Using IEC CIM standards and SOA Technology for
Coordinated Voltage Control Application

Shengye Lu and Sami Repo
Dept. of Electrical Engineering
Tampere University
Tampere, Finland
Ivshengye @ gmail.com, sami.repo@tuni.fi

Abstract—Distribution System Operators (DSOs) rely on an
increasing number of software applications for network operation
and management. These applications need to exchange data with
each other smoothly and efficiently. To facilitate inter-application
communications and improve interoperability, IEC Common
Information Model (CIM) standards and enterprise integration
technologies, such as Service-oriented architecture (SOA), can be
used. This paper focuses on one distribution management use case
— “Coordinated Voltage Control”, explains how CIM standards
and SOA technologies can utilized to integrate Coordinated
Voltage Control Matlab software with external systems such as
SCADA. The paper covers design, implementation and laboratory
demonstration for the communication aspect of this use case.

Index Terms—Information and Communication, Interoperabil-
ity, IEC CIM standards, Distribution automation, voltage control

I. INTRODUCTION

Today Distribution System Operators (DSOs) are relying
on an increasing number of information systems for network
operation and management, and these information systems —
likely from different vendors — will engage in more and more
inter-application collaborations and data exchanges. With the
advent of Smart Grid, information integration and interoper-
ability will become even more crucial, because various “‘smart
grid management systems” and external information providers
have to exchange data and collaborate in a seamless manner.

One of such smart distribution grid management systems
is “Coordinated Voltage Control” application, which aims at
solving voltage violation problems in medium voltage (MV)
and low voltage (LV) network, by controlling resources like
distributed generation (DG) units and transformer tap changers
[1]. “Coordinated Voltage Control” (CVC) application relies
on extensive data exchanges with external systems, such as
SCADA and smart meters, etc. It needs to take in large amount
of measurement data from multiple data sources and send out
set-point values, in a timely way. Needless to say, efficient data
exchange plays a crucial role in this use case.

To improve inter-application communication efficiency and
reduce integration costs, two measures can be considered: first,
use commonly agreed way to express the data content; second,
pursue a loose-coupled pattern for integration. The former can
be achieved by utilizing standardized information model, for

This work is supported by Finnish Cluster for Energy and Environment
(CLEEN) research program SGEM (Smart Grids and Energy Markets).

Mikko Salmenperd, Jari Seppild
and Hannu Koivisto
Dept. of Automation Science and Engineering
Tampere University
Tampere, Finland

example, IEC Common Information Model (CIM). The latter
can be realized by using modern integration technologies such
as Service-oriented architecture (SOA) and Web Services.

CIM, or Common Information Model, is one of important
smart grid standards that standardizes the messages/files ex-
changed between systems by providing a common vocabulary
and message schemas [2]. It aims to facilitate information
exchange and system integration in the power system operations
and planning domain. In Europe, the usage of CIM is mainly
concentrated on transmission level, for network topology
exchange use cases. On distribution level, there are more and
more research initiatives using this standard. For example, some
researchers use CIM to import grid data into simulation tool [3];
some proposes a new generation of distribution management
system based on CIM [4].

This paper focuses on communication perspective, aims at
exploring the possibility of utilizing CIM standards and SOA
technologies to facilitate data exchange for typical MV/LV
network management applications, using Coordinated Voltage
Control as an example use case. The paper covers design,
implementation and laboratory demonstration for the CIM-
standard based data communication solution in the Coordinated
Voltage Control use case.

II. BACKGROUND

This section briefly introduce the Coordinated Voltage
Control application, especially its data flow with external
systems such as SCADA, and traditional way of integrating
these systems.

A. Coordinated Voltage Control use case

Voltage control is a widely researched topic in distribution
operation, and it plays a significant role in congestion manage-
ment. A. Kulmala et al. proposes “Coordinated Voltage Control”
(CVC) solution in [1], trying to solve voltage violation problems
in medium voltage (MV) and low voltage (LV) networks. The
main idea of CVC is: A centralized coordinated voltage control
algorithm calculates a series of set points in real time. These set
points include the set points for Automatic Voltage Regulator
(AVR), to control voltage and reactive power of DGs; and the
set points for Automatic Voltage Controller (AVC) relays, to
control substation voltage with On-load tap changer (OLTC) of
transformer. The centralized CVC Algorithm is executed every

10 minutes, and whenever some network voltage exceeds the
feeder voltage limits.

