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Abstract— Machine learning methods predict accurately in
situations that are adequately included in the learning data and
do not require detailed domain knowledge based model
development. They have their weaknesses compared with other
forecasting methods, however. For example, they may fail in
many new situations not experienced before. Hybrid models are
increasingly popular as they are capable of combining the
strengths of several modelling methods and mitigating the
weaknesses. We study short-term forecasting of aggregated
electricity demand that includes dynamically controlled thermal
storage. Purely measurement data driven models tend to fail in
forecasting power in rarely occurring situations, such as
dynamic load control actions and extreme weather. The thermal
dynamics of the loads, large outdoor temperature variations,
and changes in the energy technologies contribute to this
challenge. Combining various information sources and the
strengths of different modelling approaches is needed. We study
the following approach using field trial data covering over 7500
houses and 27 months. We forecast control responses and load
saturation using models that have physically based model
structures. Then we forecast the residual using data driven
models, such as machine learning models designed and tuned to
learn also system dynamics. The load forecast is the sum of these
component forecasts. We further improve the forecast by using
ensemble forecasting and physically based range forecasts. We
find that the hybrid methods are more accurate than their
component methods alone and combining several hybridization
approaches can improve the performance and reliability.

Keywords—forecasting, hybrid intelligent systems, machine
learning, multilayer perceptrons, power demand, support vector
machines

L INTRODUCTION

Accurate and reliable forecasts of the electricity market
loads, balances, and the distribution system power loading are
a critical enabler for high penetrations of distributed power
generation and demand response. Ignoring the explicit
presence of active demand in the load model leads to
unsatisfactory forecasts according to [1] and [2]. Machine
learning based forecasting methods are widely applied in
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forecasting load and generation in power systems. Awareness
of their fundamental strengths and limitations is accumulating.
The limitations mainly stem from the lack of transparency and
from ignoring domain knowledge and the information
available in physical models.

It is increasingly popular to improve forecasting accuracy
by combining different forecasting methods to hybrid
methods [3]. There are many approaches for the combination.
In an ensemble approach, several forecasting algorithms run
in parallel and use a weighted average of the forecasts, while
adjusting the weights according to the situation as learned in
the identification [4]. Another alternative is to use machine
learning to tune the parameters of another model, such as a
dynamic nonlinear state space model. Third possibility is to
apply different methods to separately measured (or estimated)
load components [5]. Fourth is the sequential residuals
approach where machine learning forecasts the residual of
another model. ARIMA models and machine learning were
combined in this way by [6]. Fifth is to limit the inputs and
outputs of the machine learning models using constraints
forecasted by another model. Sixth is to generate additional
learning data by simulations. The above list is not exhaustive.

In the present paper, we show results on how adding
methods and hybridization approaches improves the
forecasting accuracy. In our case, the outdoor temperature has
large variations, the load behavior nonstationary and the
number of load control tests small, and we found the ARIMA
models to be very inaccurate. Thus, we here use models with
physically based structures to forecast the control responses,
and machine learning models and a similar day method to
forecast the resulting residual. The load forecast is the sum of
these two component forecasts. Depending on the forecasting
case, we also combine such forecasts to a simple ensemble or
use a physically based range forecast to limit the final forecast
values to be feasible.

The component models in our hybrid forecasting methods
include 1) separate partly physically based models for three
different types of active demand, 2) a similar day forecaster
(SD) and 3) two relatively old machine learning methods that
are a support vector machine (SVM) and a multilayer



perceptron (MLP). We use a genetic algorithm with sensitivity
functions to optimize the structure of the machine learning
models. New projects, such as VTT’s internal project SAISEI,
study hybrids with the state of the art methods based on deep
learning, such as long short-term memory (LSTM) and
convolutional neural networks (CNNs), with longer data sets,
but their results will be published later. Despite their great
methodological potential, and performance and robustness
improvements, also the novel deep learning techniques benefit
from integration with other methods when the learning data
lacks adequate information on critical exceptional situations.

