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Abstract—In this paper, we study the application of simulta-
neous localization and mapping (SLAM) for estimating the tool
center point (TCP) 6 degrees-of-freedom (DOF) pose of a large-
scale hydraulic manipulator without a priori knowledge of the
environment. We attach a stereo camera near the TCP of the
manipulator and perform SLAM by utilizing the open source
version of ORB-SLAM2. In offline experiments, the camera
frame and the TCP frame are extrinsically calibrated using an
iterative closest point search to match a point cloud of poses
from the SLAM module with a point cloud of ground-truth
TCP poses, which are obtained from joint encoder measurements
along with a kinematic model of the manipulator. The estimated
TCP trajectory provided by the SLAM is then compared to
the ground-truth TCP trajectory. These preliminary experiments
show that a pure visual SLAM algorithm can perform reasonably
well in this application scenario. Limitations and future work are
also discussed.

Index Terms—manipulators, simultaneous localization and
mapping, position measurement, rotation measurement

I. INTRODUCTION

Autonomous vehicles have been avidly studied in the past
decade, as the trend tends toward fully independently operating
systems. This includes a multitude of mobile, heavy-duty ma-
chines that utilize large-scale manipulators (also called booms)
to complete work tasks. In underground mining applications,
such manipulators are utilized in tunneling jumbos and drill
rigs, for example. Although these machines are currently
human operated, on-site or remotely via teleoperation, each
joint has a sensor so that the tool center point (TCP) of the
manipulator can be measured based on the joint states. This is
because knowledge of the TCP pose is essential for accurate
drilling, as it has a direct effect on the mining progress made
with each blast. The number of actuator degrees-of-freedom
(DOF) in these manipulators is typically up to 8, which
means that 8 sensors, including their waterproof enclosures,
associated cabling, and high-precision mechanical couplings,
add up to a significant bill of materials, and thus, the cost
per machine. Moreover, a single machine can have multiple
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booms. For instance, tunneling jumbos typically have one to
three drilling booms, which further add to the bill of materials
and motivate research for new, alternative TCP measurement
methods designed for this type of application.

Such methods have been explored for many similar appli-
cations in the literature. For example, in [1], a laser scanner
was used for end-effector tracking and joint variable extraction
of a heavy mining shovel’s dipper. In [2], a low-cost 2D
laser scanner was used to estimate the posture of a forestry
crane, with a reported average tip position accuracy of 4.3
cm. With scanner-based measurements, the sparsity of the
acquired point cloud becomes an issue at larger distances due
to the low spatial resolution of the sensor. A part detection-
based scheme for estimating the 2D pose of an excavator
was studied in [3]. The method used a database of synthetic
images comprising different parts of an excavator, which were
used to train part detectors. A single camera was then used
for extracting the skeleton of the excavator based on the
detected parts. The feasibility of a local positioning system
for loader cranes using wireless sensors was studied in [4].
The described method used inertial sensors for joint angle
measurements and an ultrasonic transducer for measuring the
length of a telescopic joint. In [5], a gravity-referenced joint
angle estimation scheme using three-axis linear accelerometers
and three-axis rate gyros was proposed, with reported joint
angle sensing errors of ±1 degree. An ultra-wide band (UWB)
based real-time location system for estimating crane poses
was studied in [6]. However, based on the UWB system error
alone, which was approximately 30 cm, the accuracy is not
sufficient for applications requiring precise positioning. In [7],
an optical marker-based end-effector pose estimation scheme
was presented for articulated excavators, with encouraging
initial results. Nonetheless, these sensing methods do not
particularly fit the present application of interest, as drilling
booms are typically complex structures (8 actuator DOF) with
considerable maximum lengths. The confined workspace also
restricts the placement of sensors, such as cameras, in the
environment around the machine.



A potential solution would be to place a camera directly
at the TCP and perform pose estimation based on visual
odometry or more advanced simultaneous localization and
mapping (SLAM) algorithms. SLAM has attracted consider-
able attention in the past few decades, as this technology is a
vital component of any autonomous vehicle: A machine cannot
operate independently unless it is aware of its location in
relation to the environment. Thus, the main objective of visual
SLAM is to constantly perform localization based on visual
feeds, while simultaneously building a map of the surround-
ings. Only recently have SLAM technologies showed signs
of advancing toward the levels of maturity and reliability that
are required for autonomous systems. Some areas, however,
such as fail-safe systems, are still relatively unexplored, as
discussed in a recent survey paper [8].

