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Abstract—In our more and more connected and open 

World randomness has become an endangered species. We 

may soon not have anything private, all out communication, 

interaction with others becomes publicly available. The only 

method to secure (temporarily) communication is mixing it 

with randomness – encoding it with random keys. But massive 

use of the same sources of randomness often reveals, that those 

sources were not perfectly random, rapid achievements of 

technology can render some previously secure sources un-

secure and in our competition-based world we can never be 

quite certain with 'given from above' products of their quality 

– in order to beat each other all producers are 'cutting corners' 

and this clearly shows in tremendous increase of all kind of 

security accidents. Thus there is an urgent constant need for 

new, independent sources of randomness. The common area 

where we constantly encounter randomness are computer 

games. When players try to beat others they constantly invent 

new moves and tactics, i.e. introduce new randomness, which 

can be captured and used e.g. for generating secret keys in 

multi-player game communication. Here is presented a method 

to produce with games of chance m-ary (m>2) random integer 

sequences utilizing a finite automaton; for assessment of 

random sequences is introduced a notion of k-randomness. The 

obtained randomness can be used e.g. for creating secure 

communication/chat systems in massively multiplayer games. 

Keywords— entropy, randomness, video games, finite-state 

machines, human behavior, cyclic order, k-random sequences 

I. INTRODUCTION  

Nicholas Negroponte, founder and Chairman Emeritus of 
the Massachusetts Institute of Technology's Media Lab 
noticed already in 1995, that humanity is 'moving from a 
world of atoms to the world of bits' and replacing 
'manipulating atoms with manipulating bits' – virtual things 
[1]. Manipulating atoms, physical things is left for automata 
and robots, we only create programs which rule these 
automata and robots. Traditional fields – agriculture, 
manufacturing and construction are currently producing only 
35% of all values, the resti is produced in mental/information 
sphere, where the input for production of new values is data. 

We are irreversibly moving all our human environment 
into virtual environment. Google, Facebook, Amazon know 
about us more and more and we do not even know, what all 
they know about us.  

Thus it is becoming increasingly important to keep our 
privazy, our 'self', our data and our communication and for 
this we need randomness. Randomness has become a 
commercial product, several countries are creating public 
random number generators [2] and with rapidly increasing 
amount of communications and data we also have growing 
need for new randomness for encryption. Randomness has 
also many other applications - in scientific computing, 
operating systems etc. 

Encryption ciphers are based on modifying messages 
using random data. But they are only temporary measure, 
when some encrpytion method/cypher is broken it becomes 
worthless and the randomness used in it is not any more 
randomness. Data breaches are increasing by more than 20 
percent in a year [ 3 ] and they have become the most 
worrying feature of Internet [4]. But with every breach also 
the randomness used in these encryptions is loosing its value. 
Thus we constantly need new sources of randomness. New 
computing environments - the coming era of IoT (Internet of 
Things), virtual/cloud servers etc. all increase need for 
randomness. 

To satisfy this all the time growing need for randomness 
are emerging dedicated services to serve entropy, i.e. random 
data [ 5 ]. For delivering provided entropy to users were 
proposed a special new protocol 'Entropy as a Service' [6]. 
But for delivery entropy also should be encrypted, thus here 
is a new source needing 'fresh' entropy. Thus it is not clear, 
whether this service will reduce the need for entropy or 
contrary, increase it. Everything is much simpler if the 
entropy is generated/collect there where it is needed.    

II. TYPES OF RANDOMNESS 

It is impossible to generate random values using 
computer's basic operations – binary operations conjunction 
  (and), disjunction   (or) and the unary negation      
(not) – all combinations of these connectives return single 
determined value (if not, then the computer is severely 
broken): John von Neumann commented this: "Anyone who 
attempts to generate random numbers by deterministic means 
is, of course, living in a state of sin". But he did not 
elaborate: why?, what are the "non-sinful means" of creating 
randomness and what actually is "randomness"?  . 

Computers are deterministic, orderly; randomness is the 
opposite of order, the absence of any pattern. Current 
understanding is, that 'true' randomness can be extracted only 
from physical processes which have rich inner structure – 
entropy, e.g. thermal fluctuations in computers processor, 
pixels found by mouse sensor when user makes some rapid 
random strokes, atmospheric disturbances [ 7 ] etc. These 
sources are 'Pure Randomness Generators' (PRG), but they 
are often not rich enough e.g. in network servers which do 
not have means for extracting external randomness.  