Based on a performance comparison [5] of data driven
models, SVM and MLP seem to be good machine learning
methods for our forecasting purposes. According to the
literature, such as [7], SVM has many benefits, such as good
accuracy and insensitivity to outliers. However, SVM is also
known to be computationally inefficient [5].

Using such hybrids, we forecast the hourly interval powers
for spot price based control of aggregated loads of full storage
heating houses [2] and [8], and forecast the power of
distribution grid area with 3—minute time resolution [9]. In the
present paper, we also discuss mitigating the typical
weaknesses of machine learning by combining several
forecasting methods and hybridization approaches.

This contribution explains some results of the project
Response [10] that studied the following research hypotheses:

1) Hybrid models combine the benefits of different load
modelling approaches, thus (a) forecasting relatively
accurately in different situations including also those that have
not been experienced before, (b) adapt to expected and
unexpected changes in load behavior, and (c) are reasonably
easy and fast to maintain and update.

2) Models that combine different relevant available
information sources forecast dynamically controlled
aggregated load more accurately than black box models or
models that are purely physically based.

II. CHALLENGES WITH THE APPLIED MACHINE
LEARNING METHODS

Much new energy demand related data and models have
become available from various sources such as smart
metering, distribution grid automation, building automation,
and new public and private databases. We experienced the
following challenges in transforming the data to accurate
forecasting models. 1) As new energy technologies are
introduced the system behavior changes and especially the
machine learning models applied in this study tend to need so
much learning data that the learned model is outdated. 2) The
purely data driven models often failed outside the situations
included in the learning data. Typically such rare situations are
critical and good forecasting accuracy is especially important
during them. 3) Machine learning models lack transparency so
it can be extremely difficult to anticipate how they perform in
new exceptional situations. 4) The machine learning forecasts
tend to be relatively sensitive to errors and outliers in the input
data. This can make them vulnerable to cyber—attacks and ICT
errors. 5) Crucial information was lost in the pre-processing
of the identification data and not detected before the
forecasting failed. 6) Existing load forecasting models

typically model demand as passive and fail when forecasting
in the presence of substantial amounts of active demand. 7)
Modelling the time dynamics used to be rather exploratory in
machine learning and the experience on different approaches
is still rather limited. We found out that hybrid models
mitigated these weaknesses with the studied data driven
methods. The progress in machine learning may create also
other potential solutions than the hybrids.

Machine learning has also relative strengths that make it
useful and increasingly popular. Relatively simple physically
based models are superior in forecasting active demand
responses and many new or changing situations, but in
forecasting the total load they require very much domain
expertise and model development work and still most of the
time have inferior accuracy compared with machine learning.
Combinations of the different methods to hybrids helped to
mitigate the above mentioned challenges.

The following challenges were similar in the machine
leaning methods and in their hybrids. 8) MLP often failed to
converge properly in identification thus requiring repeated
runs with different parameters. 9) SVM scaled poorly to large
problems. 10) It was necessary to split the identification data
to separate learning data and data for controlling overfitting.
In the hybrid the tendency to overfitting was clearly mitigated.

III. THE SHORT-TERM FORECASTING PROBLEMS

Short—term load forecasting typically means forecasting
powers for less than 1 week ahead but at least a day ahead.
Here we study forecasting at 9 a.m. the power in each time
interval of the next day (15-39 hours ahead). The methods
produce also forecasts for the same day and for the day after
tomorrow, but the performance indicators are easier to
understand, if the forecasts do not overlap each other.

The problem studied is to forecast the next day aggregated
power of loads that include active demand (AD). It comprises
forecasting 1) the power at 3—minute intervals for a power
distribution area comprising several primary substations and
2) the aggregated power of each separately controlled group
of active demand customers. The powers of the groups that
include control responses are needed mainly for the electricity
markets that now operate with hourly intervals and in the
future at 15—minute time resolution. We forecast powers of the
active demand groups with 3—minute time resolution or better
which enables us to use the same response models of the active
demand groups also in forecasting the power of the
distribution area.

