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Abstract— One of the major objectives of international
projects in the field of Industrial Automation is to achieve a proper
and safe human-robot collaboration. This will permit the
coexistence of both humans and robots at factory shop floors,
where each one has a clear role along the industrial processes. It’s
a matter of fact that machines, including robots, have specific
features that determine the kind of operation(s) that they can
perform better. Similarly, human operators have a set of skills and
knowledge that permits them to accomplish their tasks at work.
This article proposes the adaptation of robots to the skills of
human operators in order to implement an efficient, safe and
comfortable synergy between robots and humans that are working
at the same workspace. As a representative case of study, this
research work describes an approach for adapting a cobot
workstation to human operators within an installed deep learning
camera on the cobot. First, the camera is used to recognize the
human operator that collaborates with the robot. Then, the
corresponding profile is processed and serves as an input to a
module in charge of adapting specific features of the robot. In this
manner, the robot can adapt e.g., to the speed of operation
according to the skills of the worker or deliver parts to be
manipulated according to the handedness of the human worker.
In addition, the deep learning camera is used for stopping the
process at any time that the worked leaves unexpectedly the
workstation.

Keywords— deep learning, human robot collaboration, cobots,
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I. INTRODUCTION

Manufacturing systems, as presented by the ANSI/ISA-95
standard, comprises of the Enterprise Resources Planning
(ERP) at level 4, Manufacturing Execution Systems (MES) at
level 3 and Factory shop floor at levels 0, 1, and 2. This
hierarchical representation considers resources at the factory
shop floor, where human operators work. In this regard, the
MESA [1] defines the MES as set of 11 functions [2] which can
be mapped to other functions from different organizations [3].
This representation devotes a function for human management,
titled labor management. Besides, the human operator can be
involved in other functions like resource allocation and status
function. This reflects the importance of keeping the human in
the loop of manufacturing systems. Currently, and as part of
keeping the human in the loop, the Human-Machine
Collaboration (HMC) is introduced. Moreover, the European
Commission under Factories of Future (FoF) program has
opened several topics for possible fund to support the Human-
Robot Collaboration (HRC) research [4].

The HRC addresses the shared tasks between humans and
robots that need to be executed in parallel at the same
workstation. This motivates researchers to create
methodologies and approaches for modelling and understating
this collaboration, which in return, enriches the industrial
research and increases the occupational safety in general.

In this context, the objective of this research work is to
present an approach that permits collaborative robots (cobots)
to adapt to the working environment, and more importantly, to
the operator they are sharing tasks with. The presented
approach proposes the use of the advances of deep learning
algorithm for recognizing the operator. By adapting the
operation of a cobot to the specific work characteristics of the
human worker, such as speed or height, the safety and comfort
of the human is increased, thus creating a more efficient and
productive environment. Deep learning provides a fast and
powerful tool to implement a face recognition model that
recognizes the operator in the workstation and adapts the
cobot’s operations accordingly.

In addition, the article includes a use case aiming at
highlighting a prototype to validate the proposed approach. It is
important to highlight that this paper presents a preliminary
stage of the research work, hence, some of the architecture may
change in the future. Still, the contribution is significant enough
to present it and point out the direction of the research.

The rest of the document is structured as follows: Section II
presents the related research and state of the art in the field of
HRC and deep learning for industrial uses. Section III presents
the approach of this research. Section IV provides the
implementation of the presented approach. Finally, Section V
concludes the paper and provides possible future work.

II. RELATED WORK

A. Human Robot Collaboration for Manufacturing
The human role at the factory shop floor has been evolving

due to the evolution of the automation levels in manufacturing
systems [5]. Currently, the human is expected to work with
dissimilar resources at the factory shop floor, such as robots,
which raises the occupational safety measures and requires
scheduling [6], [7] . Due to this, research centers and technology
providers tend to include the human in the manufacturing loop
rather than increasing the automation level which, in some cases,
can be complicated and expensive [8]. Thus, the concept of
keeping humans in the loop has been introduced in different
fields and levels. As an example, Human Robot Collaboration
(HRC), which represents the parallelism in the execution of



shared tasks, and Human Robot Interaction (HRI), which
represents humans and robots sharing tasks and information [9].

