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Abstract—In addition to hydraulic manipulators’ complex
and nonlinear dynamics, their dynamic behaviour typically also
involve significant parameter uncertainties. This study aims to
evaluate the performance of nonlinear model-based control of
hydraulic manipulators, by comparing (i) a controller using
model parameters acquired from manufacturer datasheets and
computer-aided modeling tools, in relation to (ii) a controller
exploiting parameter identification methods to estimate the model
parameters from pressure transmitter and joint encoder data
collected from the plant. Experimental results show that the
proposed control scheme relying on the identified parameters
results in significant improvement of Cartesian position tracking
performance in free-space motion, in comparison to using the
nominal parameters.

I. INTRODUCTION

Hydraulic manipulators are imposed with complex and non-
linear dynamic behaviour, which renders their control design a
challenging task. Nonlinear model-based (NMB) control meth-
ods have been shown to provide a viable solution to address
these system nonlinearities [1]. The main idea behind NMB
control is to utilize inverse plant models in order to calculate
necessary feedforward actions that can help reducing the con-
trol burden of feedback loops. In the context of hydraulic ma-
nipulators, this translates into proactively generating required
actuator forces (and control valve outputs) from desired motion
dynamics, based on the dynamic models of the hydraulic
actuators and the mechanical structure of the manipulator.

However, accurate plant models are tedious to acquire,
since the nonlinear plant models used in NMB control laws
are subject to parameter uncertainty (e.g., nominal valve
flow coefficients stated by manufacturer datasheets do not
reflect reality). Computer-aided design (CAD) software are
commonly used to acquire sophisticated guesses about the
manipulator inertial parameters. However, CAD modeling is
prone to errors due to the uncertainty related to material
densities, and detailed modeling of minor elements (such
as hosing and integrated valve packages) is time-consuming.
Moreover, actuator friction has a significant effect on the force
output of hydraulic cylinders, yet friction parameters cannot be
acquired by CAD modeling. Therefore, it would be beneficial
to identify the model parameters from data collected from the
plant instead, in order to avoid manual adjustment of friction
parameters and flow coefficients by trial-and-error.

What comes to hydraulic manipulators, research has been
almost entirely focused on parameter identification [2–4],
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without much emphasis on identification for model-based
control. In [5], a NMB controller was developed based on
Lagrangian dynamics, and all model parameters involved in
the control laws were identified from experimental data. The
main focus in [5] was in providing a stability-guaranteed
control design and identifying model parameters for eas-
ened controller deployment, but no comparisons were made
between the control performance when using the identified
parameters versus the nominal parameters.

In the present study, in contrast to [5], we use the recursive
Newton-Euler (N-E) dynamics as the basis of our control
design and parameter identification. In addition, in order to
verify the feasibility of the identified inertial parameters, the
system is modeled using CAD software (see Fig. 1) to provide
reference values. Special emphasis is paid for evaluating the
control performance between the nominal parameter control
and identified parameter control.

The rest of the paper is structured as follows. Section II
provides the mathematical background to model the system
behaviour. In Section III, inertial and frictional parameters of
a hydraulic manipulator are identified from measured cylinder
chamber pressures and joint encoder angles, assuming a priori
knowledge of the geometric dimensions. In Section IV, a
NMB control strategy (inspired by the N-E dynamics -based
virtual decomposition control [6], and the state-of-the-art re-
sults achieved in [7–10] for hydraulic manipulators) exploiting
the identified parameters is described. Finally, experiments
carried on the physical plant are presented in Section V,
which demonstrate the effectiveness of the proposed controller,
and reveal significant improvements in relation to the results
presented in [5].

Fig. 1. CAD model of the studied manipulator.



