

Dynamic Resource Allocation for HEVC Encoding

in FPGA-Accelerated SDN Cloud

Panu Sjövall, Arto Oinonen, Mikko Teuho, Jarno Vanne, Timo D. Hämäläinen

Computing Sciences, Tampere University, Finland

{panu.sjovall, arto.oinonen, mikko.teuho, jarno.vanne, timo.hamalainen}@tuni.fi

Abstract—This paper presents a novel approach to

accelerate, distribute, and manage video encoding services in

large-scale cloud systems. A proof-of-concept application is

Kvazaar HEVC intra encoder, whose functionality is

partitioned between FPGAs and processors. Typically, only 1-2

FPGA boards can be attached per cloud server, which severely

limits the flexibility of the cloud systems. Our solution is based

on Software Defined Networking (SDN), in which practically

any number of FPGAs and servers can be deployed. The system

features a resource manager that is responsible for allocation,

deallocation, and load balancing of resources upon service

requests or changes in network infrastructure. Our prototype

cloud system is composed of three Intel Xeon servers, two HP

SDN switches, and two Intel Arria 10 FPGAs. The servers and

FPGAs have 20GbE and 40GbE connections to the SDN

switches, respectively. The prototype system can encode two 4K

HEVC streams at 60 fps and the performance is predicted to

scale almost linearly with the number of servers and FPGAs.

Keywords— High Efficiency Video Coding (HEVC), Kvazaar

HEVC encoder, field-programmable gate array (FPGA),

Software-defined networking (SDN), High-level synthesis (HLS)

I. INTRODUCTION

Video coding, deep neural networks, and data analytics are
the main drivers of hardware acceleration in cloud computing.
Kvazaar HEVC intra encoder has been previously accelerated
on a field-programmable gate array (FPGA) [1], [2] using
High Level Synthesis (HLS) [3], [4] and 4× increase in coding
speed was obtained with two FPGAs. However, the FPGA
boards were connected to the server via the PCIe bus, which
limits the number of FPGAs per server. Moreover, PCIe
FPGA cards cannot fully act as independent computing nodes.

In this work, our ultimate goal is to deploy flexible
combinations of servers and FPGAs, so that the same FPGA
can be shared by many servers and vice versa. In addition,
FPGA acceleration should act as a microservice for as easy
deployment as software resources in cloud computing. The
challenge is that implementing a full protocol stack for
communication and application abstraction on an FPGA takes
a major portion of the FPGA resources. Hence, it introduces
too much overhead for an application. Our solution is to
offload most of the network functionality from the FPGA by
using software-defined networking (SDN), in which any data
flow is programmable and the network interface can be at very
low level [5]. Our main contributions are listed below:

• Dynamic resource allocation for HEVC encoding services

on a changing setup of software and hardware resources

• Usage of SDN for offloading most network functions from

the FPGA

• An advanced partitioning scheme for sharing execution

between servers, FPGAs, and SDN switches

• HLS implementations for the network interface, control,

and HEVC accelerator logic

• A prototype system implementing real-time 4K HEVC

intra encoder

This paper is organized as follows. Section II considers the
related work. Section III presents the proposed system
consisting of Kvazaar FPGA accelerators, servers, and SDN
switches. It also describes how the proposed resource manager
and SDN are used to dynamically distribute HEVC encoding
services between software and hardware resources. Section IV
analyses the performance of the proposed system. Section V
concludes the paper.

II. RELATED WORK

The mainstream approaches for cloud FPGA acceleration
are based on PCIe boards that are attached to the host server
[6]-[9] or connected via Ethernet [10]-[12]. However, the host
PCIe was still needed in [10] and all server traffic was routed
through an FPGA making it even more tightly coupled to a
server than in the other proposals. In [11] and [12], a complete
network interface was implemented on an FPGA, so the full
FPGA independency was attained at the cost of FPGA area.

For the time being, several HEVC encoders have been
implemented on an FPGA [1], [2], [13]-[16], but none of them
have utilized network interfaces between the processor and
FPGA logic. To the best of our knowledge, this is the first
paper that addresses fully independent FPGAs and servers in
video encoding acceleration.

Fig. 1. Snapshot of the server rack.

III. PROPOSED SYSTEM PARTITIONING

Fig. 1 and 2 show a snapshot and the corresponding
network structure of our prototype cloud system, respectively.
Table I tabulates the component specifications for Fig. 2. The
SDN controller manages connections between the servers and
FPGAs by modifying data flows in SDN switches. Each
FPGA is connected to an SDN switch via one 40 Gigabit
Ethernet (40GbE) link and each server with 2×10GbE links.