The HRC advances in the concept and the need by the market
induced robot manufacturers to introduce the collaborative
robots (cobots). Some of the most known commercial cobots
are: the ABB YuMi [10], Yaksawa MOTOMAN SDA [11] and
the KUKA LBR iiwa [12]

. Mainly, cobots permit safe interaction with human
operators while working at the same location [13]. However, and
due to their safety restriction and physical nature, cobots do not
provide high payload and fast manipulation [8]. This restricts the
usage of the cobots to tasks where human and robot need to work
together at the same time [14].

The deployment of cobots at factory shop floors brought the
challenge of adaptability since the operators can be changed
during the production cycle. In other words, the cobots need to
adapt to the physical skills and/or properties of the operator such
as height and to the habits of the operator such as the dominant
hand [15]. These challenges derived research works to conduct
tests on the involvement of cobots at industrial environments in
order to demonstrate their true potential. As an example, Iñaki
Maurtua et al. presented in [16] a test where cobots have been
tested against several measures like safety, trustworthiness,
usability and productivity among others. As a result, the
flexibility and adaptability aspect ranked third with almost 55%
after safety and usability in first and second. In order to enhance
the adaptability, a human recognition model needs to be
included to allow the cobot to understand the nature and the
profile of the worker [17].

B. Deep Learning for Industrial Applications
The Machine Learning (ML) technologies study the

possibility of permitting digital computing units to train and
evolve in order to support the decision-making process.
Historically, the term of ML was introduced by Arthur Samuel
in 1959 [18]. At that time, the computers were not prepared to
provide the capabilities that are needed for ML implementation.
Since then, the research on the ML field has been driven by the
evolution in the Computer Science field. In such scope, several
techniques and approaches have been applied such as Artificial
Neural Networks (ANN), Supported Vector Machines (SVM)
and Random Forests (RF). Accordingly, several application
fields, like healthcare, urban development, social and industrial,
have been benefiting from these approaches [19], [20], [21].

Deep Learning (DL) is considered as a branch of ML where
the multi-hidden layers concept of the learning model is applied
[22]. In addition, DL can support both the supervised [23] and
the unsupervised learning methods [24]. Mainly, DL is applied
in applications that require complex and large models, which, in
turn, require high computational resources. For instance, the
YOLOv3 algorithm is used for objects detection [25] and
Hidden Markov Model (HMM) for acoustics recognition, which
is applied for voice recognition [26].

DL is an innovative topic in the industrial applications field.
Several research works have been conducted in order to provide
high-level intellect to production systems. As an example, the
usage of DL in predictive maintenance allows the detection of

patterns in the collected data that might trigger maintenance
issues [27]. Another application appears in the monitoring and
performance analysis. This comprises of collecting big data
from the factory shop floor and, then, processing it in order to
extract patterns that represent the production systems [28].
Accordingly, the extracted patterns can be represented as Key
Performance Indicators (KPIs) to support the decision-making
at the Enterprise Resource Planning (ERP) level. In addition, the
DL is intensively employed for optimizing manufacturing plans
targeting e.g., production, resource allocation, logistics, in order
to maximize the outcome of these systems with respect to the
available resources [29] [30] [31].

Similarly, DL is applied in the HRC in order to provide
cognition of the ambient of the collaboration scene. More
precisely, and as presented in [32], three models were tested in
order to choose better one based on performance. The first model
is the Multi-Layer Perceptron (MLP), the second model is
Convolution Neural Network (CNN) and the third model is
Long Short-Term Memory (LSTM) networks. According to the
authors, the selected model was the MLP for body posture
recognition and CNN for voice recognition. As a result, the
authors claimed a potential usage of the DL in HRC that can be
converted to a ready application for industrial cases. Another
research, as presented in [33], presents the potential benefits of
the usage of ML and DL in industrial applications in general.
The authors anticipate that the ML and DL in the HRI can
increase the occupational safety.

