
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Creating Randomness with Games

Jaak Henno

Tallinn University of Technology

Tallinn, Estonia
jaak.henno@ttu.ee

Hannu Jaakkola

Tampere University of Technology,

Pori Department

Pori, Finland

hannu.jaakkola@tut.fi

Jukka Mäkelä

University of Lapland,

Rovaniemi, Finland
jukka.makela@ulapland.fi

Abstract—In our more and more connected and open

World randomness has become an endangered species. We

may soon not have anything private, all out communication,

interaction with others becomes publicly available. The only

method to secure (temporarily) communication is mixing it

with randomness – encoding it with random keys. But massive

use of the same sources of randomness often reveals, that those

sources were not perfectly random, rapid achievements of

technology can render some previously secure sources un-

secure and in our competition-based world we can never be

quite certain with 'given from above' products of their quality

– in order to beat each other all producers are 'cutting corners'

and this clearly shows in tremendous increase of all kind of

security accidents. Thus there is an urgent constant need for

new, independent sources of randomness. The common area

where we constantly encounter randomness are computer

games. When players try to beat others they constantly invent

new moves and tactics, i.e. introduce new randomness, which

can be captured and used e.g. for generating secret keys in

multi-player game communication. Here is presented a method

to produce with games of chance m-ary (m>2) random integer

sequences utilizing a finite automaton; for assessment of

random sequences is introduced a notion of k-randomness. The

obtained randomness can be used e.g. for creating secure

communication/chat systems in massively multiplayer games.

Keywords— entropy, randomness, video games, finite-state

machines, human behavior, cyclic order, k-random sequences

I. INTRODUCTION

Nicholas Negroponte, founder and Chairman Emeritus of
the Massachusetts Institute of Technology's Media Lab
noticed already in 1995, that humanity is 'moving from a
world of atoms to the world of bits' and replacing
'manipulating atoms with manipulating bits' – virtual things
[1]. Manipulating atoms, physical things is left for automata
and robots, we only create programs which rule these
automata and robots. Traditional fields – agriculture,
manufacturing and construction are currently producing only
35% of all values, the resti is produced in mental/information
sphere, where the input for production of new values is data.

We are irreversibly moving all our human environment
into virtual environment. Google, Facebook, Amazon know
about us more and more and we do not even know, what all
they know about us.

Thus it is becoming increasingly important to keep our
privazy, our 'self', our data and our communication and for
this we need randomness. Randomness has become a
commercial product, several countries are creating public
random number generators [2] and with rapidly increasing
amount of communications and data we also have growing
need for new randomness for encryption. Randomness has
also many other applications - in scientific computing,
operating systems etc.

Encryption ciphers are based on modifying messages
using random data. But they are only temporary measure,
when some encrpytion method/cypher is broken it becomes
worthless and the randomness used in it is not any more
randomness. Data breaches are increasing by more than 20
percent in a year [3] and they have become the most
worrying feature of Internet [4]. But with every breach also
the randomness used in these encryptions is loosing its value.
Thus we constantly need new sources of randomness. New
computing environments - the coming era of IoT (Internet of
Things), virtual/cloud servers etc. all increase need for
randomness.

To satisfy this all the time growing need for randomness
are emerging dedicated services to serve entropy, i.e. random
data [5]. For delivering provided entropy to users were
proposed a special new protocol 'Entropy as a Service' [6].
But for delivery entropy also should be encrypted, thus here
is a new source needing 'fresh' entropy. Thus it is not clear,
whether this service will reduce the need for entropy or
contrary, increase it. Everything is much simpler if the
entropy is generated/collect there where it is needed.

II. TYPES OF RANDOMNESS

It is impossible to generate random values using
computer's basic operations – binary operations conjunction
 (and), disjunction (or) and the unary negation
(not) – all combinations of these connectives return single
determined value (if not, then the computer is severely
broken): John von Neumann commented this: "Anyone who
attempts to generate random numbers by deterministic means
is, of course, living in a state of sin". But he did not
elaborate: why?, what are the "non-sinful means" of creating
randomness and what actually is "randomness"? .

Computers are deterministic, orderly; randomness is the
opposite of order, the absence of any pattern. Current
understanding is, that 'true' randomness can be extracted only
from physical processes which have rich inner structure –
entropy, e.g. thermal fluctuations in computers processor,
pixels found by mouse sensor when user makes some rapid
random strokes, atmospheric disturbances [7] etc. These
sources are 'Pure Randomness Generators' (PRG), but they
are often not rich enough e.g. in network servers which do
not have means for extracting external randomness.

