Time Difference of Arrival Estimation with Deep Learning —
From Acoustic Simulations to Recorded Data
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Abstract—The spatial information about a sound source is carried by
acoustic waves to a microphone array and can be observed through
estimation of phase and amplitude differences between microphones.
Time difference of arrival (TDoA) captures the propagation delay of the
wavefront between microphones and can be used to steer a beamformer
or to localize the source. However, reverberation and interference can
deteriorate the TDoA estimate. Deep neural networks (DNNs) through
supervised learning can extract speech related TDoAs in more adverse
conditions than traditional correlation -based methods.

Acoustic simulations provide large amounts of data with annotations,
while real recordings require manual annotations or the use of reference
sensors with proper calibration procedures. The distributions of these
two data sources can differ. When a DNN model that is trained using
simulated data is presented with real data from a different distribution,
its performance decreases if not properly addressed.

For the reduction of DNN -based TDoA estimation error, this work
investigates the role of different input normalization techniques, mixing
of simulated and real data for training, and applying an adversarial
domain adaptation technique. Results quantify the reduction in TDoA
error for real data using the different approaches. It is evident that the
use of normalization methods, domain-adaptation, and real data during
training can reduce the TDoA error.

Index Terms—Deep learning, domain adaptation, time difference of
arrival, microphone arrays, beamforming

I. INTRODUCTION

Microphone array signal processing methods can be used for
reducing background noise in phone calls or capturing distant speech
commands, allowing a wider operating environment for different
applications of speech processing. Various consumer devices are
equipped with multiple microphones, and the microphone place-
ments vary due to differing form factors and design aspects. As a
result, almost every consumer device with microphones has a unique
microphone geometry. At the same time, several microphone array
techniques to sense spatial information, such as Direction of Arrival
(DoA) estimation, require the microphone geometry to be known
or even that the microphones are fixed in a specified rigid shaped
body such as a sphere or a cylinder [1]. The spatial information
about the distant speaker can be captured also without knowledge
of microphone positions. The time difference of arrival (TDoA)
measurement captures sound propagation between two channels and
is independent of the microphone geometry. The TDoAs can be used
to infer the microphone geometry [2], amplify the source direction via
beamforming [3], and localize sources [4]. Several methods can be
used for TDoA estimation, including Generalized Cross-Correlation
(GCC) [5], eigendecomposition of the covariance matrix of the
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observed signals [6], and identification of impulse responses from the
source to the microphones [7]. Deep learning in TDoA estimation has
proven to be more robust against dynamic noise and reverberation
using Time-Frequency (TF) masking applied to GCC with phase
transform (GCC-PHAT) [8] and to beamforming and steering-vector
-based TDoA estimation [9]. These approaches use a separate ground
truth TF mask, which can take several different forms, some of which
are not readily available when dealing with real data. Denoising of
sub-band GCC was proposed in [10] to facilitate TDoA estimation as
a later stage. However, TF masking integrated inside a single DNN as
deterministic operations for direct TDoA estimation has been found
more robust than just mask training in [11]. The integrated approach
has been applied for binaural TDoA estimation in [12].

Supervised deep learning methods require a large database of
labeled samples to learn the required task, such as classification
or regression. Acoustic simulations [13], i.e., modeling the real
world sound propagation, can be used to produce large amounts of
artificial data. In contrast, collecting and annotation real world speech
recordings is time-consuming. The simulated data belongs to a source
domain, and the real world data originates from a target domain. If
the two domains are too far apart, a model trained using only the
source domain data might not perform well on the target domain
data, and is referred as the “reality gap” [14].

This paper investigates the impact of several common techniques
to improve the real-world performance of the learning-based TDoA
estimation method [11] that has been trained with simulated acoustic
speech recordings. Specifically, this paper investigates using different
amounts of target domain (i.e. real recorded) data during training,
adversarial domain adaptation [15], and including input normaliza-
tion using mean removal and standard scaling (MRSS) and batch-
normalization (BN) layer [16] for input scaling. Use of BN layer
for input normalization has shown improvement over MRSS in
time-series forecasting [17]. The results can help to understand the
performance gains of individual techniques and to evaluate the effect
of the different measures to deal with the reality gap in deep learning
for multi-channel acoustic applications.

