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Abstract—This paper presents a novel approach to 

accelerate, distribute, and manage video encoding services in 

large-scale cloud systems. A proof-of-concept application is 

Kvazaar HEVC intra encoder, whose functionality is 

partitioned between FPGAs and processors. Typically, only 1-2 

FPGA boards can be attached per cloud server, which severely 

limits the flexibility of the cloud systems. Our solution is based 

on Software Defined Networking (SDN), in which practically 

any number of FPGAs and servers can be deployed. The system 

features a resource manager that is responsible for allocation, 

deallocation, and load balancing of resources upon service 

requests or changes in network infrastructure. Our prototype 

cloud system is composed of three Intel Xeon servers, two HP 

SDN switches, and two Intel Arria 10 FPGAs. The servers and 

FPGAs have 20GbE and 40GbE connections to the SDN 

switches, respectively. The prototype system can encode two 4K 

HEVC streams at 60 fps and the performance is predicted to 

scale almost linearly with the number of servers and FPGAs. 
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I. INTRODUCTION 

Video coding, deep neural networks, and data analytics are 
the main drivers of hardware acceleration in cloud computing. 
Kvazaar HEVC intra encoder has been previously accelerated 
on a field-programmable gate array (FPGA) [1], [2] using 
High Level Synthesis (HLS) [3], [4] and 4× increase in coding 
speed was obtained with two FPGAs. However, the FPGA 
boards were connected to the server via the PCIe bus, which 
limits the number of FPGAs per server. Moreover, PCIe 
FPGA cards cannot fully act as independent computing nodes.  

In this work, our ultimate goal is to deploy flexible 
combinations of servers and FPGAs, so that the same FPGA 
can be shared by many servers and vice versa. In addition, 
FPGA acceleration should act as a microservice for as easy 
deployment as software resources in cloud computing. The 
challenge is that implementing a full protocol stack for 
communication and application abstraction on an FPGA takes 
a major portion of the FPGA resources. Hence, it introduces 
too much overhead for an application. Our solution is to 
offload most of the network functionality from the FPGA by 
using software-defined networking (SDN), in which any data 
flow is programmable and the network interface can be at very 
low level [5]. Our main contributions are listed below: 

• Dynamic resource allocation for HEVC encoding services 

on a changing setup of software and hardware resources 

• Usage of SDN for offloading most network functions from 

the FPGA 

• An advanced partitioning scheme for sharing execution 

between servers, FPGAs, and SDN switches  

• HLS implementations for the network interface, control, 

and HEVC accelerator logic 

• A prototype system implementing real-time 4K HEVC 

intra encoder 

This paper is organized as follows. Section II considers the 
related work. Section III presents the proposed system 
consisting of Kvazaar FPGA accelerators, servers, and SDN 
switches. It also describes how the proposed resource manager 
and SDN are used to dynamically distribute HEVC encoding 
services between software and hardware resources. Section IV 
analyses the performance of the proposed system. Section V 
concludes the paper. 

II. RELATED WORK 

The mainstream approaches for cloud FPGA acceleration 
are based on PCIe boards that are attached to the host server 
[6]-[9] or connected via Ethernet [10]-[12]. However, the host 
PCIe was still needed in [10] and all server traffic was routed 
through an FPGA making it even more tightly coupled to a 
server than in the other proposals. In [11] and [12], a complete 
network interface was implemented on an FPGA, so the full 
FPGA independency was attained at the cost of FPGA area. 

For the time being, several HEVC encoders have been 
implemented on an FPGA [1], [2], [13]-[16], but none of them 
have utilized network interfaces between the processor and 
FPGA logic. To the best of our knowledge, this is the first 
paper that addresses fully independent FPGAs and servers in 
video encoding acceleration. 

  
Fig. 1. Snapshot of the server rack. 

 



III. PROPOSED SYSTEM PARTITIONING  

Fig. 1 and 2 show a snapshot and the corresponding 
network structure of our prototype cloud system, respectively. 
Table I tabulates the component specifications for Fig. 2. The 
SDN controller manages connections between the servers and 
FPGAs by modifying data flows in SDN switches. Each 
FPGA is connected to an SDN switch via one 40 Gigabit 
Ethernet (40GbE) link and each server with 2×10GbE links. 