All operating systems maintain an entropy pool. The first
versions of Linux kernel generated entropy from the third
derivative of differences in timings of user actions, this
information is stored in two files /dev/random and

/dev/urandom. This method turned out to be too slow and
currently are used low-order bits (lest significant, i.e.
changing most rapidly) of values from timings of user
actions on keyboard, mouse movements, IDE requests etc.
Tools for extracting entropy from audio [8], video [9] data
etc are under development.

Programming language's compilers have methods to
create random values, see e.g. [10],[11]. All compiters work
under the Operation System (OS) and get their randomness
from OS, e.g. in Windows environment randomness to all
programming languages comes from the same source as to
the Microsoft C/C++ compiler (and the Intel compiler) [12]
or newer [13] - they use the random values generated in
Common Language Runtime [14], using the entropy
produced by processor. But there have been found several
problems for Intel processors [15],[16] thus specialists
distrust randomness produced by Intel processors [17], e.g.
in Linux kernel it is only one of many inputs into the random
pool. Researchers have shown that even processors built-in
functions (PRG-s) for generating random values can be
compromized [18], thus processors and microchips may have
built-in hardware trojans [19], which can leak information
leading to successful key recovery attacks. After NSA (U.S.
National Security Agency) leaks from Snowden many
engineers have lost faith in hardware randomness [20].

Hardware entropy pools decrease every time random
numbers are generated from it. Requesting a lot of random
numbers may starve programs that use the interface; this is a
practical issue especially on servers that have no input
devices. Other PRG sources also decrease, e.g. the online
source of randomness Random.org [7] limits its daily
available amount of free random bytes and after exceeding

your free quota (currently 610 bits) you have either to buy

new random bits or wait for next increse [21] (hopefully on
the next day). But nobody wants to postpone e.g. your
ecrypted chat on MMOG (Massively Multi-Player Online
Game) to next day.

Thus PRG sources do not suffice, for random number
generation are needed also computer algorithms.

 Computers are finite devices and after a while 'fell into
loop', start to repeat computed values. Thus 'calculated
randomness' is pseudo-randomnees produced by pseudo-
random number generators (PRNG). All PRNG-s are loops,
which after their period repeat produced values.

The first value in the loop is produced by random seed,
i.e. derivative from other, ususally PRG source. The next
value is calculated from the previous one by some recurrennt
function; common method is to use linear (for speed)
recurrent functions with reduction by modulus. For these
Congruential Generators (CG) is the period (length of the
loop) the most important measure of security of such a
generator. For the C language it should be at least

32
2 32767 [22] - a rather small number for current CPU-s

and it's use (installing the Microsoft or GNU suite of
compilers) requires decent computer skills. A 'high-end'
PRNG–s have much bigger period, e.g. period of the

'mersenne twister' is the the Mersenne prime
19937

2 1 , and
use of these requires good computer skills and hardware.

Rapid development of computers has renderd obsolate
many old methods. Many PRNG-s which at their
introduction were considered 'good enough' have later
become 'not good enough'. For example, John fon Neumann
used for generation of random numbers the 'middle-square'
method [23] – for the recurrence step earlier produced
number was squared and then the middle digits were sliced
out. This mix of number's semantics (squaring) and syntax -
use only middle digits in decimal representation - was used

already in 13th centyry [24] and seems good, since
uncomputability results (e.g. the Rice theorem [25]) indicate,
that semantic properties are undecidable from syntax.
However, computers revealed that with n-bit starting number

(seed) the sequence length is 8
n

 and with many seeds

much shorter, e.g.

2 2 2 2

3792 79 6241 24 0576 57 3249 24 ...

The fate of many other PRNG-s is similar. For instance
the RC4 (Rivest Cipher 4) which is/was used in several
commercial encryption protocols and standards (e.g. in the
TLS - Transport Layer Security – the base of all traffic in
WWW), but was prohibited; widely known was periodicity
in the random function of Microsoft PHP translator. Already
in 1999 were presented general methods for prediction of
CG-s [26],[27].

For assessement of quality of new PRNG-s have been
constructed several suites of statistical tests – the NIST (the
U.S. National Institute of Standards and Technology) suite
[28], the Dieharder (Marsaglia) suite [29], Ent [30] etc.
These tests check presented samples for some common
regularities in everyday data, e.g. the Dieharder 3.20
implements 26 tests.

We tested with the Ent suite several established sources:

1. the first 7 KB part of the 2.1 GB file
/dev/urandom from Ubuntu 16.04.3 (a three
months old installation, used mainly for making
music and rarely connected to Internet)

2. 10000 decimal digits (0,...,9) downloaded from
the Random.org [7] (randomness from
atmosphere);

3. 10000 decimal digits created using the function
window.crypto.getRandomValues();

4. 10000 decimal digits created by Wolfram
Mathworld with function RandomInteger[]
using the default method Rule30CA

In the following table are shown three characteristics
from the test with Ent: entropy (bits per bit), possible
compression (randomness can't be compressed) and serial
correlation coefficient.