The rest of the paper is organized as follows. Section II provides
background for bridging the reality gap. Section III describes the
signal model and TDoA estimation using the traditional and the
investigated deep learning-based approach. It then details the various
approaches experimented with for bridging the reality gap. Section IV
presents the simulated and real recorded databases. In Section V the
experiments are detailed after which Section VI presents their results
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on the TDoA accuracy in the target domain. Section VII concludes
the findings.

II. BACKGROUND

Often, a limited number of target domain data can be collected
and annotated to allow a portion of the training database to be from
target domain. Thus mixing the source and target domain samples can
help the classifier work in target domain as well. Another common
approach is fine-tuning a pre-trained network with a limited number
of target domain data, e.g., for visual object recognition [18]. The
pre-training approach relies on the availability of a model that is
trained with a large source domain database, and that a target domain
database exists with a small amount of labels for fine-tuning the
pre-trained model. Available pre-trained models for sound processing
include OpenL3 [19] [20] and VGGish [21]. However, they operate
on the monophonic input signals, whereas multichannel processing
also can exploit information between channels such as phase and
amplitude to infer spatial information related to the source.

Domain randomization [14] excessively varies the physical proper-
ties of the simulated data, e.g. for image recognition tasks the colors,
lighting, poses, textures, and interfering objects and noise are widely
varied, even with un-natural combinations, to train a model. The
idea is to extend the support of the source domain large enough
and possibly to overlap with the target domain. The technique has
improved object recognition task for a robotic application of grasping
in clutter trained with a simulated data.

Domain adaptation [22] aims to leverage the (unlabeled) samples
from the target domain to decrease the feature distribution gap
between domains. Adding a weighted loss function to minimize the
distance between sample distributions from the two domains while
simultaneously minimizing the loss of the main classification task
aims for domain confusion at the feature level. The approach to
minimize the maximum mean discrepancy loss between source and
target domain features for domain invariant features was presented
in [23]. In central moment alignment [24] the feature representation
layer’s activation distributions between the source and target domains
are minimized using higher order polynomials. Domain-adversarial
training does not use a loss between marginal distributions of the
feature representations, but rather introduces a gradient reversal
layer [15] before a domain classification network. The domain
classification network shares the feature representation with the main
classification network, and aims to classify the input sample into
either to the source or to the target domain. The gradient reversal layer
reverses the sign of the gradient of the domain classification network
to adjust the feature representations so that they are overlapping, and
therefore would not carry information that can be used to tell the two
domains apart based on the feature representation.

III. TDOA ESTIMATION

This section introduces the TDoA estimation methods, and the
investigated normalization and domain adaption methods. Finally the
baseline and oracle TDoA approaches are defined.

The TF model for the ¢th microphone signal is

mi(t, k) = hi(t, k) - s(t, k) + ni(t, k) + vi(t, k), 1)
where s(t, k) is the source signal, h;(¢, k) is the impulse response
between the ith microphone and the source, v; (¢, k) represents inter-
ference signals, n; (¢, k) is uncorrelated noise between microphones,
t denotes time frame index, and k£ = 0, ..., K —1 is frequency index
with K frequency bins.

The GCC-PHAT [5] is a popular method for TDoA estimation and
can be written as [11]:

Ru(mt) = S8 Ru(r,t,k), @)

where 7 denotes the time delay value between microphones i and 4/,
and the frequency dependent correlation term R;;/ (7,t, k) is written

Ry (7, t,k) = cos(Lmi(t,k)—Zmy (t,k)+7wik), (3)

where wy, = 2wk/K is the angular frequency, and Z(-) is phase
angle. A TF mask 7,/ (¢, k) multiplied with frequency dependent
correlation (2) can be used to suppress TF points associated with
noise and interference [8], [25]

R;?I (7', t) = Zi(:_ol MNii’ (t, k) . R“'I (T, t, k) (4)
Finally, an estimate for (masked) TDoA is obtained at time frame ¢
717 (t) = argmax Ry (1, ). )

A. DNN method with integrated TF masking for TDoA estimation

A DNN solution that performs implicit TF masking for TDoA
estimation [11] is investigated here in more detail. The approach
uses log-mel magnitude as input to predict a mel-scale TF mask
M (t, b) for each input frame, where b is mel-frequency band index.
To reduce the non-speech frequency contribution to TDoA, the mask
is multiplied frequency band-wise with the input frame’s correlation
matrix R;; (7, t,b), which is the second input. The obtained weighted
GCC R}/ (7,t,b) is then integrated over the frequency range (as
in (4)), and is connected to a recurrent LSTM layer, that is followed
by a linear output layer with one node to produce the TDoA value.
Refer to Figure 1 panel a).