A. Server Interfacing

In the proposed system, the servers use Linux operating
system, e.g., CentOS or Ubuntu. Each server has two 10GbE
SFP interfaces, which are configured to use IEEE 802.3ad
Dynamic link aggregation (802.3ad, LACP) that combines the
interfaces into a single load-balanced logical link with an
effective bandwidth of 20GbE. As the proposed system
operates on Ethernet frames, the criteria for load balancing are
derived from the source and destination MAC addresses and
the Ethernet type.

Because the proposed system utilizes the data link layer
(layer 2), there are no built-in reliability mechanisms available
with Ethernet frames. Therefore, the CPU and FPGA keep
track on how many packets need to be received and sent for
each coding tree unit (CTU) [20] in HEVC encoding. A lost
packet causes a timeout and the same data is then re-sent to
the FPGA for re-encoding. Using the IPv4 and UDP protocols
from the network and transport layers (layer 3-4) would add
some overhead in data rates and FPGA design complexity, but
it would make it possible to send packets over different LANs.
Wrapping the CTU payload inside the UDP packets would
allow inclusion of UDP ports in the criteria for load balancing.
These aspects will be addressed in the future.

B. FPGA Interfacing

Fig. 3 depicts the network interface on the FPGA. It
includes Intel 40G Ethernet IP block and our own
implementations of RX/TX Parsers and ETH Writer modules.
The RX Parser decodes the Ethernet frames, ensures that the
incoming frame is valid, and configures the correct accelerator
instance. The TX Parser is responsible for generating the

Ethernet headers, gathering the payload, and controlling the
ETH Writer. The frame size and the number of Ethernet
frames generated per CTU are configurable. Implementing
these three modules in C and using Catapult-C HLS tool [21]
simplified the design process on FPGA and lowered the bar
for design iterations over the corresponding approaches with
VHDL or Verilog. With HLS, these blocks could also be
easily modified for any accelerator usage.

The RX and TX parsers utilize a look-up-table for MAC
addresses to identify which server sent the CTU for encoding.
This way, the server MAC address can be translated and the
results are sent back to the correct server. This approach also
allows multiple servers to use the same FPGA at the same time
and all results are forwarded back correctly. Fast FIFO
memories compensate for differences in data widths and rates
between the physical 40G Ethernet IP and our FPGA logic.

C. Kvazaar Cloud FPGA Accelerator

The execution of Kvazaar encoding is partitioned between
CPUs and FPGA accelerators. First, the CTU structures of a
video frame are initialized by the CPU and sent to the
accelerator which implements most of the coding tools. Only
the final steps, context-adaptive binary arithmetic coding
(CABAC) and video stream construction, are left for the CPU.
The implementation supports Kvazaar ultrafast preset [22]
detailed in Table II.

A block diagram of the accelerator architecture is also
shown in Fig. 3. The core component is the Kvazaar HEVC
intra coding unit [1], [2], which was implemented with
Catapult-C HLS tool from Kvazaar [23] open-source C code.
Altogether, three accelerator instances (Acc0, Acc1, and Acc2)
can be placed on a single Arria 10 FPGA. Each accelerator is
able to process up to 16 CTUs in parallel. Software parts of
the encoder can be executed on any server running Linux.

Fig. 2. Prototype cloud system.

TABLE I. CLOUD SYSTEM SPECIFICATIONS

Device Type CPU Memory

Server1 HP Server Xeon E5-2630 96GB

Server2 Nokia Airframe Cloud server [17] Xeon E5-2680v4 256GB

Server3 Nokia Airframe Cloud server [17] Xeon E5-2680v3 256GB

Switch1 HPE FlexFabric 5900AF 48G 4XG 2QSFP+ - -
Switch2 HP Switch 5406Rzl2 - -
FPGA1 Intel Arria 10 GX FPGA Dev Kit [18] - -
FPGA2 Intel Arria 10 GX FPGA Dev Kit [18] - -
Controller HP VAN SDN Controller [19] - -

TABLE II. KVAZAAR INTRA CODING SETTINGS

Feature [20] Kvazaar parametrization

Coding unit sizes 16×16, 8×8

Prediction unit sizes 16×16, 8×8

Transform unit sizes 16×16, 8×8

Intra prediction modes 35 (DC, planar, 33 angular)

Parallelization

Sample adaptive offset Disabled

Sign bit hiding Disabled

RD optimized quantization Disabled

Transform skip Disabled

Quantization parameter 22

Wavefront parallel processing

Picture-level

Fig. 3. Proposed FPGA accelerator architecture.

