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Abstract—Positioning is considered one of the most important
features and enabler of various novel industry verticals in future
radio systems. Since path loss or received signal strength-based
measurements are widely available and accessible in the majority
of wireless standards, path loss-based positioning has an impor-
tant role among other positioning technologies. Conventionally
path loss-based positioning has two phases; i) fitting a path loss
model to training data, if such training data is available, and ii)
determining link distance estimates based on the path loss model
and calculating the position estimate. However, in both phases,
the maximum measurable path loss is limited by measurement
noise. Such immeasurable samples are called censored path loss
data and such noisy data is commonly neglected in both the
model fitting and in the positioning phase. In the case of censored
path loss, the loss is known to be above a known threshold level
and that information can be used in model fitting as well as in
the positioning phase. In this paper, we examine and propose
how to use censored path loss data in path loss model-based
positioning and demonstrate with simulations the potential of the
proposed approach for considerable improvements (over 30%) in
positioning accuracy.

Index Terms—positioning, path loss, path loss model,
maximum-likelihood estimation, censored data, localization,
shadow fading, wireless networks, probabilistic modeling.

I. INTRODUCTION

Radio based positioning has rapidly grown into one of
the most significant features in future wireless networks. As
stated in the specifications of the upcoming 5th generation
new radio networks in [1], positioning has been considered
as part of basic network capability, and it offers a wide
variety of performance requirements tailored to specific needs
of numerous use cases and industry verticals. Path loss (PL) or
received signal strength-based positioning, studied earlier, for
example, in [2]–[4], enables low-cost positioning capability
especially for use cases with limited power and computa-
tional resources. In addition, path loss based positioning can
introduce additional support to various other high-precision
positioning and tracking solutions for increased positioning
accuracy, availability, stability or reliability, as shown, for
example, in [4]. Since path loss and received signal strength
are power-related measurements, they are typically continually
measured and monitored in mobile networks over multiple
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base stations (BS) to support mobility management and other
radio resource management functionalities. Thus, path loss
based positioning can rely on regular reference signals of
the underlying communications system without introducing
any additional training overhead due to positioning capability.
However, due to challenging and highly dynamic propagation
environment, PL-based positioning methods are typically lim-
ited to positioning accuracy of tens or hundreds of meters in
outdoor cellular networks [2], [5].

Conventionally path loss based positioning has two phases;
i) fitting a path loss model to training data, if such training data
is available, and ii) determining link distance estimates based
on the path loss model and calculating the position estimate.
Channel measurements can be used to measure the training
data and then a PL model can be fitted to the data [6]–[8].
The PL model describes the link distance dependency and the
variation from the expected value, i.e., shadow fading (SF).
Sometimes training data may be unavailable and the PL model
can be taken from a standard channel model, e.g., [9]. Since PL
is strongly distance-dependent, it can be used in positioning,
and the probability distribution of the link distance estimate
can be determined from the measured PL and the assumed
PL model. In principle, distance estimates to three or more
sources can give a unique position estimate.

The position estimate has several factors affecting the po-
sitioning accuracy. Shadow fading (SF) can be quite large in
many environments [6]–[9]. Large SF leads to a large variance
in the distance estimates which in turn negatively affects the
accuracy. The number of the reference locations, i.e., BSs, the
system geometry, as well as the BS antenna orientations are all
important factors for the positioning accuracy. Naturally, many
distance estimates give better accuracy than only a few. A
third error source that we would like to point out is a possible
difference in the PL model used in the positioning and the
true PL behavior in the given environment. Such discrepancy
can be due to unavailable training data, as mentioned before,
or, e.g., outdated training data. Erroneous PL model will
underestimate or overestimate the distance estimates leading
to increased positioning errors.

