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Abstract— Traditional mechanical actuators are designed
with a high stiffness, which increases the system bandwidth. The
operation of stiff actuator in uncertain environments is a chal-
lenging task due to physical interactions with the environment.
Series elastic actuators (SEAs) have become the prominent
method for decreasing stiffness between power output shafts
and the environment in electric torque-controlled light arm
applications. Compared to lightweight arms, the hydraulic
actuated SEAs (HSEAs) can provide a much higher power-
to-weight ratio. However, the control design for an HSEA is
a challenging task due to the high non-linear dynamics of
hydraulic systems. In this study, a novel subsystem-dynamics-
based controller for an HSEA is designed using the virtual
decomposition control (VDC) approach as a framework. The
designed controller is incorporated as an inner-loop controller
for previously designed a novel impedance controller. The one
degrees-of-freedom (DOF) experimental setup is used to verify
the control performance of the proposed controller.

I. INTRODUCTION

In the future, the collaboration of humans and robots will
become common in workplaces, homes, and service envi-
ronments as the field of robotics rapidly advances. Human-
robot collaboration requires safe, smooth control, and high-
performing robots. One major challenge for the stable posi-
tion control design is that in uncertain environments, the con-
troller can be affected by unpredictable physical interactions
with the environment. Therefore, force control is needed to
handle environment dynamics in a closed-loop control.

Series elastic actuators (SEAs) have become a fundamental
method in torque-controlled lightweight arm (LWA) in elec-
tric applications [1]–[4]. SEAs use a mechanical spring to
decouple power output shafts from the environment. This
provides force sensing, impact tolerance, and force fidelity
for the mechanical actuator. SEAs have been used in different
robot applications such as electric humanoid robots [5], [6]
and walking robots [7]. Electric SEAs provide a rapid move-
ment with a light load mass and actuator output power. Com-
pared to electric SEAs, the HSEA systems provide a higher
power-to-weight ratio and a lower speed ratio. The HSEA for
light-duty manipulation is presented in [8], [9]. As presented
in [8], the major challenges of the HSEAs in LWA are lack
of back-driveability and a low maximum speed. Furthermore,
creating a high performance control design for the HSEA
systems is a challenging task due to significant nonlinearities
of the hydraulic dynamics.

Impedance control for torque-controlled LWA is still an
active research topic [10]–[14]. In [10], [14], the disturbance
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observer based impedance control is presented. In [11] the
cascade control is used to decouple the slow outer-loop
controller from the fast inner-loop dynamics. The control
stability with different environments has been studied [12].
Control design for a linear electric actuator is presented
in [15], where high motor voltage with drivetrain is used
to produce continuous actuator force. In [16], the position-
based impedance controller for the hydraulic drive unit of a
legged robot is presented. The most of proposed impedance
control methods are verified with torque-controlled LWA.

In this study, we investigated to study control for the
HSEA targeted to heavy-duty applications with the payload
of 200 kilos. As reported in [17], the nonlinear model-based
control methods can provide high control performance with
hydraulic manipulators. In previous studies [18]–[20], virtual
decomposition control (VDC) shown to lead to state-of-the-
art control performance with heavy-duty hydraulic manipu-
lators. In this study, the main focus is to design model-based
controller for the HSEA by exploiting the control design a
principles of the VDC approach. The proposed controller is
incorporated with a novel impedance controller [19].

The paper is organized as follows. First, in Section II the
foundation of the VDC approach are presented. The kinemat-
ics and dynamics modeling of the HSEA in a view of VDC
approach are presented in Section III. The corresponding
control equations for the studied system are defined in Sec-
tion IV. In Section V, the impedance controller for the HSEA
is given. Finally, the experimental results are presented in
a Section VI, and conclusions are given in Section VII.

II. MATHEMATICAL FOUNDATION

In this section, the necessary mathematical foundations
of the VDC approach are introduced. Assume that there
is an orthogonal three-dimensional coordinate frame {A}
attached to the rigid body. Then, it follows from [21] that the
linear/angular velocity vector in coordinate frame {A} can
be defined as AV = [Av Aω]T . In vector AV , Av∈R3 denotes
the linear velocity vector, and Aω ∈ R3 denotes the angular
velocity vector. Furthermore, the force/moment vector, in
coordinate frame {A} can be written as AF = [Af Am]T .
In this vector, Af ∈ R3 denotes the force vector and Am
∈R3 denotes the moment vector. For the two fixed successive
frames {A} and {B}, the following restrictions hold:

BV = AUT
B

AV (1)
AF = AUB

BF , (2)

where AUB ∈R6×6 denotes the force/moment transforma-
tion between two fixed coordinate frames.