The CVC algorithm needs the following input:

e substation voltage value (transformer secondary side)
e transformer on load tap changer position;

e measurement values of active, reactive power, voltage
of each DG unit;

e measurement values of active and reactive power of
each feeder (at beginning point);

e breaker status of each DG unit.

These input data can be collected from a variety of external

system, including SCADA, smart meters, state estimator, etc.

The output of the CVC Algorithm includes:

e voltage set points of AVC relays for transformer’s
OLTC;

e active and reactive power setting points for each DG
unit (production curtailment and set point of DG unit
AVR).

These set points are sent towards SCADA and smart meters.

B. Data flow between CVC and external systems in laboratory
demonstration environment

In a typical DSO control center, voltage control component
is provided as a part of Distribution Management System
(DMS). In our laboratory demonstration environment, the CVC

algorithm is implemented as an independent Matlab application.

Network (including substation, DG generators and feeders) is
simulated by RTDS simulator [5].

For the sake of simplicity, in our demonstration environment,
SCADA system collects all the real-time measurements from the
simulated network, and it also receives all set-points calculated
by CVC algorithm and then sends towards transformer AVC
relays and DG AVRs. SCADA system constantly exchanges
measurement and control data with RTDS simulator, and their
communication uses IEC 60870-5-104 protocol.

Hence, the major external system that CVC algorithm needs
to cooperate with is SCADA system. The information exchange
between CVC algorithm and SCADA is described by the
sequence diagram in Figure 1.

C. Traditional way of System Integration
Many SCADA systems use internal OPC DA (OPC Data

Access) server to expose process data towards external systems.

Therefore, a straightforward way to integrate CVC algorithm
and SCADA is using OPC DA standards.

In our demonstration environment, the SCADA system is
ABB MicroSCADA, running on a Windows desktop. CVC
algorithm, as a Matlab application, is running on a different
computer. In order to read measurement values or write set
point values from/to MicroSCADA using OPC DA, we have
developed a built-in OPC DA client inside the CVC Matlab
application, using Matlab OPC Toolbox.

sd 1_Basic_Path
DMS [CVC algorithm) :DMS [CVC SCADA :SCADA
algorithm) |
i I
1.0MS {CVC algorithm) write starting values for control parameters to SCADA
: L
loop
[RTDS_lopetls|!= 1]
2.5CADA sends measurement values to DMS [TV algorithm)
-
=
L
|
|
|
2.DMS {CVC algorithm) invokes its optimization function |
|
|
|
|
|
4 DMS [CVT algorithm) write new values for control parameters to SCADA
g
. 7
[[
Figure 1. Sequence Diagram for CVC application

CVC Matlab \
Application PC | [
\
\

OPC DA OPCDA

ABB MicroSCADA

OPCUA

. OPCUA
Proxy [|
\

\

\

Wrapper

OPC DA server

orC
Toolbox

\
\
\
[cvc Algorithm
\
\
\
\

Figure 2. Using OPC UA to integrate CVC Matlab Application with ABB
MicroSCADA

However, experiences have shown that remote connection
to OPC DA server involves complicated configurations and
is very difficult to achieve. To solve this problem, we use
newer standard — OPC UA (OPC Unified Architecture), to
integrate MicroSCADA and CVC application. This is realized
by running OPC UA Wrapper on MicroSCADA desktop. OPC
UA Wrapper connects with MicroSCADA using OPC DA
standards, and in the meanwhile, presents MicroSCADA as
OPC UA server towards external systems. On CVC Matlab
application PC, runs OPC UA Proxy, which communicates
with MicroSCADA desktop using OPC UA and interacts with
CVC application using OPC DA. Because the communication
between MicroSCADA desktop and CVC application is now
using OPC UA standards, remote access becomes much easier.
The whole communication structure is summarized in Figure
2.

However, integration in this way is very inefficient, con-
suming lot of resource from computer systems, because both
OPC UA Wrapper and OPC UA Proxy require considerable
amount of CPU resource.

The even bigger issue with this traditional way of integration
is that it does not scale. To communicate with external systems
like SCADA, CVC application has to “understand” other
system’s data format, semantics and message exchange protocol
— in this case, OPC DA or OPC UA standards. Therefore, one

dedicated “adapter”, e.g., OPC DA client, has to be developed.
If CVC application needs to cooperate also with another
external system, such as Smart Meter, then another dedicated
“adapter” also needs to be added to CVC application, in order
to “understand” Smart Meter’s data format and protocol. As
the number of integrated systems grows, the number of needed
“adapters” will grow exponentially, which will result in very
expensive development and maintenance cost.