II. MATHEMATICAL PRELIMINARIES

A. Rigid-body dynamics

This paper exploits Featherstone’s spatial vector algebra
[11] to represent the rigid-body dynamics. The spatial velocity
vector of the ith boxy-fixed coordinate frame is defined as

vi =

[
ωi

vi

]
(1)

where ωi = [ ωxi ωyi ωzi ]T is the angular velocity vector and
vi = [ vix viy viz ]T is the linear velocity vector measured in
the ith body-fixed coordinate frame. The spatial force/torque
vector measured in the ith body-fixed coordinate frame is
defined as

fi =

[
τ i

f i

]
(2)

where τ i = [ τix τiy τiz ]T is the torque vector and f i =
[ fxi fyi fzi ]T the force vector measured in the ith body-
fixed coordinate frame. Spatial forces and velocities can be
transformed between two consecutive frames {i} and {i+ 1}
using kinematic wrench transmission matrices i+1

iX as follows

vi+1 = i+1
iX vi (3)

fi = i+1
iX

T fi+1 (4)

In the boxy-fixed formulation of the recursive N-E algorithm
[11, 12], forward propagation of velocities and accelerations is
carried according to the following recursive formulas

vi+1 = i+1
iX vi + siq̇i (5)

v̇i+1 = i+1
iX v̇i + siq̈i +

[
[ωi+1×] 0
[vi+1×] [ωi+1×]

]
siq̇i (6)

where q̇i is joint velocity, q̈i joint acceleration, si is a unit
rotation vector, e.g., for a revolute joint si = [ 0 0 1 0 0 0 ]T,
and [(·)×] is the cross product operator, defined as

[ωi×] =

 0 −ωzi ωyi

ωzi 0 −ωxi

−ωyi ωxi 0


The spatial velocity of the fixed base frame {0} equals to
v0 = 0. To account for gravity, the base frame is ficticiously
accelerated against the direction of gravitational acceleration
by defining v̇0 = [ 0 0 0 0 9.81m

s2 0 ]T.
The backward recursion to calculate force/torque vectors is

carried according to the following relation

fi = i+1
iX

T fi+1 + f∗i (7)

where f∗i is the net force due to the ith body of the kinematic
chain. The net force can be linearly parametrized as

f∗i = Y(v̇i,vi)θi (8)

where Y is a regressor matrix and θi is its corresponding
parameter vector. See Appendix A for the derivation of the
rigid-body regressor matrix and parameter vector.

B. Hydraulic actuator dynamics

The piston force of the cylinder equals to

f = p1A1 − p2A2 (9)

where p1 and p2 denote chamber pressures, and A1 and A2

denote pressurized piston and bore areas. The time derivative
of the piston force equals to

ḟ = ṗ1A1 − ṗ2A2 = β

(
Q1 −A1ẋ

x
− A2ẋ−Q2

S − x

)
(10)

where β is the effective bulk modulus, x is the piston dis-
placement, and S is the maximum stroke of the piston. The
valve-controlled volumetric flows Q1 and Q2 to the cylinder
chambers can be written as

Q1 = CPA

√
pS − p1S(u)u+ CAT

√
p1 − pTS(−u)u (11)

Q2 = CPB

√
pS − p2S(−u)u+ CBT

√
p2 − pTS(u)u (12)

where u is the normalized valve control signal, pS and pT
are the supply and return line pressures, C denotes the flow
coefficients of each control edge (e.g., subscript PA denotes
the orifice from supply line to chamber A, BT from second
chamber B to tank, etc.), and S(·) is a selective function
defined as

S(x)
∆
=

{
1 if x > 0

0 if x ≤ 0
(13)

Rearranging (10) and denoting the valve-controlled flow-
related term with a scalar Q leads to the following expression

−Q1

x
− Q2

S − x︸ ︷︷ ︸
Q

=

(
− A1

x
− A2

S − x

)
ẋ− ḟ

β
(14)

Assuming the following relations S > x > 0 (i.e., the piston
does not reach its end positions) and pS > p1 > pT > 0 and
pS > p2 > pT > 0 always hold, the normalized valve control
signal u corresponding to the flow-related scalar Q defined in
(14) can be solved [6, p. 183] as

u =− S(−Q)Q
CPA
√
pS−p1

x + CBT
√
p2−pT

S−x

− S(Q)Q
CAT
√
p1−pT

x + CPB
√
pS−p2

S−x

(15)

The piston displacements x are mapped from measured en-
coder angles q with the following relation

x(q) =
√
l1 + l2 − 2l1l2 cos(q + q0)− x0 (16)

where l1 and l2 are distances from the cylinder pins to the
joint axis connecting two rigid links (i.e., to the origin of the
coordinates frames shown in Fig. 2), q0 is a constant joint
angle offset (i.e., the angle between the joint angle q and the
angle formed between l1 and l2), and x0 is a constant piston
displacement offset. Differentiating the piston position x in
(16) with respect to the joint angle q yields

∂x

∂q
=

l1l2 sin(q + q0)√
l1 + l2 − 2l1l2 cos(q + q0)

(17)

which is the lever arm converting both joint velocities q̇ into
piston velocities ẋ and piston forces f into joint torques τ .