III. THE APPROACH

The goal of this paper is to present an approach for
implementing DL techniques in a HRC system by using a DL
camera.

HRC applications require extensive flexibility to vary the
programmed tasks in order to collaborate with a human operator
in workstations. A great amount of programming, trial and error
are necessary for those kinds of operations, which derives in an
increase on time and cost of programming. Traditional
programming requires the operator to propose a solution and
write a precise program that the robot can execute to automate
its tasks. For this reason, traditional programming is not enough
to meet the needs of HRC systems. With ML systems, input data
is collected and the desired target values are defined and the ML
model will find a program that fits the data. This allows a more
flexible solution to complex problems, especially those that are
too complicated for humans to solve [34].

Effective communication between humans and robots is an
essential part of HRC. By enabling computer vision in HRC
systems, the robots can gather information from their
environment and respond accordingly. This allows the human
operators involved in the HRC to communicate using gestures
or poses [35].

The objective of this implementation is to create a DL model
that is able to detect and recognize faces, so that the information
can be transmitted to the collaborative robot’s controller. The
model will also be able to recognize whether the human worker
is ready to perform the task or not by detecting the orientation of
their head, to identify whether the operator is facing the
workstation or not.



The camera used during the implementation is an AWS
DeepLens camera [36]. AWS DeepLens is a fully programmable
video camera and development platform integrated with the
Amazon Web Services Cloud [37]. It allows the developer to run
deep learning models locally. The camera captures images and
feeds ANN models in order to achieve computer vision.

This device provides real-time processing of scenes,
composed of both video feed and sound. The workflow of a
DeepLens project is shown in Fig. 1. The camera receives a
video stream as an input and produces two output streams: the
device stream, which is not processed, and the project stream,
which comprises the processed frames of the input video.

The AWS DeepLens is an AWS IoT Greengrass core device,
where the AWS Lambda functions run. The Inference Lambda
function gathers image frames from the captured video stream
and sends them to the ANN model, which has been trained by
ML software. The software used to train the model can be
Amazon’s own model training service, SageMaker, or other ML
framework like Apache MXNet, TensorFlow or Caffe. The
model runs the convolutional neural network on each frame and
sends them back to the Lambda function, where they are passed
on in the project stream.

Fig. 1 Basic workflow of an AWS DeepLens project [37]

The output of the Inference Lambda function is a JSON
payload that is published to an AWS IoT MQTT topic, as seen
in Fig. 2. Once the payload is published, it is evaluated by a
Lambda function and it can be viewed through the management
console.

Fig. 2. DeepLens architecture [38]

The web browser is the interface between the developer and
the AWS DeepLens device, and it is used to create and deploy
the deep learning projects. An AWS DeepLens project is
composed of both the deep learning models and the inference
Lambda functions.

To create a custom project, a DL model may be created and
trained using Amazon SageMaker or another of the supported
ML environments. The model is imported into the AWS
DeepLens. Then, the Inference Lambda function is created and
published in AWS Lambda. Afterwards, the AWS DeepLens
project is created and both the model and the function are added
to it. Once the project is created, it can be deployed to the
DeepLens device. It is important to mention that developing a
neural network implies a great amount of time and effort, and
requires thousands of images in order to train the model.
However, the advantage of the DeepLens device is that it also
comes with a series of sample projects, whose models have been
pre-trained.

On the other hand, Fig. 3 shows the steps to follow in order
to create and deploy the sample projects. All steps are to be done
in the web browser. Moreover, the functionalities of the sample
projects can be extended so that they perform a specific job. To
extend those functionalities, the models can be trained and
edited and the Inference Lambda functions can be configured.