A. Server Interfacing 

In the proposed system, the servers use Linux operating 
system, e.g., CentOS or Ubuntu. Each server has two 10GbE 
SFP interfaces, which are configured to use IEEE 802.3ad 
Dynamic link aggregation (802.3ad, LACP) that combines the 
interfaces into a single load-balanced logical link with an 
effective bandwidth of 20GbE. As the proposed system 
operates on Ethernet frames, the criteria for load balancing are 
derived from the source and destination MAC addresses and 
the Ethernet type. 

Because the proposed system utilizes the data link layer 
(layer 2), there are no built-in reliability mechanisms available 
with Ethernet frames. Therefore, the CPU and FPGA keep 
track on how many packets need to be received and sent for 
each coding tree unit (CTU) [20] in HEVC encoding. A lost 
packet causes a timeout and the same data is then re-sent to 
the FPGA for re-encoding. Using the IPv4 and UDP protocols 
from the network and transport layers (layer 3-4) would add 
some overhead in data rates and FPGA design complexity, but 
it would make it possible to send packets over different LANs. 
Wrapping the CTU payload inside the UDP packets would 
allow inclusion of UDP ports in the criteria for load balancing. 
These aspects will be addressed in the future.  

B. FPGA Interfacing 

Fig. 3 depicts the network interface on the FPGA. It 
includes Intel 40G Ethernet IP block and our own 
implementations of RX/TX Parsers and ETH Writer modules. 
The RX Parser decodes the Ethernet frames, ensures that the 
incoming frame is valid, and configures the correct accelerator 
instance. The TX Parser is responsible for generating the 

Ethernet headers, gathering the payload, and controlling the 
ETH Writer. The frame size and the number of Ethernet 
frames generated per CTU are configurable. Implementing 
these three modules in C and using Catapult-C HLS tool [21] 
simplified the design process on FPGA and lowered the bar 
for design iterations over the corresponding approaches with 
VHDL or Verilog. With HLS, these blocks could also be 
easily modified for any accelerator usage. 

The RX and TX parsers utilize a look-up-table for MAC 
addresses to identify which server sent the CTU for encoding. 
This way, the server MAC address can be translated and the 
results are sent back to the correct server. This approach also 
allows multiple servers to use the same FPGA at the same time 
and all results are forwarded back correctly. Fast FIFO 
memories compensate for differences in data widths and rates 
between the physical 40G Ethernet IP and our FPGA logic.  

C. Kvazaar Cloud FPGA Accelerator 

The execution of Kvazaar encoding is partitioned between 
CPUs and FPGA accelerators. First, the CTU structures of a 
video frame are initialized by the CPU and sent to the 
accelerator which implements most of the coding tools. Only 
the final steps, context-adaptive binary arithmetic coding 
(CABAC) and video stream construction, are left for the CPU. 
The implementation supports Kvazaar ultrafast preset [22] 
detailed in Table II.  

A block diagram of the accelerator architecture is also 
shown in Fig. 3. The core component is the Kvazaar HEVC 
intra coding unit [1], [2], which was implemented with 
Catapult-C HLS tool from Kvazaar [23] open-source C code. 
Altogether, three accelerator instances (Acc0, Acc1, and Acc2) 
can be placed on a single Arria 10 FPGA. Each accelerator is 
able to process up to 16 CTUs in parallel. Software parts of 
the encoder can be executed on any server running Linux.  

  
Fig. 2. Prototype cloud system.  