All operating systems maintain an entropy pool. The first 
versions of Linux kernel generated entropy from the third 
derivative of differences in timings of user actions, this 
information is stored in two files /dev/random and 

/dev/urandom. This method turned out to be too slow and 
currently are used low-order bits (lest significant, i.e. 
changing most rapidly) of values from timings of user 
actions on keyboard, mouse movements, IDE requests etc. 
Tools for extracting entropy from audio [8], video [9] data 
etc are under development.  



Programming language's compilers have methods to 
create random values, see e.g. [10],[11]. All compiters work 
under the Operation System (OS) and get their randomness 
from OS, e.g. in Windows environment randomness to all 
programming languages comes from the same source as to 
the Microsoft C/C++ compiler (and the Intel compiler) [12] 
or newer [13] - they use the random values generated in 
Common Language Runtime [ 14 ], using the entropy 
produced by processor. But there have been found several 
problems for Intel processors [ 15 ],[ 16 ] thus specialists 
distrust randomness produced by Intel processors [17], e.g. 
in Linux kernel it is only one of many inputs into the random 
pool. Researchers have shown that even processors built-in 
functions (PRG-s) for generating random values can be 
compromized [18], thus processors and microchips may have 
built-in hardware trojans [19], which can leak information 
leading to successful key recovery attacks. After NSA (U.S. 
National Security Agency) leaks from Snowden many 
engineers have lost faith in hardware randomness [20]. 

Hardware entropy pools decrease every time random 
numbers are generated from it. Requesting a lot of random 
numbers may starve programs that use the interface; this is a 
practical issue especially on servers that have no input 
devices. Other PRG sources also decrease, e.g. the online 
source of randomness Random.org [7] limits its daily 
available amount of free random bytes and after exceeding 

your free quota (currently 610  bits) you have either to buy 

new random bits or wait for next increse [21] (hopefully on 
the next day). But nobody wants to postpone e.g. your 
ecrypted chat on MMOG (Massively Multi-Player Online 
Game) to next day.  

Thus PRG sources do not suffice, for random number 
generation are needed also computer algorithms. 

 Computers are finite devices and after a while 'fell into 
loop', start to repeat computed values. Thus 'calculated 
randomness' is pseudo-randomnees produced by pseudo-
random number generators (PRNG). All PRNG-s are loops, 
which after their period repeat produced values.  

The first value in the loop is produced by random seed, 
i.e. derivative from other, ususally PRG source. The next 
value is calculated from the previous one by some recurrennt 
function; common method is to use linear (for speed) 
recurrent functions with reduction by modulus. For these 
Congruential Generators (CG) is the period (length of the 
loop) the most important measure of security of such a 
generator. For the C language it should be at least 

32
2 32767 [22] - a rather small number for current CPU-s 

and it's use (installing the Microsoft or GNU suite of 
compilers) requires decent computer skills. A 'high-end' 
PRNG–s have much bigger period, e.g. period of the 

'mersenne twister' is the the Mersenne prime 
19937

2 1 , and 
use of these requires good computer skills and hardware.  

Rapid development of computers has renderd obsolate 
many old methods. Many PRNG-s which at their 
introduction were considered 'good enough' have later 
become 'not good enough'. For example, John fon Neumann 
used for generation of random numbers the 'middle-square' 
method [ 23 ] – for the recurrence step earlier produced 
number was squared  and then the middle digits were sliced 
out. This mix of number's semantics (squaring) and syntax - 
use only middle digits in decimal representation - was used 

already in 13th centyry [ 24 ] and seems good, since 
uncomputability results (e.g. the Rice theorem [25]) indicate, 
that semantic properties are undecidable from syntax. 
However, computers revealed that with n-bit starting number 

(seed) the sequence length is  8
n

  and with many seeds 

much shorter, e.g. 

     
2 2 2 2

3792 79 6241 24 0576 57 3249 24 ...   

The fate of many other PRNG-s is similar. For instance 
the RC4 (Rivest Cipher 4) which is/was used in several 
commercial encryption protocols and standards (e.g. in the 
TLS - Transport Layer Security – the base of all traffic in 
WWW), but was prohibited; widely known was periodicity 
in the random function of Microsoft PHP translator. Already 
in 1999 were presented general methods for prediction of 
CG-s [26],[27].  