Numerous SLAM methods have been engineered over the
years, with previous ones surveyed in [9]. Some of the more
recent and most popular monocular schemes include DVO
[10] and SVO [11]. Stereo and RGB-D methods have also
been presented, for example, RTAB-MAP [12], in which the
authors also provided comparative results using many SLAM
algorithms available on ROS. A stereo SLAM method using
ORB [13] features and line segments was proposed in [14].
The rationale was that the inclusion of line segments improves
the performance in low-textured environments with planar
structures, where a low number of point features can be
extracted. The reported performance was similar to that of
ORB-SLAM2 [15], which is another SLAM method. ORB-
SLAM2 is fully based on ORB features, and can be used with
mono, stereo, or RGB-D input. The authors extended their
work to include inertial sensors in [16].

In this paper, inspired by the recent advances in SLAM
technologies in vehicle positioning, we study the application
and feasibility of SLAM in a much different setting. Specif-
ically, we apply SLAM to estimate the TCP pose of a large-
scale articulated crane in an unknown, confined space. The
motivation is that for mining manipulators underground, the
workspace area is typically small and confined, with walls
closing in on each direction. The laboratory-grade simulation
of such an environment is a test wall built from decorative
stones. We attach a low-cost stereo camera near the TCP of
an articulated heavy-duty crane so that the camera faces the
test wall. Based on the literature review and the availability
of state-of-the-art open source SLAM algorithms, we utilize
the feature-based ORB-SLAM21, which is a tried and tested
algorithm with excellent localization capabilities in varying
environments. To avoid the issue of scale ambiguity, stereo
vision is employed in the experiments. Data analysis is per-
formed by comparing ground-truth TCP poses, obtained using
joint encoders, with calibrated SLAM output poses. For offline
data analysis, the calibration between the SLAM poses and the
ground-truth poses is conducted using an iterative closest point
(ICP) algorithm.

The remainder of this paper is outlined as follows: In
Section II, a description of the application is provided; it is
followed by Section III, in which the experimental setup is
presented. In Section IV, the data analysis is presented with

1https://github.com/raulmur/ORB SLAM2

comparative results. Finally, in Section V, the conclusion is
provided.

II. SIMULTANEOUS LOCALIZATION AND MAPPING IN THE
PROPOSED APPLICATION

Development drilling, in which tunnel networks are formed,
is one of the basic operations in underground mining. Using
this as an example, the TCP of a drilling boom is typically
moved within an area resembling a rectangle that corresponds
to the profile of the tunnel being mined. Dozens of holes,
many meters in depth, are drilled inside the profile. The TCP
is driven from drilling point to drilling point in a pre-planned
manner, while during a drilling operation the current TCP
pose is maintained. As the TCP is moved within a small
area, with back-and-forth motions, it is possible to establish a
comprehensive local map with SLAM before even beginning
the drilling. This also suggests that loop detection and closing
features of SLAM can be highly useful in correcting any drift
in the pose estimates. Especially for the proposed application
of TCP pose estimation, it is desirable that the tracking can
be maintained at all times. Notably, heavy drilling induces
severe vibrations in the manipulator and the machine, which
could affect the tracking performance. In this case, having a
local map would be useful, as relocalization based on the map
can be instantly performed after a drilling operation, during
which the joint positions can be locked in place by the control
system. After the drilling plan is completed, explosive charges
are placed inside the drill holes, after which blasting occurs.
As the depth of a drill hole is measured in meters, any error
in the TCP’s pose will directly degrade the blasting result.
Regarding the desired accuracy in this type of application, the
rough target values for positioning and orienting are 1 cm and
1◦, respectively.

