
Synthetic Aperture Radar Imaging using COTS Components 

Juha Jylhä, Harri Tolkkinen, Robert Arajärvi, Minna Väilä, Marja Ruotsalainen 

PO Box 553, 33014, Tampere University, Computing Sciences, Tampere, Finland 

juha.jylha@tuni.fi 

Abstract 

Radar imaging calls for high resolution in at least two dimensions, typically in range and 

azimuth. Synthetic aperture radar techniques allow high resolution in azimuth without the 

need of a large physical antenna. For decades, imaging radar systems have been expensive 

and available only for special purposes such as space applications and high-end military 

airborne systems. This paper discusses an inexpensive and accessible means for synthetic 

aperture radar imaging. We present a short-range experiment of high resolution using 

commercial off-the-shelf (COTS) hardware components. 

1 Introduction 

Radar is a classic remote sensing equipment that provides range and amplitude information 
about its surroundings. Radar determines the range of a target in the scene based on the time 

delay between the radio wave transmission and the received echo from the target. By using a 

directional antenna, the radar focuses the radiating intensity and determines the direction of 
arrival of the radio wave scattered back from the target of interest. Conventional radars have a 

resolution of tens or hundreds of meters in range and hundreds or thousands of meters in cross-

range. Since the antenna provides the cross-range resolution via its angular resolution, the cross-
range resolution in meters is dependent on the range between the radar and the target. Given that 

the angular resolution of the antenna is a constant, the larger the range, the lower the cross-range 

resolution in meters. If the objective is a picture of the radar scene to detect and recognize even 

the small targets, good resolution is required in both dimensions—range and cross-range. The 
process of producing such pictures of high resolution is called radar imaging. [1] 

High resolution in range is achieved by the large bandwidth of the radar waveform: the 

range resolution Δr = c/(2B) where c is the speed of light and B is the bandwidth. The range 
resolution is independent of the range to the target, which enables the same high resolution at all 

ranges acquired by the radar. For instance, acquiring an image with a resolution of 10 

centimeters at an imaging distance of 100 kilometers is difficult using an optical sensor but 
feasible using radar imaging. 

High resolution in cross-range calls for a more complicated measurement setup compared 

with high range resolution. The cross-range resolution Δy = λc[r0
2 + (L/2)2]1/2/(2L) where λc is 

the carrier wavelength, r0 the range to the target, and L the diameter of the antenna [2]. 
Consequently, depending on the range to the scene, the cross-range resolution of 10 centimeters 

would require an antenna with a diameter between meters and thousands of meters. Such a 

requirement is obviously impractical in a typical application using a space or airborne platform. 
The solution is the synthetic aperture radar (SAR) techniques [1], [2]. With SAR, the large 

antenna aperture is generated using one small physical antenna moving during the aperture 

formation. The aperture is reconstructed using a time series of the responses from the scene 

illuminated by the side-looking antenna. We summarize the requirements for the geometry and 
sampling of the aperture to the following three main rules. 

1) The length of the aperture and the cross-range resolution is determined by the change in 

the scene azimuth θtot. Thus, the cross-range resolution can be formulated as 
Δy = λc/(4sin(θtot/2)) and it is not directly affected by the range to the scene [2]. Nevertheless, 

the larger the range, the longer the aperture that provides the desired azimuth change θtot. 

2) The sampling density of the aperture is dictated by the azimuth beam width of the 
physical antenna, typically represented by 3 dB beam width θ3dB. The sample interval is derived 

based on the Doppler of the illuminated scene; i.e. the Doppler needs to be unambiguously 



sampled over the whole illuminated scene. With an isotropic antenna, the spatial sample interval 

should be at least λc/8 to ensure that the change between the phase components of the response 
for any two points in the scene is less than π/2. Note that the phase components of the points 

may also be changing in opposite directions. Assuming the scene completely stationary, the 

highest phase derivatives are in the direction of the radar velocity vector and the direction 

opposite to it. A directive antenna restricts the illuminated area with the main lobe, so that the 
Doppler region narrows. The narrower the side-looking main lobe, the narrower the Doppler 

bandwidth, and the larger the allowed aperture sample interval: ΔL = λc/(8 sin(θ3dB/2)). 

3) The beam width of side-looking main lobe must be larger than the required azimuth 
change: θ3dB ≥ θtot. This requirement ensures that the main lobe illuminates the scene on 

adequately long azimuth change within the aperture formation. 

These three rules theoretically ensure that the SAR imaging can be achieved by a radar with 

an adequate bandwidth B corresponding to the intended image resolution. Perhaps the main 
reason, why such imaging radar systems have not been widely available, concerns the 

bandwidth requirement. E.g. the resolution in the order of 10 centimeters corresponds to a 

bandwidth of 1.5 GHz. The resolution is required in many applications, such as object detection 
and recognition, where cameras have been much cheaper and more efficient, yet prone to 

cloudiness, fogginess, and lack of light. Another reason is the availability of the computing 

power that increases all the time. Above, we considered only the theoretical restrictions, but 
after obtaining the aperture, one has to calculate the image that is a computationally demanding 

task [2]. In this paper, we discuss the recent development of frequency modulated continuous 

wave (FMCW) radars that allows new approaches to radar imaging. 