There are mainly two types of active demand in the studied
distribution area. One is a Time—of-Use (ToU) service. It is
now operated statically based on the time. The ToU
technology in the area is capable to dynamic direct load
control operation based on, for example, electricity market
price variations. The other active demand type is emergency
load control that provides peak load reserve for the
transmission system and for the distribution grid. It is
important to forecasts powers so that the responses of both
types of active demand are accurately included.

In this case the AD comprises over 7500 hourly interval
metered small electrically heated houses in 5 separately



controlled groups. The distribution network operator can send
a signal that temporarily switches off daytime heating loads
and possibly also cooling loads. All the sites have also ToU
controlled nigh time electrical heating.

The power of the power distribution area is measured at
the primary substations with 3—minute time intervals. Hourly
interval consumption measurements from the previous day are
available from each customer. We used the outdoor
temperature and its forecast for Kajaani, the central city of the
power distribution area. The impacts from solar radiation,
snow cover, wind speed and humidity are much smaller and
are ignored here for clarity. In forecasting the total power of
the distribution grid area, the identification period was 12
months long in 2011 and 2012, see Fig. 1, and the verification
period was the two first months of the year 2014, see Fig. 2.

In forecasting the group powers, the identification period
was13 months in 2011 and 2012. Then the verification period
comprised 14 months in 2013 and 2014. Both the
identification and verification periods included some
emergency load control tests and daily time of use (ToU)
control actions.
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Fig. 1. Power in the distribution area in the identification period, time starts
1.1.2011 00:00.
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Fig. 2. Power in the distribution area in the verification period, time starts
1.1.2014 00:00.

IV. THE METHODS

A. The Hybrid Approaches

Fig. 3 shows the main structure of the hybrid forecasting
model. The input variables include time ¢, outdoor
temperature 7Tou, and, for every controlled group i, the AD
control signal u;, past hourly interval power P; and the number
of sites n:. Partly physical models forecasts the AD responses
for each controlled group and machine learning is taught to
forecast the residual. The result is the forecast grid area power
P
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Fig. 3. Machine learning forecasts the residual of the partly physically
based response model.

In the Fig. 3 the residual is forecast by SVM but we
forecast similarly the residual with some other data driven
models that are MLP and SD. In order to improve the
forecasting performance and reliability we add some other
hybridization methods, see Fig. 4. There an ensemble
forecasting makes a weighted average of component forecasts.
Additional partly physically based models forecast daily
energy demand of each controlled group and the feasible
ranges of the power. The AD forecasting needs them as inputs.
We also use the range forecast to limit the final forecast Pr to
feasible values, thus improving the forecast slightly during
exceptional weather situations, for example.
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Fig. 4. A good combination of three hybridization approaches that are 1)
sequential residuals, 2) ensemble and 3) range forecasting.
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Fig. 4 shows a block “Partly physical model of AD”. This
block comprises several partly physical models in parallel,
because each controlled group has its own AD control signals
and consequently its own partly physical AD models. The
model of each AD control group can further comprise separate
models according for different types of the AD service.

B. Physically Based Emergency Control Model

The model for the emergency control responses was
developed in [11] from 3-minute interval power
measurements from primary distribution substations. There,
we identified the parameters using non-linear constrained
optimization. Constraints for parameter ranges were estimated
from the building requirements of the climate zone.

Outdoor temperature 7ou, and the group control signals u;
are the input variables. The state variables comprise four
internal temperatures and one temperature controller state.
Each internal temperature is associated with a thermal storage

capacity.

In real houses, the temperature controls are often on—off
type. The heating is either on full power or zero power. Such
a model is very inaccurate in forecasting the aggregated
behavior unless a large number of models with stochastic
disturbances is run in parallel. Thus we use a continuous
controller in the house model and after the parameter
identification it gives a dynamic behavior similar to the
aggregated group.