While the method was able to generalize into real environments
trained only with simulated data [11], [12], there is a need to obtain
more accurate TDoA values. Therefore, three different techniques to
reduce the TDoA error in real data are investigated here: i) mixing
of simulated and real data, ii) input normalization, and iii) domain
adaptation [15]. These approaches are detailed below.

B. Using both simulated and real data for DNN training

The impact of the amount of labeled real data samples to the output
of a model trained with mostly simulated data is investigated. Here,
the amount of total data is kept fixed, while the percentage of the real
data is gradually increased to quantify the effect of adding annotated
real data samples. It is expected that including real data for training
improves model performance for unseen real recordings. The ratio
P defines the share of simulated data vs. real data (1 — P) used for
training, and the following values are used: 100—0 %, 95—5 %, 75—
25 %, 50 — 50 %, and 0 — 100 %.

C. DNN training with input normalization

Refer to Fig. 1 panel a), where model [11] is evaluated with three

different approaches to input normalization:

i. No normalization: The evaluations are conducted without input
normalization.

ii. Scaling with MRSS: The approach normalizes the jth input
variable x; by removing the mean p; and scales the resulting
value with the standard deviation ;. This is known to improve
training convergence speed [26]. Both inputs to the network are
normalized, i.e. log-mel magnitudes, and mel-frequency GCC
values with respect to each mel-frequency band. The parameters
w; and o; are evaluated from the training set, and applied to
validation and test sets.

iii. Scaling with BN: The approach uses a BN layer [16] after
the input layer. This approach removes the running mean p;



and divides with the running standard deviation o; to produce
scaled input &; = (z; — py)o; !, These values are updated
during training, while kept fixed during inference. The batch
normalization layer includes two trainable parameters: 8 and ~y
that are applied to the scaled input value to produce the layer’s
output value y; = v;Z; + 5;.

The models are trained for 500 epochs with early stopping based on

validation data loss. Number of neurons in each layer and activation

functions are displayed in Fig. 1 panel a).

D. DNN training with unsupervised domain adaptation

The adversarial domain adaptation of [15] attaches a domain
classifier to the output of a feature layer. A feed-forward sigmoid
activation layer, missing from [11], was added before the LSTM
layer as the feature layer. Three layers with Rectified Linear Unit
(ReLU) activations and a single node layer with Sigmoid activation
acts here as the domain classifier. The layers are trained using
domain information, and the desired output is 0 if an input sample is
simulated, and 1 if an input sample is recorded. The gradient reversal
layer changes the sign of the gradient during training with back-
propagation to produce features that are increasingly more difficult
to be classified by their domain, while such features also are used to
minimize TDoA loss.

The original work [15] targets classification, and utilizes a weight A
to control the contribution of domain classifier loss on weight updates.
Here, the approach is applied to regression and instead of using A,
the implementation alternates between the two loss functions (domain
classifier loss, and TDoA loss) to control the amount of weight
update. Empirically the best results were obtained by minimizing
the TDoA loss for ten consecutive epochs, after which the domain
classifier loss is minimized for one epoch. The approach is referred
as DA(10x). This training loop with the alternating loss functions is
repeated 20 times (selected empirically), after which all weights are
frozen up to the feature layer. Then, only the two last layers after
the feature layer (LSTM and Linear output layer) are trained until
500 epochs with early stopping based on validation data loss. Refer
to Fig. 1 panel b) for model details.

E. Baseline method for TDoA estimation

The maximum argument time delay (5) of GCC-PHAT (2) was
used as baseline. Since TDoA values originating during non-speech
frames result in high Mean Absolute Error (MAE), the estimated
TDoAs were temporally filtered with a median filter. The filter length
was selected between [1,100] time frames to minimize MAE of the
baseline. Note that this baseline is not obtainable without the ground
truth TDoA. However, it is robust to TDoA outliers during short
inactivity periods of the static speaker.