The SLAM we utilize in this work, ORB-SLAM2, is a
feature-based method that utilizes only ORB features, which
have quickly become a popular choice due to their computa-
tional efficiency and good invariance to viewpoint changes.
ORB-SLAM2 consists of three parallel threads: tracking,
local mapping, and loop closing. If the tracking is lost, the
system is capable of relocalization using a bag-of-words place
recognition module, which is based on DBoW2 [17]. A pure
localization mode is also available, in which the mapping and
loop closing features are disabled. Importantly, the system
applies bundle adjustment (BA) for optimization purposes at
various stages of the algorithm: for optimizing the camera’s
orientation and position by minimizing the reprojection error
between matched 3D landmarks and 2D key points in the
tracking thread (motion-only BA); for optimizing a window
of keyframes and points in the local mapping thread (local
BA); and after a loop closure for optimizing all keyframes
and points (full BA) [15]. The Levenberg-Marquardt method
used for optimization is implemented in [18].

III. EXPERIMENTAL SETUP

A. System Description

The manipulator we used for testing was a HIAB033, which
is a hydraulically actuated crane. The manipulator, illustrated
in Fig. 1, additionally had a spherical wrist with a gripper
attached to it, yielding a total of 6 active actuator DOF: rotate,
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Fig. 1. The figure illustrates the test setup, in which the manipulator was
positioned so that the stereo camera attached to the gripper faced the test
wall. The goal was to estimate the TCP pose of the manipulator based on
pure visual SLAM, which extracted the required features from the test wall.
The joints of the manipulator are labeled from 1 to 6, with the base coordinate
system also shown.

lift, tilt, and 3 DOF in the wrist. The manipulator also had two
extension cylinders, which were disabled during the tests. Each
active joint was instrumented with an incremental encoder.

The control system of the HIAB was a dSPACE DS1005
PPC controller board and a development PC, which ran in 3
ms sampling time. A Stereolabs ZED stereo camera was used
for visual measurements. The ZED was connected to a laptop
via its USB interface, and images were captured using ZED
SDK’s Matlab plug-in by using a UDP trigger signal, which
was established from the dSPACE development PC to the ZED
laptop. The UDP trigger signal was transmitted at 8 × 3 ms
time intervals, which was dictated by the time it took for the
ZED SDK to capture and save a pair of grayscale, 672× 376
resolution images. The trigger signal ensured that the image
data recorded with the laptop and the encoder data recorded
with dSPACE could be synchronized with each other.

For the SLAM experiments, a wall made out of decorative
stones was built. This was our laboratory-grade simulation
of a mine wall. The wall was 2.5 × 4 m in dimensions,
and the stones were cemented to the wall randomly,, albeit
they comprised some recurring shapes. Varying motions were
applied to the manipulator, and data was recorded using the
camera and the joint encoders. Then, the corresponding image
sequences were extracted from the data. Each sequence library
was then processed by the ORB-SLAM2 stereo algorithm,
which provided a pose sequence corresponding to each input
sequence. In the SLAM settings, the number of ORB features
was set to 2000, and the camera FPS was set to 41.6667,
according to the UDP trigger signal. Fig. 2 shows the ZED
stereo camera attached to the gripper of the manipulator, as
well as an example view of the detected ORB features from
the test wall.

B. Ground-truth TCP Pose

As a ground truth, or reference, measurement of the TCP
pose is required to evaluate the estimated SLAM poses, a
kinematic model of the manipulator was formulated. The states
of the six active joints, measured with encoders, were then
used with the forward kinematic model of the manipulator to
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Y

Fig. 2. The left image shows the stereo camera attached to the gripper.
The camera’s coordinate system is also shown. The right image displays an
example view of the detected ORB features during SLAM.

TABLE I
DH PARAMETERS USED FOR TCP POSE FORMULATION.

No. Joint αi ai θi di

1. Rotation π/2 a1 θ1 d1

2. Lift 0 a2 θ2 0

3. Tilt π/2 a1 θ3 + π/2 d3

4. Wrist 1 π/2 0 θ4 d4

5. Wrist 2 −π/2 0 θ5 0

6. Wrist 3 0 0 θ6 d6

formulate the TCP pose, which was used as the ground-truth
measurement.

Table I presents the Denavit-Hartenberg (DH) parameters
of the manipulator, which comprised an anthropomorphic
arm with a spherical wrist [19]. The exact parameters were
not used, as they were not available from the manufacturer.
Instead, the parameters were self-measured, and are presented
only symbolically here. The forward kinematic relationship
between the base and the analytical TCP of the manipulator
(see Fig. 1) was then formulated as follows:

1T6 = T1T2T3T4T5T6, (1)

where 1T6 denotes the transformation matrix between the base
frame and the TCP frame, and Ti, i ∈ {1, ..., 6}, was formu-
lated using the following general equation by substituting the
DH parameters of the ith joint:

Ti =


cθi −sθicαi sθisαi aicθi
sθi cθicαi −cθisαi aisθi
0 sαi cαi di
0 0 0 1

 , (2)

where cos and sin are abbreviated as c and s, respectively.
The ground-truth TCP pose was then extracted from the 1T6

transformation matrix.