The model output power is scaled by applying a slow
first order filtered feedback from Pm, the measured hourly
interval consumption of the group, and n;, the number of
houses in the group i. The scaling function was separately
identified from the new identification data (2011 and 2012).
The function needs an average site size estimate as input and



gets it using slow feedback from the measurements (time
constant several weeks) and an even slower forgetting factor.
The resulting model accurately forecasts the aggregated
responses also when the heating in the individual houses is
controlled on—off.

The emergency load control tests in the identification
period did not include so cold temperatures that the
identification of heating power saturation would have been
possible. In three neighbor power distribution networks,
similar aggregated house models had been similarly identified
in 1996-1997 from the primary substation power
measurements. Then the tests included cold enough
temperatures, 13 substations and 6 separately controlled load
groups [11]. The measurements covered one year. The model
of a large group had very good agreement with the responses
identified in the new identification data. Thus, we here use that
very old aggregated house response model as such as the
partly physical model of AD in all the analysis and results
related to the forecasting of the power of the distribution area.

C. Time Of Use Control Model

For modelling the Time of Use (ToU) control responses,
we first identified how the energy consumed during the day
depends on the outdoor temperature and how the temperature
dependence differs according to the state of the ToU control
signal. Also the temperature dependence of the load increase
and decrease at the change of the control signal state were
identified. Then we developed a simple heat storage model
with first order dynamics and state constraints. It can only fit
to the first hours of the control response, when the heating
turns on, because in the identification data the load typically
increases at the end of heating periods. Adding a load
component that exponentially increases with time improves
the fit during the last few hours of the heating periods. The
model parameters were identified from the identification data.
We prefer using minimalistic models, because forecasting the
step changes is the main purpose of this ToU response model
and all the data driven models (SVM, MLP and SD) applied
to the residual model the other aspects of the response well
enough.

D. The Machine Learning Methods

Two machine learning methods are compared: 1) support
vector machine (SVM) and 2) multilayer perceptron (MLP).
We used direct prediction scheme for both these machine
learning models by using delayed power and temperature
values as regressors. There are many alternative, often better,
approaches for modelling the time dynamics of the nonlinear
system. Many of them use feedback from delayed output
values or internal states as inputs to the neural network. They
include Kalman filter, Elman dynamic recursive network [12],
hybrid nonlinear autoregressive MLP [13], long short—term
memory (LSTM) [14], [15], LSTM based sequence to
sequence architecture [16], combination of convolutional
neural networks (CNN) with LSTM and deep neural network
[17], deep residual networks [18] and gated recurrent unit
neural network (GRU) [19]. Now we do not compare them,
because the focus is on the benefits of integrating different
models in order to include also such available crucial
information that is missing from the learning data. We can

expect the benefits to be generic, because methods can only
extract such information that exists in its input data.

SVM is a machine learning technique for data
classification and nonlinear regression. The main technical
details of SVM are explained in [20]. Epsilon(e)-SVM with
the radial basis kernel function based on the LIBSVM package
was used to execute the model runs.

The MLP was trained using Levenberg—Marquart
modification of the back propagation. The algorithm
iteratively adjusts the weights of the squared errors between
the forecast and measurement outputs. One hidden layer was
used. More detailed explanation is in [21].

Table I describes input variables for the machine learning
models. A multi—objective genetic algorithm was applied with
sensitivity analysis to select an optimal subset of the inputs
variables [21]. A tedious and poorly reproducible trial-and—
error effort was thus avoided. We transformed discontinuous
timing variables into continuous form using trigonometric
transformations. We smoothed the hour of the day to minute
level indices using sliding average with one hour window.

