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Abstract: We consider a partial differential equation model widely used for counter-flow
heat exchangers and the related robust output regulation problem with boundary control and
boundary observation. We show that the control system is an exponentially stable regular
linear system, which enables us to use a specific known controller design to robustly regulate
the system. The results are illustrated with numerical simulations.
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1. INTRODUCTION

The goal of the output regulation problem is to assure
asymptotical convergence of the system output to some
desired reference output signal with the help of an ap-
propriate controller. Adding the robustness requirement
means that the controller should solve the tracking prob-
lem despite some known disturbances, and uncertainties
or perturbations in the system parameters. The internal
model principle gives conditions which are both necessary
and sufficient for the controller to be able to solve the
robust output regulation problem.

Dating back to 1970s, the internal model principle was first
introduced in Francis and Wonham (1975), Francis and
Wonham (1976) and Davison (1976). Initially developed
for finite-dimensional systems, the theory has since been
expanded to infinite-dimensional systems as well, see for
example Rebarber and Weiss (2003), Hämäläinen and
Pohjolainen (2010) and Paunonen and Pohjolainen (2010).
Recent advances have been made in developing the theory
for regular systems in Paunonen and Pohjolainen (2014)
and Paunonen (2016), as well as for boundary control
systems in Humaloja et al. (2018).

Heat exchangers have a wide range of applications. They
are an essential part of controlling the temperature of
devices of different scales of size, both for heating and
cooling, and from power plants to household electric
devices. For that reason, it is natural that the properties
of different types of heat exchanger and the possibilities
to model them have been studied extensively.

For heat exchangers, it is common to consider 1D models
and assume advection being dominant over diffusion to
the extent of completely ignoring the latter property in
many of the heat exchanger models. Doing so leads to
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considering systems of coupled transport equations, which
will also be the model considered in this paper. There are
also “full flux” models which take diffusion into account
and have their benefits when it comes to for example
numerics. This has been studied in Aulisa et al. (2015) and
Burns and Kramer (2015). Counter-flow heat exchangers
have been studied in articles Burns and Cliff (2014), Chen
(2014), Maidi et al. (2009), Heo et al. (2011) and Xu
and Dubljevic (2016), to name a few. First two of the
preceeding papers, similarly to this work of ours, focus
on temperature based control, while the latter three also
leave the door open for fluid velocity based control.

As the main result of this paper, we design a controller
to solve the robust output regulation problem for the
considered counter-flow heat exchanger model. To get
there, we first show that the considered system of partial
differential equations (PDE) forms a regular linear system.
Together with the result that the system operator of the
PDE system in question generates an exponentially stable
strongly continuous semigroup, this enables us to use the
minimal order robust controller previously introduced in
Hämäläinen and Pohjolainen (2000), Rebarber and Weiss
(2003) and Paunonen (2016) to solve the robust output
regulation problem for reference signals consisting of linear
combinations of sinusoidal functions. The system model
considered is of a form commonly used to model the
behaviour of counter-flow heat exchangers.

The paper is organized as follows. In Section 2, we first
present the considered model for counter-flow heat ex-
changer and then familiarize the reader with the robust
output regulation problem and the abstract representation
of the plant, the controller and the exosystem. In Section
3, we first verify all the necessary properties for our system
and then present a controller capable of solving the robust
output regulation problem for systems with the verified
properties. In Section 4, we demonstrate the controller
in action with a numerical example using finite elements



and piecewise polynomial interpolation. The numerical
example is followed by conclusion in Section 5.

We use the following notation. L(X,Y ) denotes the set
of bounded linear operators from a normed space X
to a normed space Y and L(X) := L(X,X). For q ∈
L∞(Ω), Mq ∈ L(L2(Ω), L2(Ω)) denotes the multiplication
operator with (Mqx)(ξ) = q(ξ) · x(ξ) for all ξ ∈ Ω. The
resolvent operator of a linear operator A is denoted by
R(s,A) := (s−A)−1 for s ∈ ρ(A), the resolvent set of A.