IV. DATA ANALYSIS

A. Extrinsic Calibration

As visual SLAM estimates the pose with respect to the
camera frame, calibration between the camera frame and the
ground-truth TCP frame is required to obtain comparable
results. In more detail, the transformation matrix between
the camera’s coordinate system (or frame) and the coordinate
system of the ground-truth TCP must be known, as the two are
not inherently aligned. This results from the ambiguous camera
attachment and the camera model. For the initial experiments
presented in this paper, we used only recorded data, which
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Fig. 3. A diagram illustrating how the comparative results were obtained
from the measurements.

permitted the use of the ICP algorithm [20]. In essence, the
SLAM pose trajectory is modified into a point cloud, which
is then matched to the respective ground-truth pose trajectory
point cloud by using an ICP search.

However, a weakness of the ICP is that it can provide
an erroneous fitting, while the mean error between the two
matched point clouds appears small. In attempt to avoid such
a scenario, the camera frame was first modified so that the
positive direction of each axis corresponded to that of the
ground-truth TCP frame. The second step was to use the ICP
to find the transformation matrix between the two frames.

B. Comparative Results

The performance of SLAM in estimating the TCP pose
was experimented with motions into different directions. The
TCP poses are expressed with respect to the base coordinate
system (see Fig. 1), and the manipulator was automatically
driven to the same initial TCP position before each experiment.
The initial poses between experiments had minor variances,
because P-control was used when the joints were driven.
The procedure for how the results were obtained is further
visualized in Fig. 3.

The first three experiments observed the orientation of the
TCP with respect to each axis, whereas in the fourth and
final experiment a longer trajectory with loops and multiple
laps was studied. In the results, black lines always represent
ground-truth variables obtained using encoder measurements
and forward kinematics, whereas red lines represent calibrated
SLAM estimates in each case. Furthermore, orientation is
expressed with XYZ Euler angles.

The camera frame was first aligned with the ground-truth
TCP frame using the ICP procedure described in the previous
subsection. Static biases with respect to the ground-truth
initial poses were also removed from the estimates. Table
II shows the root mean square errors calculated during the
ICP procedures. The errors are very small, implying that the
calibrated camera frame should closely match the ground-truth
TCP frame so that the poses are comparable.

In the first experiment, motion was applied only to the lift
joint (see Fig. 1) so that the TCP rotated about the Y-axis. The
resulting 6 DOF TCP pose is shown in Fig. 4, in which the
translational motions and the respective orientations in relation
to each axis are illustrated. The positional variables and
the Y-axis orientation demonstrate good matching with their
respective ground-truth measurements. The remaining two
orientation estimates from SLAM show larger amplitudes of
motion than their corresponding ground-truth measurements.

In the second experiment, motion was applied only to the
base rotation. In this case, the camera (and the TCP) moved
mainly in the depth direction along the Y-axis and around the
Z-axis of the base frame. The outcome is illustrated in Fig.
5. The results are similar to those of the first experiment: The
positional variables and the orientation of the main motion
axis show good matching with the ground-truth measurements,
while the other two orientations display larger motions.

In the third experiment, the goal was to rotate the TCP
around the X-axis by moving the second wrist joint. With the
present test setup, however, achieving rotational motion purely
around the X-axis was not possible due to the wrist’s structure.
The TCP was also lifted upward before the second wrist joint
was moved, which was to allow larger motion while the wall
is maintained in the camera’s view. The results are illustrated
in Fig. 6. As shown, the positional variables and the main
orientation match well in this case also. However, there are
slight differences in the remaining two orientation variables,
with the estimated angles displaying larger amplitudes.