In practice, the maximum measurable path loss is limited by
measurement noise. Therefore, in both the training data and
in the positioning it may happen that the PL value can not



be determined. In that case, the PL is known to be more than
the noise threshold level. When data above or below a certain
range are immeasurable, meaning that all data above or below
a certain range are counted, but not measured, it is called
censored data [6], [7], [10]–[13]. The path loss model can be
fitted to censored data by using Tobit maximum likelihood
estimation (MLE) [6], [7]. Censored PL samples are typically
ignored as outage and not taken into account which can lead
to significant error in the PL model distribution. For example,
in [6] it is shown by using measured path loss data that by
ignoring the censored samples the slope of the PL model, i.e.,
path loss exponent, is drastically underestimated at 1.3 instead
of 2.2. Thus it is important to use the Tobit MLE when fitting
the model to the training data. Note that ignoring the censored
PL data in the training phase may lead to a similarly erroneous
PL model as when getting the model from literature without
conducting the laborious training measurements.

Just as in the training phase, the noise threshold limits the
maximum PL in the positioning phase. When PL measured
from a certain BS is larger than the noise threshold, the true
location is likely to be far from the BS, and the true distance is
subject to the distance dependence of the PL and the threshold
level. Therefore, measuring PL at the positioning phase is
censored data in the same fashion as in the case of the training
data. In the training data, there are two types of data samples;
ones with measured PL and those with PL larger than the
threshold. In the positioning phase, there are two types of data
samples; ones with distance estimates and ones with distance
estimates more than a threshold distance. In [14], [15], the
likelihood of connecting or not connecting to a BS is taken into
account in case of time-of-arrival positioning. In this paper, we
frame this as Tobit MLE.

The censored PL data (may) exist in both in the training
phase and the positioning phase. Therefore, in terms of taking
or not taking in to account the censored samples, there are
four options. In [6], fitting without the censored data is called
ordinary least squares fitting (OLS) as opposed to the Tobit
MLE. Similarly, for the positioning there is the ordinary posi-
tioning, using only the distance estimates from the contacted
BSs, that we now call ordinary trilateration positioning (OTP),
and there is the option to include the censored data with Tobit
MLE. The four options are:

1) OLS-OPT, with ordinary least squares fitting to the
training data and the ordinary trilateration positioning.

2) MLE-OPT, with Tobit MLE fitting to the training data
and the ordinary trilateration positioning.

3) OLS-MLE, with ordinary least squares fitting to the
training data and the Tobit MLE positioning.

4) MLE-MLE, with Tobit MLE fitting to the training data
and the Tobit MLE positioning.

To the best of the authors’ knowledge, this is the first time
the noise-limited censored path loss data is considered in both
phases of the PL model-based positioning. We will examine
the influence of including the censored data through simple
simulations with a typical log-distance PL model and illus-

trate the potential of the proposed approach for considerable
improvements in positioning accuracy.

The remainder of the paper is organized as follows: Sec-
tion II lists the path loss and antenna models used in this study.
In Section III, the PL model is fitted to simulated training
data. Positioning with or without the censored PL is examined
in Section IV and the simulation results are presented in
Section V. Finally, conclusions are given in Section VI.

II. PATH LOSS AND ANTENNA MODEL

Path loss is the inverse of small-scale-averaged path gain
between the base station (BS) and the mobile station (MS)
calculated as the instantaneous local channel gain averaged
over the small-scale fading. Typical PL model describes the
statistical behavior of the PL assuming omni-directional anten-
nas and includes equations for expected PL and the variations
from the mean value-line, i.e., the shadow fading.

A simple log-distance path loss model is assumed as fol-
lows:

PL(d) = PL(d) + S, (1)

PL(d) = 10·α· log10(d/d0) + β, (2)

where S is the zero-mean shadow fading with variance σ2,
PL(d) is the link distance dependent expected path loss,
and d0 = 1 m is a reference distance. Eq. (2) has two
free parameters: path loss exponent α and floating intercept
point β, which can be interpreted as the mean PL at d0.
Parameters α, β, and σ can be attained by fitting the model
to measurement data or, e.g., taken from a channel model [9].

In this work, the parameter values are selected as approx-
imate median values given in 3GPP model [9] for various
environments including both line-of-sight (LOS) and non-line-
of-sight (NLOS) in both outdoor and indoor environments.
For simplicity we do not distinguish between LOS and NLOS
nor do we specify the used radio frequency. We assume that
the PL statistics are stationary and use the same PL model
for all BSs [8], [16], [17]. The used parameters are α = 4,
β = 60 dB, and σ = 7 dB.