2. PROBLEM FORMULATION

We start with the presentation of the system model con-
sidered in the paper. Afterwards we present the robust
output regulation problem followed by the abstract repre-
sentations of the plant, the controller and the exosystem.

2.1 The Counter-Flow Heat Exchanger

Counter-flow heat exchanger on interval 0 ≤ ξ ≤ l, the
interval denoted from now on by Ω, can be modeled by
the system of PDEs

∂Θh

∂t
= −vh

∂Θh

∂ξ
− kh(ξ)(Θh −Θc), (1a)

∂Θc

∂t
= vc

∂Θc

∂ξ
− kc(ξ)(Θc −Θh), (1b)

where Θh = Θh(ξ, t) and Θc = Θc(ξ, t) are the tempera-
tures of the fluid inside the heat exchanger. We refer to the
channel with the state Θh as the ”hot” channel and the
channel with the state Θc as the ”cold” channel. Constants
vh, vc > 0 are the flow velocities and kh(ξ), kc(ξ) are the
source terms related to conduction of heat between the two
channels. From now on it is assumed that kh, kc ∈ C∞(Ω)
with kh(ξ), kc(ξ) ≥ r > 0 for some r ∈ R+ for all
ξ ∈ Ω. Physically this means that the heat conducting
properties of the wall separating the two channels may be ξ
dependant on Ω as long as the properties change smoothly.
At the same time, the wall must not be insulating at any
point within the heat exchanger.

Boundary and initial conditions of the system are given
by

Θh(ξ, 0) = Θh0(ξ), Θc(ξ, 0) = Θc0(ξ), (1c)

Θh(0, t) = u(t), Θc(l, t) = 0, (1d)

where u(t) is the control input of the system. In addition,
we are observing the temperature of the fluid in the left
end of the cold channel, and we express this observation
as

y(t) = Θc(0, t). (1e)

The whole setup of the counter-flow heat exchanger with
boundary control and observation is illustrated in Figure
1.

2.2 The Robust Output Regulation Problem

The goal of the robust output regulation problem is to
design a controller such that the output signal y(t) of the
plant converges to some desired reference signal yref (t).
For a more complete description of the following system,
see for example Paunonen and Pohjolainen (2014) and
Paunonen (2016).

ξ = 0 ξ = l

Θh(ξ, t)

Θc(ξ, t)

u(t)

y(t)

Fig. 1. Counter-flow heat exchanger with boundary control
u(t) and boundary observation y(t)

The plant is taken to be of the form

ẋ(t) = Ax(t) +Bu(t), x(0) = x0, (2a)

y(t) = Cx(t) (2b)

with linear operators A,B and C, where x(t) is the state
of the plant with x0 being the initial state, and u(t) is the
control input. We assume A : X ⊃ D(A) −→ X, where X
is a Hilbert space, B ∈ L(U,X−1), where U = C and X−1

is the extension of X with repect to ||R(s,A)x||-norm, and
C ∈ L(X1, Y ), where Y = C and X1 = (D(A), ||·||gr) with
|| · ||gr denoting the graph norm. Going forward, we will
have to replace operator C in (2) with its Λ-extension

CΛx = lim
s→∞

sCR(s,A)x,

D(CΛ) =

{
x ∈ X

∣∣∣∣ lim
s→∞

sCR(s,A)x exists

}
.

The dynamic error feedback controller with state z(t) ∈
Z = Y q, where q is defined later in (5), and initial state
z0 is then of the form

ż(t) = G1z(t) + G2e(t), z(0) = z0, (3a)

u(t) = Kz(t), (3b)

where G1 ∈ L(Z), G2 ∈ L(Y,Z) and K ∈ L(Z,U), is
designed such that the regulation error e(t) = y(t) −
yref (t) converges to zero. Finally, the reference signal is
generated by the exosystem

v̇(t) = Sv(t), v(0) = v0, (4a)

yref (t) = −Fv(t), (4b)

with state v(t), initial state v0 ∈ Cq and yet another set of
linear operators S ∈ Cq×q and F ∈ C1×q. We aim to track
reference signals that are linear combinations of sinusoidal
signals, which can be generated by an exosystem with