For the fourth experiment, a TCP trajectory with multiple
loops and laps was designed so that the loop detection and
closing features of the SLAM algorithm could be tested.
The complete path is illustrated in Fig. 7, where the black
point cloud represents the ground-truth TCP trajectory. It
is compared with the red point cloud, which visualizes the
calibrated TCP trajectory obtained from SLAM. The first
rectangular part of the path in the XZ plane was completed 3
times, after which the TCP was moved closer to the wall along
the Y-axis. Then, the second rectangular part of the path in the
XZ plane was also completed three times. Finally, the TCP
was driven back to the initial position along the Y-axis. As
the results in Fig. 7 show, the multiple laps during each loop
in the XZ plane are barely visible in the point clouds and the
loops are also closed. The respective 6 DOF TCP pose during
the measurement is illustrated in Fig. 8. The results are in line
with the previous experiments; the positional variables match
well with the corresponding ground-truth measurements. The
orientations also match relatively well, albeit the estimated
angles show larger amplitudes of motion by a few degrees in
relation to their ground-truth measurement counterparts.

To sum up the results of the four experiments, ORB-SLAM2
performed surprisingly well in the tested cases. The mean
absolute errors of the TCP pose variables in each experiment
(1–4) are documented in Table III, where γx,y,z denote the
XYZ Euler angles. Respectively, the maximum absolute errors
are shown for each case in Table IV. The estimated orien-
tation angles generally demonstrated larger amplitudes than
the ground-truth measurements, which is expected to be at
least partly attributed to the flexibility of the manipulator. The
differences could also have followed from inaccuracies in the
DH parameters (namely, the angles) or in the calibration step.

Finally, this work considered only a laboratory setting. In
addition, a specifically designed test wall with a relatively
textured surface was used. As visual SLAM is completely
dependent on what the camera has in its view, the perfor-
mance is strictly tied to the environment. Thus, real-world
measurements from actual mines are required for further
experimenting. In this work, we also used a stereo camera
to avoid scale ambiguity, which is a well-known issue with



Fig. 4. Results from the first experiment, in which motion was applied only
to the lift joint. The black lines denote the ground-truth values obtained with
encoders, while the red lines denote the calibrated SLAM estimates.

Fig. 5. Results from the second experiment, in which motion was applied
only to the base rotation.

TABLE II
ICP ROOT MEAN SQUARE ERROR IN EACH CASE.

Experiment 1 2 3 4

RMS error 0.0032 (m) 0.0081 (m) 0.0038 (m) 0.0190 (m)

monocular systems. However, stereo implies that the system
has a minimum viewing distance required for reliable trian-
gulation of the 3D point features, which is not optimal for
confined spaces. A possible solution would be to switch to
monocular SLAM when the minimum distance is crossed,
while the scale is obtained using stereo data or another sensor.

Fig. 6. Results from the third experiment, in which motion was applied mainly
to the second wrist joint.

Fig. 7. In the fourth experiment, a longer TCP trajectory was experimented
with. The first rectangular part of the path in the XZ plane was completed
three times, after which the TCP was driven closer to the wall along the Y-
axis. Then, the second rectangular part of the path in the XZ plane was also
completed three times. Finally, the TCP was driven to the initial pose along the
Y-axis. The black point cloud illustrates the ground-truth poses obtained with
encoders, while the red point cloud illustrates the calibrated SLAM poses.

TABLE III
MEAN ABSOLUTE ERRORS IN EACH MEASUREMENT.

Fig. 4 Fig. 5 Fig. 6 Fig. 8

x (m) 0.0032 0.0033 0.0082 0.0338

y (m) 0.0003 0.0073 0.0027 0.0056

z (m) 0.0089 0.0038 0.0032 0.0133

γx (deg) 0.2746 0.3352 0.4306 0.8988

γy (deg) 0.1565 1.8851 0.4040 0.7108

γz (deg) 0.1312 0.3589 1.0950 0.4824

V. CONCLUSION

In this work, we studied the application and feasibility
of SLAM for estimating the TCP pose of a large-scale
manipulator in a confined, unknown environment. The SLAM



Fig. 8. Results from the fourth experiment.

TABLE IV
MAXIMUM ABSOLUTE ERRORS IN EACH MEASUREMENT.