TABLE I. SOME CHARACTERISTICS OF ESTABLISHED SOURCES OF

RANDOMNESS

 Entropy Compression Correlation

/dev/urandom 0.988577 1% 0.035161

Random.org 0.919040 8% 0.060193

Windows 0.974450 2% -0.010378

Wolfram 0.974448 2% -0.010948

The results are rather similar except a weak preformance
of atmosphere processes. But the results of these tests do not
tell the whole truth. Although the randomness from Linux
performed best, visual inspection (the 'Statistics' tool from
free hex editor HxD) reveals, that distribution of frequencies
in /dev/urandom is rather uneven:

Fig. 1. Distribution of frequencies in the first 7 KB from the /dev/urandom

file from Ubuntu 16.04.3; the sharp peak in the middle is the code for the €

(Euro) symbol, encoded as 80h (0x80) in the windows-1252 charset. The

computer has not been used for handling financial documents.

Thus statistical tests are rather uncertain method for
evaluation of randomness sources. There are many surprizing
dependencies in data - the above peak in € symbol code
come from computer, which is rather new (used for several
months) and had never been used for any kind of financial
data handling.

III. RANDOM SEQUENCES

In several publications have been proposed methods for
producing new, 'derived' randomness using (low-quality)
sources as 'parents' [31], [32];[33] etc, (resembes method of
gene-engineering to produce 'better' child [34],[35]). The
NIST 'randomness beacon' also uses two commercial 'parent'
sources' [36], but (currently) still warns: "Do not use beacon
generated values as secret cryptographic keys." [37].

Reacently was announced a new breakthrough [38]. The
presented method works in polynomial (in input lengths n)

time and requires sources with min-entropy (negative
logarithm of the maximum of probabilities in sources)

log C n , where C is a sufficiently large constant. Thus

sources should be known and available for inspection
beforehand. This is rather difficult to implement if the new
randomness, e.g. a secret key should be created 'on the fly',
e.g. participants of a multi-player game want to establish
secure communication with some other players..

However, there is an area where independent random
sequences are constantly produced on-line, in real time –
(computer) games.

IV. RANDOMNESS IN GAMES

Games use randomness in many ways. Game designers
want their games to be not for one-time, but to be playable
many times; for this the game should appear different in
every play – nobody wants to replay a game where everyting
repeats itself, thus randomness is an essential part of
repeated, procedurally generated games.

Even more essential is randomness in the infrastructure
of multiplayer games. In multiplayer games players
communicate with game server(s), but they often want to
communicate also with fellow players. In most gaming
situations these are unknown persons, thus starting such a
communication is from the computer security viewpoint a
very dangerous operation, which exposes player to several
serious threts – ransomware, password/account theft, credit

or debit card information leakage (if player has to made
payments), fake game cracs, fake apps etc [39]. Thus every
such interaction with unknown players should be from the
very beginning encrypted and highest security – with key,
generated in players device using the randomness, already
generated in the course of the game.

V. RANDOMNESS FROM GAMES

The whole idea of "game" includes randomness – nobody
wants to participate in process, where out-come is (or seems)
to be highly pre-determined. Gameplaying is always
considered as a process, where outcome depends on
randomness.

Produced by players randomness is an essential
ingredient in most games and different methods for utizingg
this source have been proposed e.g. in [40], [41]. In [42]
authors presented a method for producing on-line in real
playing time binary random strings from simple repeated
games; here the principles of the proposed method are
applied to produce from gameplay m-ary (2m) random

sequences.

In the (economics theories based) texts on games the
game decision mechanism is usually not detailed – it is
determined by unpredictable markets. Here we follow
computer science tradition (see e.g. [43]) and use for the
decision mechanism finite automaton. One player is human
or some established source of randomness; computer's next
move is computed by an algorithm and this is also the output
of the automaton. All games considered here are 'games of
luck', where both players have equal chance to win and the
best strategy (the Nash equilibrium) for both players is total
randomness. Thus if one player is human or some established
source of randomness and the other – the computer
algorithm, then the (statistical) result of numerous repeated
plays is also an assessment for the quality of computer-
created randomness. The length of all considered here
random sequences/plays is 10000, following the suggestion:
"A reasonable estimate (for humanly interesting cases)
reckons that some 10,000 digits would suffice" [44], p.16.

Thus in the following will be considered games,
satisfying the following description.