S = diag(iω1,−iω1...,−iωq), (5)

where ωi are the frequencies of the reference signal. More
specific properties of the operators in (2)-(4) will be stated
in Section 3. The closed-loop system can now be written
as

ẋe(t) = Aexe(t) +Bev(t), xe(0) = xe0,

e(t) = CeΛxe(t) +Dev(t),

where xe := [x, z]
T

, De := F , CeΛ := [CΛ, 0],

Ae :=

[
A−1 BK
G2CΛ G1

]
with

D(Ae) =
{
xe ∈ D(CΛ)× Z

∣∣A−1x+BKz ∈ X
}

and Be :=

[
0
G2F

]
Finally, A−1 is the extension of A from D(A) to X.

The Robust Output Regulation Problem. Design a
controller such that



(1) The closed-loop semigroup Te(t) generated by Ae is
exponentially stable.

(2) For every xe0 and v0,

||e(t)|| ≤Mee
−ωet(||xe0||2 + ||v0||2) (6)

for some Me, ωe > 0.
(3) If the operators A,B,C, F are perturbed in a way

that the closed-loop system remains exponentially
stable, then (6) is still satisfied for all xe0, v0 for some
Mep, ωep > 0.

In this paper the three requirements are fulfilled for a
regular linear system by first including a suitable internal
model of the dynamics of the exosystem into the operator
G1 and then choosing G2 and K such that the closed-
loop system is exponentially stable. For a regular linear
system of the form (2) and an exosystem of the form
(4) with S being a diagonal matrix, the controller design
implemented will be the minimal order robust controller
from Rebarber and Weiss (2003) and Paunonen (2016).

3. ROBUST OUTPUT REGULATION OF THE
COUNTER-FLOW HEAT EXCHANGER

In order to design a controller to solve the robust ouput
regulation problem, we need to confirm certain properties
of the heat exchanger model. These properties will be
checked one by one starting with stability and then moving
on towards showing regularity of the system. Once all
of the required properties have been verified, we present
the controller structure for solving the robust output
regulation problem.

3.1 Stability of the Plant

Stability of a system much like (1) but with constant
coefficients kh and kc has been considered in Burns and
Cliff (2014), and we will be following the same steps in
verifying the stability properties of our plant. We start
our analysis of the system with the change of variables

θh =
√
kcΘh, θc =

√
khΘc

for symmetry reasons. Now an alternative representation
for system (1) is given by

∂θh
∂t

= −vh
∂θh
∂ξ
− khθh +

√
khkcθc, (7a)

∂θc
∂t

= vc
∂θc
∂ξ
− kcθc +

√
khkcθh, (7b)

θh(0, t) = u(t), θc(l, t) = 0, (7c)

θh(ξ, 0) = θh0(ξ), θc(ξ, 0) = θc0(ξ), (7d)

y(t) = θc(0, t), (7e)

which we will be working with from now on.

We take as our state spaceX := L2(Ω)×L2(Ω) =: Xh×Xc.
To construct the abstract linear system representation (2)
for our system, we first define operator Ab : X −→ X,

Ab =

[
−Mkh M√khkc
M√khkc −Mkc

]
.

Clearly Ab is now a bounded operator, and it can also be
verified that it is self-adjoint and dissipative.

Next consider operator Ad : D(Ad) −→ X,

Ad =

−vh
∂

∂ξ
0

0 vc
∂

∂ξ

 ,
D(Ad) =

{
x ∈ H1(Ω)×H1(Ω)

∣∣∣∣ θh(0) = θc(l) = 0

}
,

where x = [θh θc]
T

. It has been shown in (Burns and Cliff,
2014, Thm. 2) that Ad generates a dissipative strongly
continuous semigroup on X. We note that representing
(7) as an abstract linear system of the form (2), we have
as the system operator A : D(A) = D(Ad) −→ X,

A = Ad +Ab =

−vh
∂

∂ξ
−Mkh M√khkc

M√khkc vc
∂

∂ξ
−Mkc

 .
We now get the following result regarding the stability of
our system.