For assessement of quality of new PRNG-s have been 
constructed several suites of statistical tests – the NIST (the 
U.S. National Institute of Standards and Technology) suite 
[28], the Dieharder (Marsaglia) suite [29], Ent [30] etc. 
These tests check presented samples for some common 
regularities in everyday data, e.g. the Dieharder 3.20 
implements 26 tests.  

We tested with the Ent suite several established sources: 

1. the first 7 KB part of the 2.1 GB file 
/dev/urandom from Ubuntu 16.04.3 (a three 
months old installation, used mainly for making 
music and rarely connected to Internet) 

2. 10000 decimal digits (0,...,9) downloaded from 
the Random.org [7] (randomness from 
atmosphere); 

3. 10000 decimal digits created using the function  
window.crypto.getRandomValues(); 

4. 10000 decimal digits created by Wolfram 
Mathworld with function RandomInteger[] 
using the default method Rule30CA 

In the following table are shown three characteristics 
from the test with Ent: entropy (bits per bit), possible 
compression (randomness can't be compressed) and serial 
correlation coefficient. 

TABLE I.  SOME CHARACTERISTICS OF ESTABLISHED SOURCES OF 

RANDOMNESS 

 Entropy Compression Correlation 

/dev/urandom 0.988577 1% 0.035161 

Random.org 0.919040 8% 0.060193 

Windows 0.974450 2% -0.010378 

Wolfram 0.974448 2% -0.010948 

The results are rather similar except a weak preformance 
of atmosphere processes. But the results of these tests do not 
tell the whole truth. Although the randomness from Linux 
performed best, visual inspection (the 'Statistics' tool from 
free hex editor HxD) reveals, that distribution of frequencies 
in /dev/urandom is rather uneven: 



 

Fig. 1. Distribution of frequencies in the first 7 KB from the /dev/urandom 

file from Ubuntu 16.04.3; the sharp peak in the middle is the code for the € 

(Euro) symbol, encoded as 80h (0x80) in the windows-1252 charset. The 

computer has not been used for handling financial documents. 

Thus statistical tests are rather uncertain method for 
evaluation of randomness sources. There are many surprizing 
dependencies in data - the above peak in € symbol code 
come from computer, which is rather new (used for several 
months) and had never been used for any kind of financial 
data handling. 

III. RANDOM SEQUENCES 

In several publications have been proposed methods for 
producing new, 'derived' randomness using (low-quality) 
sources as 'parents' [31], [32];[33] etc, (resembes method of 
gene-engineering to produce 'better' child [34],[35]). The 
NIST 'randomness beacon' also uses two commercial  'parent' 
sources' [36], but (currently) still warns: "Do not use beacon 
generated values as secret cryptographic keys." [37].  

Reacently was announced a new breakthrough [38]. The 
presented method works in polynomial (in input lengths n ) 

time and requires sources with min-entropy (negative 
logarithm of the maximum of probabilities in sources) 

log C n , where C  is a sufficiently large constant. Thus 

sources should be known and available for inspection 
beforehand. This is rather difficult to implement if the new 
randomness, e.g. a secret key should be created 'on the fly', 
e.g. participants of a multi-player game want to establish 
secure communication with some other players..   

However, there is an area where independent random 
sequences are constantly produced on-line, in real time – 
(computer) games.  

IV. RANDOMNESS IN GAMES 

Games use randomness in many ways. Game designers 
want their games to be not for one-time, but to be playable 
many times; for this the game should appear different in 
every play – nobody wants to replay a game where everyting 
repeats itself, thus randomness is an essential part of 
repeated, procedurally generated games. 

Even more essential is randomness in the infrastructure 
of multiplayer games. In multiplayer games players 
communicate with game server(s), but they often want to 
communicate also with fellow players. In most gaming 
situations these are unknown persons, thus starting such a 
communication is from the computer security viewpoint a 
very dangerous operation, which exposes player to several 
serious threts – ransomware, password/account theft, credit 

or debit card information leakage (if player has to made 
payments), fake game cracs, fake apps etc [39]. Thus every 
such interaction with unknown players should be from the 
very beginning encrypted and highest security – with key, 
generated in players device using the randomness, already 
generated in the course of the game.  

V. RANDOMNESS FROM GAMES  

The whole idea of "game" includes randomness – nobody 
wants to participate in process, where out-come is (or seems) 
to be highly pre-determined. Gameplaying is always 
considered as a process, where outcome depends on 
randomness.  

