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Abstract In this chapter, we are considering L1-type estimation for multivariate
clustered data. Although valid, using the direct L1 estimation of the regression coef-
ficients in the clustered data setting is likely to lack efficiency since it does not use
the intracluster correlation structure. A transformation-retransformation method is
proposed to overcome this problem. This method first transforms the original model
in an attempt to eliminate the intracluster correlation. Secondly, the L1 estimates are
obtained with the transformed data, which are then transformed back to the original
scale. One particular implementation of this method is investigated in a simulation
study which shows that it is more efficient than using the direct L1 estimators.

1 Introduction

In this chapter, we consider L1-regression models for clustered data with a multivari-
ate response. For a univariate response, Jung and Ying (2003) proposed a generaliza-
tion of the Wilcoxon-Mann-Whitney statistic for analyzing repeated measurements
data. The estimating function is based on the unweighed ranks of the residuals,
which is equivalent to the method proposed by Jurěcková (1969, 1971) for inde-
pendent observations. In order to recover some of the information present in the
clustering structure, Wang and Zhu (2006) generalized this approach by partition-
ing the ranks into between- and within-subject ranks. Two estimators are obtained
and then combined in an optimal way. However, to get the combined estimator, an
estimation of the covariance matrix of the two estimating functions is required. To
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achieve this, a resampling method is used in Wang and Zhu (2006). Fu, Wang and
Bai (2010) proposed a smoothing method to avoid this computationally intensive
approach. In another attempt to use the clustering structure, Wang and Zhao (2008)
proposed a weighted version of the loss function, where the weights are functions of
the cluster sizes. Their approach is related to the one proposed in Datta and Satten
(2005) for the two-sample problem. Fu and Wang (2012) argue that the Wang and
Zhao (2008) approach performs well for cluster-level covariates but not necessar-
ily for within-cluster covariates. They derive a new optimal rank-based estimating
functions in terms of asymptotic variance of regression parameter estimators. Fi-
nally, Kloke, McKean and Rashid (2009) study R-estimators of the fixed effects in
an experiment done over clusters, blocks, groups, or subjects, including for example,
repeated measure designs, split plot designs, multicenter clinical trials, randomized
block designs, and two-stage cluster samples.

All the articles above are aimed at the univariate response case. Nonparametric
methods for multivariate data, and especially, methods based on spatial signs and
ranks have been developed extensively in the last 20 years (Oja, 2010). They are
also available for the user through the R package MNM (Nordhausen and Oja, 2011).
Moreover, specialized methods for multivariate responses and clustered data have
also been developed; see Nevalainen, Larocque, Oja and Pörsti (2010) and the ref-
erences therein. However, for clustered data, the available methods are limited so
far to the one, two and several samples cases. In this chapter we propose an L1-type
(spatial sign) estimation method for a regression setting with multivariate clustered
data and investigate it in a simulation study.

2 A multivariate multiple linear regression model for clustered
data

Let Y = (y1, . . . ,yn)
> be a sample of p-variate (p > 1) random response vectors

with sample size n. The data are assumed to be clustered with a total of d clusters.
The cluster memberships are given by the n×d matrix Z = (z1, . . . ,zn)

>:

(Z)i j =

{
1, if the ith observation is from cluster j;
0, otherwise.

It is useful to note that(
ZZ>

)
i j
=

{
1, if the ith and the jth observation are from the same cluster;
0, otherwise,

and that Z>Z is a d×d diagonal matrix with the cluster sizes on the diagonal, say,
m1, . . . ,md . We also write 1n for a column n-vector of ones, vec(Y) for the vector
obtained by stacking the columns of Y, and ⊗ for the Kronecker product.

Consider the multivariate multiple linear regression model
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Y = Xβ +E,

where

• X is an n×q design matrix for explanatory variables with the first column con-
sisting of 1’s;

• β is the q× p matrix of regression coefficients;
• E = (ε1, . . . ,εn)

> is an n× p matrix of random errors,

stating that the responses are linearly related to the explanatory variables, and E is
a matrix of random errors with

COV
(

vec(E>)
)
= Ω ⊗Σ .