Fig. 3. Steps to create and deploy a sample project [39]

IV. ENHANCING UNMI WITH DEEPLEARNING FOR HRC
 This section provides an explanation on how to adapt the
deep learning models discussed in the previous section into an
industrial scenario where a collaborative robot (cobot) is in use.
DL can be used to enhance said robot’s performance and
productivity [32] and increase the flexibility of the HRC system.
This section will present the industrial scenario in which the
camera will be implemented and explain how the modelled deep
learning algorithms facilitate the operations of both the robot and
the human worker in the workstation.

The AWS DeepLens camera will be implemented in a YuMi
IRB 14000 robot [40]. This ABB robot is a dual-arm
collaborative robot designed for small parts assembly processes.
For this implementation, once the deep learning projects are
created and deployed, the AWS DeepLens deep learning camera
will be mounted on top of the robot, in resemblance to a human
head.



The workstation, depicted in Fig. 5, consists of one YuMi
robot standing opposite an operator. The process that takes place
in the workstation is a box assembly process. The wooden box
is made of six sides that are bolted together. All parts necessary
for the assembly are located on a table between the robot and the
operator. The robot is responsible for holding the sides of the
box while the operator fastens the bolts to attach them.

Fig. 4. Overview of the project

The objective of the abovementioned process is to mock a
real industrial process. See Fig. 4. However, in a real industrial
process, there will probably be more than one operator that
works in the same workstation during different shifts. For this
reason, the work characteristics of the robot should change to
adapt to the operator’s work characteristics; those characteristics
being, for example, the speed in which they work, their height
or whether they are right- or left-handed. Furthermore, HRC
systems need to guarantee the safety of the human worker. The
collaborative robot should be able to notice when the worker is
not ready to work and stop the operation to avoid any accidents.

Fig. 5. YuMi robot performing box assembly process

With the video camera, YuMi detects which of the human
workers is in the workstation at any moment, and sends a
message to the robot’s controller to adjust its operations to
accommodate to the user’s profile. This flexibility allows the
workers to work at their own pace, reducing stress and risk of

accidents on the workplace. In addition, there are instances in
which the worker might be in the workstation but they are not
focused on the task. In those moments, the robot should stop
moving and wait until the operator is ready to continue their
work. To enable the communication between the Amazon Cloud
services and the robot, there needs to be a gateway. This gateway
listens for incoming messages from the Amazon Cloud and
transmits the information back to the robot’s controller.

For this application, a pre-trained DL model from one of
DeepLens’s sample projects is used: the face detection model.
This model gathers the video stream as an input and determines
when there is a face in the feed. Then, it sends the feed frame
containing the face to a Lambda function, along with a
percentage of certainty. The model has a Single Shot Detector
(SSD) architecture with a ResNet-50 feature extractor, and it
was trained in Apache MXNet DL framework.

In the approach, it was mentioned that the main components
of a DeepLens project were the DL model and a Lambda
function. Aside from those, there are other Amazon Web
Services that are used for the implementation:

• S3 Bucket: Cloud storage service in which images can
be uploaded and accessed. The bucket will be used to store both
the face images obtained from the video feed and the
photographs of all operators working with YuMi.

• AWS Rekognition: This is a facial recognition cloud
service that is capable of detecting and extracting data from a
face in an image and of comparing faces in different images. The
operators’ photographs in the S3 bucket are uploaded to a
Rekognition collection and assigned a unique ID.

• DynamoDB: In a database table the operator’s name
and their average working speed are stored. Each item will also
have a unique ID, equal to the ID of the operator’s photograph
in the Rekognition collection, which will be used to link the
worker’s image to their data.

• Simple Notification Service (SNS): Amazon’s
messaging service. Lambda functions are able to publish
messages in a SNS topic. A gateway will receive the information
posted by the Lambda function and transmit it to YuMi.

