
Serverless: What it Is,
What to Do and What Not to Do

Jussi Nupponen
Gofore

Tampere, Finland
jussi.nupponen@gofore.com

Davide Taibi
Tampere University
Tampere, Finland

davide.taibi@tuni.fi

Abstract—Serverless, the new buzzword, has been gaining a
lot of attention from the developers and industry. Cloud vendors
such as AWS and Microsoft have hyped the architecture almost
everywhere, from practitioners’ conferences to local events, to
blog posts. In this work, we introduce serverless functions (also
known as Function-as-a-Service or FaaS), together with on bad
practices experienced by practitioners, members of the Tampere
Serverless Meetup group.

Index Terms—Serverless, Function-as-a-service, FaaS

I. INTRODUCTION

Serverless computing provides a platform to efficiently
develop and deploy applications to the market without having
to manage any underlying infrastructure [1]. Different server-
less computing platforms such as AWS Lambda, Microsoft
Azure Functions, and Google Functions have been proposed
by the main cloud providers. Such platforms facilitate and
enable developers to focus more on business logic, without the
overhead of scaling and provisioning the infrastructure as the
program technically runs on external servers with the support
of cloud service providers [2].

The most prominent implementation of serverless comput-
ing is Function-as-a-Service (FaaS) (also named ”serverless
functions”). When using FaaS, developers only need to deploy
the source code of short-running functions and define triggers
for executing them. The FaaS provider then, on-demand,
executes and bills functions as isolated instances and scales
their execution. In the remainder of this work, we refer to
FaaS with the term ”Serverless Functions”.

The contribution of this work, targeted to practitioners and
researchers, are the following:

• Introduction to Serverless and Function-As-a-Service
(Section II)

• Six bad practices that we experienced while implement-
ing serverless-based applications, together with the solu-
tions we adopted to overcome them (Section III).

• Open issues, and research directions (Section IV)

II. WHAT IS SERVERLESS

In serverless, the cloud provider dynamically allocates and
provisions servers. The code is executed in almost-stateless
containers that are event-triggered, and ephemeral (may last

for one invocation). Serverless covers a wide range of tech-
nologies, that can be grouped into two categories: Backend-
as-a-Service (BaaS) and Functions-as-a-Service (FaaS).

Backend-as-a-Service enables to replace server-side com-
ponents with off-the-shelf services. BaaS enables developers
to outsource all the aspects behind a scene of an application so
that developers can choose to write and maintain all applica-
tion logic in the frontend. Examples are remote authentication
systems, database management, cloud storage, and hosting.

An example of BaaS can be Google Firebase, a fully
managed database that can be directly used from an appli-
cation. In this case, Firebase (the BaaS services) manage data
components on our behalf.

Function-as-a-Service is an environment within which is
possible to run software. Serverless applications are event-
driven cloud-based systems where application development
relies solely on a combination of third-party services, client-
side logic, and cloud-hosted remote procedure calls [2].

FaaS allows developers to deploy code that, upon being
triggered, is executed in an isolated environment. Each func-
tion typically describe a small part of an entire application.
The execution time of functions is typically limited (e.g.
15 minutes for AWS Lambda). Functions are not constantly
active. Instead, the FaaS platforms listen for events that in-
stantiate the functions. Therefore, functions must be triggered
by events, such as client requests, events produced by any
external systems, data streams, or others. The FaaS provider
is then responsible to horizontally scale function executions in
response to the number of incoming events.

Serverless applications can be developed in several contexts
while, because of its limitations, it might have some issues in
other contexts. As an example, long-running functions, such
as machine learning training or long-running algorithms might
have timeout problems, while constant workloads might result
in higher costs compared to indefinitely running on-demand
compute services like virtual machines or container runtimes.

III. WHAT TO DO AND WHAT NOT TO DO

Because of the recent introduction of serverless, good and
best practices are very limited [2]. Leitner et al. [1] identified
five patterns for composing and triggering serverless functions.

The bad practices presented in this work were elicited
with the same design adopted in our previous studies on

Author Version. Please cite as:
J. Nupponen and D. Taibi, "Serverless: What it Is, What to Do and What Not to Do," 2020 IEEE International Conference on 
Software Architecture Companion (ICSA-C), Salvador, Brazil, 2020, pp. 49-50, doi: 10.1109/ICSA-C50368.2020.00016.



microservices issues and bad smells [3] [4]. In May 2019,
we surveyed 21 members of the Tampere Serverless Meetup
Group1 to collect their experience on the bad practices they
applied when developing serverless applications. Then, during
the next Meetup in September 2019, we organized a focus
group to group similar practices with the help of the same
practitioners that replied to the survey.