In case of a directive antenna, we approximate

PL(d, θ) = PL(d)−G(θ), (3)

PL(d, θ) = 10·α· log10(d/d0) + β −G(θ) + S, (4)

where G(θ) is the antenna gain pattern. Simple BS antenna
pattern from [9] [18] is used:

A(θ) = −min(12(θ/θ3dB)
2, 20dB), (5)

where min(·) denotes the minimum function, θ is the offset
angle from boresight, and θ3dB is the antenna half-power
beam-width. The relative sidelobe level is fixed at a constant
20 dB below the maximum gain. Antenna gain G(θ) is the
A(θ) normalized for unit gain, i.e., for same total radiated
power as omni-directional antenna with G(θ) = 0 dB. The
BS is assumed to cover 360◦ with N antenna beams with
3 dB beam overlap, i.e., θ3dB = 360◦/N . The omni-directional
and examples of directive antenna patterns are illustrated in
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Fig. 1. Antenna gain as a function of the offset angle θ. The directive beam
patterns have beam-width of θ3dB = 360◦/N .

Fig. 1. Only the omni-directional and 8-sector BS antennas
(N = 8, θ3dB = 45◦, max(G) = 9 dB) are taken as
examples in this paper. The MS has omni-directional antenna.
The approximation (3) assumes that (most of) the power is
near the direct line between BS and MS. More accurately, the
antenna gain is applied to the multipaths that may arrive/depart
at any angle [9]. Nevertheless, the simplistic approximation
is assumed as it allows simple simulations with directive
antennas.

The noise threshold level PL∗ limits the maximum path loss
that can be measured. In this work, we set the noise threshold
at 140 dB. The expected PL (2) reaches the 140-dB level at
link distance of 100 m with α = 4 and β = 60 dB and omni-
directional antennas. Therefore, PL at that distance has a 50%
probability of being immeasurable, i.e., censored. Due to the
large shadow fading σ = 7 dB there is significant probability
of censored PL between 40 m to 220 m (PL(d)±1.96σ). With
a directive antenna, the positive gain pushes these distances
further away from the BS.

Shadow fading inter-site cross-correlation is small for
widely spaced sites and large for closely spaced base stations
[19], [20]. Therefore we use zero correlation between BS sites
and same SF for different beams of the same BS location. In
this work, we do not use any tracking algorithm, and therefore
SF auto-correlation function and correlation distance are not
defined.

In summary, we assume the log-distance PL model (4) with
α = 4, β = 60 dB, σ = 7 dB, and noise threshold at
140 dB. The BS antenna is either omni-directional or eight-
sector directive antenna that covers the 360◦ with θ3dB = 45◦

and max(G) = 9 dB.

III. CENSORED PATH LOSS AND MODEL FITTING

The first phase of PL model-based positioning is the mea-
surement of training data and fitting the model to the data.
The purpose of the training phase is to get a PL model that
accurately describes the PL probability distribution that can
be then used in the positioning phase.
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Fig. 2. Fitting the path loss model to the training data with OLS (green) and
MLE (red). Training data with PL under the noise threshold is shown with
black dots, solid lines show PL(d) and the dash lines are PL(d)± 1.96σ̂.

Training data is created with (1)-(2) and illustrated in Fig. 2.
The noise threshold is 140 dB. Data is created with a uniform
distribution of distances between 20 m and 500 m with a large
sample size to avoid uncertainty in the parameter estimates [2],
[6]. The PL model can be fitted to the data using OLS or Tobit
MLE [6]. With OLS the noise-limited censored data is ignored
and with MLE all data are taken into account.