The overview of the DeepLens implementation can be seen
in Fig. 6

The deeplens-face-detection Inference Lambda function
runs the DL face detection model in the DeepLens device,
illustrated as step 1 in Fig. 6, and the model searches for faces in
the video feed. When a face is found with a certainty higher than
85% (step 2), the face frame is uploaded to an Amazon S3
bucket, as can be seen in step 3 in Fig. 6. After detecting a face
and uploading it to the S3 bucket, the Lambda function waits for
15 seconds before checking the feed again. This way, it allows
the rest of the services to be performed without overwhelming
the system by uploading too many images to the bucket.

The S3 bucket has two folders: a “DeepLens” folder, in
which the faces found in the video feed are stored, and a
“Rekognition-Images” folder, where the pictures of all the
operators are uploaded. This last folder will be used to send the
faces of the operators to the Rekognition collection.



A second Lambda function is triggered when a new image is
uploaded to the “DeepLens” folder in the S3 bucket (step 4). In
step 5, the “face-analysis-function” Lambda function calls the
AWS Rekognition API to compare the face in the new image
with the reference faces that are stored in the Rekognition
collection. If it finds a match in the collection, the Lambda
function will look for the operator’s details in the DynamoDB
database, as illustrated during step 7, using the unique
Rekognition ID assigned to the operator. The Lambda function
will extract all the attributes assigned to the operator in the
database in JSON format. The AWS Rekognition API will also
indicate the orientation of the face by determining its pitch, roll
and yaw angles. The Lambda function will check the angles to
establish if the operator is looking towards the workstation or
not.

Fig. 6. Workflow of the DeepLens implementation

All information provided by AWS Rekognition and the
database will be published in a message to a SNS topic (step 8).
The message will contain all the operator’s information that is
available in the database, along with an indication to stop the
movements of the robot if the operator is looking away from the

workstation. A gateway will receive the message and send the
value of the needed speed to the robot controller (step 9).

The face detection model and the “deeplens-face-detection”
inference Lambda function run on the DeepLens device as part
of the AWS IoT Greengrass core software in the device. The rest
of the services and resources are cloud-based and can be
accessed through the AWS Management Console.

With the face recognition project, the collaborative robot is
able to adapt to the way of working of each of the human
operators whose working details are stored in the worker’s
database. YuMi’s movement speed will change to match the one
of the human operators, as well as the height in which the
assembly is done, and it will pause when it is indicated. This
way, accidents in the workstation are avoided and the efficiency
of the tasks is improved. The communication between robot and
worker is simpler, since operators will not need to input their
own work requirements before beginning the process. The DL
model will be the one responsible for those operations.

It should be noted that deep learning can be used for more
than facial recognition and pose detection to aid Human-Robot
Collaboration. In an industrial environment, deep learning can
help the programming of a robot by using imitation learning. In
this type of machine learning, human knowledge can be
transferred to a machine by means of demonstration. The human
will show the robot how to perform a certain task a few times
and the robot will learn how to perform it by imitation.

Furthermore, DL techniques can also be used to teach the
robot to grip objects. In scenarios where objects with varying
shapes are handled, computer vision can be used to analyze the
shape and appearance of an object and process how the robot can
grab it.

V. CONCLUSION

This article introduces the use of deep learning techniques
within a Human-Robot Collaboration system. This was
illustrated in an industrial scenario where a YuMi collaborative
robot was enhanced with a deep learning camera. Further work
will include testing of the system during the assembly process,
to calculate the rate of success of the algorithm and the time that
it takes from the detection of the worker until the new operation
values are applied on the robot. Aside from the models discussed
in the article, the deep learning algorithms might be extended by
adding voice commands or hand motions to control the robot;
for example, the operator could raise a hand to indicate when the
robot should stop its operations.

The use of deep learning techniques to aid collaborative
work results in a reduction of time and costs derived from
programming. Deep learning enables a better, more natural
communication between the robot and the human worker.
Combining the best capabilities of both machines and human
operators enhances their labor, and productivity and efficiency
on their operations is increased. Once the implementation is
finished, operators will be able to work comfortably at their own
pace in the workstation.
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