It is necessary to control the risk for overfitting when
applying machine learning models. In case of the MLP
network, we adopted the standard method called early
stopping (with 5% sampling of identification data). Contrary
to the MLP network, SVM contains the control parameters (¢,
C), which define the margin within which the error is
neglected (noise) and the smoothness of the approximation,
respectively. Values C=100 and ¢=0.01 were used based on
experimenting.

TABLE L. MACHINE LEARNING MODEL INPUTS AND THEIR

PHYSICAL INTERPRETATION

Inputs to be optimally
selected

Day of the year (1-365)
Day of the week (1-7)

Physical sub load

Domestic appliance seasonal rthythm

Domestic appliance weekly rhythm

Hour of the day (1-24) Domestic appliance daily rhythm

Lighting, radiation affected thermal

Day length (hours) load

Outdoor temperature (°C) with

time-lags of 1 48 hours Thermal load (heating and cooling)

E. The Similar Day Forecaster

We developed a similar day forecaster for the load in the
studied distribution area. In this forecaster, the load on each
3—minute interval is forecast based on earlier intervals with
similar characteristics. Typically, there are several similar
intervals and average load on these intervals is used. Table II
gives the considered characteristics and their averaging
windows.

Unlike in some similar day forecasters presented in
literature, such as [22] and [23], we modelled the load’s
dependency on the outdoor temperature separately. The
temperature dependency (W/°C) for each forecasted day is
determined with simple linear regression. The effects of
intra—week fluctuations in electricity demand are eliminated



by choosing the dependent and independent variables as
follows: Dependent variable is the difference between the
daily energy consumption and the average daily energy
consumption on similar days of the week. Independent
variable is the difference between the daily average of
effective hourly temperatures and the average of effective
hourly temperatures on similar days of the week. The effective
hourly temperature is defined as an average over the previous
24 hourly temperatures. In regression analysis, the effects of
seasonal fluctuations are eliminated by using data from only
similar days of the year. The identified temperature
dependency is then used to correct the average load of similar
intervals to correspond the load in the forecasted temperature.
Finally, the systematic forecasting errors, possibly caused by
rising or falling trends in electricity consumption, are
corrected based on (uncorrected) forecasting errors on the
preceding 30 days.

TABLE II. CHARACTERISTICS DEFINING THE SIMILAR INTERVAL

Size of the moving averaging
window
+15 days from the identification data
and previous 15 days from the
verification data

Characteristic (index range)

Day of the year (1-365)

Day of the week (1-7)

Public holiday or other special
day (0- 17, O=normal day)
3—minute interval of the day
(1-480)

ToU control signals (0 or 1,
two control signals)

0 (Must be exactly the same)

0 (If index>0, day of the year and
day of the week are ignored)

+1 interval

0

V.  PERFORMANCE INDICATORS

We use Root Mean Square Error (RMSE) in MW as a
performance criterion for forecasting accuracy both in
identification and in performance comparisons. In order to
enable comparison between different forecasting tasks we also
give the Normalized Root Mean Square Error (NRSME),
which is the RMSE normalized to the mean power of the
identification or verification period respectively.

RMSE = L5, -y M

NRMSE = RMSE/y )

where N is the total number of data points, y: is the measured
value at time point ¢, y is the forecast value at time point #, and
v is the mean of the measured data.

In this forecasting task, accurate forecasts during peak
power are important, because then large forecasting errors
lead to especially high costs in energy markets and in grid
operation. Then large forecasting errors are especially
expensive. The criterion must respectively penalize outliers in
the forecasting errors during high loads. Thus, for example,
the mean absolute percentage error (MAPE) is not a suitable
forecasting performance criterion for our load forecasting case
and we do not use it any more. Even NRMSE may not
adequately weight the forecasting errors during high loads and
additional criteria such as NMRSE for the 5 % or 10 % of the
highest loads could be useful.