III. PARAMETER IDENTIFICATION

A. Identification of rigid-body parameters

Not all of the standard inertial parameters appearing in
the rigid-body parameter vector θ are identifiable, because
of restricted degrees-of-freedom and lack of full force/torque
sensing [13–15]. Therefore, the dynamic model needs to be
reduced to a form suitable for identification. More specifically,
this model reduction consists of the following subtasks

(1) eliminating completely unidentifiable parameters, which
have no effect on the measurable actuator torques, from
the equations of motion

(2) regrouping partially unidentifiable (linearly dependent)
parameters into identifiable linear combinations, so that
unique parameter estimates can be acquired

The resulting vector of linearly independent coefficients θb,
also called the set of base inertial parameters, is a subspace
of the complete rigid-body parameter vector. While it would
be possible to reconstruct the full inertial parameter vector
θ from the experimentally identified coefficients θb, this
mapping from the dynamic coefficients to the full set of inertial
parameters does not exist in general and is difficult to acquire
[16]. Luckily, even though these identified coefficients lack
intuitive physical meaning, they can be used to calculate the
required actuator effort, which is sufficient for the purpose of
robot control [15, p. 69].

Recently an analytical method to extract the identifiable
coefficients appearing in the recursive N-E equations, named
the Recursive Parameter Nullspace Algorithm (RPNA), was
presented in [14]. RPNA only requires the kinematic param-
eters of the manipulator as its input, avoiding the drawbacks
of traditional model reduction techniques, such as symbolic
manipulation of the equations of motion based on parameter
regrouping rules, or input-sensitive numerical analysis [13]
(e.g., inspecting singular values of the regressor matrix).
However, RPNA is only applicable to open-chain mechanisms,
so the manipulator dynamics have to be simplified by not
taking into account the dynamics of the closed chains formed
by the cylinders and pistons. Hence, the effects of the cylinders
and pistons will be lumped into the estimates of the link
parameters. Identification of the closed chain dynamics would
indeed be possible using symbolic regrouping techniques [17],
but will be left for future work.

Cylinder 1

Cylinder 2

Link 1

Link 2
x1

y1

x0

y0
x2

y2

Fig. 2. Coordinate frame assignment for the manipulator.

TABLE I
RIGID-BODY PARAMETER VALUES, INCLUDING STANDARD PARAMETERS

ACQUIRED FROM A CAD MODEL, AND IDENTIFIED BASE PARAMETERS
AND FRICTION COEFFICIENTS. (*) DENOTES AN UNATTAINABLE VALUE.

Standard parameter CAD value Identified value
m1 128,51 kg *
cx1 0,7404 m *
cy1 0,0368 m *
Izz1 95,97 kgm2 *
m2 641,42 kg *
cx2 1,7141 m *
cy2 0,0180 m *
Izz2 2074,71 kgm2 *

Base parameter1 CAD value Identified value
mcx1 +m2a1 1121,4 kgm 1111,6 kgm

mcy1 4,7 kgm –117,3 kgm
Izz1 +m2a

2
1 1738,0 kgm2 2305,2 kgm2

mcx2 1095,7 kgm 1074,2 kgm
mcy2 92,0 kgm –73,1 kgm
Izz2 2074,7 kgm2 2458,4 kgm2

Friction coefficient CAD value Identified value
b1 * 39872 Ns/m
b2 * 77347 Ns/m

1Acquired using the Recursive Parameter Nullspace Algorithm [14].