Here Σ = E(ε iε
>
i ) and Ω = {ρi j} is a matrix consisting of intracluster correlations,

with unit entries on the diagonal. We thus assume that E(ε iε
>
j ) = ρi jΣ , where ρi j 6=

0 if (ZZ>)i j = 1, and ρi j = 0, otherwise.
Typically, the regression coefficients of the model are estimated by ordinary least

squares based on a minimization of an L2 criterion function, or by maximum like-
lihood relying on a multivariate normality assumption on the random errors. These
two solutions are in general not the same with clustered data. Under heavy-tailed
error distributions these estimates are inefficient, and may be vulnerable to outliers.
In such circumstances, a fit based on an L1-criterion function may be preferable.

3 Estimation based on an L1-criterion function

The goal is to estimate the unknown β matrix of regression coefficients by minimiz-
ing an L1 norm

Dn(β ) =
n

∑
i=1

(
|yi−β

>xi|− |yi|
)
.

This leads to a multivariate least absolute deviation (LAD) estimate of β . If the
residuals lie in a genuinely p-dimensional space, the resulting estimate β̂ solves the
estimating equation

U(β̂ )>X = 0,

where
Ui(β ) = (yi−β

>xi)/|yi−β
>xi|, i = 1, ...,n

is the spatial sign of the residual at β and U(β ) = (U1(β ), ...,Un(β ))
> is the corre-

sponding matrix of residual spatial signs (Oja, 2010). These L1 estimates of regres-
sion coefficients are quite natural and not difficult to compute (Nordhausen and Oja,
2011).



4 Jaakko Nevalainen and Denis Larocque

4 Transformation-retransformation L1 regression estimates

It is possible to use the L1 norm to directly estimate the parameters also in the
clustered data case. Compared to a setting with i.i.d. random errors, the limiting dis-
tribution would only require a correction in the variance terms. This permits a valid
analysis. However, the estimate as such suffers from one important shortcoming: it
makes no use of the underlying and known cluster structure. A reasonable concern
is that it may be an inefficient approach; recall that the (optimal) maximum likeli-
hood estimates for linear models in the univariate normal case use the covariance
structure as an essential ingredient.

Suppose first that the covariance matrix was known and again has the general
form

COV(vec(E>)) = Ω ⊗Σ .

For example, the “compound symmetry” covariance structure,

COV(vec(E>)) = In⊗Σ +(ZZ>− In)⊗ρΣ = (In +ρ(ZZ>− In))⊗Σ

falls into this class of structures.
Given a pre-specified covariance structure Ω ⊗Σ , the original estimation prob-

lem can be rewritten as

Y → Y0 = Ω
−1/2YΣ

−1/2

X → X0 = Ω
−1/2X

β → β 0 = βΣ
−1/2

E → E0 = Ω
−1/2EΣ

−1/2

This postulates a new regression model Y0 = X0β 0 +E0 in which, if the covariance
structure is correctly specified, the random errors are uncorrelated. Multiplication
from the left attempts to eliminate the intracluster correlation, and multiplication
from the right is aimed to standardize the marginal distributions. For the transformed
data set on the right-hand side, it is reasonable to conduct ordinary L1 estimation of
regression coefficients as before. Therefore, the estimating equation is

U0

(
βΣ
−1/2

)>
Ω
−1/2X = 0,

where U0 now consists of the spatial signs of the residuals on the transformed
scale, i.e., the rows of Ω

−1/2(Y−Xβ )Σ−1/2. As a final step, the estimates of the
regression parameters in the original model are obtained by back-transformation
β̂ trt = β̂Σ

1/2.
This procedure has potential for improved efficiency. Similar idea of a working,

user-specified correlation structure is met in the framework of generalized estimat-
ing equations (Diggle et al., 2002). In that setup, the estimates of the regression
coefficients are consistent even if the working correlation structure is misspecified.
Simulations will be used to investigate the merits of this method in the next section.



L1-regression for multivariate clustered data 5

5 Simulation study

We next investigate the finite sample efficiency of the proposed method by simula-
tion studies involving four competing approaches to the problem.