Fig. 4 Fig. 5 Fig. 6 Fig. 8

x (m) 0.077 0.0098 0.0203 0.1317

y (m) 0.0015 0.0246 0.0097 0.0229

z (m) 0.0239 0.0116 0.0129 0.0492

γx (deg) 0.9166 0.8064 0.9014 2.6606

γy (deg) 0.3451 4.4364 0.8373 2.1485

γz (deg) 0.4268 0.9145 3.0922 1.4357

algorithm is a key part of the proposed application, in which
accuracy, robustness, and real-time performance are all highly
important. In the initial results presented in this paper, we were
mainly concerned about the potential accuracy. We found that
ORB-SLAM2 provided a relatively good performance in the
offline data analyses, in which we used an ICP algorithm to
extrinsically calibrate the camera. Based on previous research,
ORB-SLAM2 is also directly applicable in real time.

Regarding the calibration procedure, the results benefit from
running an automatic calibration algorithm by applying ICP
to the outputs of each individual experiment. This allowed the
effective fine-tuning of the extrinsic calibration parameters of
the camera for each test by comparison with the ground truth.
In the case of online tests and use of SLAM feedback for
control purposes without the ground truth, further investigation
of the system calibration is required for online estimation of
the extrinsic parameters.

Although the results were obtained specifically with ORB-
SLAM2, theoretically the SLAM algorithm itself should not
matter as long as the 6 DOF TCP pose can be reliably
estimated. To fully localize the TCP of a manipulator with
respect to the machine it is attached to, SLAM by itself is not
sufficient, as it estimates only the motion of the camera (or the
TCP) frame. In this work, the relationship between the frame
and the base frame of the manipulator was obtained from
ground-truth joint encoder measurements. For future studies,

the goal is to omit these sensors completely by developing an
alternative method for formulating this correspondence.

REFERENCES

[1] A. H. Kashani, W. S. Owen, N. Himmelman, P. D. Lawrence, and
R. A. Hall, “Laser scanner-based end-effector tracking and joint variable
extraction for heavy machinery,” The International Journal of Robotics
Research, vol. 29, no. 10, pp. 1338–1352, 2010.

[2] H. Hyyti, V. V. Lehtola, and A. Visala, “Forestry crane posture estima-
tion with a two-dimensional laser scanner,” Journal of Field Robotics,
vol. 35, no. 7, pp. 1025–1049, 2018.

[3] M. M. Soltani, Z. Zhu, and A. Hammad, “Skeleton estimation of
excavator by detecting its parts,” Automation in Construction, vol. 82,
pp. 1–15, 2017.

[4] P. Cheng, B. Oelmann, and F. Linnarsson, “A local positioning system
for loader cranes based on wireless sensors—a feasibility study,” IEEE
Transactions on Instrumentation and Measurement, vol. 60, no. 8, pp.
2881–2893, 2011.

[5] J. Vihonen, J. Mattila, and A. Visa, “Joint-space kinematic model for
gravity-referenced joint angle estimation of heavy-duty manipulators,”
IEEE Transactions on Instrumentation and Measurement, vol. 66, no. 12,
pp. 3280–3288, 2017.

[6] C. Zhang, A. Hammad, and S. Rodriguez, “Crane pose estimation
using UWB real-time location system,” Journal of Computing in Civil
Engineering, vol. 26, no. 5, pp. 625–637, 2011.

[7] K. M. Lundeen, S. Dong, N. Fredricks, M. Akula, J. Seo, and V. R. Ka-
mat, “Optical marker-based end effector pose estimation for articulated
excavators,” Automation in Construction, vol. 65, pp. 51–64, 2016.

[8] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira,
I. Reid, and J. J. Leonard, “Past, present, and future of simultaneous
localization and mapping: Toward the robust-perception age,” IEEE
Transactions on robotics, vol. 32, no. 6, pp. 1309–1332, 2016.

[9] J. Fuentes-Pacheco, J. Ruiz-Ascencio, and J. M. Rendón-Mancha,
“Visual simultaneous localization and mapping: a survey,” Artificial
Intelligence Review, vol. 43, no. 1, pp. 55–81, 2015.

[10] C. Kerl, J. Sturm, and D. Cremers, “Dense visual SLAM for RGB-
D cameras,” in 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE, 2013, pp. 2100–2106.

[11] C. Forster, M. Pizzoli, and D. Scaramuzza, “SVO: Fast semi-direct
monocular visual odometry,” in 2014 IEEE international conference on
robotics and automation (ICRA). IEEE, 2014, pp. 15–22.
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