While the piston seal friction of a hydraulic cylinder is
a complex phenomenon, especially in the presliding regime
(e.g., during motion reversal), for most applications a simple
viscous friction model is a sufficient. Thus, a piston velocity-
dependent viscous friction model was embedded to the rigid-
body dynamic model without losing generality. The composite
regressor matrix for the multi-rigid-body system can then be
written as

Y =

[
[Y(v̇1,v1) s1(∂x1

∂q1
)2] [21X

TY(v̇2,v2) 0]

0 [Y(v̇2,v2) s2(∂x2

∂q2
)2]

]
(18)

Before parameter identification, the rigid-body dynamics
were reduced to a suitable form by removing the columns of
Y corresponding to unidentifiable and redundant parameters,
and the rows of Y and f = [ f1 f2 ]T corresponding to
unsensed force and/or torque components. After sampling and
column stacking the reduced regressors Yb and regressands
fb, a least-squares estimate of the base inertial parameters
was obtained as θb = (YT

b Yb)−1Yb fb. Offline estimates
of the time derivatives q̇ and q̈ needed to recursively calculate
the spatial velocities and accelerations were obtained by zero-
phase low-pass filtering of encoder readings, followed by a
central difference approximation. The low-pass filter was a
second-order infinite-impulse response filter, with a damping
ratio of 0.7 and a natural frequency of 5 Hz.

Force measurements were acquired indirectly via measuring
cylinder chamber pressures to calculate piston forces using (9),
before transforming the forces into equivalent torques affecting
in the unactuated joints. The measured piston forces as well
as the piston forces predicted using the identified parameters
are shown in Fig. 3. The standard inertial parameters acquired
by CAD modeling are provided in Table I, together with the
identified base inertial parameters and friction coefficients. For
comparison, base parameter values calculated from the CAD
model parameters are also provided.



5 10 15 20 25 30 35 40 45

20

40

60

80

5 10 15 20 25 30 35 40 45

10
20
30
40
50

Fig. 3. Piston forces measured from chamber pressures (in black) and piston forces predicted using the identified rigid-body parameters (in blue and red).

B. Hydraulic parameters

We reuse the same actuator model parameters that were
identified in our previous work [5]. The identified bulk moduli
and valve flow coefficients are provided in Table II.

TABLE II
IDENTIFIED HYDRAULIC PARAMETER VALUES [5].

Parameter Cylinder 1 Cylinder 2
β−1

[
N
m2

]
1, 37 · 10−9 1, 60 · 10−9

CPA

[
m3

s
√
Pa

]
7, 25 · 10−7 9, 03 · 10−7

CAT

[
m3

s
√
Pa

]
6, 90 · 10−7 8, 67 · 10−7

CPB

[
m3

s
√
Pa

]
7, 48 · 10−7 6, 44 · 10−7

CBT

[
m3

s
√
Pa

]
7, 24 · 10−7 6, 82 · 10−7

The datasheet of Bosch Rexroth 4WRPEH10 servo valves
states a 100 l/min flow rate at a 70 bar pressure difference
(that is, 35 bar per control edge). The normalized valve flow
coefficients equal to

C =
Q√
∆p

=
100

60000
m3

s√
70 · 105Pa

≈ 6, 30× 10−7 m3

s
√
Pa

IV. CONTROLLER STRUCTURE
This section will present the structure of the controller used

in the experiments. Stability proofs for similar NMB control
designs exist in [5–7]. Since the focus of this paper is in
identification for control, the proof of stability is omitted due
to limited space.

A. Control of the rigid-body subsystem

We begin by defining the required joint velocities as

q̇d = J−1
(
ṗd + kp(pd − p)

)
(19)

where ṗd is the desired Cartesian velocity of the end-effector,
pd and p are measured Cartesian positions of the end-effector,
and J is the manipulator Jacobian. The required joint velocities
are transformed to required spatial velocities using (5).

Next, let us define the control law for the required spatial
force to achieve the required spatial velocity. The required net
force vector f∗id is defined as

f∗id
∆
=

feedforward term︷ ︸︸ ︷
Y(v̇id,vi)θbi +

feedback term︷ ︸︸ ︷
kv(vid − vi)

(20)

Remark. The control approach in this paper differs from
the methods in [6–10], where the required net force vector is
defined as f∗d = Mv̇d + C(v)vd. This modification allows
us to use a standard 10-element rigid-body parameter vector,
instead of the 13-element parameter vector given in [6, p. 386].