5.1 Practical implementation of the
transformation–retransformation L1 method

We are assuming that the working covariance structure is E(ε iε
>
j ) = ρi jΣ , where

ρi j = ρ if (ZZ>)i j = 1 and ρi j = 0 otherwise. We thus assume a compound sym-
metry structure with the same correlation (ρ) for each response. In this respect the
compound symmetry structure is a special case; other covariance structures would
not in general have this property.

A particular implementation of the transformation–retransformation L1 method
for this setting is as follows. To estimate ρ , we take the average of the intracluster
correlation estimate obtained from separate linear mixed models to each response.
More precisely, let ρ̂i be the estimated value of the intracluster correlation obtained
from fitting a linear mixed model to the ith response with a random intercept at the
cluster level, and using all the covariates. Then ρ̂ = (1/p)∑

p
i=1 ρ̂i.

To estimate Σ , we use the sample covariance matrix of the residuals obtained
from the same response–wise linear mixed models.

5.2 Design of the simulation

Data are generated according to the following multivariate linear mixed model with
p = 3 or 7 responses and d clusters:

Yi j = X1i j1p +X2i j1p +X3i j1p +α i + ε i j, i = 1, . . . ,d, j = 1, . . . ,mi.

In this model, Yi j is the p-variate response vector for the jth observation in cluster
i, the α i’s are i.i.d. p-variate cluster effects (random intercept), and ε i j’s are i.i.d. p-
variate individual error terms. The three covariates (the X’s) are i.i.d. from N(0,1).
The covariates, random intercepts and error terms are all independent. Hence the
true matrices of regression coefficients are

β =


0 0 0
1 1 1
1 1 1
1 1 1

 and β =


0 0 0 0 0 0 0
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1


for the p = 3 and 7 cases, respectively.
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The cluster design consists in 5 clusters of size 2, 5 clusters of size 3, 5 clusters
of size 4, 5 clusters of size 5 and 5 clusters of size 6, for a total of 25 clusters and
100 observations.

The α i’s and ε i j’s are generated from either the normal or the t3 distribution with
mean vector 0. In all cases, the scale matrix of these distribution has the form ρIp
for α i and (1−ρ)Ip for ε i j. We then let ρ vary between 0 to 0.95 by steps of 0.05.

Four estimation methods are compared.

1. Transformation–retransformation L1 method assuming the compound symmetry
structure with equal ρs. The estimation of the parameters are described in Section
5.1. This is the proposed method.

2. Random intercept linear mixed models fitted separately to each response.
3. Basic L1 regression applied directly to the data, neglecting the intracluster corre-

lation.
4. Transformation–retransformation L1 method assuming the compound symmetry

structure with equal ρs. But this time we use the true values of ρ . However, we
still estimate Σ as explained in Section 5.1. This method is not feasible in practice
because ρ will likely never be known. But we use it as a benchmark to investigate
the effect of having to estimate ρ .

The number of simulation runs is 500 for each configuration. All computations
are performed in R (R Core team, 2013). The linear mixed models are fitted with the
lme function in the nlme package (Pinheiro et al., 2014). The L1 regressions are
performed with the mv.l1lm function in the MNM package (Nordhausen and Oja,
2011).

5.3 Results

For each estimation method r (=1,2,3,4), the performance criterion is

Pr = (1/500)
500

∑
i=1

vec(β̂ ri−β )′vec(β̂ ri−β ),

where β̂ ri is the estimation from this method for the ith simulation run. The results
are summarized in figures 1 to 4. In each plot, the Y−axis gives the efficiency of each
method relative to the proposed method (method 1 in Section 5.2), as a function of
ρ . More precisely, it is P1/Pr for r = 2,3,4. Hence, the proposed method is more
efficient than the other one when the relative efficiency is below 1 and less efficient
when it is above 1.

The results are reported in Figure 1. The upper-left plot corresponds to the three-
variate case where both the random intercepts and the errors are normally dis-
tributed. As expected, the linear mixed model (method 2) is a bit more efficient
than the proposed method in this case, and the efficiency remains constant over the
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range of ρ . We can also see clearly the effect of neglecting the intracluster correla-
tion. The performance of the basic L1 regression (method 3) dramatically worsens
as ρ increases. We also see that using the true value of ρ (method 4) has the same
performance as the proposed method. Hence, nothing is lost by having to estimate
this parameter.