Theorem 1. The operator A generates an exponentially
stable strongly continuous semigroup T (t) on X.

Proof. Recall that vh, vc > 0, kh, kc ∈ C∞(Ω) and A is
dissipative. Thus the requirements of (Besson et al., 2006,
Thm. 1.1) are fulfilled, which yields the result. �

Finally, we formulate (7) as an abstract linear system

ẋ(t) = Ax(t) +Bu(t), (8a)

y(t) = CΛx(t), (8b)

where B ∈ L(U,X−1), B = [δ0, 0]
T

with Dirac delta δ0
and CΛ is the Λ-extension of C ∈ L(X1, Y ), Cx(ξ, t) =
θc(0, t).

3.2 Control and Observation

We now turn our attention to the admissibility of B and
CΛ in (8). We start with the definitions of an admissible
control operator and an admissible observation operator
as defined in Tucsnak and Weiss (2009).

Definition 2. Let B ∈ L(U,X−1), τ > 0 and define
Φτ ∈ L(L2([0,∞) ;U), X−1) by

Φτu =

∫ τ

0

T (τ − σ)Bu(σ)dσ,

where T (t) is the semigroup generated by the system
operator A. Then operator B is an admissible control
operator for the semigroup T if Ran (Φτ ) ⊂ X for some
τ > 0.

Definition 3. Let C ∈ L(X1, Y ). Then C is an admissible
observation operator for the semigroup T (t) if there exists
τ > 0 such that for some Kτ ≥ 0∫ τ

0

||CT (t)x0||2Y dt ≤ K2
τ ||x0||2X for all x0 ∈ D(A).

For later use, we now present (7) as a combination of two
subsystems, one for each channel of the heat exchanger.
For the hot channel we get the subsystem

ẋh = Ahxh +Bsu+Bhuh, (9a)

yh = Chxh, (9b)

where xh = θh, Ah = vhArs −Ahb, and



Ars = − ∂

∂ξ
, (10a)

D(Ars) = D(Ah) =
{
x ∈ H1(Ω)

∣∣x(0) = 0
}

(10b)

is the generator of the right shift semigroup Trs. The
operators Ahb, Bh, Ch ∈ L(Xh), Ahb = Mkh , Bh = Ch =
M√khkc , uh = θc and finally Bs ∈ L(U, (Xh)−1), Bs = δ0.
On the other hand, for the cold channel the subsystem
reads

ẋc = Acxc +Bcuc, (11a)

yc = Ccxc, (11b)

y = CsΛxc, (11c)

where xc = θc, Ac = vcAls −Acb, and

Als =
∂

∂ξ
, (12a)

D(Als) = D(Ac) =
{
x ∈ H1(Ω)

∣∣x(l) = 0
}

(12b)

is the generator of the left shift semigroup Tls. The
operators Acb, Bc, Cc ∈ L(Xc), Acb = Mkc , Bc = Cc =
M√khkc and uc = θh. Finally, CsΛ is the Λ-extension of
Cs ∈ L((Xc)1, Y ), Csxc(ξ, t) = θc(0, t).

Now that we have defined uh = θc, uc = θh, we see that
the dynamics of (8) are shared by system[

θ̇h
θ̇c

]
=

[
Ah 0
0 Ac

]
+

[
Bs Bh 0
0 0 Bc

][ u
uh
uc

]
, (13a)

[
yh
y
yc

]
=

[
Ch 0
0 CsΛ
0 Cc

] [
θh
θc

]
, (13b)

and the only differences between the two systems are the
additional outputs yh = Chθh, yc = Ccθc of (13). We aim
to show the following.

Theorem 4. B is an admissible control operator and CΛ is
an admissible observation operator for the exponentially
stable semigroup T .

Proof. It is straightforward to show that Bs is an ad-
missible control operator for Trs and Cs is an admissi-
ble observation operator for Tls, cf. (Tucsnak and Weiss,
2009, Ch. 4) for the unilateral case, and admissibility of
CsΛ for Tls follows immediately. Additionally, as bounded
operators Bh and Ch are admissible for Trs while Bc and
Cc are admissible for Tls, which means that the control
and observation operators of our subsystems (9)-(12) are
admissible for their respective semigroups.