F. Oracle method for TDoA estimation

As the oracle method for TDoA estimation the maximum ar-
gument time delay (5) of the weighted GCC-PHAT (4) was used
with the ground truth ratio mask as the weight [27] 7 (¢, k) =
n:(t, k)nw (t, k), where n;(t, k) = |s(t, k)|/|m:(t, k)|, converted fi-
nally into mel-frequency domain. The same median filtering approach
as in the baseline was then applied.

IV. GENERATION OF SIMULATED AND REAL DATABASES

This section describes the simulation model, the used audio data,
and the mixing approach for creating the simulated training data. The
real speech recordings and the formation of the real database is then
detailed.

a) Log mel-energy GCC-PHAT b) Log mel-energy GCC-PHAT
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Fig. 1: a) The DNN -based TDoA estimation model [11] with
added normalization layers for the inputs. b) The adversarial training
with domain classifier [15] included. Note that a feature layer is
introduced, and its output is shared between the main task of
TDoA estimation and domain classification. Number after layer in
parenthesis indicates amount of neurons, layer name indicates the
activation function or layer type.

A. Simulated Data Synthesis (Source domain samples)

The acoustic data is simulated one sentence at a time from a source
at 1 m distance from a microphone pair during training and at 1.2 m
and 1.5 m distances during validation. The simulation used the image
source method [13], which models the impulse response h; (¢, k) as a
combination of delayed and attenuated sound reflections from room
surfaces. For each simulated sentence, the room dimensions were
varied uniformly between [3.5, 3.4, 1.5] m and [10.5, 10.2, 4.5 ] m.
The room’s surface absorption coefficients were set to result in two
different reverberation time (T60) values for training: 200 ms, and
500 ms and for validation: 400 ms and 600 ms. For each T60
value the angle of incidence was iterated over 180 different angles
along a half circle to result in all possible TDoA values between a
single microphone pair. The process was repeated for microphone
pair distances between 4 cm and 16cm (in 3 cm steps) during
training, and between 5 cm and 15 cm (in 2.5 cm steps) during
validation. Varying the acoustic parameters can be seen as form of
domain randomization [14].

The microphone pair recordings were then simulated by convolving
the synthetic impulse responses with speech samples taken from the
librispeech recording database [28].

Speech material pre-processing: In order to produce a constant
stream of speech any pauses longer than 150 ms were trimmed out
using energy based voice activity detection with an empirically set
threshold. Resulting trimmed recordings were divided into multiple
two second clips, which were normalized with the maximum absolute
value. A total of 63 minutes and 107 minutes of speech material was
produced for training and validation folds, respectively, with different
speakers between the folds.

Adding interference and noise: Recorded multichannel interfer-
ence from DEMAND [29] database was added using a desired Signal
to Interference Ratio (SIR) value. The database contains several
recordings from different noise environments. Two channels were
selected from the DEMAND database that had the closest microphone
pair separation to the simulated microphone pair. In addition, white
Gaussian noise (WGN) that is independent and identically distributed



(IID) between microphones was added to obtain a desired Signal
to Noise Ratio (SNR). For each sentence mixed, the SIR and SNR
values were drawn from uniform distribution between the ranges of
[—20,+10] dB and [—6,+24] dB respectively. The SIR and SNR
values are obtained as the ratio between the original recorded signal
and the added interference or noise. Different interference recordings
were used for each fold.

B. Real Data Recordings (Target domain samples)

The speech data was recorded with two six-channel synchronized'
portable Tascam DR-680 MK II recorders connected to a 11-channel
mobile phone form-factor microphone array and a participant worn
close talk microphone (CTM). In contrast to simulations, each
recording contains 55 different microphone pairs instead of one pair.
The microphones were mounted on different surfaces of the device,
but mostly concentrated on the lower part of the device. The distances
between microphones varied between 0.5 cm and 15.3 cm, with an
average of distance of 4.1 cm and median distance of 2.1 cm. All
recordings were captured with 48 kHz sampling rate.