D. SDN

The SDN-controlled switches make it easy to connect the
FPGAs to the network. As the data flows are automatically set
by the resource manager, the FPGA does not need to support
a full set of Internet protocols. Different FPGAs are identified
by their MAC addresses, which is sufficient for routing the
packets correctly. For example, when the SDN controller sees
a MAC address assigned to a certain FPGA, it routes all
associated packets to it. The data from the FPGA is routed
back to the server when the source refers to the FPGA and the
destination is the MAC address of the server.

E. Dynamic Resource Allocation Manager

Fig. 4 shows a message sequence chart of how our
dynamic resource allocation is used for an HEVC encoding
service. First, a Kvazaar HEVC encoding service is started by
a user request. The resource manager collects all the needed
network components including devices, switches, and
connections from the database. Then, it creates a network
graph and defines the most economical paths for the
components, e.g., the shortest paths from a video source to a
server and from the server to an FPGA. The same server and
FPGA can be allocated multiple times to different services,
but by monitoring the resource usage, the manager tries to
optimize resource utilization for the best performance.

The manager also supports prioritization of services.
Encoding speeds can thus be balanced by giving higher
resolution videos a higher priority in FPGA acceleration.
When a higher priority service is invoked and no FPGAs are

available, the manager moves the execution of a lower priority
service from the FPGA to the CPU, as shown in Fig. 4 with
the option (1).

After the manager has allocated the needed resources, it
sets the necessary SDN flows by using the API of the SDN
controller. For example, in Fig. 2, Server1 can access the
FPGA2 connected to a different switch by using their original
MAC addresses, without any Address Resolution Protocol
(ARP) messages. After the setup is ready, the manager uses
POST messages to inform the resources to start the service,
maybe with some additional configuration information (e.g.,
IDs and encoding parameters).

The manager brings robustness to the encoding process,
e.g., the system is able to recover from FPGA removal. When
an FPGA is switched off, the manager automatically switches
the services from the removed FPGA to a CPU and starts
checking equivalent replacements for the removed FPGA.
This is illustrated in Fig. 4 by the option (2). Switching an
encoding service from FPGA to CPU takes around one second
due to the implemented encoder timeouts. Instead, switching
between FPGAs and from CPU to FPGA take place
instantaneously.

After a service is completed, the manager deallocates the
resources in use. If an FPGA is deallocated, it is automatically
assigned to the next service having no assigned FPGA, as
described in Fig. 4 with the option (3). The reallocation favors
services with the highest priority and the longest running time
on a CPU.

Fig. 4. Message sequence chart of dynamic resource allocation for a HEVC encoding service.

IV. PERFORMANCE ANALYSIS

Table III reports the performance results for Kvazaar
HEVC encoder on three different platforms: 1) CPU-only; 2)
CPU with a single PCIe FPGA card [2]; and 3) the proposed
prototype cloud system containing a single CPU and FPGA.
For fair comparison, the resources of the cloud setup are
unified with that of the PCIe approach. Furthermore, all these
setups use an equivalent Intel Xeon CPU and the latter two
equivalent Arria 10 FPGA for acceleration.

According to our results, the proposed cloud approach
speeds up HEVC encoding by 1.5-2 fold over that of the CPU-
only case. However, the average coding speed of our proposal
is around 9 fps slower than that of the PCIe approach. There
are three reasons for the slowdown: the usage of a 20Gbps
Ethernet link in place of a 32Gbps PCIe bus, the overhead of
Ethernet packets, and reduced parallelism due to longer
waiting times of Ethernet frames. Nevertheless, our proposal
is still able to encode 4K resolution test videos at 60 fps.

It is notable that the average frame latency with the fiber
connection is around 40% higher than that of the PCIe bus. On
the other hand, the Ethernet interfacing still has 31% smaller
average frame latency than with CPU-only encoding. The
CPU utilization is nearly the same in the cloud and PCIe
approaches. Both solutions accelerate HEVC encoding and

still use around 50% less CPU resources than the CPU-only
case.

The proposed system is able to encode 4K video at 90 fps
with two FPGAs and a single server (Fig. 2). In this case, the
maximum speed is limited by the 20GbE connection.
Alternatively, our system can encode two 4K sequences at 60
fps with two servers and two FPGAs. Using 40Gbps network
cards on the servers in place of 2×10GbE would remove this
limitation and provide smaller latency as well as faster
encoding speed. However, acquiring these network cards is
left for the future.

The system also appears to be robust, as Kvazaar
execution can be switched between CPUs and FPGAs on the
fly depending on the resource availability. This means, in
practice, that the system can switch an encoding process
between FPGA accelerators and recover from an FPGA
removal, all without interrupting the encoding process. These
features are visualized in [25].