The likelihood of measuring PL is [6]

l(PL) = (1/σ)φ((PL− PL)/σ), (6)

where σ is the standard deviation (std) of the shadow fading,
and PL is the path loss model. Here, φ(·) is the standard
normal probability density function (PDF). The log-likelihood
function for known PL samples at distances di is

LLF =

Ns∑
i=1

(
− lnσ + lnφ

(
PL(di)− PL(di)

σ

))
, (7)

where Ns is the number of uncensored data samples.
The likelihood of measuring PL > PL∗ is [6]

l(PL > PL∗) = 1− Φ((PL∗ − PL)/σ), (8)

where the path loss level for the noise threshold is PL∗,
and Φ(·) is the cumulative distribution function (CDF) of the
standard normal distribution. The log-likelihood function for
censored samples at distances di is

LLF ∗ =

N∗
s∑

i=1

ln

(
1− Φ

(
PL∗ − PL(di)

σ

))
, (9)

where ∗ refers to censored data, i.e., N∗
s is the number

of censored data points. The path loss parameters are then



estimated as the minimum of the negative of the log-likelihood
function as

[α̂, β̂, σ̂] = argmin
α,β,σ
{−(LLF + LLF ∗)}. (10)

The fitted PL models are illustrated in Fig. 2. The OLS
fitting gives parameter estimates α̂ ≈ 2.5, β̂ ≈ 83 dB, and
σ̂ ≈ 5.7 dB. The MLE gives parameter estimates α̂ ≈ 4,
β̂ ≈ 60 dB, and σ̂ ≈ 7 dB. The MLE estimated are very close
to the true values α = 4, β = 60 dB, and σ = 7 dB. As can
be seen, ignoring the censored samples can lead to significant
errors in the PL model distribution. The same conclusion is
made in [6], [7], and in this paper, we will study the effects
on positioning accuracy.

In principle, path loss-based positioning can be done without
the training phase. In that case, the PL-model parameters can
be taken, e.g., from a standard channel model. The OLS fitting
result can be seen as serving double duty, both as the OLS
fitting result and as the (rather poor) educated guess in the
absence of training data.

IV. CENSORED PATH LOSS AND POSITIONING

Path loss model-based positioning is based on getting
distance estimates from measured PL to BSs with known
locations. For a given distance the PL model describes a
probability distribution for PL or inversely a PL value gives a
distribution for the link distance. The width of the distribution
is proportional to shadow fading. In ordinary trilateration
positioning (OTP), distance estimates to BSs are used to
trilaterate the positioning estimate.

When fitting the model to training data the censored PL is a
measurement result at a known link distance and PL known to
be more than the noise threshold level. In positioning, censored
PL is an uncontacted BS due to PL larger than the threshold.
Therefore, the minimum link distance has a probability distri-
bution associated with the noise threshold level. Thus, failing
to contact a given BS has position information as it means
that the true position is unlikely to be close to that particular
BS. Next, we will frame the positioning problem as a Tobit
maximum likelihood estimation (MLE) in a similar manner as
(7)-(10).

Let us first write the log-distance as q = 10 · log10(d/d0)
then the expected distance is

q(PLi, θi) = (PLi − β +G(θi))/α, (11)

q∗(θi) = (PL∗ − β +G(θi))/α, (12)

where PLi is the measured PL, PL∗ is the noise threshold, q∗

is the corresponding log-distance, and the standard deviation
corresponding to shadow fading is σ/α. qi is the log-distance
from point (x, y) to BSi (or beam) and θi is the beam offset
angle.

The log-likelihood function for known measured PL at
point (x, y) is

LLF =

NBS∑
i=1

(
− ln

σ

α
+ lnφ

(
qi − q(PLi, θi)

σ/α

))
, (13)

Fig. 3. Likelihood function illustrations: (a) measured PL and omnidirectional
antenna, (b) censored PL and omnidirectional antenna, (c) measured PL and
directive beam (N = 8), (d) censored PL and directive beam (N = 8). White
is likely, gray is possible, and black is unlikely location.

where NBS is the number of BSs (or directive beams) with
measured PL under the noise threshold. The log-likelihood
function for censored PL at point (x, y) is

LLF ∗ =

N∗
BS∑
i=1

ln

(
1− Φ

(
q∗(θi)− qi

σ/α

))
, (14)

where N∗
BS is the number of BSs (or directive beams) with

censored PL. The position estimate (x̂, ŷ) is derived as the
minimum of the negative of the log-likelihood function as

[x̂, ŷ] = argmin
x,y
{−(LLF + LLF ∗)}. (15)

In this work, OTP uses only (13) and (15) and the MLE
positioning uses (13)-(15). Thus the only difference is whether
or not the location information from the noise-limited censored
PL data is used.