Game is a structure 1 2, , , ,M R , where

1 2, are two players;

{0,1,..., 1}M m , 2m - the set of legal moves

(actions) of players (same set for both players); in every
round both players apply simultaneously one action which

initiates some change in automaton ;

1 2[,]R r r - player's points; at the start 1 2 0r r ;

 - finite automaton, deciding the computer output

(move) and payoff of the game. Here are considered
simultaneous (synchroneous) games, where players produce
their actions (moves) at the same time, thus the input for the

automaton are pairs 1 2(,)i im m , where 1im is the i-s

move of the first player, 2im - i-s move of the second player;

denote 1

1 2 2 1(,) (,)i i i im m m m - actions of players were

switched.

Automaton's (possible) outputs are "1" ("the player
1

won",
1 1r), "-1" ("the player

2
.won,

2 1r), "0" –

draw. Thus the automaton has four distinguished states:

Fig. 2. Game automaton with distinguished states: a0 – the start state, a1

– first player won, a2 – second player won, ad – draw.

Here 1a is the game start state, 1a - here automaton

outputs, that the first player won, 2a - the second player

won, da - draw; in any other state automaton does not

produce output. Denote the set of final (for a round) states

1 2{ , , }dF a a a . Other, intermediate states are not fixed

beforehand – they emerge in gameplay.

After reaching one of states a F automaton goes

(without any input) back to state 0a (a cycle) and game is

repeated, may continue with a new round. Automaton does
not have other cycles except possible loops at nodes, e.g. for

moves (,)i im m - both players have selected the same

action. Thus the graph of the automaton is a tree (with
possible loops with limited length at some nodes) and all

rounds are finite. The length ()D of the longest round (the

depth of the tree) is the depth of the game. Game is repeated
and after some fixed number (e.g. 10000) of moves
automaton announces if the result of the game is draw or
who won.

Automaton is deterministic, i.e. in any state

a , a F and for any move (,)i jm m there is a

single transition 0(,) { }\ i ja m m a a .

Transitions are in natural way extended to words from
2 ()

11 21 1 2
{(,)} {()...(), ()}

D

i j t t
M m m m m m m t D

11 21 12 22 1t 2 t

11 21 12 22 1t 2 t

((,)(,)...(,))

(((,))((,)...(,))

a m m m m m m

a m m m m m m

Action of words on states of automaton creates

partition of the set 2 ()DM of words into three sub-
languages:

1 0 1{ | } w a w a ,

2 0 2{ | } w a w a ,

0{ | } d dw a w a

Call all words 2 ()Dw M plays.

VI. DESIGH OF A GAME FROM SYMMETRY CONSIDERATIONS

In games of chance nobody wants to have worst chances
by design of the game and all players actions shuld be

significant, i.e. could change the result, thus these games
follow the following principle:

in any move, i.e. word (,)i jm m from any play both

players have equal chances, i.e with all other moves in the
play kept the same they can change their action so that

frequency of outcomes
1 2,a a is the same, i.e. 0.5. Since

there are 2k possibly moves it follows that if k is odd, the

set
0

 can't be empty – otherwise
1 2| | | | is

impossible.

Therefore the games with () 1D (one round) should

satisfy the following conditions.

1. All games are zero-sum, i.e. the involution
1

: (,) ((,),)
i j j ii jm m m m mm

 produces an

automorphism of automaton , i.e.

1 2 2 1() , () , () d d .

2. Any substitution
1 1

0 1 0 1:{ ,..., } { ,..., }

 k km m m m of

actions produces automorphism of automaton , which

does not break the partition
1 2{ , , }d

.

3. The sublanguage
d

 contains all words

(,), i i im m m M and is minimal – it should not contain

words which could be moved into
1

 or
2

 without

breaking conditions 1,2.

Proposition. Conditions 1-3 define for given k unique

(up to isomorphism) game payoff function.

Proof. Consider the set 1 1 1{(,), \{ }} i im m m M m ,

i.e. moves, where the first player selects action
1m . From the

condition 3. it follows, that the set
d

 can contain at most

one of them, otherwise we could pairwise move them one to

1 , another to 2 without breaking conditions 1.2.

From the condition 2. it follows, that there should be

equal number of elements from the set
1

 inside sets

1 2, , otherwise some substitutions which keep
1m fixed,

but move other actions will break the condition 2.

According to condition 2. we could re-arrange actions

inside 1 so that 1 2 1 3 1 1 1(,),(,),..., (,)km m m m m m ,

1 / 2 k k . Using substitution 1: i i km m and the

property 2. we get that all sets

1 2 1{(,),(,),..., (,)} i i i i i i km m m m m m should belong to 1 . If

k is odd, then all moves are now evenly divided between

sets 1 and 2 . If k is even, then from the above discussion

it follows that the moves /2(,)i i km m should belong both to

1 and 2 , i.e. the conditions 1.-3. can not decide their

placement, thus they should be moved to set d .

Thus a game with properties 1.-3.- has an unique (up to
involution) payof function, based on cyclic order [45] on

moves: if moves of players are 1 2() , ()i jm m m m ,

then output from the automaton is:

1, iff ()modm m / 2i jm m k , otherwise -1.