Operator Ah is received by boundedly perturbing Ars,
which means that it generates a strongly continuous semi-
group Th. Furthermore, the admissible control operators
for boundedly perturbed semigroups are exactly the same
as those for the original ones, thus Bs is an admissible
control operator for Th. By similar arguments, CsΛ is
an admissible observation operator for Tc generated by
Ac, and as bounded operators Bh, Ch, Bc and Cc remain
admissible control and observation operators for Th and
Tc, respectively. Thus the control and observation oper-
ators in (13) are admissible, and we conclude that B is
an admissible control operator and C is an admissible
observation operator for T . �

3.3 Regularity

With admissibility of the control and observation opera-
tors verified in Theorem 4, the last step to prove regularity
of (7) is to consider regularity of its transfer function
P (s). Regularity is defined as follows according to Weiss
(1994b).

Definition 5. Transfer function P (s) is regular if there
exists D ∈ L(U, Y ), called the feedthrough operator of
the system, such that

lim
s→∞

P (s)u = Du for all u ∈ U. (14)

We will start by constructing a suitable expression for
the transfer function, after which the regularity can be
verified easily. To figure out the transfer function, we use
the connection between open-loop and closed-loop transfer
functions through a feedback structure presented in Weiss
(1994a). Looking at (13) together with (9)-(12), we see
that the coupling between the hot and cold channels of the
heat exchanger can be thought of as an output feedback
structure of the form

û = Kŷ + v̂

⇐⇒

[
u
uh
uc

]
=

[
0
yc
yh

]
+ v̂ =

[
0 0 0
0 0 1
1 0 0

][
yh
y
yc

]
+ v̂.

Now the closed-loop transfer function PK(s), which in-
cludes the connection

y = P (s)u,

where P (s) is the transfer function for (7) of our interest,
is given by

PK(s) = PO(s)(I −KPO(s))−1. (15)

From (13) we see that the transfer function of our complete
open-loop system for a fixed frequency s∗ is given by

ŷ = PO(s∗)û ⇐⇒

PO = COR(s∗, A)BO =

[
ChRhBs ChRhBh 0

0 0 CsΛRcBc
0 0 CcRcBc

]
,

where Rh = R(s∗, Ah) and Rc = R(s∗, Ac). The closed-
loop transfer function is now to be solved from (15). We
start by noting that

I −KPO =

[
I 0 0
0 I −CcRcBc

−ChRhBs −ChRhBh I

]
.

By using Schur’s complement, we first get that

M1 :=

[
I −E2

−E1 I

]−1

=

[
(I − E2E1)−1 (I − E2E1)−1E2

E1(I − E2E1)−1 (I − E1E2)−1

]
,

where E1 := ChRhBh and E2 := CcRcBc, and afterwards
that (

I −KPO
)−1

=

 I 0

M1

[
0

ChRhBs

]
M1

 .
Finally equation (15) yields



PK =

[
ChRhBs ChRhBh 0

0 0 CsΛRcBc
0 0 CcRcBc

] (
I −KPO

)−1

=

 ∗ ∗ ∗
CsΛRcBc

(
I −KPO

)−1

31
∗ ∗

∗ ∗ ∗

 .
We are interested in solving the transfer function connect-
ing y to u, which is now seen to be given by

y = PK21u = Pu

= CsΛRcBc(I − ChRhBhCcRcBc)−1ChRhBsu. (16)

With a suitable transfer function expression constructed,
we are ready to prove the following theorem.

Theorem 6. The heat exchanger representation (7) is a
regular linear system with D = 0.

Proof. With the control and observation operators shown
admissible, it suffices to check that (14) of Definition 5
holds. We know that

||R(s,Ah)|| → 0, ||R(s,Ac)|| → 0 and

||(I − ChR(s,Ah)BhCcR(s,Ac)Bc)
−1|| → I

as s→∞. From (16) we now immediately see that

lim
s→∞

P (s)u = 0

for every u ∈ C. Thus (14) holds and D = 0. �

3.4 The Controller

So far we have shown in Theorems 1 and 6 that (7) is
indeed an exponentially stable regular linear system. This
allows us to make use of controller structures designed
particularly for systems of this kind.

