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Abstract—This paper proposes two methods for calibrating 

triaxial magnetometers. Both of them calibrate these sensors with 

more general assumption of noise on three axes than previous 

state-of-the-art methods. The first method estimates bias and 

rotation parameters more accurately and the second method 

yields a better estimate for the scaling parameter than the state-

of-the-art method subMLE. The computational time of the latter 

is also 43 times faster than subMLE, which allows this method to 

be applied in devices with low-computational resources (e.g. 

smartphones). Furthermore, the second method yields more 

robust heading angle estimates compared to subMLE. This result 

implies that the second method can be applied in light-weight 

inertial measurement systems, for which the orientation of the 

device is vital information for pedestrian dead reckoning system.  

Keywords—magnetometer, calibration, inertial navigation, 

noise, maximum likelihood estimator 

I. INTRODUCTION 

Smartphone usage has become indispensable in everyday 
life. People carry their smartphones with them all the time, 
which allows determining the position of users based on 
signals received by their smartphones. Knowing one’s 
position is essential for location-based services (LBS) such 
as forecasting weather or suggesting nearby shop. 

Global Navigation Satellite System (GNSS) provides 
mobile phones measurements by which they can determine 
their location with extremely high accuracy in outdoor 
environments. However, the signals from satellites are 
reflected by high buildings and get degraded significantly for 
indoor environments. These limitations have been 
extensively studied in the literature to find the alternating 
solutions. Network based methods can also find the position 
of user by wireless network technologies as in [1]. These 
methods use, for example, signal strength or angle of arrival 
from the device to anchor points and then use fingerprinting 
or trilateration to estimate the location of the device. The 
limitations are the burden of designing the network and 
multi-path effects of signals. An alternative solution are 
sensor-based methods where only sensors integrated in the 
device are used to estimate the user’s location. Indeed, 
Inertial Measurement Units (IMUs) that consist of multiple 
sensors such as accelerometer, gyroscope and magnetometer 
are commonly integrated in nowadays smartphones. These 
sensors are used to estimate the distance of moving and 
heading direction of user from the initial location [2].    

The magnetometer is used to measure magnetic fields 
nearby. In outdoor environments, the geomagnetic field is 
usually observed. Measurements of the geomagnetic field 

from the magnetometer can be used to estimate the local 
North direction and determine the heading direction of the 
device. However, measurements from the magnetometer are 
corrupted by multiple error sources and electrical noise. 
Using the raw measurements directly leads to wrong 
estimation of heading direction. A calibration procedure is, 
thus, essential. 

Multiple methods to calibrate magnetometers have been 
studied. The simplest one is swing method [3] that requires 
the known orientation of the device and is inapplicable in 
general. Another method that is free from knowledge of the 
attitude of the devices are in [4]-[6]. The initial derivation 
was in Least Square scheme [4]. Later derivation also 
included the model of noise in magnetometer to robustly 
estimate calibration parameters of the magnetometer under 
Maximum Likelihood Estimator (MLE) framework, which is 
heavy computationally demanding. When combining with 
inertial sensors, [7] can calibrate the magnetometer by lower 
computational method. 

 In smartphones, computational resources and provided 
energy by a battery are limited. Therefore, a method with 
low computational cost that also uses no information from 
other sensors is needed. An effective state-of-the-art method 
is presented in [5]. In our paper, the method from [5] is 
called as subMLE because the magnetometer is calibrated by 
a suboptimal MLE method under the assumption that noise 
in all three axes follows the Gaussian distribution with same 
parameters. We compare subMLE to our proposed methods.  

This paper is an extension of [8] that introduced our work 
on modeling noise in magnetometers integrated in 
smartphones. In [8], we concluded that the noise in 
magnetometers follow non-Normal distributions as opposed 
to the common assumption. This conclusion leads to the 
insight that if Gaussian distribution can fairly model the 
noise in three axes of magnetometer, the standard deviation 
of each axis does not need to be equal. In this paper, we 
propose two methods, the first one assumes different 
standard deviations on each axis and the second aims to 
reduce the high computational demand of the first method by 
converging faster without losing significantly the accuracy.  