The recordings were made in three different rooms: listening
room (HE), audio laboratory (TC), and meeting room (KA). The
HE room complies with ITU-R BS.1116-1 recommendations [30]
with dimensions [5.9, 5.4, 2.7] m, reverberation time around 250
ms, and very low background noise level (below ISO NR15 [31]).
The audio laboratory’s (TC) dimensions are [4.5, 4.0, 2.6] m with a
reverberation time of 260 ms, low background noise, and a floating
floor structure for isolation of structural vibrations. The KA room,
with dimensions [6.2, 4.5, 2.5] m and reverberation time 270 ms,
despite being just a meeting room is also acoustically well treated in
order to be silent and reflection controlled.

The recordings consist of 124 different participants reading English
or native language sentences while initially standing still at 0.7 m to
1.9 m distance front of a table with the microphone array. Participants
moved slightly on a circle around the microphone array between
sentences, and completed at least one full circle to cover all horizontal
angles around the array.

The same speech material pre-processing technique was applied as
in simulations, using the CTM signal to estimate silent parts to trim.
Furthermore, to retain recordings of microphone pairs with consis-
tent TDoA values, microphone pairs with moderate or high TDoA
variance® were discarded. Due to the small average inter-microphone
distance, large TDoA values were initially under-represented in the
data, while TDoA values near zero were over represented. In contrast,
the simulated data had nearly equal number of TDoAs for each
possible delay value. Therefore, pruning was applied to balance the
data. From each clip, the microphone pair recording with the highest
absolute TDoA was retained, and other microphone pair recordings
in the same two second clip were discarded. All remaining clips
were downsampled into 16 kHz and divided into three folds, one
for each recording room. In each fold, for each physically possible

'The used synchronization only guaranteed sample clock synchronicity,
but a recording dependent offset value between recorders remained. This was
mitigated by time-aligning the microphones of both devices by the amount of
the device’s estimated average TDoA value between its array microphones
and the CTM, i.e., a recorder dependent offset value was removed from
all microphones connected to it. While this does not precisely time-alight
the two devices with sample accuracy, any remaining offset has minimal
or no effect for the targeted application of TDoA estimation between the
microphone channels, since the ground truth TDoA is estimated from these
speech recordings and thus inherently includes any remaining offset.

2Standard deviation exceeded 0.5 TDoA samples evaluated with a 100 ms
window at 48 kHz sampling rate using GCC-PHAT for TDoA estimation.

TDoA value in range [+440 ps], a maximum of 250 microphone pair
recordings were retained, and the rest were discarded. As a results,
71, 80, and 79 minutes of microphone pair recordings, balanced with
respect to TDOA values, was obtained for room HE, KA, and TC,
respectively.

Interference and noise was added similarly as in the simulations.

V. EXPERIMENT SETUP

The processing of acoustic data was done in 20 ms frames without
overlap. For each tested normalization approach, i.e., without input
normalization, MRSS, and BN, and each share of simulated data
P =100, 95, 75,50,0] % a separate Deep Neural Network (DNN)
was trained using the range of [—20, +10] dB SIR and [—6, +24] dB
SNR values. A three-fold cross validation approach was used where
the real data from different rooms was divided into training, validation
and testing folds. The simulated data portion was shared between
training and validation folds, while only real data was used for testing.
The domain adaptation was trained by using the simulated data and
unlabeled real data samples from all room. Each trained DNN was
then tested with the real recorded material using two experiments
described next.

In experiment 1, the recorded test data was mixed with interfer-
ence using a fixed SIR value iterated from —20 dB to 430 dB in
10 dB steps, while the SNR was drawn from the same [—6, +-24] dB
range as during training. This allows to investigate the TDoA esti-
mation error as a function of SIR in the presence of noise.

The experiment 2 varied the SNR from —20 dB to +30 dB in
10 dB steps while the SIR value was drawn from the same range as
during training. This allows to investigate the TDoA estimation error
as a function of SNR in the presence of interference.

The metric for reporting the improvement is the relative reduction
of Mean Absolute Error (MAE) over the baseline, obtained as

MAEmelhod - MAEbaseline
MAEbaseline '

where 100% indicates removal of all errors, and 0% is baseline
performance. The TDoA MAE is obtained as

MAE improvement = —100% -

Q)

T—1
1 .
MAEmethod - T ; |Tmelhod(t) - T(t)‘, (7)

where T is the total number of frames, and 7(t) is the ground truth.