TABLE II. DECISION TABLE OF CYCLIC 5-ARY ORDER; E.G.

1
(0, 2), (1, 2) , BUT

2
(0,3), (2,1)

 0 1 2 3 4

0 0 + + - -

1 - 0 + + -

2 - - 0 + +

3 + - - 0 +

4 + + - - 0

In case 3m this is isomorphic to the well-known game

rock-paper-scissors, which appeared in China at the
beginning of Current Era. Apparently Chinese know how to
use symmetry groups for inventing amusing games...

Many video games use variants of this game with greater
m, e.g. movements of fighters can be punch, kick, grab, push
(the next one stronger than the previous), in some games
even more than ten (the order may be not linear) [46].

VII. THE ALGORITHM

In spite of total randomness of outcome are games of
luck very popular. Many humans do not believe in
theoretical impossibility of great winnings, but believe in
their 'inborn luck'. When playing against human opponents
the psychology of other players is also a factor which may
change randomness of outcome, thus e.g. in USA is even a
league of professional players of the "Rock, Paper, Scissors"
game [47], regular tournaments [48] and programming
competition [49].

Randomness is an evasive concept to define. The widely
accepted definition is the Kolmogorov- Martin-Löf
definitions: [50],[51]:

a sequence is random if it can't be expressed by any
algorithm or device which can be described using less
symbols than what are in the sequence.

This definition and other consequent definitions, e.g. [52]
are using infinite sets of concepts ('any algorithm') and apply
to infinite sequences, thus useless in practice for evaluating
quality of a source of randomness, which produces finite
sequences. For finite sequences here is introduced modified
definition:

a finite sequence of m-ary integers is k-random iff it can't
be created (as sequence of outputs) by any determininstic
finite automaton with less than k states and m-ary input
alphabet.

When k this definition yields the presented above

definition. All PRNG-s are interactive (input is seed)
deterministic finite automata – with the same seed they
produce the same output. PRNG with cycle length k
produces (maximally) a k-random sequence. Thus for
designing algorithm for this game was supposed, that our
algorithm is playing against finite automaton. Any finite
deterministic automaton with k states and m input symbols
produces a periodic sequence [53], i.e. 'goes into loop', if the

length of its input is longer than k m - there are now new

possibilities for the pair (state, input), thus this pair has
already occured and deterministic automaton produces the

same output; thus here the whole sequence of pairs
(input,output) will repeat some subsequence which already
occurred. The evolutionary game theory of bounded
rationality [54] of human players also predicts cyclic patterns
in playing behavior [55]. Thus for successsful play one has
to find when the loop begins, i.e. automaton repeats its
moves. Thus the idea of the algorithm is:

scan the sequence of stored moves (input-output pairs)
and when you see a situation similar to the current one (the
sequence of last moves already appeared earlier) make the
move that then (in the previous situation) would make you
winning.

Suppose the sequence of moves in a game up to now is

0 11 21 12 22 1 2 1k 2k 1k 1 2k 1

1 2 1k 2k

(,)(,),..., (,),...(,)(,)...,

(,),...(,)

n n

n n

a m m m m m m m m m m

m m m m

and
1 2 1 2(,),..., (,)n n k km m m m is the longest repeated

subsequence of moves (looking from the current state
backwards). Then algorithm should select move, which

winns in state 1 1 2 1(,)k km m .

For instance, in the following situation from a real play of 3-
ary game (moves follow in pairs, first human then computer,
e.g. on the second move human played '1', computer – '2')
computer discovered a repeated sequence (underlined), thus
its next move will be '2':

1, 1, 1, 2, 2, 2, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 2, 2, 2, 2, 1, 0, 0, 1, 1, 0, 2,
0, 0, 2, 2, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 0, 2, 2, 0, 1, 1, 1, 1, 2, 0, 0, 2, 2,
2, 2, 1, 1, 0, 0, 1, 2, 1, 0, 0, 2, 2, 0, 2, 0, 2, 0, 0, 0, 0, 2, 0, 0, 2, 0, 1, 0,
0, 2, 2, 0, 2, 0

The above sequence shows 45 moves (there are 90 symbols);
length of the repeated subsequence is 4 moves, thus the all
sequence is 41-random.

The algorithm has been implemented in several browser
games [56].

VIII. TESTS

We tested the output of algorithm – a new random
sequence - in many plays. Against human players (students
from the game programming course in the Tallinn University
of Technology) computer was in most cases already winning
if the length of the game was >30. Humans are not
sufficiently random to beat computer, especially if the
memory requirements (length of the game) grows; it seems
that here works the famous human short-term memory size
principle [57].