  The main contributions of this paper are introducing the 
more general assumption of noise in three axes of the 
magnetometer and proposing a calibration method with 
significantly lower computational demand that still yields 
comparable results to the subMLE method.  

This paper is organized as follows. Section II formulates 
the problem under MLE framework. Section III introduces 
and explains our proposed methods. In Section IV, results 
from simulations are presented. Finally, Section V 
summarizes the paper and comments on future work. 

This research was financially supported by Business Finland 
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II. PROBLEM FORMULATION 

A. Problem formulation 

Without loss of generality, we assume the magnitude of the 
geomagnetic field in the navigation frame to be 1. The 
magnetometer measurements can be modelled by [5] 

          (1) 

where is the reading of magnetometer at time 

ith,  and represent the total transformation 

and bias respectively, is the normalized geomagnetic 

field in the navigation frame, which is assumed to be a 

constant unit vector,  represents the navigation 

frame (n) to sensor frame (S) rotation matrix and  is 

the wideband noise of the sensor. For simplicity, we denote  

 where . 
We assume that noise on each axis can be modelled by a 

Gaussian distribution with zero mean and covariance matrix 

. Previous state-of-the-art papers assume covariance matrix 

of noise to be 2I, which have not taken into account the 
different standard deviation of axes and the correlation 
between them. The induced noise in the sensor is 

             

(2) 

The Maximum Likelihood Estimation is used to 
maximize the conditional probability of n observed values 

given parameters and 

. The MLE is formulated as 

 

The solution  of (3) is not 

unique. Assume that the set  is a 

solution, any set of parameters  

is also a solution if  and  where  
is an orthonormal matrix. Thus, the calibration of 
magnetometers is usually divided into two steps [5] 

1. Transform measurements from ellipsoid to 

sphere: Find parameters  and 

transform measurements from ellipsoidal 

manifold to spherical manifold by  

where F denotes some 

transformation frame. 

2. Align measurements from F frame to sensor 

frame S: Find the rotation matrix by using 

magnetic field measurements  obtained 

from the external information sources. The 

procedure is described in detail in [5]. 

 

 

 

 

 

 

 

 

 

(3) 

III. PROPOSED METHOD 

After dividing the calibration into two steps, our objective 
function for the first step becomes 

 

 

(4) 

 

 

Solving the minimization problem (4) indicates that we 
need to estimate n auxiliary magnetic field vectors and our 

calibration parameter space is only  while the 
search space is (2n+12). If the unit vectors  can be 
approximated by methods with low computational 
complexity, the search space and complexity of (4) are 
reduced. One approach to solve this is to use the parameters 

 estimated by Least Square procedure and 
implemented in [4], then transform the measurement vectors 

 to unit sphere. Our proposed algorithm for transforming 

measurements from ellipsoid to sphere is described in 
Algorithm 1.  

ALGORITHM 1. TRANSFORM MEASUREMENTS FROM ELLIPSOID TO SPHERE 

WITH ARTIFICIAL DATA CREATION 

Input: Magnetometer measurements at index ith . 

Output: Calibration parameters  and transformed 

magnetic field measurements  

1. Estimate  in [4] 

2. Create an artificial geomagnetic field  

 
3. Normalize the created geomagnetic field to fulfill 

the condition  by 

 

4. A. Estimate the covariance matrix  of noise by 

following procedure in [8]. 
Estimate the parameters  from solving the 

optimization problem by iterative method 

 
B. Iteratively solve the following problem to 

estimate the parameters   

 
5. Calculate the transformed magnetic field 

measurements 

 
 

In Algorithm 1, Artificial Data Creation 1 (ADC1) uses 
the objective function that was discussed previously while 
Artificial Data Creation 2 (ADC2) ignores the covariance 
matrix of noise in sensor. In this paper, both methods are 
implemented to compare their performance in estimating 
parameters. An initial guess to solve the iterative 
optimization problem is produced by the Least Square 
method in [4]. Applying Singular Value Decomposition to 

the estimated parameter , we can use S and R = U 



 

to evaluate the performance of calibration algorithms in 
estimating S (Scaling) and R (Rotation) separately [5]. Next, 
simulation results are presented to demonstrate the effect of 
our proposed calibration procedure. 