Produced by players randomness is an essential 
ingredient in most games and different methods for utizingg 
this source have been proposed e.g. in [40], [41]. In [42]  
authors presented a method for producing on-line in real 
playing time binary random strings from simple repeated 
games; here the principles of the proposed method are 
applied to produce from gameplay m-ary ( 2m  ) random 

sequences.  

In the (economics theories based) texts on games the 
game decision mechanism is usually not detailed – it is 
determined by unpredictable markets. Here we follow 
computer science tradition (see e.g. [43]) and use for the 
decision mechanism finite automaton. One player is human 
or some established source of randomness; computer's next 
move is computed by an algorithm and this is also the output 
of the automaton. All games considered here are 'games of 
luck', where both players have equal chance to win and the 
best strategy (the Nash equilibrium) for both players is total 
randomness. Thus if one player is human or some established 
source of randomness and the other – the computer 
algorithm, then the (statistical) result of numerous repeated 
plays is also an assessment for the quality of computer-
created randomness. The length of all considered here 
random sequences/plays is 10000, following the suggestion: 
"A reasonable estimate (for humanly interesting cases) 
reckons that some 10,000 digits would suffice" [44], p.16.    

Thus in the following will be considered games, 
satisfying the following description. 

Game is a structure 1 2, , , ,M R  , where 

1 2,   are two players; 

{0,1,..., 1}M m  , 2m    - the set of legal moves 

(actions) of players (same set for both players); in every 
round both players apply simultaneously one action which 

initiates some change in automaton ;  

1 2[ , ]R r r  - player's points; at the start 1 2 0r r  ; 

 - finite automaton, deciding the computer output 

(move) and payoff of the game. Here are considered 
simultaneous (synchroneous) games, where players produce 
their actions (moves) at the same time, thus the input for the 

automaton  are pairs 1 2( , )i im m , where 1im  is the i-s 

move of the first player, 2im  - i-s move of the second player; 

denote 1

1 2 2 1( , ) ( , )i i i im m m m   - actions of players were 

switched.  



Automaton's (possible) outputs are "1" ("the player 
1

 

won", 
1 1r   ), "-1" ("the player 

2
.won, 

2 1r   ), "0" – 

draw. Thus the automaton has four distinguished states: 

 

Fig. 2. Game automaton with distinguished states: a0  – the start state, a1  

– first player won, a2  – second player won, ad – draw. 

Here 1a  is the game start state, 1a  - here automaton 

outputs, that the first player won,  2a  - the second player 

won, da  - draw; in any other state automaton does not 

produce output. Denote the set of final (for a round) states 

1 2{ , , }dF a a a . Other, intermediate states are not fixed 

beforehand – they emerge in gameplay. 

After reaching one of states a F automaton goes 

(without any input) back to state 0a  (a cycle) and game is 

repeated, may continue with a new round. Automaton does 
not have other cycles except possible loops at nodes, e.g. for 

moves ( , )i im m  - both players have selected the same 

action. Thus the graph of the automaton is a tree (with 
possible loops with limited length at some nodes) and all 

rounds are finite. The length ( )D  of the longest round (the 

depth of the tree) is the depth of the game. Game is repeated 
and after some fixed number (e.g. 10000) of moves 
automaton announces if the result of the game is draw or 
who won. 

Automaton is deterministic, i.e. in any state 

a , a F  and for any move ( , )i jm m  there is a 

single transition 0( , ) { }\ i ja m m a a . 

Transitions are in natural way extended to words from 
2 ( )

11 21 1 2
{( , )} {( )...( ), ( )}

D

i j t t
M m m m m m m t D


    

11 21 12 22 1t 2 t

11 21 12 22 1t 2 t

(( , )( , )...( , ))

( (( , ))(( , )...( , ))

a m m m m m m

a m m m m m m


 

Action of words on states of automaton  creates 

partition of the set 2 ( )DM  of words into three sub-
languages: 

1 0 1{ | } w a w a , 

2 0 2{ | } w a w a , 

0{ | } d dw a w a  

Call all words 2 ( )Dw M  plays.  

VI. DESIGH OF A GAME FROM SYMMETRY CONSIDERATIONS 

In games of chance nobody wants to have worst chances 
by design of the game and all players actions shuld be 

significant, i.e. could change the result, thus these games 
follow the following principle: 

in any move, i.e. word ( , )i jm m  from any play both 

players have equal chances, i.e with all other moves in the 
play kept the same they can change their action so that 

frequency of outcomes 
1 2,a a  is the same, i.e. 0.5. Since 

there are 2k  possibly moves it follows that if k  is odd, the 

set 
0

 can't be empty – otherwise 
1 2| |   | |  is 

impossible.  