To achieve better scalability and efficiency in communica-
tion, we switch to use CIM standards and Service-oriented ar-
chitecture (SOA) for integrating CVC application and SCADA.

III. UsING IEC CIM MODEL TO DEFINE MESSAGE
PAYLOAD

To let software components, such as CVC application and
SCADA in aforementioned CVC use case, “understand” each
other’s data format and semantics in more scalable and efficient
manner, CIM standards (IEC 61970/61968) have been chosen
to design message payload for data exchange among these
components.

CIM, or Common Information Model, is a set of standards
developed by Electric Power Research Institute (EPRI), and
now maintained by International Electrotechnical Commission
(IEC)[6]. CIM standardizes the messages/files exchanged
between systems by providing a common vocabulary (or
semantics) and message/file schemas, in order to facilitate
information exchange and system integration in the power
system operations and planning domain. In Europe, although
CIM is getting more and more attention, its applications have
been mainly concentrated on transmission level. On distribution
level, CIM is not yet commonly used.

In our demonstration, we mainly use IEC 61868 part of CIM
standards. IEC 61868 series standards define contextual profiles,
i.e., subset of the full CIM model, for all the major software
elements for Distribution Management Systems (DMS), and
is intended to be implemented with middleware services that
broker messages among applications. It is the starting point to
define message structure and payload for the CVC use case.

A. Message payload structure for CVC use case

Based on input and output data listed in section II-A, we
design message payload for SCADA and CVC Application
by modifying the contextual profile defined in “IEC 61968-3:
Interface for Network Operations”. The structure of the message
payload looks like Figure 3.

In Figure 3, the root element “MeasurementsAndControls”
contains the following optional sub elements:

e AnalogValue — for analog measurement values (from
SCADA to CVC)

e DiscreteValue — for Breaker Status (from SCADA to
CVO)

e SetPoint — for control signals (from CVC to SCADA)

Each of these sub elements contains detailed information such
as name, value, timestamp, etc.

Note this message payload does not exchange network
topology, because SCADA and CVC Application should already
have network topology information.

! O S N !
[AnalogValue | T fmeSame |
_________ e
Ewalue
L Weasurementvalueauatiey B
e |
Leld
v e Sl I i !
[it St o | Ml
- 1 P =
ontrols g
L Measurementvatueauatity B
e |
Figure 3. Message payload structure designed for CVC application

IV. LOOSE-COUPLED SYSTEM INTEGRATION — USING SOA
TECHNOLOGIES

Section III-A defines the “vocabulary” or semantics of
messages. The actual message delivery is realized by using
Service-Oriented Architecture (SOA) and Enterprise integra-
tion technologies. SOA provides a loose-coupled pattern for
integration. In this pattern, application components provide
services to other components via messaging, typically over
a network. Message sender does not interact with message
receiver; instead, Enterprise Service Bus (ESB) takes care of
message delivery.

Using SOA as integration solution for CVC use case, there is
no need to establish dedicated inter-application communication
links between each message sender and message receiver among
those CVC components — i.e., CVC Application, SCADA,
and potentially several others. These dedicated links are
now replaced by a single communication link, ESB. CVC
components just need to connect with the ESB via their Web
Service adapters and let the ESB take care of message deliveries.
The communication structure looks like Figure 4. In Figure
4, every CVC component has one Web Service adapter or
interface, which “wraps” the CVC component as Web Service.

The integration steps for CVC use case in our demonstration

CvC

Others
Algorithm

‘ SCADA ‘

L Iy

Interface Interface Interface
((Adapter}) C(Adapter}) ((Ada er)

Figure 4. Message deliveries handled by a single communication link — ESB

environment are as follows:

1) Define service contract based on CIM standards.
— In our demonstration, CVC Application and SCADA
both need to be “wrapped” as SOAP (Simple Object
Access Protocol) Web Services. Therefore, this step
means using CIM standard to specify message payload
for these two services, and generating WSDL (Web
Services Description Languages) files, which are
service contracts for SOAP Web Services.

2) Implement SCADA Service and CVC Service accord-
ing to service contract.
— SCADA Service is essentially an adapter for Mi-
croSCADA. It “wraps” MicroSCADA with Web
Service interface. Upon receiving SOAP request, it
reads or writes data from/to MicroSCADA using
OPC. Similarly, CVC Service “wraps” CVC Matlab
application with Web Service interface, and interacts
with it when receiving SOAP request.

3) Using ESB to assemble and orchestrate services based
on business logic.
— In this step, the direct OPC communication be-
tween CVC Matlab application and MicroSCADA
as mentioned in Section II-C, is replaced by ESB.
Measurement and control data will be fetched by
CVC Service and SCADA Service, and then ESB will
take care of message routing and delivery.

