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Abstract—The F composite fading model was recently pro-
posed as an accurate and tractable statistical model for the
characterization of the composite fading conditions encountered
in realistic wireless communication scenarios. In the present
contribution we capitalize on the distinct properties of this
composite model to evaluate the achievable effective rate over F

composite fading channels. To this end, we derive an exact closed-
form expression for the effective rate, which is subsequently used
as a benchmark for the derivation of tight upper and lower
bounds, as well as of an accurate approximation. The derived
analytic expressions are provided in closed-form and benefit from
being tractable both analytically and numerically. This enables
the development of meaningful insights on the effect of fading
conditions and/or latency on the overall system performance.
Also, it allows the accurate quantification of the signal to noise
ratio required in target quality of service requirements under
different composite fading conditions.

I. INTRODUCTION

It is well-known that wireless transmission is subject to

multipath fading which is mainly caused by the constructive

and destructive interference between two or more versions

of the transmitted signal. Since multipath fading is typically

detrimental to the performance of wireless communications

systems, it is important to characterize and model multipath

fading channels accurately in order to understand and improve

their behavior. In this context, numerous fading models such

as Rayleigh, Rice and Nakagami-m have been utilized in an

attempt to characterize multipath fading, depending on the

nature of the radio propagation environment [1]–[3].

Based on the above, extensive analyses on the performance

of various wireless communication systems have been reported

in [4]–[13] and the references therein. Specifically, the authors

in [4]–[6] introduced the concepts of capacity analysis under

different adaptation policies and carried out an extensive analy-

sis over Rayleigh and Nakagami-m fading channels. Likewise,

the ergodic capacity over correlated Rician fading channels

and under generalized fading conditions was investigated in

[7] and [8], respectively. In the same context, comprehensive

capacity analyses over independent and correlated generalized

fading channels were performed in [9]–[11] for different

diversity receiver configurations. Also, a lower bound for the

ergodic capacity of distributed multiple input multiple output

(MIMO) systems was derived in [12], while the effective

throughput over generalized multipath fading in multiple input

single output (MISO) systems was analyzed in [13].

In many practical wireless scenarios, the transmitted signal

may not only undergo multipath fading, but also simultaneous

shadowing. Shadowing can be typically modeled with the aid

of lognormal, gamma, inverse Gaussian and inverse gamma

distributions [14]–[19]. Following from this, the simultaneous

occurrence of multipath fading and shadowing can be taken

into account using any one of the composite fading models,

introduced in the open technical literature [20]–[25]. Capi-

talizing on this, the performance of digital communications

systems over composite fading channels has been analyzed in

[26]–[39]. The majority of these contributions are concerned



with analyses relating to outage probability and error analyses

in conventional and diversity based communication scenarios.

A corresponding analysis of the channel capacity has only

been partially addressed. Many of the existing studies are

either limited to an ergodic capacity analysis for the case of

independent and correlated fading channels in conventional,

relay and multi-antenna communication scenarios or to the

effective capacity and channel capacity under different adap-

tation policies for the case of conventional communication sce-

narios. In addition, these analyses have been comprehensively

addressed only for the case of gamma distributed shadowing

and partially for composite models based on lognormal or IG

shadowing effects.

Motivated by this, the authors in [40] recently proposed

the use of the Fisher-Snedocor F distribution to describe

the composite fading conditions encountered during realistic

wireless transmission. This composite model is based on the

key assumption that the root mean square (rms) power of

a Nakagami-m signal is subject to variation induced by an

inverse Nakagami-m random variable (RV). It was shown

in [40] that this assumption renders the F fading model

capable of providing a better fit to measurement data than

the widely used generalized-K fading model. Additionally, the

algebraic representation of the F composite fading distribution

is fairly tractable and simpler than that of the generalized-K
distribution, which until now has largely been considered the

most analytically tractable composite fading model.

As a result, this model is characterized by its distinct

combination of accurate modeling capability and algebraic

tractability. In the present contribution, we first derive ad-

ditional analytic expressions for the key statistical metrics

of the F composite fading model. These formulations are

generic and thus, well suited to information-theoretic anal-

yses. Capitalizing on them, we derive a novel exact analytic

expression for the effective capacity (Ceff ) over F composite

fading channels. Based on this, we derive tight upper and

lower bounds as well as an accurate approximate expression

that provide meaningful insights on the impact of the involved

parameters on the overall system performance and limitations.