Therefore the games with ( ) 1D  (one round) should 

satisfy the following conditions. 

1. All games are zero-sum, i.e. the involution 
1

: ( , ) ( ( , ), )
i j j ii jm m m m mm


   produces an 

automorphism of automaton , i.e. 

1 2 2 1( ) , ( ) , ( )    d d . 

2. Any substitution 
1 1

0 1 0 1:{ ,..., } { ,..., }


 k km m m m  of 

actions produces automorphism of automaton , which 

does not break the partition 
1 2{ ,  ,  }d

.  

3. The sublanguage 
d

 contains all words 

( , ),  i i im m m M  and is minimal – it should not contain 

words which could be moved into 
1

 or 
2

 without 

breaking conditions 1,2. 

Proposition. Conditions 1-3 define for given k  unique 

(up to isomorphism) game payoff function. 

Proof. Consider the set 1 1 1{( , ), \{ }} i im m m M m , 

i.e. moves, where the first player selects action 
1m . From the 

condition 3. it follows, that the set 
d

 can contain at most 

one of them, otherwise we could pairwise move them one to 

1 , another to 2  without breaking conditions 1.2.  

From the condition 2. it follows, that there should be 

equal number of elements from the set 
1

 inside sets 

1 2,  , otherwise some substitutions which keep 
1m  fixed, 

but move other actions will break the condition 2.  

According to condition 2. we could re-arrange actions 

inside 1  so that 1 2 1 3 1 1 1( , ),( , ),..., ( , )km m m m m m , 

1 / 2   k k . Using substitution 1: i i km m  and the 

property 2. we get that all sets 

1 2 1{( , ),( , ),..., ( , )}  i i i i i i km m m m m m  should belong to 1 . If 

k  is odd, then all moves are now evenly divided between 

sets 1  and 2 . If k  is even, then from the above discussion 

it follows that the moves /2( , )i i km m  should belong both to 

1  and 2 , i.e. the conditions 1.-3. can not decide their 

placement, thus they should be moved to set d .  

Thus a game with properties 1.-3.- has an unique (up to 
involution  ) payof function, based on cyclic order [45] on 

moves: if moves of players are 1 2( ) ,  ( )i jm m m m  , 

then output from the automaton  is:     



1, iff ( )modm m / 2i jm m k      , otherwise -1. 

TABLE II.  DECISION TABLE OF CYCLIC 5-ARY ORDER; E.G. 

1
(0, 2), (1, 2) , BUT 

2
(0,3), (2,1)   

 0 1 2 3 4 

0 0 + + - - 

1 - 0 + + - 

2 - - 0 + + 

3 + - - 0 + 

4 + + - - 0 

 

In case 3m   this is isomorphic to the well-known game 

rock-paper-scissors, which appeared in China at the 
beginning of Current Era. Apparently Chinese know how to 
use symmetry groups for inventing amusing games...  

Many video games use variants of this game with greater 
m, e.g. movements of fighters can be punch, kick, grab, push 
(the next one stronger than the previous), in some games 
even more than ten (the order may be not linear) [46].   

VII. THE ALGORITHM 

In spite of total randomness of outcome are games of 
luck very popular. Many humans do not believe in 
theoretical impossibility of great winnings, but believe in 
their 'inborn luck'. When playing against human opponents 
the psychology of other players is also a factor which may 
change randomness of outcome, thus e.g. in USA is even a 
league of professional players of the "Rock, Paper, Scissors" 
game [ 47 ], regular tournaments [ 48 ] and programming 
competition [49].  

Randomness is an evasive concept to define. The widely 
accepted definition is the Kolmogorov- Martin-Löf 
definitions: [50],[51]: 

a sequence is random if it can't be expressed by any 
algorithm or device which can be described using less 
symbols than what are in the sequence. 

This definition and other consequent definitions, e.g. [52] 
are using infinite sets of concepts ('any algorithm') and apply 
to infinite sequences, thus useless in practice for evaluating 
quality of a source of randomness, which produces finite 
sequences. For finite sequences here is introduced modified 
definition: 

a finite sequence of m-ary integers is k-random iff it can't 
be created (as sequence of outputs) by any determininstic 
finite automaton with less than k states and m-ary input 
alphabet.  