IV. SIMULATION RESULTS 

A. Estimation of calibration parameters 

A simulated set of 1000 data points is used to analyze the 
performance of the calibration algorithm. Chosen calibration 
parameters are 

 

The attitude matrix  is parameterized in Euler angles 
with the three angles given as functions of index i (for 
simplicity, i is omitted in the following equation) 

 

where  

, 

and  is the function that outputs the greatest integer less 
than or equal to x. 

To facilitate the performance comparison between 
different methods, the error metrics described in [5] is 
applied 

where  denotes the true and estimated parameters.  

We ran 100 Monte Carlo simulations for the above 
calibration and noise parameters in Matlab [9]. The Quasi-
Newton algorithm is implemented in a laptop with an i5-
7200U 2.5 GHz processor. The stop condition of the 
minimization problem is Step Size < 10-6. Table I shows the 
mean and standard deviations of error metrics defined above 
for Least Square (LS) method [4], the reference subMLE [5] 
and our two proposed methods. The time required for 
executing step 1 to 4 in Algorithm 1 is presented in the table. 

      ADC1 method yields the most accurate parameter 
estimates for b and R while ADC2 yields the best estimate 
for S. However, the differences between estimates from 
subMLE, ADC1 and ADC2 are rather small. All three 
methods yield approximately 11% more accurate estimates 
for S and approximately 3% better estimates for R than the 
LS approach. These results show that all three methods 
transform the ellipsoid to sphere better than LS method.  
Although ADC1 yields more accurate estimates for two of 
the three parameters, ADC2 is the better choice as it provides 
estimates that are similarly good and is significantly faster 
than ADC1 and subMLE. ADC2 is almost 20 times faster  

TABLE I. CALIBRATION ERROR METRICS AND TIME. MEAN ERRORS AND 

STANDARD DEVIATION IN (.) FOR PARAMETERS B, S AND R. LAST COLUMN 

SHOWS RUN TIME OF EACH METHOD IN SECONDS AND RELATIVE 

COMPARISION TO LS IN [.]. BOLD INDICATE THE SMALLEST MEAN ERROR 

FOR A PARTICULAR PARAMETER ESTIMATE. 

 

than ADC1 and 43 times faster than subMLE. Since this 
paper paper focuses on sensors used in smartphones, which 
have limited computational resources, ADC2 is used in the 
next subsection to evaluate the accuracy in estimating the 
heading angle of the device. 

B. Estimation of Heading angle 

Magnetometer can be used for heading estimation. 
Simulation procedure is created with 101 Monte Carlo runs 
for the following settings defined in Matlab [9]:  

measurement range: 200, resolution: 0.0625,  

constant bias: [2 -3 1], axes misalignment: [20 40 3],  

noise density: [0.15 0.15 0.2], sampling period of 15ms. 

The magnetometer is rotated by three axes in the 
navigation frame, three times for each axis as shown in Fig. 
1. In those 101 runs, the alignment matrix from F frame to S 
frame [5] is estimated by the first run with the given 
magnetic field in frame S and used for all 100 left runs. This 
simulation procedure imitates a real scenario in which the 
true heading information is not provided all the time. The 

heading angle  in S frame is calculated by 

      , (5) 

where hx and hy are magnetic field measurements in x and y 

direction of frame S. If  = 0, the x-axis points to the magnetic 
North, the z-axis points downward and y-axis completes the 
right-hand rule. 