This is useful in numerous emerging wireless applications,

such as body area networks and vehicular communications,

which are largely characterized by stringent quality of service

and low latency requirements.

II. THE F COMPOSITE FADING MODEL

Similar to the physical signal model proposed for the

Nakagami-m fading channel [41], the received signal in an F
composite fading channel is composed of separable clusters

of multipath in which the scattered waves have similar delay

times, with the delay spreads of different clusters being rela-

tively large. However, in contrast to the Nakagami-m signal,

in an F composite fading channel, the rms power of the

received signal is subject to random variation induced by

shadowing. Based on this, the received signal envelope, R,

can be expressed as

R =

√

√

√

√

m
∑

i=1

α2I2i + α2Q2
i (1)

where m represents the number of clusters of multipath, Ii and

Qi are independent Gaussian RVs which denote the in-phase

and quadrature phase components of the multipath cluster i,
where E[Ii] = E[Qi] = 0 and E[I2i ] = E[Q2

i ] = σ2, with

E[·] denoting statistical expectation. In (1), α is a normalized

inverse Nakagami-m RV where ms is the shape parameter and

E[α2] = 1, such that

fα(α) =
2(ms − 1)

ms

Γ (ms) α2ms+1
exp

(

−
ms − 1

α2

)

(2)

where Γ(·) represents the gamma function [42, eq. (8.310.1)].

Following the approach in [40], we can obtain the corre-

sponding PDF1 of the received signal envelope, R, in an F
composite fading channel, namely

fR(r) =
2mm(ms − 1)

ms Ωmsr2m−1

B (m,ms) [mr2 + (ms − 1) Ω]
m+ms

(3)

which is valid for ms > 1, while B(·, ·) denotes the beta

function [42, eq. (8.384.1)]. The form of the PDF in (3)

is functionally equivalent to the F distribution2. In terms

of its physical interpretation, m denotes the fading severity

whereas ms controls the amount of shadowing of the rms

signal power. Moreover, Ω = E[r2] represents the mean

power. As ms → 0, the scattered signal component undergoes

heavy shadowing. In contrast, as ms → ∞, there exists no

shadowing in the wireless channel and therefore it corresponds

to a standard Nakagami-m fading channel. Furthermore, as

m → ∞ and ms → ∞, the F composite fading model

becomes increasingly deterministic, i.e., it becomes equivalent

to an additive white Gaussian noise (AWGN) channel.

Based on (3), the PDF of the instantaneous SNR, γ, in an

F composite fading channel can be straightforwardly deduced

by using the variable transformation γ = γr2/Ω, such that

fγ(γ) =
mm(ms−1)ms γmsγm−1

B (m,ms) [mγ + (ms − 1) γ ]
m+ms

(4)

where γ = E[γ] denotes the corresponding average SNR. To

this effect, the redefined moments, E[γn] ,
∫

∞

0
γnfγ(γ)dγ

and the moment-generating function (MGF), Mγ(s) ,
∫

∞

0
exp(−sγ)fγ(γ)dγ, [43], are expressed as

E[γn] =
(ms − 1)nγnΓ(m+ n)Γ(ms − n)

mnΓ(m)Γ(ms)
(5)

1It is worth highlighting that in the present paper, we have modified
slightly the underlying inverse Nakagami-m PDF from that used in [40] and
subsequently the PDF for the F composite fading model. While the PDF in
[40] is completely valid for physical channel characterization, it has some
limitations in its admissible parameter range when used in analyses relating
to digital communications. The redefined PDF in (3), on the other hand, is
well consolidated and hence, more useful in practice.