Likelihood function illustrations are presented in Fig. 3.
In Fig. 3 (a) is the LLFi of a contacted BS with an omni-
directional antenna where the highest likelihood is found on
a ring around the BS. In Fig. 3 (b) is the LLF ∗

i of an
uncontacted BS showing a low likelihood close to the BS.
Fig. 3 (c) and (d) are the corresponding examples with a
directive antenna where the likelihood functions are stretched
by the antenna gain pattern. Fig. 4 shows an example of the
sum of the likelihood functions in one location using the
four options. In this example, the distance between BSs is
248 m, BSs antennas with eight beams (N = 8, θ3dB = 45◦),
and three BSs are contacted with a total of four beams
(PL < PL∗). The positioning errors are 81 m, 72 m, 9 m,
and 14 m for OLS-OTP, MLE-OTP, OLS-MLE, and MLE-
MLE, respectively. Using MLE positioning results in smaller
and narrower likelihood function optimum.



Fig. 4. Likelihood function illustrations: true location (+), position estimate
(x), BSs (stars), contact to three BSs with directive antennas (N = 8) at
(xBS, yBS) = (302, 324), (547, 363), and (146, 516). White is likely, gray
is possible, and black is unlikely location.
(a) OLS-OPT: ordinary least squares fitting and trilateration positioning.
(b) MLE-OPT: Tobit MLE fitting and the ordinary trilateration positioning.
(c) OLS-MLE: ordinary least squares fitting and the Tobit MLE positioning.
(d) MLE-MLE: Tobit MLE fitting and the Tobit MLE positioning.

V. SIMULATIONS

The four options with and without the censored data are
compared by conducting simulations in a regular BS grid,
following hexagonal layout. The true PL values are calculated
based on (4) with parameters α = 4, β = 60 dB, and
σ = 7 dB. The positioning is based on PL model derived,
in Section III, either by OLS (α ≈ 2.5, β ≈ 83 dB, and
σ ≈ 5.7 dB) or by MLE (α = 4, β = 60 dB, and σ = 7 dB).
Positioning is done either with OTP or with Tobit MLE, as
presented in Section IV. Therefore, the four options are OLS-
OTP, MLE-OTP, OLS-MLE, and MLE-MLE.

Positioning error is the distance between the true position
and the estimated position. Results are presented in Figs. 5 - 6
and Tables I - II. These statistics are based on 10000 samples
with random true location and different realizations of SF.

The BS grid density affects the positioning accuracy. In a
regular hexagonal grid, the distance between BSs is constant.
Three BS grid densities are considered leading to an average of
2, 3, or 5 contacted BSs. Each average number of contacted
BSs BS corresponds to a constant distance between neigh-
bours dBS. Two BS antennas are considered, omni-directional
and directional beams with N = 8 and θ3dB = 45◦.

In all of the simulated cases, OLS-OTP is the worst. It is
the worst-case scenario with the PL model that does not fit
the reality and positioning that does not use all the available
information. For example, with omni-directional antennas and
BS = 2, the median errror is 58 m, 43 m, 46 m, and 31 m
with OLS-OTP, MLE-OTP, OLS-MLE, and MLE-MLE, re-
spectively. In this case, there is a 47% improvement from OLS-
OTP to MLE-MLE. The positioning error with the directive
antennas is smaller than with the omni-directional antennas
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Fig. 5. CDF of positioning error. Model fitting to training data with ordinary
least squares (OLS-) or Tobit MLE fitting (MLE-) and positioning with either
ordinary trilateration (-OTP) of Tobit MLE positioning (-MLE). Base stations
have eight beams with θ3dB = 45◦ and the average number of contacted
BSs is 2.