 

 

TABLE I. CLOUD SYSTEM SPECIFICATIONS

 

Device Type CPU Memory

Server1 HP Server Xeon E5-2630 96GB

Server2 Nokia Airframe Cloud server [17] Xeon E5-2680v4 256GB

Server3 Nokia Airframe Cloud server [17] Xeon E5-2680v3 256GB

Switch1 HPE FlexFabric 5900AF 48G 4XG 2QSFP+ - -
Switch2 HP Switch 5406Rzl2 - -
FPGA1 Intel Arria 10 GX FPGA Dev Kit [18] - -
FPGA2 Intel Arria 10 GX FPGA Dev Kit [18] - -
Controller HP VAN SDN Controller [19] - -

TABLE II. KVAZAAR INTRA CODING SETTINGS 

  

 

Feature [20] Kvazaar parametrization

Coding unit sizes 16×16, 8×8

Prediction unit sizes 16×16, 8×8

Transform unit sizes 16×16, 8×8

Intra prediction modes 35 (DC, planar, 33 angular)

Parallelization

Sample adaptive offset Disabled

Sign bit hiding Disabled

RD optimized quantization Disabled

Transform skip Disabled

Quantization parameter 22

Wavefront parallel processing 

Picture-level

Fig. 3. Proposed FPGA accelerator architecture. 



D. SDN 

The SDN-controlled switches make it easy to connect the 
FPGAs to the network. As the data flows are automatically set 
by the resource manager, the FPGA does not need to support 
a full set of Internet protocols. Different FPGAs are identified 
by their MAC addresses, which is sufficient for routing the 
packets correctly. For example, when the SDN controller sees 
a MAC address assigned to a certain FPGA, it routes all 
associated packets to it. The data from the FPGA is routed 
back to the server when the source refers to the FPGA and the 
destination is the MAC address of the server. 

E. Dynamic Resource Allocation Manager 

Fig. 4 shows a message sequence chart of how our 
dynamic resource allocation is used for an HEVC encoding 
service. First, a Kvazaar HEVC encoding service is started by 
a user request. The resource manager collects all the needed 
network components including devices, switches, and 
connections from the database. Then, it creates a network 
graph and defines the most economical paths for the 
components, e.g., the shortest paths from a video source to a 
server and from the server to an FPGA. The same server and 
FPGA can be allocated multiple times to different services, 
but by monitoring the resource usage, the manager tries to 
optimize resource utilization for the best performance.  

The manager also supports prioritization of services. 
Encoding speeds can thus be balanced by giving higher 
resolution videos a higher priority in FPGA acceleration. 
When a higher priority service is invoked and no FPGAs are 

available, the manager moves the execution of a lower priority 
service from the FPGA to the CPU, as shown in Fig. 4 with 
the option (1). 

After the manager has allocated the needed resources, it 
sets the necessary SDN flows by using the API of the SDN 
controller. For example, in Fig. 2, Server1 can access the 
FPGA2 connected to a different switch by using their original 
MAC addresses, without any Address Resolution Protocol 
(ARP) messages. After the setup is ready, the manager uses 
POST messages to inform the resources to start the service, 
maybe with some additional configuration information (e.g., 
IDs and encoding parameters). 

The manager brings robustness to the encoding process, 
e.g., the system is able to recover from FPGA removal. When 
an FPGA is switched off, the manager automatically switches 
the services from the removed FPGA to a CPU and starts 
checking equivalent replacements for the removed FPGA. 
This is illustrated in Fig. 4 by the option (2). Switching an 
encoding service from FPGA to CPU takes around one second 
due to the implemented encoder timeouts. Instead, switching 
between FPGAs and from CPU to FPGA take place 
instantaneously. 

After a service is completed, the manager deallocates the 
resources in use. If an FPGA is deallocated, it is automatically 
assigned to the next service having no assigned FPGA, as 
described in Fig. 4 with the option (3). The reallocation favors 
services with the highest priority and the longest running time 
on a CPU.  

  
Fig. 4. Message sequence chart of dynamic resource allocation for a HEVC encoding service. 

 



IV. PERFORMANCE ANALYSIS 

Table III reports the performance results for Kvazaar 
HEVC encoder on three different platforms: 1) CPU-only; 2) 
CPU with a single PCIe FPGA card [2]; and 3) the proposed 
prototype cloud system containing a single CPU and FPGA. 
For fair comparison, the resources of the cloud setup are 
unified with that of the PCIe approach. Furthermore, all these 
setups use an equivalent Intel Xeon CPU and the latter two 
equivalent Arria 10 FPGA for acceleration. 