 

Fig. 1. Measurements from the ideal magnetometer (no error) and realistic 

magnetometer (with the above settings) 

 

 eb eS eR Time (s) 

LS 0.0866 

(0.0387) 

0.1364 

(0.0510) 

0.0042 

(0.0018) 

0.0020 

 

subMLE 0.0866 

(0.0387) 

[−2e(−7)] 

0.1214 

(0.0541) 

[−0.1096] 

0.0041 

(0.0018) 

[−0.0299] 

1.4221 

[711.05] 

ADC1 0.0866 

(0.0387) 

[−2e(−7)] 

0.1217 
(0.0584) 

[−0.1078] 

0.0040 

(0.0018) 

[−0.0336] 

0.6502 
[325.10] 

ADC2 0.0866 

(0.0387) 

[−1e(−7)] 

0.1208 

(0.0577) 

[−0.1142] 

0.0041 

(0.0018) 

[−0.0312] 

0.0328 

[16.40] 

https://en.wikipedia.org/wiki/Integer


 

The data from rotating the sensor horizontally (around the 
z-axis) is used to estimate the heading angle by (5). The 
absolute error in heading angle estimation by raw 
measurements and calibrated ones from LS, subMLE and 
ADC2 are shown in Table II. ADC2 yields more accurate 
heading angle estimates than both LS and subMLE. 
Furthermore, it is again significantly faster than subMLE. 
Smoothing can be applied to denoise the measurements after 
they have been calibrated by ADC2. The smoothing windows 
of length 3 to 67 were evaluated, and with window length 15 
the lowest heading error was achieved. 

The calibrated magnetometer data yielded by ADC2 are 
compared to the raw data in Fig. 2. The calibrated readings are 
near to the unit circle locus, which validates that the combined 
effect of the magnetic distortions is successfully compensated. 

V. CONCLUSION 

It is also shown that the proposed methods reduce considerably 
the search space for the parameters that have to be estimated 
for magnetometer calibration problem. ADC1 and ADC2 yield 
parameter estimates that are approximately accurate as the 
estimates of the state-of-the-art method subMLE while 
outperforming the LS method in terms of accuracy. Most 
importantly, both methods are significantly faster than the 
subMLE method, and ADC2 is significantly faster than ADC1. 
ADC2 is not only faster than ADC1 in computational time but 
it is also faster to implement since it does not require 
estimation of the covariance matrix, however, one needs to 
choose the method depending on the computational time or the 
accuracy of parameter they want to estimate. In this paper, the 
authors choose ADC2 since the aim was to calibrate 
magnetometers integrated in devices with low computational 
resources. The heading angle estimation using the ADC2 
method also showed an approximately 0.5% improvement 
compared to LS or subMLE. This small improvement has 
greater impact when using IMUs for real time Pedestrian Dead 
Reckoning applications, where small errors in the heading 
estimate can quickly cause large positioning errors. 

The intuition behind the proposed methods is from 
comparing the standard deviation of noise in axes of 
magnetometer with the magnitude of geomagnetic field at the 
experimental location. It is observed, e.g. in [10] that the 
magnitude of geomagnetic field is around 55 µT while the 
standard deviation of noise in one axis is approximately 0.35 
µT (less than 100 times). Thus, the transformed magnetic field 

from ellipsoid to unit sphere is sufficiently close to  after a 
rotation. 

TABLE II. MEAN OF 100 MONTE CARLO RUNS IN ESTIMATING HEADING ANGLE 

ERRORS AND COMPUTATIONAL TIME 

 Heading error (0) Calibration time (s) 

Raw 29.3803  

LS 8.8760 0.0039 

subMLE 8.8789 2.1799 

ADC2 8.8284 0.0603 

ADC2 smooth 7.3883  

 

Fig. 2. Norm of calibrated data (orange) compared to raw data (blue) 

In the future the proposed methods will be tested and 
compared with LS and subMLE using real-world data from 
both magnetometers integrated in smartphones and more 
reliable magnetometers integrated in, e.g., XSens units. 

ACKNOWLEDGMENT 

Nhan Nguyen thanks Dr. Pavel Davidson for sharing his 

insight in magnetometer calibration and its application. Nhan 

Nguyen also appreciates the help of Prof. Esa Rahtu in fruitful 

discussion and giving feedback to standardize the article. 