When k   this definition yields the presented above 

definition. All PRNG-s are interactive (input is seed) 
deterministic finite automata – with the same seed they 
produce the same output. PRNG with cycle length k 
produces (maximally) a k-random sequence. Thus for 
designing algorithm for this game was supposed, that our 
algorithm is playing against finite automaton. Any finite 
deterministic automaton with k states and m input symbols 
produces a periodic sequence [53], i.e. 'goes into loop', if the 

length of its input is longer than k m  - there are now new 

possibilities for the pair (state, input), thus this pair has 
already occured and deterministic automaton produces the 

same output; thus here the whole sequence of pairs 
(input,output) will repeat some subsequence which already 
occurred. The evolutionary game theory of bounded 
rationality [54] of human players also predicts cyclic patterns 
in playing behavior [55]. Thus for successsful play one has 
to find when the loop begins, i.e. automaton repeats its 
moves. Thus the idea of the algorithm is: 

scan the sequence of stored moves (input-output pairs) 
and when you see a situation similar to the current one (the 
sequence of last moves already appeared earlier) make the 
move that then (in the previous situation) would make you 
winning. 

Suppose the sequence of moves in a game up to now is  

0 11 21 12 22 1 2 1k 2k 1k 1 2k 1

1 2 1k 2k

( , )( , ),..., ( , ),...( , )( , )...,

( , ),...( , )

n n

n n

a m m m m m m m m m m

m m m m

 

and 
1 2 1 2( , ),..., ( , )n n k km m m m  is the longest repeated 

subsequence of moves (looking from the current state 
backwards). Then algorithm should select move, which 

winns in state 1 1 2 1( , )k km m  .  

For instance, in the following situation from a real play of 3-
ary game (moves follow in pairs, first human then computer, 
e.g. on the second move human played '1', computer – '2') 
computer discovered a repeated sequence (underlined), thus 
its next move will be '2': 

1, 1, 1, 2, 2, 2, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 2, 2, 2, 2, 1, 0, 0, 1, 1, 0, 2, 
0, 0, 2, 2, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 0, 2, 2, 0, 1, 1, 1, 1, 2, 0, 0, 2, 2, 
2, 2, 1, 1, 0, 0, 1, 2, 1, 0, 0, 2, 2, 0, 2, 0, 2, 0, 0, 0, 0, 2, 0, 0, 2, 0, 1, 0, 
0, 2, 2, 0, 2, 0 

The above sequence shows 45 moves (there are 90 symbols); 
length of the repeated subsequence is 4 moves, thus the all 
sequence is 41-random. 

The algorithm has been implemented in several browser 
games [56].  

VIII. TESTS 

We tested the output of algorithm – a new random 
sequence - in many plays. Against human players (students 
from the game programming course in the Tallinn University 
of Technology) computer was in most cases already winning 
if the length of the game was >30. Humans are not 
sufficiently random to beat computer, especially if the 
memory requirements (length of the game) grows; it seems 
that here works the famous human short-term memory size 
principle [57]. 

As opponent players for testing were used established 
sources of randomness: Javascript's functions 
Math.random(), window.crypto.getRandomValues() (the 
game is implemented in browser [58]), random numbers 
produced by Wolfram's Mathematica and table table of 
10000 random integers downloaded from 
https://www.random.org/.  

Tests indicated, that the algorithm plays quite well 
against all these common sources of 'computed' randomness, 
i.e. its own randomness is on the same level. Below is a table 
of results from three tests, each a 10 series of plays, each 

10000 rounds with 3m  ; player 1  is in the first test 

random numbers produced by the Javascript function 
Math.random(), in the second – random numbers produced 



by the function RandomInteger[] of Wolfram's Mathematica 
(using the default rule Rule30CA) and in the third – random 
numbers produced by function 

window.crypto.getRandomValues(); player 
2

is our 

algorithm;  is the length of longest cycle. The last row 

indicates, how many times each player won and length of the 
longest repeated sequece. 