According to our results, the proposed cloud approach 
speeds up HEVC encoding by 1.5-2 fold over that of the CPU-
only case. However, the average coding speed of our proposal 
is around 9 fps slower than that of the PCIe approach. There 
are three reasons for the slowdown: the usage of a 20Gbps 
Ethernet link in place of a 32Gbps PCIe bus, the overhead of 
Ethernet packets, and reduced parallelism due to longer 
waiting times of Ethernet frames. Nevertheless, our proposal 
is still able to encode 4K resolution test videos at 60 fps. 

It is notable that the average frame latency with the fiber 
connection is around 40% higher than that of the PCIe bus. On 
the other hand, the Ethernet interfacing still has 31% smaller 
average frame latency than with CPU-only encoding. The 
CPU utilization is nearly the same in the cloud and PCIe 
approaches. Both solutions accelerate HEVC encoding and 

still use around 50% less CPU resources than the CPU-only 
case. 

The proposed system is able to encode 4K video at 90 fps 
with two FPGAs and a single server (Fig. 2). In this case, the 
maximum speed is limited by the 20GbE connection. 
Alternatively, our system can encode two 4K sequences at 60 
fps with two servers and two FPGAs. Using 40Gbps network 
cards on the servers in place of 2×10GbE would remove this 
limitation and provide smaller latency as well as faster 
encoding speed. However, acquiring these network cards is 
left for the future.  

The system also appears to be robust, as Kvazaar 
execution can be switched between CPUs and FPGAs on the 
fly depending on the resource availability. This means, in 
practice, that the system can switch an encoding process 
between FPGA accelerators and recover from an FPGA 
removal, all without interrupting the encoding process. These 
features are visualized in [25]. 

Despite the minor performance penalty, the fiber 
connected FPGAs allow much better scalability than the 
dedicated PCIe-based approach. For example, both 
approaches would need three Kvazaar accelerator instances on 
FPGA for 4K60p encoding, but only the cloud approach is 
able to attain the same speed with three smaller FPGAs, each 
having a single accelerator instance.  

The proposed dynamic resource allocation and 
partitioning scheme leaves lots of room for further 
performance scaling. Fig. 5 predicts the total encoding 
performance of differently scaled up systems with the 40GbE 
links in servers. For example, the graphs show equal 
performance for the systems composed of 16 servers or 4 
servers with 8 FPGAs. A high-end system with 16 servers and 
32 FPGAs has potential to encode 64 HEVC streams at 4K30p 
or 16 streams at 4K120p simultaneously. 

V. CONCLUSION 

This paper presented an automated approach for managing 
services with a lightweight framework that connects multiple 
servers and FPGAs in an SDN based cloud. The combination 
of a dedicated resource manager and SDN makes it possible 
to have practically any number of independent FPGAs on the 
network without wasting FPGA resources for communication 
and application abstraction.  

Instead of using complicated network protocols, the 
proposed system uses the SDN controller and SDN switches 
for routing data. A dedicated SDN controller allows scaling 
the network to a large-scale cloud infrastructure without 
losing the speed and connectivity of a small network.  

The proposed system was also validated in practice with a 
proof-of-concept real-time 4K HEVC encoder 
implementation. It was shown to attain near the same speed as 
the previous PCIe equivalent implementation but with much 
better scalability and robustness. 

TABLE III. PERFORMANCE OF KVAZAAR HEVC INTRA ENCODER ON CPU, CPU + PCIE FPGA CARD [2], AND THE PROPOSED SYSTEM (CPU + FPGA)  

   
 

CPU only PCIe Proposed CPU only PCIe Proposed CPU only PCIe Proposed

Beauty 31 70 60 49 24 33 94 56 60

Bosphorus 43 70 62 33 18 25 94 33 35

HoneyBee 34 70 61 41 19 27 96 49 48

Average 36 70 61 41 20 28 95 46 48

Sequence [24] 

(2160p)

Avg. frame latency (ms) CPU utilization (%)Speed (fps)

 
Fig. 5. Predicted encoding performance with differently scaled setups. 
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