes represented by nodes that
are programs that communicate with each other. The
program can send or receive messages belonging to a
specific topic. ROS is designed to be modular and the
robot control system consists of several nodes, each with
its own function. For example, one node controls the
electric motor and another node controls the route.

There are many different example programs available
for Turtlebot2 that can be used as explained above. The
example programs can be seen in Mark Silliman’s
Turtlebot2 github-page [21. The example programs are
not always ready for specified needs. Therefore, the code
must be modified. This robotics solution uses modified
version of the follow the_route.py program. In our
solution, each defined point on the map must be capable
of performing a specific function. Therefore, the arrival of
the robot at the spesific point of the map must be
detectable by the program code. For this purpose, we
created a program that sends a unique message with its
own topic when the robot reaches the map point. To listen
to these messages, a separate Python program was created.
This program executes the actions defined by the code
when the program detects the message associated with the
map point. Figure 1 shows the files and programs
associated with the customized follow_the_route.py
program.

Figure 1. The program files of the implementation

Follow_the_route.py controls the robot in the desired
area delimited by predefined map points. The route.yaml
file contains the x and y coordinates of predefined points.

In the original follow_the_route.py program, the robot
took a picture at each point, but it was modified for this
implementation to send a unique message. This will keep
track of the points that have been written in the log file
and, at the same time, use the message_reader.py program
to launch new programs at each point as needed.

At the same time, the RuuviTag sensor sends
temperature and other data to the database that is read
actively by db reader.py. If a predetermined value of the
RuuviTag sensor is exceeded in the database, the
db_reader.py program will send a message such as "Alert,
temperature 44."

Message_reader.py also reads messages continuously.
If the message contains "Alert," the program starts the
stop_turtle.py program that stops the robot. In addition,
the alert_and_take_photo.py program is launched. The
program sends an alert to the user interface and takes a
picture of the place.

Because almost every mobile device has a web
browser, it was decided to implement a web user interface.
The user interface and its development do not require
installation of separate development environments.
Because the ROS operating system does not support the
web browser based communication model, the browser is
not capable of communicating with the ROS operating
system. A rosbridge interface has been developed to
enable communication between the ROS operating system
and web applications. Figure 2 shows a typical web
application that uses rosbridge.

Figure 2. The rosbridge interface between the ROS operating
system and web applications

There is a 3rd party Javascript library known as ros.js
that has been developed to help creating web applications.
The library is designed to integrate seamlessly with the
ROS web application. Although it is versatile and
extensive, ros.js can be used with a very simple code.

Figure 3 shows the complete layout of the user
interface in the browser window. This view acts as the
front page of the user interface. It displays temperature,
humidity, barometric pressure, and acceleration data as
measured by the RuuviTag sensor. With browser-based
implementation, the same action logic can be utilized both
locally on the touch screen of the robot and in the
interfaces of remote devices.

Figure 3. The layout of the user interface

IV. RESULTS AND DISCUSSION

The robot created a sufficiently accurate map of the
area, but the mapping could not detect all the obstacles in
the area to be mapped. When creating the map, it was
found that the robot detects thin obstacles poorly. Such
objects should either be marked on the map manually or
removed from the environment. However, the objects that
are manually marked on the map can cause problems
because the robot may not be able to locate itself if it
cannot find the object shown on the map. In addition, the
sensor could not detect very low obstacles. These results
are consistent with the findings of other studies and our
previous research findings.

When environmental measurements were taken, the
robot was able to locate and find the desired measurement
points with sufficient accuracy. This was facilitated by the
limited size of the area used for piloting, which was about
20X20 meters. A good enough map from a small space
can be created with a reasonable amount of work
compared to a large space. In addition, errors due to
odometry do not become a big problem in a map made of
a small space. The area contained a sufficient number of
detectable obstacles to ensure reliable testing.

The used mobile robot Turtlebot 2 is inexpensive and
well suited for testing. Because it is intended only for
indoor use and flat floor surfaces, demanding conditions
require a more robust and expensive physical robot
implementation than the one used in this study. However,
the pilot project showed that the low-cost robot can also
provide advanced functions with the help of ROS and
sophisticated software components.

It was also found that the processing power of the
Raspberry Pi 3 computer is very limited. Its graphics
processing unit (GPU) will not be suitable if there is a lot
of graphics content to take care of. An example if there are
a lot of obstacles that need to be identified from the video
or image. Much better results can be produced using a
variety of low-cost computers such as the NVIDIA Jetson
Nano or Jetson Xavier NX. These computers include the
more efficient GPU needed for video and image
processing. More processing power will enable the use of
neural networks in the future studies.

The sensor used in the pilot project was cheap and
easy to deploy. However, the sensor was able to measure
the environmental parameters with sufficient accuracy. In
addition, the sensor can be customized to better fit the
needs of the application area because its implementation is
based on the open-source approach. The Bluetooth data
connection offered by the sensor met the requirements of
the application, because the mapped area was compact.