2Letting r2 = x, m = d1/2, ms = d2/2, Ω = d2/(d2 − 2) and
performing the required transformation yields the F distribution, fX(x), with
parameters d1 and d2.



and

Mγ(−s) = 1F1

(

m; 1−ms;
sγ(ms − 1)

m

)

+
Γ(−ms)s

msγms(ms − 1)ms

B(m,ms)mms

× 1F1

(

m+ms; 1 +ms;
sγ(ms − 1)

m

)

(6)

respectively, with 1F1(·, ·, ·) denoting the Kummer confluent

hypergeometric function [42, eq. (9.210.1)]. Similarly, with the

aid of [42, eq. (3.194.1)] the envelope cumulative distribution

function (CDF) is expressed as

FR(r) =
mm−1r2m

B(m,ms)(ms − 1)mΩm

× 2F1

(

m,m+ms,m+ 1;−
mr2

(ms − 1)Ω

) (7)

where 2F1(·, ·; ·; ·) is the Gauss hypergeometric function [42,

eq. (9.111)], whereas its respective SNR CDF is readily given

by

Fγ(γ) =
mm−1γm

B(m,ms)(ms − 1)mγm

× 2F1

(

m,m+ms,m+ 1;−
mγ

(ms − 1)γ

)

.

(8)

It is noted that the above CDF expressions are valid for

arbitrary values of the fading parameters m and ms.

In the sequel, we use the new formulation in the comprehen-

sive analysis of the effective rate under F composite fading

conditions.

III. EFFECTIVE RATE ANALYSIS

Channel capacity is a core performance metric in conven-

tional and emerging communication systems, and its limits

are largely affected by the incurred fading conditions during

wireless transmission. Ergodic capacity is the most widely

used capacity measure and is concerned with CSI knowledge

only at the receiver and a fixed transmit power. However,

the effective capacity is also a particularly useful information

theoretic measure as it accounts for the achievable capacity

subject to the incurred latency relating to the corresponding

buffer occupancy. In what follows, we derive novel exact and

approximate analytic expressions along with tight bounds for

the effective rate over F composite fading conditions.

A. An Exact Closed-form Expression

It is recalled that the effective rate accounts for the channel

capacity as a function of the asymptotic decay rate of the

corresponding buffer occupancy. This is an insightful mea-

sure, particularly in emerging technologies where latency is a

critical quality of service criterion. Next, we derive an exact

closed-form expression for the effective rate over F composite

fading channels.

Theorem 1. For m, γ, γ, θ, B, T ∈ R
+ and ms > 1, the

effective capacity Ceff = Ec(θ) under F composite fading

conditions can be expressed as

Ceff =
ms

A
log2

(

m

(ms − 1) γ

)

+
1

A
log2

(

(m+ms)A
(ms)A

)

−
log2 ( 2F1 (A+ms,m+ms;A+m+ms;D1))

A
(9)

where D1 = (m − (ms − 1) γ)/m whereas (x)n ,

Γ(x + n)/Γ(x) is the Pochhammer symbol [42] and A =
BTθ/ ln(2) is a metric of delay constraint. Also, B and

T denote the system bandwidth and the block/frame length,

respectively, whereas θ is the quality of service (QoS) exponent

in terms of the asymptotic decay rate of the buffer occupancy.

Proof. Given the instantaneous service rate of a system as

R = TB log2(1 + γ), the corresponding effective rate can be

expressed as Ec(θ) = −A−1 log2
(

E
[

e−θR
])

, which can be

re-written as [47], [48]

Ceff = −
1

A
log2

(
∫

∞

0

e−θTB log2(1+γ)fγ(γ)dγ

)

(10)

where fγ(γ) accounts for the corresponding fading statistics.

Therefore, for the case of F composite fading channels, we

substitute the redefined PDF in (4) into (10), which after some

algebraic manipulations yields

Ceff =
1

A
log2

(

B (m,ms)

mm(ms−1)ms γms

)

−
1

A
log2

(

∫

∞

0

γm−1dγ

(1 + γ)A [mγ + (ms − 1) γ ]
m+ms

)

.

(11)

The integral in (11) can be expressed in closed-form with

the aid of [42, eq. (3.259.3)]. Hence, by performing the

necessary change of variables and after some algebraic ma-

nipulations one obtains the following closed-form expression

Ceff =−
1

A
log2

{

B(m,A+ms)

B(m,ms)

(

(ms − 1)γ

m

)ms

× 2F1 (A+ms,m+ms;A+m+ms;D1)
}

.

(12)

To this effect and by also applying the properties and identities

of the logarithm, gamma and beta functions, (12) reduces to

the compact form of (9), which completes the proof.