In this Section we describe the six bad practices identified,
together with the solutions that we adopted to overcome them.
Asynchronous calls: Asynchronous calls to and between
Serverless Functions increase complexity of the system. Usu-
ally remote API calls follow request response model and are
easier to implemented with synchronous Serverless Function
calls.

• Problems: Increased complexity, requires alternate re-
sponse channel

• Adopted Solution: Use synchronous calls when applica-
ble. Use integration on message queue (Pub-Subscribe) to
allow notification to caller of the success of the operation
if asynchronous calls are used. However, asynchronous
calls are viable solution to one-off jobs like triggering
long running backup process.

Functions calling other functions
• Problems: Complex debugging, loose isolation of fea-

tures. Extra costs if functions are called synchronously
as we need to pay for two functions running at the same
time.

• Adopted Solution: Avoid calling functions from another
function. Merge the functions, when possible.

Shared code between functions
• Problems: Might break existing Serverless Functions that

depend on the shared code that is changed. Risk to hit the
image size limit (50MB in Lambda), warmup-time (the
bigger the image, the longer it takes to start).

• Adopted Solution: Write independent and decoupled
Functions. Use clean architecture and depend shared code
only via well defined and tested interfaces.

Usage of too many libraries
• Problems: Increased space used by the libraries increase

the risk to hit the image size limit and increase the
warmup-time.

• Adopted Solution: Import only the libraries that are really
needed, avoiding overloading the system. A possible
workaround in AWS Lambda, if the warm-up time does
not matter, is to load the library at startup from external
storage in a non-persistent temporary directory.

Adoption of too many technologies such as libraries, frame-
works, languages.

• Problems: Adds maintenance complexity and increases
skill requirements for people working within the project.

• Solutions: Limit the number of technologies adopted in
the project.

1Serverless Tampere Meetup https://www.meetup.com/Tampere-Serverless/

Too many functions Creation of functions without reusing
the existing one. Non-active Serverless Functions doesn’t
cost anything so there is temptation to create new functions
instead of altering existing functionality to match changed
requirements.

• Problems: Decreased maintainability and lower system
understandability.

• Solutions Carefully consider if there is a need to create
a new function. Group functions into ”microservices” so
as other services will see only the microservice interface
instead of the detailed implementation of the individual
functions.

IV. OPEN ISSUES

Several issues are still open in serverless, mainly because
of the youth of this technology:

• Lack of understanding of the event-driven paradigm,
especially for developers used to develop with different
approaches.

• Lack of solid tools for deploying and developing func-
tions. Deployment tools are not yet stable and develop-
ment tools and IDEs do not yet provide a matured specific
support.

• Confusion between functions and microservices. Some
participants claimed that functions should only do only
one thing, for a specific business logic. However, a
microservice can be composed of one or more functions,
but a single function should not be confused as a mi-
croservice.

• Testing. Since functions are triggered by well-defined
interfaces, unit tests can be easily developed. However,
system-level and integration testing become much more
complex. One of the reasons, also reported by [1] and
[2], might be the reduced system observability.

Providers recently developed tracing tools (e.g. AWS Cloud-
Watch). However, the debug of the code is still very far from
the debugging of a monolithic system. This issue created op-
portunities for tool providers (e.g. Thundra2) that are currently
working to partially fill this gap.

Practitioners proposed several patterns to compose, orches-
trate, and trigger functions. However, every few months new
practitioners propose new patterns that invalidate some of
the previous ones, making even more complex to understand
which pattern should be used.

REFERENCES

[1] P. Leitner, E. Wittern, J. Spillner, and W. Hummer, “A mixed-method em-
pirical study of function-as-a-service software development in industrial
practice,” Journal of Systems and Softw., vol. 149, pp. 340 – 359, 2019.

[2] I. Baldini, P. Castro, K. Chang, P. Cheng, S. Fink, V. Ishakian, N. Mitchell,
V. Muthusamy, R. Rabbah, A. Slominski, and P. Suter, Serverless Com-
puting: Current Trends and Open Problems, 2017.

[3] D. Taibi, V. Lenarduzzi, and C. Pahl, “Processes, motivations, and issues
for migrating to microservices architectures: An empirical investigation,”
IEEE Cloud Computing, vol. 4, no. 5, pp. 22–32, 2017.

[4] D. Taibi and V. Lenarduzzi, “On the definition of microservice bad
smells,” IEEE Software, vol. 35, no. 3, pp. 56–62, 2018.

2Thundra http://thundra.io