Despite the minor performance penalty, the fiber
connected FPGAs allow much better scalability than the
dedicated PCIe-based approach. For example, both
approaches would need three Kvazaar accelerator instances on
FPGA for 4K60p encoding, but only the cloud approach is
able to attain the same speed with three smaller FPGAs, each
having a single accelerator instance.

The proposed dynamic resource allocation and
partitioning scheme leaves lots of room for further
performance scaling. Fig. 5 predicts the total encoding
performance of differently scaled up systems with the 40GbE
links in servers. For example, the graphs show equal
performance for the systems composed of 16 servers or 4
servers with 8 FPGAs. A high-end system with 16 servers and
32 FPGAs has potential to encode 64 HEVC streams at 4K30p
or 16 streams at 4K120p simultaneously.

V. CONCLUSION

This paper presented an automated approach for managing
services with a lightweight framework that connects multiple
servers and FPGAs in an SDN based cloud. The combination
of a dedicated resource manager and SDN makes it possible
to have practically any number of independent FPGAs on the
network without wasting FPGA resources for communication
and application abstraction.

Instead of using complicated network protocols, the
proposed system uses the SDN controller and SDN switches
for routing data. A dedicated SDN controller allows scaling
the network to a large-scale cloud infrastructure without
losing the speed and connectivity of a small network.

The proposed system was also validated in practice with a
proof-of-concept real-time 4K HEVC encoder
implementation. It was shown to attain near the same speed as
the previous PCIe equivalent implementation but with much
better scalability and robustness.

TABLE III. PERFORMANCE OF KVAZAAR HEVC INTRA ENCODER ON CPU, CPU + PCIE FPGA CARD [2], AND THE PROPOSED SYSTEM (CPU + FPGA)

CPU only PCIe Proposed CPU only PCIe Proposed CPU only PCIe Proposed

Beauty 31 70 60 49 24 33 94 56 60

Bosphorus 43 70 62 33 18 25 94 33 35

HoneyBee 34 70 61 41 19 27 96 49 48

Average 36 70 61 41 20 28 95 46 48

Sequence [24]

(2160p)

Avg. frame latency (ms) CPU utilization (%)Speed (fps)

Fig. 5. Predicted encoding performance with differently scaled setups.

0

240

480

720

960

1200

1440

1680

1920

2160

2400

1 2 4 8 16

T
o

ta
l 4

K
 H

E
V

C
 e

n
co

di
ng

 p
er

fo
rm

an
ce

 (
fp

s)

of servers

32 FPGAs

16 FPGAs

8 FPGAs

4 FPGAs

2 FPGAs

1 FPGAs

0 FPGAs

ACKNOWLEDGMENT

This work was supported in part by the European Celtic-
Plus project VIRTUOSE, the Academy of Finland (decision
no. 301820), Nokia Foundation, and the Finnish Foundation
for Technology Promotion.

REFERENCES

[1] P. Sjövall, V. Viitamäki, A. Oinonen, J. Vanne, T. D. Hämäläinen, and
A. Kulmala, “Kvazaar 4K HEVC intra encoder on FPGA accelerated
Airframe server,” in Proc. IEEE Workshop Signal Process. Syst.,
Lorient, France, Oct. 2017.

[2] P. Sjövall, V. Viitamäki, J. Vanne, T. D. Hämäläinen, and A. Kulmala,
“FPGA-powered 4K120p HEVC intra encoder,” in Proc. IEEE Int.
Symp. Circuits Syst., Florence, Italy, May 2018.

[3] S. Lahti, P. Sjövall, J. Vanne, and T. D. Hämäläinen, “Are we there
yet? A study on the state of high-level synthesis,” IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst., vol. 38, no. 5, May 2019,
pp. 898-911.

[4] P. Coussy, D. D. Gajski, M. Meredith, and A. Takach, “An introduction
to high-level synthesis,” IEEE Des. Test Comput., vol. 26, no. 4, Jul.-
Aug. 2009, pp. 8-17.

[5] M. Vajaranta, V. Viitamäki, A. Oinonen, T. D. Hämäläinen, A.
Kulmala, and J. Markunmäki, “Feasibility of FPGA accelerated IPsec
on cloud,” in Proc. Euromicro Symp. Digit. Syst. Des., Prague, Czech
Republic, Aug. 2018.

[6] A. Putnam et al., “A reconfigurable fabric for accelerating large-scale
datacenter services,” IEEE Micro, vol. 35, no. 3, May-June 2015, pp.
10-22.