As opponent players for testing were used established
sources of randomness: Javascript's functions
Math.random(), window.crypto.getRandomValues() (the
game is implemented in browser [58]), random numbers
produced by Wolfram's Mathematica and table table of
10000 random integers downloaded from
https://www.random.org/.

Tests indicated, that the algorithm plays quite well
against all these common sources of 'computed' randomness,
i.e. its own randomness is on the same level. Below is a table
of results from three tests, each a 10 series of plays, each

10000 rounds with 3m ; player 1 is in the first test

random numbers produced by the Javascript function
Math.random(), in the second – random numbers produced

by the function RandomInteger[] of Wolfram's Mathematica
(using the default rule Rule30CA) and in the third – random
numbers produced by function

window.crypto.getRandomValues(); player
2

is our

algorithm; is the length of longest cycle. The last row

indicates, how many times each player won and length of the
longest repeated sequece.

TABLE III. RESULTS OF TESTS

1

2
 1

2

 1

2

3350 3365 16 3403 3289 16 3356 3287 18

3396 3237 16 3369 3242 20 3277 3285 16

3328 3332 16 3392 3286 16 3281 3351 18

3428 3209 18 3392 3317 18 3342 3305 18

3310 3377 16 3512 3163 16 3299 3405 16

3369 3365 16 3424 3278 18 3366 3259 16

3360 3345 16 3440 3316 18 3367 3263 16

3315 3402 16 3355 3265 18 3283 3446 20

3322 3412 18 3409 3301 19 3383 3354 16

3294 3364 16 3330 3453 16 3324 3314 16

4 6 18 9 1 20 6 4 20

These results show, that used in tests sequences were (at

least) 9980-random according to the above definition – they
did not contain repeated sequences longer than 20 moves.

In the following table are discretizised results (showing
not actual results, but how many times player was better than
the opponent) from 10 10000 series of tests against random

numbers table from Random.org (the first column in all three
subpartions), Javascript function Math.Random() (the second
column) and against the function
window.crypto.getRandomValues() (the third column); the
last row showss summary results.

TABLE IV. DISCRETIZISED RESULTS OF TESTS

Better
1

 Better
2

 Draw

4 7 2 4 3 8 2 0 0

6 4 7 4 3 3 0 3 0

5 7 1 3 2 9 2 1 0

6 3 1 3 7 9 1 0 0

2 5 2 7 4 8 1 1 0

3 4 4 5 5 5 2 1 1

4 6 4 4 4 6 2 0 0

4 4 3 5 5 7 1 1 0

7 4 3 3 2 7 0 4 0

4 4 4 4 4 3 2 2 3

85 100 75 88 74 115 27 26 10

As seen from this table, our algorithm was nearly on the

same level against Math.Random(), slightly outperformed the
randomness from Random.org and slightly lost to
window.crypto.getRandomValues(); tests against other
sources of computer randomness produced rather similar
results.

IX. CREATED AND ITERATED RANDOMNESS

As output (new randomness) could be used two
sequences – the sequence of 'full' moves (pairs of moves
from player and computer) or the sequence of only
computer-generated moves (twise shorter). We tested both as
the source of random sequence against our computer's
algorithm. In the following table are results from 10 series of

plays, each 10000 rounds with 3m ; player
1

 is in the

first series (the first three columns of the table) generated in a
previous game (10000 moves against Javascript Random())
sequence of full moves (pairs), in the second (the last three

columns) – sequence of computer moves; player
2
. is our

algorithm.

TABLE V. TESTS AGAINST RANDOMNESS, CREATED IN GAME

1

2

1

2

3298 3344 16 3403 3275 16

3377 3351 16 3328 3337 16

3439 3303 16 3391 3342 16

3419 3284 16 3375 3297 18

3328 3376 16 3490 3272 18

3471 3212 16 3408 3273 18

3360 3294 20 3379 3343 20

3367 3314 16 3342 3370 16

3513 3250 16 3376 3288 16

3416 3362 16 3362 3316 18

7 3 20 8 2 20

According to the above table the created in the game
randomness already mostly outperformed our algorithm, its
results are better than that of commonly established sources,
compare with TABLE III; however, the k-randomness is on the
same level.

When the generation process was iterated, i.e. generated
randomness was used as input for the next play, it become
more difficult to predict and our algorithm started to loose. In
the following table are results of play against randomness,
created on third iteration, i.e. after three rounds of 10x50000

moves; player 1 is in the first column the table of full

moves (pairs), in the second – sequence of computer-
generated moves.