VI. RESULTS

Figure 2 depicts the average improvement of each method for
the two experiments. The upper panel of Fig. 2 depicts MAE
improvement over baseline for different SIR values (experiment 1)
with WGN, and the lower panel displays results for different SNR
values (experiment 2) with interference. Each cross-validation test set
(room) is displayed with different symbols, and the line displays the
average.

Effect of input normalization: In both experiments input
normalization with BN resulted in reduced MAE over MRSS, and
MRSS resulted in lower error than not using normalization.

Amount of target domain data: Increasing the share of target
domain data in training improves the performance in the target do-
main test data, and best results are obtained by using 50% of real data
during training (with BN). There is mostly small variation between
the different test rooms, indicating that the model can generalize to
moderate changes in the acoustic conditions of rooms. The listening
room (HE) was most challenging of the test rooms, evident as lower
MAE improvement for several normalization approaches. Training
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Fig. 2: The MAE improvement of TDoA for different ratios of
simulated and real data, the use of different normalization for input
data, and the performance of domain adaptation methods is shown for
a) varying SIR (experiment 1), and b) varying SNR (experiment 2).

with only real-data from one room did not result in lowest test error
in all other rooms. This can be a result of overfitting the model to
the training room’s acoustics and not being able to generalize into
another room.

Domain adaptation: Using BN produced better results over
no normalization and MRSS, and therefore the other normalization
approaches are omitted from the domain adaptation results. In exper-
iment 1) domain adaptation shows improvement over including 5 %
real data, and has a similar effect as using 25 % real data. However,
in experiment 2) the domain adaptation obtains similar results than
using only simulated data or including 5 % real-data. The results
of the domain adaptation indicate that it can improve over using
only simulated data when given unlabeled training samples from the
target room as well. In an additional experiment, where the unlabeled
samples used for domain adaptation were restricted to the training
room only, little or no improvement was obtained over the basic
approach with 100 % simulation data using BN.

Figure 3 details the absolute TDoA MAE for the two most
promising approaches: using BN with different proportion of real
data, and domain adaptation DA(10x) with BN. Figure 3 panel
a) presents absolute TDoA MAE values for the SIR value range
(experiment 1), and panel b) presents results for the SNR value
range (experiment 2). The specific room in the plotted test data is
”TC”. There is an exponential increase in the error below 0 dB,
while the error stops to decrease above +10 dB in both experiments.
Overall, the error is higher for the experiment 2) with fixed SNR
values, than for experiment 1) with fixed SIR values. This can be
most likely explained by the lower values of the SIR value range

a) TDoA error over SIR value range b) T?OA error over SNR value range
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Fig. 3: The MAE of TDoA on ordinates for selected methods in room
TC as a function of a) varying SIR b) varying SNR.

([—20, +10] dB) of experiment 2) in contrast to corresponding SNR
value range ([—6, +24] dB) of experiment 1) and that the interference
signal is more challenging to combat due to temporally changing
magnitude spectrum than the static magnitude spectrum of WGN.
This is supported by the decreasing oracle error in experiment 2),
since the oracle has access to the interference signal.

VII. CONCLUSIONS

This paper investigates different methods to bridge the reality gap
between a deep learning model trained mostly with simulated data
(source domain) and subsequently applied to real recorded data (target
domain) in the task of TDoA estimation — a typical multichannel
estimation task. The investigation was performed using different types
of input normalization approaches, using unlabeled target domain
data with domain adaptation, and including a fixed share of labeled
target domain data in the model training. A single deep neural
network for each style of input normalization and each share of
target domain data was trained using WGN and dynamic interference
corrupted speech signals at large SNR and SIR ranges using several
different microphone spacing.

The trained network was then tested on real data by fixing SIR
values while using varying SNR values, and vice versa. The results
indicate that using labeled target domain data in training improves
model performance in the target domain, and that using some share of
simulated data helps in model generalization - this is supported by
the domain randomization theory, where the simulation with large
parameter variance can improve target domain performance [14].
Using batch normalization after the input layer increased model
performance over mean removal and standard scaling or omitting
normalization completely. When given access to unlabeled data from
the target domain, domain adaptation with batch normalization can
result in TDoA error reduction over using only simulated data.
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