B. Control of the hydraulic subsystem

The required spatial velocity vid and the required spatial
force fid are converted into a required piston velocity ẋid and
a required piston force fid of the hydraulic actuator as

ẋid =
∂xi
∂qi

q̇id (21)

fid =
∂qi
∂xi

(
sT
i fid

)
+ bi

∂xi
∂qi

q̇i (22)

The control law for the required flow-related term Qid is
defined as

Qid
∆
=

feedforward term︷ ︸︸ ︷
−A1

xi
− A2

S − xi
− ḟid

β

−kf (fid − fi)− kx(ẋid − ẋi)︸ ︷︷ ︸
feedback term

(23)

The required valve control signal u corresponding to the
required flow-related term defined in (23) can be solved from
by substituting Q in (15) by Qid, which yields the following
mapping into the normalized valve control signal

ui =− S(−Qid)Qid

CPA
√
pS−p1

xi
+ CBT

√
p2−pT

S−xi

− S(Qid)Qid

CAT
√
p1−pT

xi
+ CPB

√
pS−p2

S−xi

(24)

V. EXPERIMENTS

The studied hydraulic manipulator is shown in Fig. 5. The
hardware setup is the same as depicted in [7, 8], with the
exceptions that the processor board is a dSPACE DS1005 and
the controller sample time is 2 ms. To evaluate the controller
performance, the same trajectory as in [5, 7] was employed.
The path is a parallelogram with a height of 2 meters along the
base Y-axis and a length of 1 meter along the X-axis. Motion
profiles between the four corner points of the parallellogram
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Fig. 4. Piston force tracking, piston velocity tracking, normalized control voltages and Cartesian position error (i) when using nominal parameters (left),
and (ii) when using identified parameters (right). In the graphs illustrating force and velocity tracking, red and grey lines represent the measured and desired
values for cylinder 1, while blue and black lines represent measured and desired values for cylinder 2, respectively.

were generated using quintic polynomials, with a transition
time of 3 seconds between each point.

The feedback gains used in the experiments are provided
in Table III. For real-time estimation of time derivatives,
finite difference approximations were used, combined with
an exponentially weighted moving-average filter to suppress
noise. The filter is given by y(n) = (1−α)y(n− 1) +αz(n),
where the most recent input z(n) is weighted by α and past
values y(n − 1) are weighted by (1 − α). For both chamber
pressure and joint encoder data, a value of α = 0.04 was used.

TABLE III
FEEDBACK GAINS USED IN THE EXPERIMENTS.

Feedback gain X-axis Y-axis
kp[

1
s
] 10 10

Feedback gain Link 1 Link 2
kv[

sN
m

] 3× 104 3× 104

kf [
m2

sN
] 1× 10−8 1× 10−8

kx[m] 4× 10−2 4× 10−2

Force, velocity and position tracking, together with valve
control signals, for the test using nominal parameters are
provided in the left-hand side of Fig. 4, while the same data
for the test when using identified parameters is provided on the
right-hand side. Same feedback gains and filtering parameters
were used in both cases. One can notice that the controller
using the identified parameters performs significantly better,
while the control signal is also better behaved. Meanwhile,
the controller using the nominal parameters suffers from poor
piston velocity tracking and noticeable ripple in piston force
tracking.

As a summary, Table IV presents the values of several
performance measures, namely the root mean square error
(RMSE), maximum absolute position error max(|e|), and the
normalized performance index ρ, which is the ratio of the
maximum absolute error and the maximum recorded speed
max(|v|). Using the nominal parameters leads to a maximum

position tracking error of more than 16 mm and a performance
index value of ρ = 0.0229 (s), while using the identified
parameters leads to a maximum position tracking error of less
than 7 mm and a performance index value of ρ = 0.0095 (s).