V. CONCLUSIONS

The main objective of this study was to provide a low
cost and flexible solution for environmental sensing. The
study introduced the low-cost environmental sensing
solution based on a mobile robot and open-source
components. We implemented a pilot project to ensure
that the proposed solution met our design target. The pilot
project showed that it is possible to create mobile
solutions for environmental sensing using open source

components, but the development project requires a
reasonably large amount of work.

REFERENCES

[1] A. Whitmore, A. Agarwal, and L. Da Xu, The Internet of Things-

A survey of topics and trends, Information Systems Frontiers,

2014, pp. 1-14.

[2] H. Saha, A. Mandal, and A. Sinha, Recent trends in the Internet of
Things, IEEE 7th Annual Computing and Communication

Workshop and Conference (CCWC), 2017, 4 pages.

[3] T. Alhmiedat, A survey on environmental monitoring systems
using wireless sensor networks, Journal of Networks, 2015 10(11),

pp. 606-615.

[4] E. Ganesh, IOT based environment monitoring using wireless
sensor network, International Journal of Advanced Research,

2015, vol. 5, no. 2, pp. 964-970.

[5] M. Dunbabin and L. Marques, Robots for environmental

monitoring: Significant advancements and applications, IEEE

Robotics & Automation Magazine, 2012, 19(1), pp. 24-39.

[6] J. Đurković, V. Vuković, and L. Raković, Open source approach

in software development - advantages and disadvantages,

Management Information Systems, 2008, Vol. 3 No. 2, pp.29-33.

[7] M. Heron, V. Hanson, and I. Ricketts, Open source and

accessibility: advantages and limitations, Journal of interaction

Science, SpringerOpen, 2013.

[8] G. Signorini, Open Source and Sustainability: the Role of

Universities, 2019, https://arxiv.org/abs/1910.06073, 20 pages.

[9] S. Mohamed, M. Haghbayan, T. Westerlund, J. Heikkonen, H.
Tenhunen, and J. Plosila, A survey on odometry for autonomous

navigation systems. IEEE Access, 7, 2019, pp. 97466-97486.

[10] M. Quigley, B. Gerkey, and W. D. Smart, Programming robots
with ROS: a practical introduction to the Robot Operating System,

O'Reilly Media, 2015.

[11] A. Kyaw, H. Truong, and J. Joseph, Low-cost computing using
Raspberry Pi 2 Model B, Journal of Computers, 2018, 13(3), pp.

287-299.

[12] F. Álvarez, L. Almon, H. Radtki, and M. Hollick, Bluemergency:
Mediating post-disaster communication systems using the Internet

of Things and Bluetooth mesh, arXiv preprint arXiv:1909.08094,

2019.

[13] S. Naqvi, S. Yfantidou, and E. Zimányi, Time series databases and

influxdb, Studienarbeit, Université Libre de Bruxelles, 2017, 44

pages.

[14] E. Betke and J. Kunkel, Real-time I/O-monitoring of HPC

applications with SIOX, elasticsearch, Grafana and FUSE, In
International Conference on High Performance Computing, 2017 ,

pp. 174-186.

[15] G. Nagymate, Android based autonomous mobile robot, Recent

Innovations in Mechatronics, 2015, 4 pages.

[16] J. Martins, MRSLAM - Multi-Robot Simultaneous Localization
and Mapping, 2013, https://ap.isr.uc.pt/archive/MRSLAM_

dissertacao_Joao_Martins-vfinal-040913_235208.pdf, 51 pages.

[17] M. Jin, S. Liu, S. Schiavon, and C. Spanos, Automated mobile
sensing: Towards high-granularity agile indoor environmental

quality monitoring, Building and Environment, 2018, 127, pp.

268-276.

[18] M. Reggente, A. Mondini, G. Ferri, B. Mazzolai, A. Manzi, M.

Gabelletti, P. Dario, and A. Lilienthal, The dustbot system: using
mobile robots to monitor pollution in pedestrian area, 3rd

Biannual International Conference on Environmental Odour

Monitoring and Control, 2010, pp. 273-278.

[19] L. Terrissa, S. Ayad, and N. Zerhouni, Robotics based Solution for

data center e-monitoring, In International Conference on
Advanced Systems and Emergent Technologies, 2019, pp. 201-

208.

[20] A. Maurya, M. Sonkusare, A. Raut, D. Tamhane, and D. Palase,
Surveillance robot with human detection. In Second International

Conference on Inventive Communication and Computational

Technologies (ICICCT), 2018, pp. 107-110.

[21] M. Silliman, Mark Silliman’s Turtlebot github-page for developers

interested in robotics, https://github.com/markwsilliman/turtlebot.