TABLE VI. TESTS WITH ITERATED RANDOMNESS

1

2

1

2

16811 16740 22 16617 16834 24

16840 16550 18 16636 16759 18

16785 16599 20 16729 16592 20

16779 16701 18 16703 16641 20

16777 16412 18 16601 16720 18

16928 16672 18 16801 16682 20

16904 16610 20 16757 16589 20

16902 16599 18 167877 16547 22

17017 16445 22 16581 16702 20

16680 16655 20 16458 16854 18

10 0 22 5 5 20

X. CONCLUSIONS

Above was presented a method for creating new random

sequences with repeated play of a game of chance using as
input either a human player or an established source/table of
random numbers. Tests show, that produced randomness is
quite on level with established sources and can be used e.g.
for creating encryption keys for messages in a chat system of
a multiplayer online game; such a system is currently under
development.

[1] 11 Negroponte, Nicholas. 1995. Being Digital. New York: A. A. Knopf

[2] 2 Sophia Chen. Why are countries creating public random number

generators? Science, Jun 28, 2018

[3] 3 BSA. Encryption: Why It Matters. Retrieved May 9, 2018 from
http://encryption.bsa.org/

[4] 4 Fortinet 2018. Data Breaches Are A Growing Epidemic. How Do
You Ensure You’re Not Next? Retrieved May 08,2018 from
https://www.fortinet.com/blog/threat-research/data-breaches-are-a-
growing-epidemic--how-do-you-ensure-you-re-n.html

[5] 5 Nist 2016. Entropy as a Service.
https://csrc.nist.gov/projects/entropy-as-a-service

[6] 6 EaaSP 2018. EaaSP - Entropy as a Service Protocol.
https://github.com/usnistgov/EaaS

[7] 7 https://www.random.org

[8] 8 vanheusden.com 2018. audio entropy daemon.
https://vanheusden.com/aed/

[9] 9 vanheusden.com 2018. video_entropyd. https://vanheusden.com/ved/

[10] 10 Generating Random Data in Python. https://realpython.com/python-
random/

[11] 11 How to generate random numbers, characters, and sequences in
Scala. https://alvinalexander.com/scala/how-to-generate-random-
numbers-characters-sequences-in-scala

[12] 12 CryptGenRandom. https://docs.microsoft.com/en-
us/windows/desktop/api/wincrypt/nf-wincrypt-cryptgenrandom

[13] 13 RtlGenRandom function. https://docs.microsoft.com/en-
us/windows/desktop/api/ntsecapi/nf-ntsecapi-rtlgenrandom

[14] 14 Common Language Runtime (CLR) overview.
https://docs.microsoft.com/en-us/dotnet/standard/clr

[15] 15 A Provable-Security Analysis of Intel's Secure Key RNG.
https://eprint.iacr.org/2014/504.pdf

[16] 16 Gagallium : How I found a bug in Intel Skylake processors.
http://gallium.inria.fr/blog/intel-skylake-bug/

[17] 17 The Register. Torvalds shoots down call to yank 'backdoored' Intel
RdRand in Linux crypto. Sept 10, 2013,
https://www.theregister.co.uk/2013/09/10/torvalds_on_rrrand_nsa_gc
hq/

[18] 18 G. T. Becker, F. Regazzoni, C. Paar, W. P. Burleson. Stealthy
Dopant-Level Hardware Trojans. Journal of Cryptographic
Engineering, April 2014, Volume 4:1, pp 19–31

[19] 19 M. Ender, S. Ghandali, A. Moradi, C. Paar. The First Thorough
Side-Channel Hardware Trojan. https://eprint.iacr.org/2017/865.pdf

[20] 20 arstechnica. “We cannot trust” Intel and Via’s chip-based crypto,
FreeBSD developers say. https://arstechnica.com/information-
technology/2013/12/we-cannot-trust-intel-and-vias-chip-based-
crypto-freebsd-developers-say/

[21] 21 Random.org. Your Quota. https://www.random.org/quota/

[22] 22 ISO/IEC 9899:2011. https://www.iso.org/standard/57853.html

[23] 23 John von Neumann, “Various techniques used in connection with
random digits,” in A.S. Householder, G.E. Forsythe, and H.H.
Germond, eds., Monte Carlo Method, National Bureau of Standards
Applied Mathematics Series, vol. 12 (Washington, D.C.: U.S.
Government Printing Office, 1951): pp. 36-38

[24] 24 I. Ekeland. The Broken Dice, and Other Mathematical Tales of
Chance. University of Chicago Press 1993, pp 1-190 ISBN:
9780226199924

[25] 25 H. G. Rice. "Classes of Recursively Enumerable Sets and Their
Decision Problems". Trans. Amer. Math. Soc. 74 1953, pp 358–366

[26] 26 H. Krawczyk. How to predict congruential generators. Journal of
Algorithms, vol. 13:4, December 1992, pp 527-545

[27] 27 J. Stern. Secret linear congruential generators are not
cryptographically secure. 28th Annual Symposium on Foundations of
Computer Science (sfcs 1987), DOI: 10.1109/SFCS.1987.51