In view of [21], the dynamics in coordinate frame {A}
can be expressed as

AF∗ = MA
d
dt
(AV )+CA(

A
ω)AV +GA (3)

where MA ∈ R6×6 is the mass matrix, CA(
Aω) ∈ R6×6

represents the Coriolis and centrifugal terms, AF∗ ∈ R6 is the
net force/moment vector, and GA ∈ R6 is the gravity vector.

The linear parameterization expression for the required
rigid body dynamics in a control design, can be written as

YAθA
def
= MA

d
dt
(AVr)+CA(

A
ω)AVr +GA. (4)

In Eq. (4), the regressor matrix YA ∈ R6×13 and parameter
vector θ A ∈ R13 are specified in [21].

Finally, the required net force/moment vector for the rigid
links can be presented as

AF∗r = YAθA +KA(
AVr−AV ) (5)

where KA denotes the velocity feedback control gain.

III. KINEMATICS AND DYNAMICS MODEL FOR THE
HSEA

In SEA actuators, the spring is used to decouple the
actuator from the environment. Typically, the HSEA consists
of a hydraulic cylinder, which is connected in a series with a
spring and a control servo-valve. The one degrees-of-freedom
(DOF) prototype for an HSEA is illustrated in Fig. 1, where
the spring stiffness is designed to be symmetric in both
directions. One method to estimate a cylinder force is to
use chamber pressures and cylinder areas. Normally, the
cylinder chamber pressures provide inaccurate estimation for
the cylinder force due to noise of the signals. In contrast,
in the HSEA, with the known spring stiffness and spring
compression, the spring can be used as a force sensor. The
spring placement between the output power shaft and the
load enables to sensing of external forces from the load side.

In this study, the main focus is to design a model-based
controller for the HSEA using the VDC approach as a frame-
work. This approach provides a dynamics subsystem model-
based control design method for complex robot systems [22].
The current state-of-the-art control performance of heavy-
duty hydraulic manipulators has been reached with the VDC
approach, as reported in [17]. The HSEA in Fig. 1 has studied
in heavy-duty applications with a load mass up to 200 kg.

The three main steps of the VDC approach are virtual
decomposition of the entire system, coordinate frame at-
tachment to subsystems, and simple oriented graph (SOG)
presentation. In this section, the main steps are presented in
detail and then the kinematics and dynamics modeling for
the HSEA in Fig. 1 are given.

A. Virtual Decomposition of the HSEA

First, the entire system needs to be virtually decomposed
into subsystems by placing conceptual virtual cutting points
(VCPs) in the studied system. VCP comprose directed sepa-
ration points the between successive subsystems for the six-
dimensional force/moment relation to these subsystems. A
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Fig. 2. Virtual decomposition of the HSEA

VCP is simultaneously interpreted driving for one subsystem
and driven the VCP for another. The driven VCP is a point
to which the force/moment vector is exerted, and the driving
VCP is a point from which the force/moment vector is
exerted. Virtual decomposition for the HSEA is expressed in
Fig. 2b. As a results, the entire system can be modeled with
two subsystem, which are called the object and open chain.

The dynamics between subsystems in a virtual decompo-
sition system can be representing as an SOG [21]. The SOG
represents the rigid links as nodes and the force/moment
directions as directed edges. The SOG for the HSEA is given
in Fig. 2c, where the subsystem of the hydraulic cylinder with
a spring is represented by a dashed line.

The kinematic and dynamics of the subsystems can be
modeled by allocating fixed coordinate frames to the sub-
systems. The used coordinate frames for the HSEA are
presented in Fig. 2a. All coordinate frames in Fig. 2a are
attached so that the z-axis point out from the paper. The
frame B0 is fixed to cylinder base, B1 is fixed to cylinder
piston, frame B2 is fixed to spring connecting point and B3
at the end of the cylinder. Frame O is fixed to load center
of the mass and G at the end of the load.