The result achieved when using the identified parameters is
a considerable improvement from the results reported in [5],
where the tracking error was up to 16 mm and the performance
index value was ρ = 0.0231 (s) when executing the same exact
desired trajectory. When using ρ as a performance measure,
the method proposed in this paper qualifies as second, right
after the NMB controller presented in [7] (ρ = 0.0050 s),
based on the state-of-the-art review made in [1].

TABLE IV
CONTROL PERFORMANCE BETWEEN CONSTANT PARAMETER CONTROL

WHEN USING IDENTIFIED PARAMETERS VERSUS NOMINAL PARAMETERS.

Hydraulic
model

Rigid-body
model RMSE max(|e|) max(|e|)

max(|v|)

Datasheet CAD model2 6,5 mm 16,8 mm 0,0229 s
Identified Identified 3,3 mm 6,8 mm 0,0095 s

2Identified viscous friction coefficients were used.

Fig. 5. The studied hydraulic manipulator.



VI. CONCLUSION

In this paper, a recursive N-E dynamics -based NMB control
strategy with parameter identification was presented for a
hydraulic manipulator. Base inertial parameters and frictional
coefficients of the manipulator were identified from pressure
transmitter and joint encoder data collected from the plant, in
order to predict required actuator forces and required valve
control signals. Experiments suggest that using the identified
parameters leads to superior control performance, compared to
using the nominal parameters acquired through CAD modeling
and inspection of manufacturer datasheets.

In comparison to [5], the approach presented herein is
more scalable in the sense that RPNA is applicable for serial
manipulators with arbitrary kinematic topology. However, in
the future, the identification procedure could be extended
to account for the rigid-body dynamics of the cylinders
and pistons, despite their relatively small contribution to the
required actuator effort. This would require extending the
model reduction techniques currently in use to cover the
more complex dynamics of closed chains present in cylinder-
actuated hydraulic manipulators.

Additionally, when extending the proposed method from
planar motion to spatial 3D motion, physical consistency [18]
of the estimated base inertial parameters should be ensured by
using constrained optimization techniques instead of ordinary
least-squares regression. Moreover, it remains to be studied
whether augmenting the controller with parameter adaptation
would significantly improve the force and/or position tracking
performance, in comparison to constant parameter control.
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APPENDIX A
RIGID-BODY REGRESSOR AND PARAMETER VECTOR

The required net force vector in a body-fixed coordinate
frame can be written as

f∗d = Mv̇d + C(v)v (25)

where M is the spatial inertia matrix [11, 14] and C(v) is
a Coriolis-centrifugal matrix. The spatial inertia matrix for a
single rigid body is composed as

M =

[
I [mc×]

−[mc×] m1

]
(26)

where I is the inertia tensor of the body, defined as

I =

Ixx Ixy Ixz
Ixy Iyy Iyz
Ixz Iyz Izz


and m is the body mass and c = [ cx cy cz ]T is its center of
mass location. A form of the Coriolis-centrifugal matrix C(v)
suitable for control of multibody systems is derived in [19],
and the resulting matrix is provided below.

C(v) =

[
[ω×]I + I[ω×] [mc×][ω×]
−[ω×][mc×] m[ω×]

]
(27)

The net spatial force in (25) can be linearly parametrized with
respect to the following standard vector of inertial parameters

θ =
[
m mcx mcy mcz Ixx Ixy Ixz Iyy Iyz Izz

]T
(28)

The regressor matrix corresponding to the parameter vector θ
in (28) is expressed as follows

Y =

 0 v̇d + [ω×]v
−[(v̇d + [ω×]v)×] [ω̇d×] + [ω×][ω×]
[•ω̇d] + [ω×][•ω] 0

T

(29)

where the dot product operator [•(·)] is defined as

[•ω] =

ωx ωy ωz 0 0 0
0 ωx 0 ωy ωz 0
0 0 ωx 0 ωy ωz


The regressor matrix used for parameter identification is

acquired by replacing the desired values in (29) by measured
values. The regressor matrix then corresponds to the one given
in [13, p. 71], except for the terms where linear acceleration
appears. This is due to a differing definition of acceleration
in the boxy-fixed [6, 11] and hybrid [13] formulations of the
recursive N-E algorithm; see [12] for a thorough comparison
of different representations of rigid-body dynamics.