It is noted that a similar expression for the effective capacity

was derived in [39]. However, this expression is limited due

to the constrained consideration of the SNR PDF of the F
fading model in [40]. As a result, the derived result in Theorem

2 is more valid and suitable since it is based on the well

consolidated SNR PDF in (4). In addition, this expression

can be used as a benchmark for the derivation of simple

tight bounds and an accurate approximation which provide

useful insights on the impact of the involved parameters on

the system performance.



Proposition 1. For m, γ, γ, θ, B, T ∈ R
+, ms > 1 and

assuming ms + m >> A and γ > 5dB, the effective rate

under F composite fading conditions can be bounded by the

following inequalities3:

CUB
eff <

log2 ((ms +A)m)− log2 ((ms)m)

A
+ log2 (γ) + log2 (ms − 1)− log2 (m)

(13)

and

CLB
eff > log2 (γ) + log2

(

ms − 1

m

)

−
log2 ((ms)m)

A
(14)

which constitute tight upper and lower bounds, respectively.

Proof. It is evident that A +m +ms ≈ m +ms when m +
ms >> A. As a result, equation (9) can be tightly upper

bounded as follows:

CUB
eff <−

1

A
log2

{

(ms)A
(ms +m)A

(

(ms − 1)γ

m

)ms

×2F1 (A+ms,m+ms;m+ms;D1)
}

.

(15)

Importantly, given that

2F1 (A+ms,m+ms;m+ms;D1) = 1F0 (A+ms; ;D1)
(16)

and by recalling that 1F0(n; ; 1 + x) , (−1)
n
/xn, n ∈ R,

equation (15) can reduce to

CUB
eff <−

1

A
log2

(

(ms)A(ms−1)msγms

(ms +m)Amms

(

m

(ms−1)γ

)A+ms

)

.

(17)

To this effect and after some algebraic manipulations, the

closed-form upper bound in (13) is deduced.

Based on (13) and recalling that A +m +ms ≈ m +ms

when m+ms >> A, the left hand side term on the fraction

of (13) can be eliminated. This readily yields (14), which is a

tight lower bound to the exact expression in (9) for the given

conditions and thus, it completes the proof.

It is noted here that (13) and (14) are particularly insightful

and they can be also expressed in terms of the involved average

SNR, namely

γeff ≃
m2C

UB
eff

ms − 1

(

(ms)A
(ms +m)A

)
1
A

≃
m2C

LB
eff

ms − 1
((ms)A)

1
A

(18)

which is rather accurate when m + ms >> A. Importantly,

this allows the determination of γ for different values of m,

ms and A along with specific values of Ceff . This is useful in

determining the required SNR for specific fading conditions

and target quality of service requirements, particularly in

emerging wireless communication systems.

In the same context as the derived bounds in Proposition 1,

an accurate approximate expression to (9) can be additionally

derived.

3It is noted that (ms +m)A/(ms)A = (ms +A)m/(ms)m = Γ(ms +
m+A)Γ(ms)/(Γ(ms +m)Γ(ms +A)).
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Fig. 1: Effective capacity versus A under F fading channels

for different values of the m and ms parameters when γ = 5
dB.

Proposition 2. For m, γ, γ,B ∈ R
+, ms > 1 and γ >> 0,

the effective capacity under F composite fading conditions

can be accurately approximated as follows:

Cappr.
eff ≃ −

log2 ( 2F1(A,ms;A+m+ms; 1− γ))

A
. (19)

Proof. In the high SNR regime, i.e. γ >> 0, it readily follows

that γ >> m, γ >> ms and γ >> A. To this effect and by

expanding the logarithmic terms in (9), one obtains

(ms)A
(m+ms)A

(

(ms − 1)γ

m

)ms

≃ γms . (20)

Based on this and after some algebraic manipulations, equation

(19) is deduced, which completes the proof.

It is evident that (19) can be also expressed in terms of the

average SNR, namely

γeff ≃ 1− 2F
−1
1

(

A,ms;A+m+ms; 2
−AC

appr.

eff

)

(21)

where 2F
−1
1 (·, ·; ·; ·) denotes the inverse Gauss hypergeomet-

ric function.