0 25 50 75 100 125 150 175 200

positioning error [m]

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

C
D

F

(a)

OLS-OTP

MLE-OTP

OLS-MLE

MLE-MLE

0 25 50 75 100 125 150 175 200

positioning error [m]

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

C
D

F

(b)

OLS-OTP

MLE-OTP

OLS-MLE

MLE-MLE

Fig. 6. CDF of positioning error. Model fitting to training data with ordinary
least squares (OLS-) or Tobit MLE fitting (MLE-) and positioning with either
ordinary trilateration (-OTP) of Tobit MLE positioning (-MLE). Base stations
have omni-directional antennas and the average number of contacted BSs is 2
(a) and 5 (b).

and, similarly, with the denser BS grid the errors are smaller.
These trends apply to all the presented cases.

Using MLE in either phase improves accuracy. The best
example of this is a dense BS grid with BS = 5 and the
directive antennas resulting in the 90% percentile error of 75 m
with OLS-OTP and a 55% improvement to about 33 m with
MLE in either or both phases (see Table II). Using the noise-



TABLE I
POSITIONING ERROR 50% AND 90% PERCENTILES. BASE STATIONS HAVE

OMNI-DIRECTIONAL ANTENNAS AND THE AVERAGE NUMBER OF
CONTACTED BSS IS 2, 3, OR 5.

BS 2 3 5
dBS 158 130 100

50% 90% 50% 90% 50% 90%
OLS-OTP 58 140 47 105 32 76
MLE-OTP 43 118 31 72 22 49
OLS-MLE 46 122 31 74 21 47
MLE-MLE 31 90 30 72 21 45

TABLE II
POSITIONING ERROR 50% AND 90% PERCENTILES. BASE STATIONS HAVE

EIGHT BEAMS WITH θ3dB = 45◦ AND THE AVERAGE NUMBER OF
CONTACTED BSS IS 2, 3, OR 5.

BS 2 3 5
dBS 248 201 155

50% 90% 50% 90% 50% 90%
OLS-OTP 50 135 43 101 22 75
MLE-OTP 30 87 22 64 10 34
OLS-MLE 28 58 18 43 16 33
MLE-MLE 24 60 18 42 13 33

limited censored PL with MLE in both phases, MLE-MLE, is,
in general, the most accurate option.

Lastly, let us compare MLE-OTP to OLS-MLE. The median
and the 90% percentiles are very close to each other. In MLE-
OTP, the positioning is based on the correct PL model but the
censored PL is not used in the positioning phase. In OLS-
MLE, the censored PL is used in the positioning phase with
MLE but the OLS fitting results in wrong parameter estimates,
as shown in Section III. As pointed out earlier, the OLS fitting
result can be also interpreted as (a rather poor) educated guess
in the absence of training data. Using MLE in the positioning
phase compensates for the poor PL model. Therefore, it can
be concluded that, if the noise-limited censored PL is taken
in to account in the positioning phase, the training phase is
perhaps not needed.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have shown that the noise-limited censored
PL data can be used in the training and positioning phases of
PL model-based positioning. The censored data, i.e., when PL
is larger than the noise threshold, can be taken into account
using Tobit MLE when fitting the model to the training data
and also in the positioning phase.

Simulations are conducted with a simple log-distance law
PL model that shows improved positioning accuracy when the
censored PL is properly taken in to account with MLE. Results
also indicate that, if the censored PL is taken into account in
the positioning phase, then the accuracy of the PL model fitting
to training data becomes far less important. This suggests that
training data might not be needed assuming the log-distance
law PL model is a good approximation of realistic path loss.

Future work on this topic should include realistic PL data,
the selection criterion for which BSs are included, and the
inclusion of a tracking algorithm.

REFERENCES

[1] 3GPP, “Service requirements for the 5G system,” 3GPP TS 22.261
V17.1.0 (2019-12).

[2] H. Nurminen, J. Talvitie, S. Ali-Löytty, P. Müller, E.-S. Lohan, R. Piché,
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