REFERENCES 

[1] P. Müller, M. Raitoharju, S. Ali-Löytty, L. Wirola, R. Piche. “A 
survey of parametric fingerprint-positioning methods,” Gyroscopy 
and Navigation, vol. 7(2), 2016, pp. 107-127. 

[2] J. Collin, P. Davidson, M. Kirkko-Jaakkola, H. Leppäkoski, “Inertial 
sensors and their applications,” Handbook of Signal Processing 
Systems, 3 ed. Springer, 2019. p. 51-85 

[3] D. Gebre-Egziabher, G. H. Elkaim, J. D. Powell, and B.W. Parkinson, 
“Calibration of strapdown magnetometers in magnetic field domain,” 
Journal of Aerospace Engineering, vol. 19(2), April 2006, pp.87-102. 

[4] A. Barraud. “Least square magnetic calibration toolbox,” available at: 
https://se.mathworks.com/matlabcentral/fileexchange/23398-
magnetometers-calibration?stid=profcontriblnk 

[5] J. F. Vasconcelos, G. Elkaim, C. Silvestre, P. Oliveira and B. 
Cardeira, "Geometric approach to strapdown magnetometer 
calibration in sensor frame," IEEE Transactions on Aerospace and 
Electronic Systems, vol. 47, no. 2, April 2011, pp. 1293-1306. 

[6] Y. Wu and W. Shi, “On calibration of three-axis magnetometer,” 
IEEE Sensors Journal, vol. 15(11), 2015, pp.6424-6431 

[7] M. Kok, T.B. Schön, “Magnetometer calibration using inertial 
sensors,” IEEE Sensors Journal. 2016 May 16;16(14):5679-89 

[8] N. Nguyen, P. Müller and J. Collin, "The statistical analysis of noise 
in triaxial magnetometers and calibration procedure" 2019 16th 
Workshop on Positioning, Navigation and Communications (WPNC), 
Bremen, 2018, pp. 1-6, in press 

[9] MATLAB, ver. 9.6.0.1072779 (R2019a), pub. The MathWorks Inc.  

[10] Nhan Nguyen, “The statistical analysis of noise in triaxial sensor”, 
Bachelor’s Thesis, Tampere, Tampere University, 2019. Available: 
http://urn.fi/URN:NBN:fi:tuni-20190905316

 

 

https://tutcris.tut.fi/portal/en/persons/philipp-muller(d8dd0867-7645-4eb2-8724-68e578093a28).html
https://tutcris.tut.fi/portal/en/persons/simo-aliloeytty(546fe141-9cb6-4cb7-a963-9df574d77065).html
https://tutcris.tut.fi/portal/en/persons/robert-piche(aa9ffa8c-7051-44f3-befd-7d3250af402d).html
https://tutcris.tut.fi/portal/en/publications/a-survey-of-parametric-fingerprintpositioning-methods(b7dbe23b-c436-4ba0-bebb-286bf244cecd).html
https://tutcris.tut.fi/portal/en/publications/a-survey-of-parametric-fingerprintpositioning-methods(b7dbe23b-c436-4ba0-bebb-286bf244cecd).html
https://tutcris.tut.fi/portal/en/persons/jussi-collin(dd08169a-dfbe-4825-a5a7-0a4ccd14ddef).html
https://tutcris.tut.fi/portal/en/persons/pavel-davidson(39f319b3-83cf-44f0-aec2-db101c0bbc22).html
https://tutcris.tut.fi/portal/en/persons/helena-leppakoski(25d08b84-0236-4fc4-aa1c-3b8042b4fd5f).html
https://tutcris.tut.fi/portal/en/publications/inertial-sensors-and-their-applications(d2f4657f-a56c-45a3-a21d-5946fd215779).html
https://tutcris.tut.fi/portal/en/publications/inertial-sensors-and-their-applications(d2f4657f-a56c-45a3-a21d-5946fd215779).html