[28] 28 NIST SP 800-22. A Statistical Test Suite for Random.
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-
22r1a.pdf

[29] 29 R.G.Brown. Dieharder: A Random Number Test Suite.
https://webhome.phy.duke.edu/~rgb/General/dieharder.php

[30] 30 ENT. A Pseudorandom Number Sequence Test Program.
http://www.fourmilab.ch/random/

[31] 31 J. Bourgain. More on the sum-product phenomenon in prime fields

and its applications. International Journal of Number Theory,
01(01):1–32, 2005

[32] 32 Y. Dodis, D. Wichs. Non-malleable extractors and symmetric key
cryptography from weak secrets. STOC 2009, pp 601–610

[33] 33 Xin Li. Improved non-malleable extractors, non-malleable codes and
independent source extractors. Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing 2017, pp 1144–1156

[34] 34 Engineering the Perfect Baby.
https://www.technologyreview.com/s/535661/engineering-the-
perfect-baby/

[35] 35 A Chinese scientist says he edited babies’ genes. What are the rights
of the genetically modified child?
https://www.washingtonpost.com/news/monkey-
cage/wp/2018/12/06/a-chinese-scientist-says-hes-edited-babies-genes-
what-are-the-rights-of-the-genetically-modified-child

[36] 36 NIST Randomness Beacon. https://www.nist.gov/programs-
projects/nist-randomness-beacon

[37] 37 NIST. Computer Security Division. https://beacon.nist.gov/home

[38] 38 E. Chattopadhyay, D. Zuckerman. Explicit Two-Source Extractors
and Resilient Functions. https://eccc.weizmann.ac.il//report/2015/119/

[39] 39 Top 5 threats for online gamers and how to avoid them.
https://www.welivesecurity.com/2016/08/31/top-5-threats-online-
gamers-avoid/

[40] 40 R. Halprin, M. Naor. Games for Extracting Randomnes. SOUPS '09
Proceedings of the 5th Symposium on Usable Privacy and Security
2009,

[41] 41 M. Alimomeni, R. Safavi-Naini. Human Assisted Randomness
Generation Using Video Games. https://eprint.iacr.org/2014/045.pdf

[42] 42 Henno, J., Jaakkola, H., Mäkelä, J. Using games to understand and
create randomness. SQAMIA2018 - Proceedings of the 7th Workshop
on Software Quality Analysis, Monitoring, Improvement, and
Applications, Vol. 2217, CEUR-WS, http://ceur-ws.org/Vol-2217/

[43] 43 E. Ben-Porath. Repeated Games with Finite Automata. Journal of
Economic Theory 59:1, 1993, pp 17-32

[44] 44 Sergio B. Volchan. What Is a Random Sequence?
https://www.maa.org/sites/default/files/pdf/upload_library/22/.../Volc
han46-63.pdf

[45] 45 A Quilliot. Cyclic Orders. European Journal of Combinatorics 10:5,
1989, pp 477-488

[46] 46 Gang Beasts Controls Guide.
https://www.gameskinny.com/ly5jv/gang-beasts-controls-guide

[47] 47 USA Rock Paper Scissors League. https://myspace.com/usarps

[48] 48 Rock Paper Scissors tournament rules. https://do317.com/p/rpsrules

[49] 49 Rock Paper Scissors Programming Competition.
http://www.rpscontest.com/

[50] 50 Kolmogorov, A.N. (1965). Three Approaches to the Quantitative
Definition of Information. Problems Inform. Transmission. 1(1), pp
1–7

[51] 51 Martin-Löf, P. (1966). The definition of random sequences.
Information and Control. 9 (6): 602–619

[52] 52 Schnorr, C. P. (1971). A unified approach to the definition of a
random sequence. Mathematical Systems Theory. 5 (3), pp 246–258

[53] 53 A. Cobham, Uniform tag sequences, Math. Systems Theory, 6
(1972), pp 164–192

[54] 54 H. Matsushima. Bounded Rationality in Economics: A Game
Theorist's View. The Japanese Economic Review (1997), 48:3, pp
293-306

[55] 55 Z. Wang, B. Xu, H. Zhou. Social cycling and conditional responses
in the Rock-Paper-Scissors game. eprint arXiv:1404.5199,
https://ui.adsabs.harvard.edu/#abs/arXiv:1404.5199

[56] 56 http://staff.ttu.ee/~jaak/games/

[57] 57GA. Miller. The magical number seven, plus or minus two: Some
limits on our capacity for processing information. Psychological
Review. (1956) 63, pp 81–97

[58] 58 Rock, Paper, Scissors – m-ary.
http://staff.ttu.ee/~jaak/games/paber_kivi_m_ary_js.htm

