
Reducing Crossbar Costs in the Match-Action 

Pipeline 

Hesam Zolfaghari 

Department of Electrical Engineering 

Tampere University 

Tampere, Finland 

hesam.zolfaghari@tuni.fi

Davide Rossi 

Department of Electrical, Electronic 

and Information Engineering 

University of Bologna 

Bologna, Italy 

davide.rossi@unibo.it

Jari Nurmi 

Department of Electrical Engineering 

Tampere University 

Tampere, Finland 

jari.nurmi@tuni.fi  

Abstract— Software Defined Networking (SDN) is a new 

networking paradigm in which the control plane and data plane 

are decoupled. Throughout the recent years, a number of 

architectures have emerged for protocol-independent packet 

processing. One such architecture is the Protocol Independent 

Switch Architecture (PISA). It is a programmable and protocol-

independent architecture composed of a number of Match and 

Action stages. Inside each of these stages is a crossbar to 

generate the search key and another crossbar to provide the 

input to the Action Units. In this paper, we design and explore 

alternative interconnection schemes with the aim of finding the 

most area- and power-efficient interconnection structure. 

Moreover, we propose further modifications to the 

interconnection structure, as a result of which the on-chip area 

of both match and action crossbars will be reduced by more than 

70 % and power dissipation will be reduced by 25.8 % and 23.1 

% for match and action crossbars respectively.  

Keywords—Software Defined Networking, Protocol 

Independent Switch Architecture, Crossbar 

I. INTRODUCTION  

Packet processing is a domain in which performing 
matching and applying the actions associated with the match 
result are the key operations. The match operation could be 
used to determine the outgoing port for a packet or 
determining the kind of processing that a group of fields 
requires. Programmable packet processing systems must have 
the means to process different protocols each of which 
requires corresponding match and action operations. 
Therefore, a programmable packet processing system should 
be able to generate a search key using any subset of the header 
fields. Moreover, the functional units performing tasks other 
than lookup must be able to operate on any of the header 
fields. This is achieved by the use of flexible crossbars.  

There are a number of programmable networking devices 
already available on the market. Intel FlexPipe [1], Cavium 
XPliant [2] and Barefoot Tofino [3] are the most notable of 
such devices. Due to the abundance of flexible tables and 
processing units, we limit our focus to the Barefoot Tofino. It 
can be programmed using the P4 language [4] for providing a 
wide range of packet processing functionalities. The internals 
of Tofino are based on the Protocol Independent Switch 
Architecture (PISA) which is a switch architecture first 
proposed in [5]. PISA is comprised of a programmable packet 
parser based on the architecture proposed in [6]. The 
programmable parser extracts header fields and places them in 
placeholders of three different sizes, 8-bit, 16-bit and 32-bit 
entries. These entries together form a 4096-bit vector of 
header fields. This vector is called Packet Header Vector 
(PHV) and it traverses a pipeline of 32 stages. Each stage 
contains a match part and an action part. Using a large 
crossbar, two 640-bit search keys are generated for table 
lookup in the match stage. The result of the lookup determines 
the required actions to be performed in the subsequent action 

stage. The action stage contains an action unit for each one of 
the entries. Therefore, there are action units of the different bit 
widths referred to earlier. For each action unit, there is a 
multiplexer which selects the inputs. The first input to the 
action units is from the entries of the PHV and the second 
input is either from the PHV or action memories containing 
packet processing parameters. Being a 32-stage pipeline, the 
crossbars make a noticeable contribution to the overall area of 
the chip. For instance, the area of match crossbars is 6 mm2 in 
total [5]. 

There are Match and Action crossbars in each pipeline 
stage of the PISA. According to [5], each of the 1280 bits of 
the search key are driven by a 224-to-1 multiplexer. The 
multiplexers are constructed using a binary tree of AOI22 
gates. The choice of 224-to-1 multiplexers indicates that there 
is an alignment constraint for the placement of header fields 
into the search key. This means that bytes can be placed into 
any location within the search key, 16-bit fields must be 
placed at even locations and 32-bit fields must be placed at 
locations whose index is a multiple of four. Such constraints 
help limiting the complexity of crossbars. 

The Action crossbar in PISA provides input to the Action 
Engines. The first input to the Action engines is selected from 
the PHV while the second input is selected from either the 
PHV or the Action memories. The Action crossbar allows for 
combining smaller header fields. For instance, two 16-bit 
fields could be combined to form a 32-bit input to a 32-bit 
Action Engine. 

The crossbars used in the original paper are not the only 
crossbars that can fulfill the interconnection requirements. In 
this paper we devise alternatives for providing the required 
interconnection, and compare area and power dissipation of 
each alternative. Furthermore, we justify the use of more 
lightweight crossbars and observe the results. The rest of the 
paper is organized as follows: In section II, different 
alternatives for implementing match and action crossbars will 
be evaluated. In section III, actual requirements for match and 
action crossbars will be analyzed. In sections IV and V, we 
propose smaller crossbars and present the required 
architectural modifications. Section VI presents the 
experimental results followed by the conclusion. 

II. ALTERNATIVE CROSSBAR ARCHITECTURES FOR PISA 

There are numerous strategies for forming the match key 
as well as selecting the inputs to the Action Engines. In this 
section we explore some of the alternatives with the aim of 
finding the most efficient solution. 