A. Step 1: Define service contract based on CIM standards

Service contract defines how request or response message
to or from the service should be. Because SCADA and CVC
application are “wrapped” as SOAP Web Services, their service
contract has to be WSDL file, and the messages exchanged
among them are in eXtensible markup language (XML) format,
encapsulated as SOAP messages.

The message payload designed in Section III-A is only part
of service contract. In addition to message payload, service
contract also contains other parts such as Message Header.
Message Header includes elements Verb and Noun [7]. In CVC
use case, the choice of Verb are “Change”, “Get”, while Noun
is “MeasurementsAndControls”.

The remaining missing part of service contract can be
created by referencing templates provided in IEC 61968-100[8].
IEC 61968-100 is an implementation profile, which provides
XML Schema templates for Common Message Envelope, for
defining web service operations, and WSDL templates. With
these templates, as well as the message payload designed in
III-A, we can generate service contract (i.e., WSDL file) for
CVC use case actors — CVC Algorithm and SCADA.

B. Step 2: Implement services

The service contract (i.e., WSDL file) created in Section
IV-A can be used for both CVC Algorithm service and SCADA
service. The next step is to implement these two SOAP Web
Services. Many software-programming frameworks, such as
Spring Web Services and .NET Framework, can generate code
skeletons directly from WSDL files, thus greatly simplify
development work.

1) SCADA Service: SCADA Service is the SOAP Web
Service interface for ABB MicroSCADA. It functions as a
gateway, deployed at one URL (Uniform Resource Identifier)
address. SCADA Service communicates with MicroSCADA
locally using OPC DA. It can receive two types of SOAP
request messages from external systems:

o GetMeasurementsAndControls — this message is for
reading latest measurement values from SCADA. Upon
receiving“‘GetMeasurementsAndControls” request mes-
sage, SCADA Service will read measurement values
from SCADA, encapsulate these values into response
message and then send back.

e ChangeMeasurementsAndControls — this message is
for writing set-points values for control parameters
(starting values or new values) towards SCADA. Upon
receiving “ChangeMeasurementsAndControls” request
message, SCADA Service will write set-points values
(from request message’s payload) to SCADA.

Inside SCADA Service, there is one built-in OPC DA client
implemented by using open source framework, which allows
SCADA Service interact locally with SCADA’s internal OPC
Server.

2) CVC Algorithm Service: Similarly, CVC Algorithm
Service is the SOAP Web Service interface for CVC Matlab
algorithm, deployed at another URL. It communicates with
CVC Matlab application locally using file system read/write
operations. It can also receive two types of SOAP request
messages:

e GetMeasurementsAndControls — this message is for
retrieving set-point values from CVC algorithm. Upon
receiving “GetMeasurementsAndControls” message,
CVC Web Service will read set-point values from
a file, which is constantly updated by CVC Matlab
application, and then encapsulate these values into
response message and send back.

e ChangeMeasurementsAndControls — this message is
for providing measurement value as input for CVC
Algorithm. Upon receiving “ChangeMeasurementsAnd-
Controls” message, CVC Web Service will write latest
measurement values (from request message’s payload)
into a file, from where CVC Matlab application can
read and then start launching its calculation functions.

It is worth noting that the CVC Matlab application, as
mentioned in II-C, can now be simplified — there is no need
to have a built-in OPC DA client component in CVC Matlab
application anymore, because CVC Matlab application won’t
directly communicate with any external systems. Instead, it
simply reads SCADA measurements from a local file and

) Dashboard [1] i java [i ml 12| (1) java = a8

[Select -
init2eve

| connection

§ mapping/
recipient/wire-
ta| 2
F 4
!

9 Channels @

channel |
—

v inbound- {
Tl — /
! channel- — \ !
= | N =) 22
= L]

9 Routing

cveStatGW |y initReqChanne. init2eve

@ Transformation

@ Endpoints

initResChannel...

o file
9, stream
Sus r
S xml P i v
Source Namespaces Owerview | beans | integration | integration-graph | oxm

I Console 13 = | B
ScadaWebService - Application [Java Application] C:\Program Files\Java\jdkl.7.0 71\bin\javaw.exe (1.4.2015 8.48.35)
SOAP request 'GetMeasurementsAndControls’ received, message ID: get-Measurements-From-SCADA-request-22. Message
======= Now reading measurements from OPC Server...
Figure 5. Screenshot on Spring Integration Framework IDE. It shows part

of the configuration for this integration application, which assembles and
orchestrates SCADA Service and CVC Algorithm Service, in order to realize
the whole CVC use case logic.

write control values to another file. CVC Service will update
or retrieve these files when receiving request messages. This
manifests the loose-coupled nature of Enterprise integration: the
software component itself does not need to care about message
flow. It simply produces or consumes data, and there is no
need to take care of where to send or receive message, which
will be handled by ESB. This topic will be further elaborated
in next section.