2 SAR imaging based on a COTS FMCW radar 

Within the last decade, the automotive industry has adopted the use of miniature radars that are 
based on integrated circuits. That has tremendously reduced the price of such systems. Recently, 

the operation principles of the FMCW radar have aroused some attention. The FMCW radar 

provides simultaneous measurement of range and Doppler by a way that is very efficient 

concerning wide bandwidth applications. Nowadays, the price of an FMCW radar having 
bandwidth of 2 GHz is reasonable for even consumer products. 

We have applied a commercial off-the-shelf (COTS) software defined radar to SAR. In our 

report [3], we elaborate on several aspects related to this radar system—e.g. moving target 
indication and automatic target recognition. Next, we consider some concerns for the SAR 

imaging based on a COTS FMCW radar. 

To enable the demonstration of radar imaging with a resolution of 10 centimeters, we 
purchased a K-band (24 GHz) FMCW radar that uses frequency modulation in the form of 

linear frequency sweeps. The maximum sweep bandwidth is 2 GHz, resulting in the theoretical 

maximum range resolution of 7.5 centimeters. Another main requirement for the radar 

concerned the sweep repetition frequency fsr. In the three main rules we described in Section 1, 
the second rule defined the sampling interval ΔL. Using antennas with θ3dB = 16° as in [3] and 

fsr = 1 kHz, the maximum allowed velocity vmax = ΔLfsr ≈ 11 m/s for the aperture formation. 

Thus, one important specification of the FMCW radar for SAR application is its fsr. Another 
important FMCW parameter is the number of samples per sweep Ns. It determines the 

unambiguous range window rwin = NsΔr, and through straightforward deduction, rwin is the same 

as the maximum range where to acquire SAR images. Our last note for the SAR system based 

on a COTS FMCW radar relates to the first rule described in Section 1: the ability to track the 
aperture depends on the choice of the navigation equipment. It is a sensible choice to pay for a 

good-quality inertial navigation system with support of a global navigation satellite system 

(INS/GNSS). In the SAR image reconstruction [2], the most challenging task is to reconstruct 
the antenna trajectory with high accuracy using the measured radar data. It is called motion 

compensation. The task is much easier when aided by INS/GNSS of good quality and properly 

synchronized with the radar. The measured trajectory provides an initial guess for the motion 



compensation process [2]. In addition, the trajectory measured with six degrees of freedom aids 

in the proper selection of the aperture so that the antennas are pointing toward the imaged area. 
Figs. 1 and 2 illustrate an example of a SAR experiment, a trajectory measured by a compact 

INS/GNSS, and a stripmap SAR image with a resolution of 15 centimeters. The result is 

calculated based on the measured trajectory using no motion compensation algorithms. An ideal 

trajectory would be produced by a platform that is moving along an inevitably rectilinear line. 
The unideal nature of the measured trajectory causes the systematic displacement between the 

actual location of the corner reflectors and their SAR response as seen in Fig. 2. This location 

bias could be corrected using a georeferencing procedure. The used SAR reconstruction method 
is presented in [4]. The method is computationally inefficient, but it is very accurate and easy to 

employ especially when the trajectory is not close to the ideal straight line. 

3 Discussion and conclusions 

This paper considered and demonstrated SAR imaging using COTS hardware components. 

Although the presented SAR image does not represent the result of the full imaging procedure 
(due to the lack of a focusing algorithm [2]), the result proves the feasibility of the COTS 

components to provide SAR images. The commercially available FMCW radars allow plenty of 

application prospects with reasonable costs. In the military domain, the typical applications are 
in surveillance and reconnaissance. In short-range applications, SAR provides the detection 

capability of interesting objects to be recognized using electro-optic sensors, as well as 

information to support the recognition. The radar observes the objects in a different manner 

concerning e.g. the information of the materials and shapes of the objects that are impossible to 
acquire by electro-optic sensing. In addition by using multi-channel acquisition [3],[5], a SAR 

system is able to indicate moving objects based on their Doppler. Nevertheless, the major 

benefits of SAR are revealed along with the medium-range or high-range applications when it is 
probably the only imaging method capable to provide high-resolution images through the 

unideal atmosphere. The FMCW technology is inexpensive for short-range applications but 

only medium-priced for medium-range applications. 

 

Fig. 1: An example of a SAR measurement visualized over an aerial photograph. The solid blue 

line is the trajectory, measured by an INS/GNSS chip. The dashed blue lines illustrate the swath 
width (illuminated by the antenna main lobe) at the starting point of each of the 13 SAR 

apertures. The yellow dots indicate the ground range of 50 meters for each aperture. The red 

circles indicate the locations of the corner reflectors that were placed in the scene. 



 

Fig. 2: A stripmap SAR image reconstructed from the 13 apertures visualized in Fig. 1. The 

resolution is 15 centimeters. The yellow line is the trajectory on which the yellow dots indicate 

the starting point of each aperture. The image color represents the logarithmic intensity after the 
signal acquisition and the image reconstruction. The bright dots in the image are the responses 

of the corner reflectors whose actual locations are indicated by the red circles. The offset 

between the responses and the actual locations results from the inaccuracies in the trajectory 

measured using a compact INS/GNSS. In addition, some artifacts caused by the unideal radar 
instrument are visible; they should be eliminated by filtering in a real application. 
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