B. Kinematics Equations for the HSEA

According to Eq. (1), the linear/angular velocity vectors
in cylinder coordinate frames in Fig. 2a can be written as

B1V = B0UT
B1

B0V + zẋc (6)
B2V = B1 UT

B2
B1V (7)

B3V = B0UT
B3

B0V + zẋl (8)

where z = [1 0 0 0 0 0]T , ẋc is the cylinder piston velocity, and
ẋl is the load velocity. In Eq. (6), the linear/angular velocity



vector B0V = [0 0 0 0 0 0]T because in this paper, the base
frame position is fixed. As Fig. 2 demonstrates, the cylinder
is connected in a series with spring. Therefore, the cylinder
velocity can be calculated as

ẋc = ẋl + ẋsp (9)

where ẋl is the measured load velocity and ẋsp is the spring
velocity.

C. Kinematics of the Load

The kinematic model for the load object can be defined
according to Eq. (1) and Fig. 2a as

OV =B4 UT
O

B4V =G UT
O

GV. (10)

Velocity vector GV describes the velocity of the object.

D. Dynamics of the Load Object

The load object force/moment vector can be written ac-
cording to Eq. (3) as

OF∗ = MO
d
dt
(OV )+CO(

O
ω)OV +GO. (11)

On the other hand,

OF∗ = OUB4
B4F−OUG

GF (12)

holds for the load object. Force vector GF describes the
external contact force between the object and environment.

E. Dynamics of the HSEA Open Chain

The dynamics relations for the HSEA open chain can be
written, in view of Eq. 3, as

B0F∗ = MB1

d
dt
(B1V )+CB1(

B1ω)B1V +GB1 (13)

B1F∗ = MB2

d
dt
(B2V )+CB2(

B2ω)B2V +GB2 (14)

B2F∗ = MB3

d
dt
(B3V )+CB3(

B3ω)B3V +GB3 . (15)

Therefore, the total force/moment vectors in coordinate
frames can be written as

B2F = B2F∗+B2UB3
B3F (16)

B1F = B1F∗+B1UB2
B2F (17)

B0F = B0F∗+B0UB1
B1F. (18)

Now, the hydraulic cylinder force in coordinate frame B1 can
be presented from Eq. (17) as

fc = zB1F (19)

where z = [1 0 0 0 0 0].

IV. CONTROL EQUATIONS DESIGN FOR THE HSEA

Next, the control equations for the subsystems in Fig. 2b
are presented. As Fig. 2 showed, the control system in-
cludes a hydraulic cylinder and a servo-valve. The control
equations for the hydraulic servo-valve with fluid dynamics
are specified closely in [18] and [21] with corresponding
control equations. In view of the VDC approach, these mod-
ular equations can be incorporated into the control design
when kinematics and dynamics equations are defined as in
accordance with the approach. In the framework of the VDC,
the format of required velocity includes the desired velocity
and one or more terms, which are related to control errors.
In the control design, control equations are designed by
calculating required kinematics and dynamics equations in
every coordinate frame in Fig. 2a.

A. Required Kinematics of the HSEA

The required linear/angular velocities for the HSEA open
chain can be presented as follows, in view of Eqs. 6–8

B1Vr = B0UT
B1

B0Vr + zẋcr (20)
B2Vr = B1UT

B2
B1Vr (21)

B3Vr = B0UT
B3

B0Vr + zẋlr (22)

where z = [1 0 0 0 0 0]T , ẋlr is the load velocity, and ẋcr is
the required cylinder piston velocity.

B. Required Kinematics of the Load

The load object’s required kinematics can be specified,
considering Eq. (10), as

OVr =
B4 UT

O
B4Vr =

G UT
O

GVr. (23)

The velocity vector GVr describes the required velocity of
the object.

C. Required Dynamics of the Load Object

The required net force/moment vector of the load object
can be written, by reusing Eq. (5), as

OF∗r = YOθO +KO(
OVr−O V ). (24)

So, by using Eq. (12), the net force/moment vector in
frame {B4} can be presented as

B4F∗r = B4 UO
B4Fr−B4 UG

GFr. (25)

The force vector GFr describes the required external force
vector between object and environment.