Forecasting accuracy is not alone an adequate measure for
the comparison of forecasting methods. Reliability, and data
and computation cost are suggested in [24], which also points
out that scale independence is needed to enable comparison
across models and applications. Developing and comparing
forecasting methods needs that even more aspects are
considered. An ideal method

. is easy to understand, develop and maintain and

. robust to errors in input data and to cyber—attacks,

. takes care that the forecasts are feasible,

. maintains reasonable accuracy also in rare and new

situations not included in the learning data

. remains accurate also in presence of dynamic AD,

. does not require excessively long history for

learning, and

. adapts to changes in the load behavior,

Hybrid methods provide solutions to these challenges, but
the comparison is difficult without quantitative common
metrics.

VI. RESULTS

A. Active Demand

The partly physically based AD forecasts at an emergency
control action in the verification are in Fig. 5. They represent
the aggregated load control responses of over 7500 houses.
The sum of the ToU forecasts is blue and the sum of the
emergency control forecasts is red. Summing all of them up,
gives the total AD forecast. The full verification period and
the total power to be forecast are shown in the Fig. 2. The
residual is large and in the hybrids the data driven models are
forecasting it. The hybrids forecast accurately the load during
the control actions but the machine learning methods, MLP
and SVM, and SD fail completely. Fig. 6 shows this for the
MLP. Fig. 7 shows the forecasts of the different hybrid
models that comprise the partly physical response models and
the residual forecasting data driven models studied.
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Fig. 5. A sample of the partly physically based response forecasts of the
power distribution area in verification.
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Fig. 7. A sample of the verification of hybrids that combine partly physical
models to data driven models in forecasting the power of the distribution
area.

The ToU loads were turned on in two steps. The emergency
control actions were one hour long and started at two different
times separated by one hour. The hybrid models where the
data driven models forecast the residual of the partly
physically based control response models forecast the AD
control responses accurately.

B. Combining Forecasting Methods Inproved Accuracy

Table III gives an overview of the forecasting
performance of the compared methods and method
combinations in forecasting 3—minute interval power of the
electricity distribution network area in the Figs. 1 and 2 using
the approach in the Fig. 3. In the Table III, combining many
different forecasting models and hybridization methods
improves the accuracy of the forecasts substantially. The
performance of the machine learning methods and hybrids
depends on the parameters that tune the learning process. The
most accurate methods are hybrids that have AD models for
each AD type and group, residual forecasting by both SD
forecaster and either one of the machine learning methods
combined to a very simple ensemble that calculates the mean
of the residual approach based hybrids.

The SD forecaster is the only one of the methods that
includes a model for special days. That explains to some
extent why it is more accurate than the machine learning
methods (MLP and SVM) and also included in all the best
hybrid methods. Another explanation is that the MLP and
especially the SVM smooth out the regular rapid power
changes that result from the ToU load control.

The results with the MLP depend on the starting weights used
in the identification. The SVM results depend on the random
sampling. Thus their results vary slightly from run to run. The
values in the Table III are typical rather than the best results.

In the last rows of the Table III using simple ensemble
improves the performance further provided that the same
model (here SD) is not applied repeatedly on the different
phases of the hybrid, compare the rows simple ensemble 1.1
with 1.2, and 2.1 with 2.2. However, parallel use of the control
response models in the ensemble components gives the best
results. The performance of the final ensemble in verification
is here better when the less accurate MLP and SVM hybrids
are used. In the identification, the ensemble forecasts are, of

course, more accurate when more accurate component
forecasts are applied. Tuning the ensemble to best
identification performance puts very much weight to the better
one of its component hybrid forecasts, but in the verification
the best performance is achieved by putting almost equal
weight to both component hybrid forecasts. That can be
expected, because different methods complement each other.