It is noted here that the tightness of the derived bounds

and the accuracy of the proposed approximation are rather

high. This is evident by the fact that the insightful equalities

⌈CLB
eff ⌉ = ⌊Ceff⌋ and ⌈Ceff⌉ = ⌊CUB

eff ⌋ hold for the two derived

bounds and ⌈Cappr.
eff ⌉ = Ceff or ⌊Cappr.

eff ⌋ = Ceff hold for

the proposed approximation for the vast majority of possible

combinations, where ⌈·⌉ and ⌊·⌋ denote the ceiling and floor

functions, respectively [42].

To the best of the authors knowledge, the provided an-

alytic expressions have not been previously reported in the

open technical literature. Also, the offered analytic expression

provide meaningful insights on the impact of the involved

parameters on the system performance, which are useful in

the design and efficient operation of future wireless systems

with stringent quality of service and low latency requirements.



Fig. 2: Effective capacity in an F fading channel as a function of the m, ms and a parameters for γ = 15 dB.

IV. NUMERICAL RESULTS

In this section, we utilize the analytic results obtained in

the previous section to quantify the effective rate for various

communication scenarios under realistic multipath fading and

shadowing conditions.

It is recalled that the tightness of the upper and lower bounds

and the accuracy of the simple approximation are high. Also,

the identities ⌈CLB
eff ⌉ = ⌊Ceff⌋ as well as ⌈Ceff⌉ = ⌊CUB

eff ⌋ and

⌈Cappr.
eff ⌉ = Ceff or ⌊Cappr.

eff ⌋ = Ceff hold for the vast majority

of possible combinations, which verifies the usefulness of

these simplified expressions.

Regarding the exact results, Fig. 1 demonstrates how the CE

per unit bandwidth varies as a function of the delay constraint

over F composite fading channels. Five different combinations

of the m and ms parameters were considered for a case of

low average SNR, i.e. γ = 5 dB, which makes the impact of

the incurred delay more critical. It is evident that the spectral

efficiency is affected considerably by the value of A across all

types of fading conditions, with the impact on intense fading

conditions being the most detrimental. In the same context,

the effects of the multipath fading and shadowing are shown

in Fig. 2, where the performance of the CE is illustrated

along with different values of A and γ = 15 dB. In all cases,

we consider broad ranges of the involved parameters, namely

1 < m ≤ 15, 1 < ms ≤ 15 and 0 ≤ A ≤ 20 in order

to consider all types of fading severity and incurred delays,

as these are encountered in realistic communication scenarios.

As expected, the spectral efficiency increases as the m and

ms parameters are greater (m,ms → 15) and A is smaller

(A → 0), i.e., light composite fading conditions with no delay

constraint. Conversely, the performance of the CE is rather

poor for the case of intense composite fading conditions with

excessive delay constraint, i.e., m,ms → 1 and A → 20.

In general, it is shown that even if one of the parameters is

unfavorable i.e. excessive delay constraint or severe multipath

fading or shadowing, the corresponding achievable CE will

lie at moderate levels, regardless of how favorable the values

of the other parameters are. This verifies the need for accurate

channel modeling and latency estimation and reduction in the

deployment of efficient wireless technologies.

V. CONCLUSION

In this paper, we presented a comprehensive effective rate

analysis over F composite fading channels. In this context,

we derived novel exact analytic expressions along with simple

upper and lower bounds and an accurate approximation. When

comparing these expressions with those for the generalized-K
fading channels given in [26], the F fading model exhibits

lower complexity and provides more insights on the impact

of the involved parameters on the overall system performance.

Based on this, it was shown that the spectral efficiency changes

considerably even at slight variations of the average SNR,

buffer occupancy and the severity of the multipath fading

and shadowing conditions. The impact of different types of F
composite fading was also investigated through comparisons

with the respective capacity for the case of a Rayleigh fading

channel. This has highlighted that different types of composite

fading can have a profound effect which is beyond the range of

the fading conditions experienced in a conventional Rayleigh

fading environment. Finally, the new results and insights

provided here will be useful in the design and deployment of

future communications systems. For example when assessing

technologies such as channel selection and spectrum aggre-

gation for use in heterogeneous networks, telemedicine and

vehicular communications, to name but a few.
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