C. Step 3: Using ESB to assemble and orchestrate services

To let messages actually flow between CVC Service and
SCADA Service, we need to use Enterprise Service Bus
(ESB) to assemble and orchestrate them. There are many ESB
frameworks for enterprise integration. In our demonstration,
we use one open source framework called Spring Integration.

Spring Integration provides a Java-based framework with
support for Enterprise Integration Patterns. It functions as
a lightweight ESB, facilitates asynchronous, message-driven
behavior among software applications.

When using Spring Integration solution, CVC Algorithm
Service and SCADA Service are treated as external endpoints.
On top of that, one special integration application is created for
the purpose of assembling CVC Service and SCADA Service.
This integration application communicates with these two
endpoints using SOAP protocol and orchestrates the message
flow. It retrieves a message from an inbound queue, parses and
transforms it, and then transmits to one endpoint (i.e., CVC
Web Service or SCADA Web Service). After receiving reply,
it transforms the SOAP response to a new SOAP request and
transmits it to another endpoint. All these steps can be realized
simply by using configuration files. Figure 5 is a screenshot on
Spring IDE (Integrated Development Environment). It shows
part of the configuration for this integration application.

V. RESULT AND CONCLUSION

Using IEC CIM standards and SOA technology as integra-
tion solution, the communications between SCADA and CVC
Application become modular, reusable and easier to scale. If

one component is changed, e.g., ABB MicroSCADA is replaced
by another SCADA system using different interface rather than
OPC, then only SCADA Service (the adapter) needs to be
modified. If the CVC use case needs a third component, then
we can just create a service for the new component, and modify
the integration configuration files. This way can greatly increase
interoperability and reduce integration complicity. It is much
more efficient than traditional way of integration, which uses
dedicated channel and adapter for each communication sender
and receiver, like in Figure 2.

On the other hand, SOA technology is not suitable for
time-critical applications, e.g., protection, because real-time
requirement is not the focus of SOA technology. It does not
provide straightforward way for handling Quality of Service
(QoS) in automation context. It is designed for conserving
messages and delivering them when possible. This approach is
in strong contrast to most automation related functions where
data has limited lifespan and should be discarded if time limit
is exceeded.

REFERENCES

[1] A. Kulmala, S. Repo, and P. Jarventausta, “Coordinated voltage control
in distribution networks including several distributed energy resources,”
IEEE Transactions on Smart Grid, vol. 5, pp. 2010-2020, Jul. 2014.

[2] M. Uslar, M. Specht, S. Rohjans, and J. Tretke, The Common Information
Model CIM: IEC 61968/61970 and 62325 - A Practical Introduction to
the CIM. Springer, 2012.

[3] M. Armendariz, A. Saleem, L. Nordstrm, and M. Brugeron, “Facilitating
distribution grid network simulation through automated common informa-
tion model data conversion,” in Proc. 2015 IEEE Eindhoven PowerTech,
Eindhoven, Netherlands, Sep. 2015.

[4] L. Fiaschetti, M. Antunez, E. Trapani, L. Valenzuela, A. Rubiales,
M. Risso, and G. Boroni, “Monitoring and controlling energy distribution:
Implementation of a distribution management system based on common
information model,” International Journal of Electrical Power & Energy
Systems, vol. 94, pp. 67-76, Jan. 2018.

[5] V. Tuominen, H. Reponen, A. Kulmala, S. Lu, and S. Repo, “Real-
time hardware-and software-in-the-loop simulation of decentralised
distribution network control architecture,” IET Generation, Transmission
& Distribution, vol. 11, pp. 3057-3064, Sep. 2017.

[6] EPRI, “Intelligrid common information model primer: second edition,
Palo Alto, CA, Tech. Rep., Oct. 2013.

[7] Application Integration at Electric Utilities - System Interfaces for
Distribution Management - Part 1: Interface Architecture and General
Requirements, IEC Std. 61968-1, 2002.

[8]1 Application Integration at Electric Utilities - System Interfaces for
Distribution Management - Part 100: Implementation profiles, IEC Std.
61968-100, 2013.

>