The upper-right plot corresponds to the same situation but with random inter-
cepts and errors distributed as t3. This time, the proposed method is more efficient
than the linear mixed model. Again, this was expected since L1 based methods are
more efficient for heavier–tailed distributions. However, the difference between the
two is more pronounced for smaller values of ρ . The performance of the basic L1
regression worsens as ρ increases and having to estimate ρ does not hurt the perfor-
mance.

The lower plots present the corresponding results for the seven-variate cases. For
the normal case (lower-left), the same patterns as for the three-variate case occur,
except that the difference between the proposed method and the linear mixed model
is even smaller. For the t3 case, (lower-right), the situation is similar and the same
patterns as for the three-variate case also occur. Hence, from these limited results,
the proposed transformation-retransformation L1 method is clearly preferable to the
direct L1 method.

5.4 Additional simulations under unequal ρs scenarios

The results presented previously showed that the transformation-retransformation
L1 method is more efficient than the direct L1 method. However, the particular im-
plementation of the method used in the simulation assumes a compound symmetry
structure with the same correlation for each response. Hence, it is natural to ask if it
still performs well when this is not true. To investigate this, we used the same sce-
narios as before, except that we allowed the intracluster correlations to vary for each
response. More precisely, The α i’s and ε i j’s are still generated from either the nor-
mal or the t3 distribution with mean vector 0. But this time, the scale matrix of these
distribution has the form diag(ρ1, . . . ,ρp) for α i and diag((1−ρ1), . . . ,(1−ρp)) for
ε i j. When p = 3, we fix ρ2 = 0.5, ρ1 = ρ , ρ3 = 1−ρ , and we let ρ vary between
0.05 to 0.5 by steps of 0.05. When p = 7, we fix ρ4 = 0.5, ρ1 = ρ2 = ρ3 = ρ ,
ρ5 = ρ6 = ρ7 = 1− ρ , and we let ρ vary between 0.05 to 0.5 by steps of 0.05.
Hence, the greatest variance among the ρs occur when ρ = 0. When ρ = 0.5, we
fall back to the equal ρs case. Note that method 4 is not applicable with these sce-
narios. Therefore, only the first three are compared.

Figure 2 presents the results. The upper-left plot corresponds to the three-variate
case where both the random intercepts and the errors are normally distributed. We
see that the proposed method continues to be more efficient than the direct L1
method even though its working correlation structure (compound symmetry with
equal ρs) is not true. The comparison with the linear mixed model is similar to what
we have in Figure 1. We can only see a little increase in the curve when ρ = 0.05,
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which corresponds to the case where the variance among the ρs is the greatest, and
thus where we are the farthest away from the working correlation. Hence it seems
that the proposed method is quite robust to this type of departure from the assump-
tions.

The upper-right plot corresponds to the same situation but with random intercepts
and errors distributed distributed as t3. This time, the proposed method is always
more efficient than both the direct L1 method and the linear mixed model. Similar
findings can be obtained from the lower plots, which present the corresponding
results for the seven-variate cases.

The conclusion from this limited simulation study is that the transformation-
retransformation L1 method is very promising as it seems more efficient than the
direct L1 method. Moreover, the advantage over the direct L1 method seems to hold
even when the working correlation structure is not well-specified. Hence, the partial
information recovered by the transformation-retransformation L1, even if coming
from a wrongly specified working correlation structure, is still useful enough to
beat the direct L1 method.

6 Concluding remarks

The goal of this paper was to show the potential of a novel L1 norm estimation
method of regression coefficients for clustered data. Unlike using the L1 norm di-
rectly on the data, the proposed transformation-retransformation method uses the
clustering structure to produce more efficient estimates, as shown in a simulation
study. Hence this method deserves to be investigated further. The next logical step
is to study the theoretical properties of the proposed method. More precisely, we are
planning to derive its asymptotic properties, including calculations of asymptotic
efficiencies. Moreover, we used a simple estimation of ρ , based on response-wise
linear mixed models in the particular implementation used in the simulation study.
However, using an L1-type method would be more natural and we are also planning
to develop such a method.
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