TABLE III. COMPARISON OF METHODS IN FORECASTING THE POWER
OF THE DISTRIBUTION AREA WITH 3-MIN TIME RESOLUTION

RMSE in MW and
(NRMSE in %)

MLP 25936 (3.34)
SVM (5% sampling)

Identification Verification

47783 (4.60)

34444 (4.43) | 52658 (5.07)

Similar day forecaster (SD)

23158 (2.98) | 3.7466 (3.71)

Emergency  control  response
model and MLP residual model
Emergency control response
model and SVM residual model
(5%)

Emergency control response
model and SD residual model
Emergency control response and
ToU response models and
residual MLP (MLP hybrid)
Emergency control response and
ToU response models and
residual MLP (MLP hybrid)
Emergency control response and
ToU response models and
residual SVM (5% sampling)
(SVM hybrid)

SD, emergency control response
and ToU response models  (SD
hybrid)

SD, emergency control response
and ToU response models + MLP
(SD MLP RM hybrid)

SD, emergency control response
and ToU response models + SVM
(SD SVM RM hybrid)
Simple ensemble 1.1 (weighted
mean of the MLP hybrid and the
SD hybrid)

Simple ensemble 1.2 (weighted
mean of the SD MLP RM hybrid
and the SD hybrid)
Simple ensemble 2.1 (weighted
mean of the SVM hybrid and the
SD hybrid)

Simple ensemble 2.2 (weighted
mean of the SD SVM RM hybrid
and the SD hybrid)

Very simple ensemble 2.1 (mean
of the SVM hybrid and the SD
hybrid)

2.5603 (3.30) | 42772 (4.11)

34159 (440) | 5.2414 (5.04)

22556 (2.90) | 3.6427 (3.61)

2.6869 (3.406) 3.8647 (3.81)

2.8327 (3.65) | 43488 (4.28)

22355 (2.87) | 3.5342 (3.50)

2.5936 (3.34) 4.7783 (4.60)

1.7299 (2.23) 3.5525 (3.50)

1.6724 (2.15) 3.5014 (3.45)

1.9838 (2.55) 3.0913 (3.05)

1.7299 (2.23) 3.4189 (3.29)

2.0034 (2.58) 3.0140 (2.97)

1.6724 (2.15) | 3.5014 (3.45)

20676 (2.66) | 3.0681 (3.02)

C. Range Forecasting To Keep The Outputs of Data Driven
Forecasts Feasible

The machine learning methods studied tend to produce
forecasts that are not completely feasible during AD events,
extreme weather conditions and other situations that are rare
or missing in the identification data. Thus, we often forecast
the feasible output range separately and use it to limit the



outputs of the machine learning methods. We use both partly
physically methods and data driven methods for the purpose.

We explain in [8] a case, where we forecast aggregated
powers of groups of full storage houses. The total number of
houses is over 700. Large hot water tanks are used as the heat
storage controlled according to the electricity market spot
price. There, we use hybrids comprising a partly physical
control response model and a machine learning method. The
problem is that the machine learning both generalizes and
extrapolates the load behavior so that even the hybrid forecasts
include slightly infeasible values. The forecasts include
negative powers and power peaks that exceed the possible or
likely maximum aggregated load for the weather conditions.
Thus, we separately forecast the daily minimum and
maximum loads using either data driven or simple physically
based methods depending on which ones turn out to be the
most accurate. The improvement in the RMSE is rather small,
but the range limiting makes the forecast more reliable and
robust in situations that are new, rare or include large errors in
the input data of the forecasting model. Table IV shows the
results. The range limiting model includes a physically based
nonlinearity.

TABLE IV. LIMITIG THE FORECAST TO FEASIBLE RANGE
RMSE kW/house Identification Verification
(NRMSE %)
partly physical without response 3.171 2.646
model (98.83) (113.71)
partly physical with response 1.0753 1.219
model (33.51) (52.39)
response model and SVM 0.7326 0.8486
(22.72) (36.04)
response model, SVM and 0.7308 0.8042
minimum (22.78) (34.27)
response model, SVM and range 0.7304 0.8031
limit (22.76) (34.24)
SVM 0.5509 1.744
(17.17) (74.93)

In this full storage electrical heating case, we got the best
accuracy by using in the hybrids a machine learning model
(SVM) and two different partly physically based models. One
forecasts the heating load dynamics and control responses,
and the other forecasts the feasible range of the main forecast.
The NRMSE values are high, because the loads consume most
of their energy in load peaks that are high compared to the
mean power taken by the houses. This demonstrates the fact
that even when using so called scalable metrics, NRMSE and
MAPE, comparison across applications is not straightforward.