D. Required Dynamics of the HSEA

According to the required kinematics model for the HSEA
open chain in Eqs. (20)–(22) and according Eq. (5), the
required net force/moment vectors for rigid links can be
defined as

B0F∗r = YB0θB0 +KB0(
B0Vr−B0V ) (26)

B1F∗r = YB1θB1 +KB1(
B1Vr−B1V ) (27)

B2F∗r = YB2θB2 +KB2(
B2Vr−B2V ). (28)



Then, it follows from Eqs. (5), (26), and (28) that the
force/moment vectors for the HSEA open chain can be
defined as

B2Fr = B2F∗r +B2UB3
B3Fr (29)

B1Fr = B1F∗r +B1UB2
B2Fr (30)

B0Fr = B0F∗r +B0UB1
B1Fr. (31)

Finally, the required linear cylinder force can be calculated
from Eq. (30)

fcr = zB1Fr (32)

where z = [1 0 0 0 0 0].

V. IMPEDANCE CONTROLLER FOR THE HSEA

HSEA actuators provide a high power-to-weight ratio
compared to electric SEAs. Therefore, HSEAs are suitable
for moving heavy loads in many industrial tasks. Inter-
actions between the environment and manipulator with a
high contact force may stress mechanical structure. For this
reason, the impedance control designs for HSEAs have been
an active research subject over the past decade. A novel
impedance control method in a Cartesian space for heavy-
duty hydraulic manipulators the framework of the VDC
approach is presented in [23]. In this study, the impedance
control method is incorporated in the control design.

Fig. 1 shows that the HSEA consists of a spring, which
is connected in the series with a hydraulic spring. By con-
necting two elastic springs in a series, the effective stiffness
of the system is reduced. In this study, the selected spring
stiffness is illustrated in Fig. 3. As Fig. 3 shows, the spring
stiffness is not linear due to pretension of the spring. The
selection of the spring is presented with more details in [24].
The contact force of the HSEA can be estimated by using
spring stiffness and measured spring compression. Therefore,
the contact force can be calculated as

fe = η(xsp)(η(xpr−xsp)η(xsp)k1xsp+

η(xsp− xpr)k2 +2k1)−η((−xsp)(η(xpr + xsp)

η(−xsp)k1(−xsp)+η(−xsp− xpr)k2 +2k1) (33)

where k1 and k2 are the slope gains for the spring stiff-
ness, xpr is a pretension area, xsp is the spring compression,
and fe is a contact force. The switching function is

η(x) =
tanh([x− xo]/cη)+1

2
(34)

where xo is a sufficiently small offset constant parameter,
and cη is a sufficiently small constant.

Now, the control law for a target impedance can be
presented, in view of [25], as

fd− fe = Md(ẍl− ẍld)+Kd(ẋl− ẋdl)+Kx(xl− xdl) (35)

where Md is inertia gain, Kd is the damping gain, and Kx is
the stiffness gain of the target impedance. In this study, the
dynamics parameters Md , Kd and Kx are scalars because only
1-DOF contact force is studied. In Eq. (35), xl , ẋl and ẍl
represent the measured position, velocity, and acceleration
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Fig. 3. Spring force as a function of spring compression

of the load, and xdl , ẋdl and ẍdl are the desired values
respectively. In Eq. (35) the desired force is selected to be
fd = 0. The dynamics of the environment can be modeled as
pure damping and stiffness to make the model manageable
for the control. Now, the impedance control law can be
rewritten as

fd− fe = Kd(ẋl− ẋdl)+Kx(xl− xdl). (36)

As specified in [23], by assuming that a stiffness and
a damping gain are selected so that their magnitudes are
not subject to unstable behavior and that desired target
impedance is attainable, the impedance control law in
Eq. (36) can be rewritten as

ẋr = ẋdl +Dx(xdl− xl)+Dd( fd− fe) (37)

where ẋr is a required velocity, Dx is a stiffness gain, and
Dd is a damping gain. The required velocity ẋr is a unique
property of the VDC approach, which generally consists of a
desired velocity and control error related terms. The required
velocity serves as a reference trajectory to the system. In
Eq. (37), the Dx and Dd are scalar gains, which are defined as

Dd = K−1
d (38)

Dx = KxK−1
d . (39)

The impedance control law in Eq. (37) is equal to Eq. (36)
only if gains Dx and Dd are defined as in Eqs. (38)–(39) more
detail in [26]. As Eq. (37) shows, this impedance control
method provides a parallel force and position control.