Recall that the operator S of our exosystem (4) is assumed
to be a diagonal matrix. From (Paunonen, 2016, Thm. 4.1)
we have that controller of the form (3) designed with the
following parameter choices, the so called minimal order
robust controller for stable systems, solves the robust
output regulation problem.

G1 = diag(iω1IY , ..., iωqIY ) ∈ L(Z), (17a)

K = εK0 = ε(K1
0 , ...,K

q
0) ∈ L(Z,U), (17b)

G2 = (−(P (iωk)Kk
0 )∗)qk=1 ∈ L(Y,Z) (17c)

with ωk received from (5). Components Kq
0 are to be

chosen such that P (iωk)Kk
0 are invertible, and ε > 0 is

to be chosen such that the closed-loop system is stable.

4. NUMERICAL EXAMPLE

We consider robust output regulation of the heat ex-
changer given by (7) on the interval 0 ≤ ξ ≤ 2, and
start by choosing the plant parameters vh = 1.0, vc = 0.7,
kh(ξ) = 1.2 − 0.1ξ and kc(ξ) = 0.05ξ2 + 1. The goal is
to track the sinusoidal reference signal yref (t) = sin(t),
which can be generated by the exosystem with S =

diag(i,−i), F = [−1, 1] and v0 = 1
2i [1, −1]

T
. The initial

state of the plant is set to [θh0, θc0]
T

= [1.5, 0.5]
T

.

We use the minimal order robust controller, so from (17)
we get that G1 = S. By choosing

K0 =
[
P (i)−1, P (−i)−1

]
,

0 5 10 15 20 25 30 35 40

-1

0

1

Fig. 2. Output y(t) and reference output yref (t) of the
heat exchanger for t ∈ [0, 40]
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Fig. 3. Absolute value of the regulation error e(t) for
t ∈ [0, 40]
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-1

Hot 2

0

1

1.5

2

1
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0.5
0

Fig. 4. State of the heat exchanger at time t = 40

we have G2 = −I ∈ R2×2. Finally we choose ε = 0.2 based
on trial and error approach with the simulation. Transfer
function for the desired frequencies is solved directly from
(7) using Chebfun-package in MATLAB. Chebfun is based
on representing functions by polynomial interpolation in
Chebyshev points, see Trefethen (2013). System (7) is
discretized in the spatial domain with the hot and cold
channels divided to n = 40 nodes each. Solution of (7) at
each node is then approximated using the finite element
method.

Figure 2 illustrates the behaviour of the observed system
output compared to the reference signal. Together with
the information on the absolute value of the regulation
error illustrated in Figure 3, we can say that relatively
accurate tracking is achieved after two periods of the
reference signal with |e(t)| < 0.1 from there on, and the
regulation error converges to 0. Additionally, the states
of both of the channels of the heat exchangers at the end
of the simulation is presented in Figure 4.



5. CONCLUSION

We examined a 1D PDE model commonly used for
counter-flow heat exchangers. The considered heat ex-
changer model with boundary control and observation was
shown to form an exponentially stable regular linear sys-
tem, which enabled us to use controller structures designed
for such systems in order to solve the robust output regula-
tion problem for the heat exchanger for a class of reference
signals. The controller was demonstrated in action using
numerical simulations performed with MATLAB.

Possible avenues for future research include implementa-
tion of more complicated controller structures in order to
possibly reach faster convergence to the reference signal.
The nature of coupling between the channels of the heat
exchanger, in this paper governed by C∞(Ω) functions,
could also be further examined and possibly extended to
a larger class of functions.
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Hämäläinen, T. and Pohjolainen, S. (2000). A finite-
dimensional robust controller for systems in the CD-
algebra. IEEE Trans. Automat. Control, 45(3), 421–
431.
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