The SVM clearly overlearned due to the short
identification period but the hybrids with the same SVM
structure did not. This suggests that the identification period
was too short for the SVM. Increasing the length of the
identification period can be included in future studies, because
EU H2020 project SysFlex amended the test data set by 3.5
new years and now studies the hybrid model concept in
forecasting also the amount of controllable power.

For one week of the verification period, the measured load
and the forecast by the hybrid including a response model,

SVM and the minimum limiter of the Table IV are shown in
Fig. 7. The high load peaks are due to the control signal that
turned on the storage to meet the forecast daily energy demand
with minimum costs when subject to day ahead spot market
hourly prices and a ToU grid tariff. The minimum limit
forecast has limited some negative values to small positive
values. Tuning the minimum limit forecast slightly higher
would have slightly improve the forecast accuracy further. In
the forecast there are two so high peaks that applying the upper
limits of the range limiters would have cut them, if applied.
The load in Fig. 7 comprises two separately controlled load
groups. There were not any large outliers in the residual as
can be seen from Fig. 8.

o .
4000 ao02a aoas 4072 4096 4120 414aa 4168
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Fig. 7. The dynamically controlled full storage heating load and its hybrid
forecast in the verification [2].

o 1 344 2 688 4 o032
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Fig. 8. The residual of the hybrid forecast during the 7-month long
verification period of the full storage heating case [2].

In Table IV the range limit includes a forecast maximum
limit in addition to the forecast minimum limit. The range
limit takes care that the forecasts always remain in reasonable
range in any situation and thus mitigates a significant machine
learning vulnerability.

In Table IV and Figs. 7 and 8 the RMSE was used as the
model identification criterion. Using MAPE as the
identification criterion resulted in even higher exaggeration of
the load peaks in the forecasts. Omitting the partly physically
based control response model also increases the
overestimation of the height of the highest load peaks. This
evidence suggests that a separate model for forecasting the
load range and limiting the load forecasts is justified.

VII. DISCUSSION

Our results consistently show evidence supporting the
combination of several load forecasting methods by using
many hybridization approaches. Further research is needed to
better understand how and to what extent hybrid models can
mitigate the weaknesses of machine learning models, such as:

. development of test cases and additional

complementing performance criteria,

. analysis of more forecasting cases in order to

understand to what extent the findings are generic,



. using the experience from the SD method in
selecting the delayed inputs from measured power to
the ML methods.

. including new machine learning and deep learning
methods for learning system time dynamics

. adding online learning.

The hourly interval smart metering data is subject to data
privacy legislation and cannot be made publicly available. The
access to the prepossessed and aggregated data and grid data
is to be decided together by the relevant distribution network
operators and the research organizations.

VIIL

Integrating many forecasting models and hybridization
approaches improves forecasting accuracy in the studied
short-term load forecasting cases. Each methods has its
strengths and weaknesses. The hybrid models combine the
strengths and mitigate the weaknesses. It is increasingly
important that load forecasts remain accurate also when
demand is active and subject to dynamic control actions that
are based on the situation rather than the clock. Data driven
models, including machine learning, are poor in forecasting
such responses of dynamic load control and other rarely
occurring situations. In such situations, they may even
produce forecasts that include infeasible values. Hybrid
models offer solutions to these challenges.

CONCLUSIONS

Forecast accuracy is only one of many requirements for
the selection of forecast models. The hybrids also offer
advantages regarding other requirements for the models.
These additional advantages are difficult to quantify and
compare, because common quantitative metrics suitable for
the particular forecasting task still need to be developed.
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