TABLE III.  RESULTS OF TESTS 

1
 

2
  1

 
2

  1
 

2
  

3350 3365 16 3403 3289 16 3356 3287 18 

3396 3237 16 3369 3242 20 3277 3285 16 

3328 3332 16 3392 3286 16 3281 3351 18 

3428 3209 18 3392 3317 18 3342 3305 18 

3310 3377 16 3512 3163 16 3299 3405 16 

3369 3365 16 3424 3278 18 3366 3259 16 

3360 3345 16 3440 3316 18 3367 3263 16 

3315 3402 16 3355 3265 18 3283 3446 20 

3322 3412 18 3409 3301 19 3383 3354 16 

3294 3364 16 3330 3453 16 3324 3314 16 

4 6 18 9 1 20 6 4 20 

 
These results show, that used in tests sequences were (at 

least) 9980-random according to the above definition – they 
did not contain repeated sequences longer than 20 moves.  

In the following table are discretizised results (showing 
not actual results, but how many times player was better than 
the opponent) from 10 10000  series of tests against random 

numbers table from Random.org (the first column in all three 
subpartions), Javascript function Math.Random() (the second 
column) and against the function 
window.crypto.getRandomValues() (the third column); the 
last row showss summary results. 

TABLE IV.  DISCRETIZISED RESULTS OF TESTS 

Better 
1

 Better 
2

 Draw 

4 7 2 4 3 8 2 0 0 

6 4 7 4 3 3 0 3 0 

5 7 1 3 2 9 2 1 0 

6 3 1 3 7 9 1 0 0 

2 5 2 7 4 8 1 1 0 

3 4 4 5 5 5 2 1 1 

4 6 4 4 4 6 2 0 0 

4 4 3 5 5 7 1 1 0 

7 4 3 3 2 7 0 4 0 

4 4 4 4 4 3 2 2 3 

85 100 75 88 74 115 27 26 10 

  
As seen from this table, our algorithm was nearly on the 

same level against Math.Random(), slightly outperformed the 
randomness from Random.org and slightly lost to 
window.crypto.getRandomValues(); tests against other 
sources of computer randomness produced rather similar 
results. 

IX. CREATED AND ITERATED RANDOMNESS 

As output (new randomness) could be used two 
sequences – the sequence of 'full' moves (pairs of moves 
from player and computer) or the sequence of only 
computer-generated moves (twise shorter). We tested both as 
the source of random sequence against our computer's 
algorithm. In the following table are results from 10 series of 

plays, each 10000 rounds with 3m  ; player 
1

 is in the 

first series (the first three columns of the table) generated in a 
previous game (10000 moves against Javascript Random()) 
sequence of full moves (pairs), in the second (the last three 

columns) – sequence of computer moves; player 
2
. is our 

algorithm. 

TABLE V.  TESTS AGAINST RANDOMNESS, CREATED IN GAME 

1
 

2
  

1
 

2
  

3298 3344 16 3403 3275 16 

3377 3351 16 3328 3337 16 

3439 3303 16 3391 3342 16 

3419 3284 16 3375 3297 18 

3328 3376 16 3490 3272 18 

3471 3212 16 3408 3273 18 

3360 3294 20 3379 3343 20 

3367 3314 16 3342 3370 16 

3513 3250 16 3376 3288 16 

3416 3362 16 3362 3316 18 

7 3 20 8 2 20 

 

According to the above table the created in the game 
randomness already mostly outperformed our algorithm, its 
results are better than that of commonly established sources, 
compare with TABLE III; however, the k-randomness is on the 
same level. 

When the generation process was iterated, i.e. generated 
randomness was used as input for the next play, it become 
more difficult to predict and our algorithm started to loose. In 
the following table are results of play against randomness, 
created on third iteration, i.e. after three rounds of 10x50000 

moves; player 1  is in the first column the table of full 

moves (pairs), in the second – sequence of computer-
generated moves.  

TABLE VI.  TESTS WITH ITERATED RANDOMNESS 

1
 

2
  

1
 

2
  

16811 16740 22 16617 16834 24 

16840 16550 18 16636 16759 18 

16785 16599 20 16729 16592 20 

16779 16701 18 16703 16641 20 

16777 16412 18 16601 16720 18 

16928 16672 18 16801 16682 20 

16904 16610 20 16757 16589 20 

16902 16599 18 167877 16547 22 

17017 16445 22 16581 16702 20 

16680 16655 20 16458 16854 18 

10 0 22 5 5 20 

 

X. CONCLUSIONS 

 
Above was presented a method for creating new random 

sequences with repeated play of a game of chance using as 
input either a human player or an established source/table of 
random numbers. Tests show, that produced randomness is 
quite on level with established sources and can be used e.g. 
for creating encryption keys for messages in a chat system of 
a multiplayer online game; such a system is currently under 
development.  
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