[7] S. A. Fahmy, K. Vipin, and S. Shreejith, “Virtualized FPGA
accelerators for efficient cloud computing,” IEEE Int. Conf. Cloud
Comput. Technol. Sci, Vancouver, British Columbia, Canada, Nov.-
Dec. 2015.

[8] Z. Zhu, A. X. Liu, F. Zhang, and F. Chen, “FPGA resource pooling in
cloud computing,” IEEE Trans. Cloud Comput., Early Access.

[9] J. Lallet, A. Enrici, and A. Saffar, “FPGA-based system for the
acceleration of cloud microservices,” in Proc. IEEE Int. Symp.
Broadband Multimedia Syst. Broadcast., Valencia, Spain, Jun. 2018.

[10] A. M. Caulfield et al., “A cloud-scale acceleration architecture,” in
Proc. Annual IEEE/ACM Int. Symp. Microarchitecture, Taipei,
Taiwan, Oct. 2016.

[11] J. Weerasinghe, F. Abel, C. Hagleitner, and A. Herkersdorf, “Enabling
FPGAs in hyperscale data centers,” in Proc. IEEE Int. Conf.
Ubiquitous Intell., Beijing, China, Aug. 2015.

[12] J. Weerasinghe, R. Polig, F. Abel, and C. Hagleitner, “Network-
attached FPGAs for data center applications,” in Proc. Int. Conf. Field-
Programmable Technol., Xi'an, China, Dec. 2016.

[13] J. Zhu, Z. Liu, D. Wang, Q. Han, and Y. Song, “HDTV1080p HEVC
intra encoder with source texture based CU/PU mode pre-decision,” in
Proc. Asia and South Pacific Design Automation Conf., Singapore, Jan.
2014.

[14] G. Pastuszak and A. Abramowski, “Algorithm and architecture design
of the H.265/HEVC intra encoder,” IEEE Trans. Circuits Syst. Video
Technol., vol. 26, no. 1, Jan. 2016, pp. 210-222.

[15] S. Atapattu, N. Liyanage, N. Menuka, I. Perera, and A. Pasqual, “Real
time all intra HEVC HD encoder on FPGA,” in Proc. IEEE Int. Conf.
Application-specific Syst., Architectures and Processors, London,
United Kingdom, Jul. 2016.

[16] K. Miyazawa, H. Sakate, S. Sekiguchi, N. Motoyama, Y. Sugito, K.
Iguchi, A. Ichigaya, and S. Sakaida, “Real-time hardware
implementation of HEVC video encoder for 1080p HD video,” in Proc.
Picture Coding Symp., San Jose, California, USA, Dec. 2013.

[17] AirFrame data center solution. Accessed on: Sep. 20, 2019. [Online].
Available: https://www.nokia.com/networks/solutions/airframe-data-
center-solution/

[18] Arria 10. Accessed on: Sep. 20, 2019. [Online]. Available:
https://www.intel.com/content/www/us/en/programmable/products/bo
ards_and_kits/dev-kits/altera/kit-a10-gx-fpga.html

[19] HP Virtual Application Networks SDN Controller. Accessed on: Sep.
20, 2019. [Online] Available:
https://support.hpe.com/hpsc/doc/public/display?docId=emr_na-
c03967699

[20] G. J. Sullivan, J. R. Ohm, W. J. Han, and T. Wiegand, “Overview of
the High Efficiency Video Coding (HEVC) standard,” IEEE Trans.
Circuits Syst. Video Technol., vol. 22, no. 12, Dec. 2012, pp. 1649-
1668.

[21] Catapult High-Level Synthesis. Accessed on: Sep. 20, 2019. [Online].
Available: https://www.mentor.com/hls-lp/catapult-high-level-
synthesis/

[22] Kvazaar HEVC encoder. Accessed on: Sep. 20, 2019. [Online].
Available: https://github.com/ultravideo/kvazaar

[23] M. Viitanen, A. Koivula, A. Lemmetti, A. Ylä-Outinen, J. Vanne, and
T. D. Hämäläinen, “Kvazaar: open-source HEVC/H.265 encoder,” in
Proc. ACM Int. Conf. Multimedia, Amsterdam, The Netherlands, Oct.
2016.

[24] Test Sequences. Accessed on: Sep. 20, 2019. [Online]. Available:
http://ultravideo.cs.tut.fi/#testsequences

[25] P. Sjövall, M. Teuho, A. Oinonen, J. Vanne, and T. D. Hämäläinen,
“Visualization of dynamic resource allocation for HEVC encoding in
FPGA-accelerated SDN cloud,” in Proc. IEEE Int. Conf. Visual
Commun. Image Process., Sydney, Australia, Dec. 2019.