Now, velocity vectors in Eq. (10) and Eq. (23) and force
vectors in Eq. (12) and Eq. (25) in coordinate frame G (see
Fig. 2a) can be defined as

GV = zẋl
GVr = zẋr (40)

GF = z fe
GFr = z fr. (41)

where z = [1 0 0 0 0 0]T .

VI. EXPERIMENTAL RESULTS

In this section, the control of the proposed controller
was verified with a 1-DOF full-scale experimental setup,
which is presented in Fig. 4. In the setup, the real-time
control interface was implemented with a Beckhoff CX2030
controller with a sampling rate of 1000 Hz. The size of
the hydraulic cylinder was φ32/18-400. The cylinder was
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Fig. 4. 1-DOF HSEA experimental setup

controlled by using an NG6 size servo solenoid valve with a
nominal flow rate of 40 l/min at 3.5 MPa per control notch.
The cylinder chamber pressures were measured with UNIK
5000 pressure transmitters with a measuring range of 25
MPa. The supply pressure of the setup was set to 20 MPa.
The spring compression was measured using an MTS linear
position sensor with a measurement range of 0.015 m and
load position was measured with a Heidenhein linear position
sensor with a measurement range of a 0.54 m. The used load
mass was 200 kg. The used spring stiffness (see. Fig.3) was
1000 N/mm in pretension area and 500 N/mm after that.

In both experiments, the proposed controller was tested by
using a point-to-point quintic reference trajectory designed
for the load position. The damping and the stiffness gains
of the impedance control (see Eq. (37)) were set as a
compromise between a system damping and a settling time.
In the experiments, gains in Eq. (38) and Eq. (39) was set
to Dx = 5×10−5 and Dd = 1.75.

In the first experiment, the load was driven to contact with
a stiff environment. The load position during the contact
motion is presented in Fig. 5. The contact point in Fig. 5
was set to 0.496 m, which was reached 4 s. As Fig. 5 shows,
the proposed controller efficiently limits the load position in
a contact motion. The load position errors without contact
are about 1.4 mm and 1.8 mm for the positive and negative
directions, respectively. Contact with the environment caused
a peak for the position error, and the static error during
contact was 1.5 mm. The static error contact force results
from a parallel force and position control. Fig. 6, the cylinder
position during the contact motion is presented. As Fig. 6
demonstrates, the maximum position error of the hydraulic
cylinder for position direction is about 1.2 mm , and for the
negative direction it is about 1.6 mm.

As Eq. (37) shows, in the case of the proposed impedance
controller, the contact force is included to load the velocity
reference with a position error term. In Fig. 7, the contact
force effects to the load velocity reference are presented. As
Fig. 7 shows, the contact at time 4 s efficiently drops the
load reference velocity when the contact force and position
error start to rise.

In both experiments, the contact force was estimated using
Eq. (33). Fig. 8 demonstrates, the contact force with and
without the proposed impedance controller. As Fig. 8 shows,
the proposed impedance controller significantly decreases the
actuator’s contact force with the environment.
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In the second experiment, the load was put into contact
with a soft environment. The load position during the contact
motion is presented in Fig. 9. The contact point in Fig. 9 was
set to 0.466 m, which was reached at time 3.8 s. Compared
to Fig. 5, which represents a stiff environment, in Fig. 9 with
the soft environment the static error is a litter higher. Still,
the proposed controller can be limited efficiently by the load
position during the contact motion.

The experimental results verifies that proposed impedance
control method can efficiently damps the contact between
the HSEA system and stiff and soft environment.

VII. CONCLUSIONS

This paper focused on proposing a model-based controller
design for HSEAs. The target impedance control for an
HSEA is also presented by incorporating the proposed con-
troller as an inner-loop controller with a previously designed
impedance control method. Experimental results with a real-
size 1-DOF experimental setup verified that the proposed
controller can efficiently control the contact force between
the actuator and the environment. In future research, the
proposed controller will be studied in a real world multi-
DOF hydraulic manipulator.
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