The match crossbar in PISA operates at bit level, meaning 
that while adhering to the alignment constraint mentioned 
earlier, each bit of the search key is selected independently. 
Consequently, there are 10240 bits of select inputs required in 
total for the multiplexers.  



 

A. Alternative Match Crossbars 

1) Byte-level match field selection 
Alternatively, we could select input to the search key on 

byte-level basis while still maintaining the alignment 
constraint. The PHV could be thought of as being comprised 
of 512 bytes and the search key to be generated as 160 bytes. 
Therefore, we could fill the search key using 160 512-to-1 8-
bit multiplexers. In this organization, 1440 bits of select are 
required. 

 

2) Word-level match field selection 
Another solution is to operate at 32-bit basis using two 

levels of multiplexers. In the first level, there are four 64-to-1 
8-bit multiplexers, two 96-to-1 16-bit multiplexers and one 
64-to-1 32-bit multiplexer. Using these multiplexers, different 
combinations of fields could be combined to form 32 bits of 
the search key. For instance, two 8-bit fields and one 16-bit 
field could be combined together. The multiplexer at the 
second stage selects the combination of first-level 
multiplexers’ outputs. Fig. 1 depicts the internals of this 
solution for filling in 32 bits of the 1280-bit search key. For 
other 32 bits of the search key, the same structure must be 
replicated.  Some of the multiplexers could share the select 
lines. For generating a 1280-bit search key using this structure, 
1160 bits of select are required. 

We have implemented the alternatives in VHDL and 
synthesized them on 28 nm UTBB FD-SOI technology in 
worst-case operating conditions (1.0V, ss, 125°C) using 
Synopsys Design Compiler J-2014.09-SP4. Power analysis 
was performed in typical operating conditions at the supply 
voltage of 1.1V (tt, 25°C). The same methodology has been 
used throughout the whole paper. Timing analysis confirms 
that all crossbars mentioned in this paper can run in a 1.0 GHz 
system. 

Table I compares the above-mentioned alternatives for the 
Match crossbar in terms of area and power. The given values 
are for one stage of the Match-Action pipeline. Moreover, 
their output generates a 640-bit match key. As we can see, the 
byte-level crossbar has the largest area and power dissipation 
values. In addition, they have more levels of logic compared 
to other crossbars. As a result, scaling the frequency beyond a 
point requires using registers. This increase latency and area. 
Using the word-level interconnection scheme results in 6 % 
reduction in area and 13 % reduction in power dissipation 
compared to the original scheme used in [5].  

B. Alternative Action Crossbars 

The use of interconnection schemes in which the width of 
select values is extremely wide should be avoided because that 
will increase the required width for instruction memory. 

1) Bit-level selection 
For the Action crossbar, if the same approach as the Match 

Action is adopted, 32768 select bits are required for the 
multiplexers.  

2) Byte-level selection 
If, we choose to select the input on byte-level, 512 

multiplexers are required, each being a 512-to-1 8-bit 
multiplexer. Under this scheme, the number of select bits will 
be reduced to 4608 bits.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Generating 32 bits of the search key using two levels of multiplexers 

 

TABLE I.  COMPARISON OF MATCH CROSSBAR ALTERNATIVES 

Interconnection 
Strategy 

Area (µm2) Total Power 
Dissipation 

(mW) 

Bit-level 125650 137.5  

Byte-level 256772 156  

Word-level 118724 119.4 

 

3) Combination of smaller processing units 
In this implementation, the input to the 8-bit Action 

Engines comes from any of the 8-bit entries of the PHV, while 
the input to the 16-bit Action Engines comes either from 
combination of any two 8-bit entries or any of the 16-bit 
entries. Similarly, the input to 32-bit Action Engines is 
selected from any two 16-bit entries or any of the 32-bit entries 
of the PHV. Therefore, the input to 16-bit and 32-bit action 
engines comes from two levels of multiplexers. For this 
scheme, 3648 bits of select are required. Fig. 2 illustrates 
multiplexers required for an action unit of each size under this 
scheme. 

4) Zero-extension of smaller processing units 
In the final Action crossbar that we consider, 8-bit Action 

Engines take any of the 8-bit entries as input while 16-bit 
action engines receive either a 16-bit entry or a zero-extended 
8-bit entry whose width is 16 bits after zero-extension.  
Similarly, 32-bit action engines take any 32-bit entry or any 
16-bit entry which has been zero-extended to 32 bits. This 
scheme requires 1664 bits of select which is the smallest 
number among the solutions discussed so far. However, the 
actual merging of smaller entries requires two steps: Selecting 
two zero-extended values as input to a given Action Engine 

. 

. 

. 

. 

. 

. 

. 

. 

. 

96 16-bit 

entries 

64 32-bit 

entries 64-to-1  

32-bit 

multiplexer 

Two 

96-to-1  
16-bit 

multiplexers 

Four 

64-to-1  

8-bit 

multiplexers 

Select 

64 8-bit 

entries 



and using the Deposit Byte operation code for the Action 
Engine in question to merge the inputs together. Therefore, the 
Action crossbar by itself cannot perform the actual merging 
and requires the assistance of the action engine. However, the 
simplicity of this scheme makes it an interesting choice.  

Table II presents area and power values for different 
Action crossbars. The given values are for one stage of the 
Match-Action pipeline. Similar to the match crossbars, byte-
level crossbars are the least efficient alternative. The most 
important observation is that the action crossbar with zero-
extension is the most efficient crossbar. Compared to the bit-
level interconnection scheme, use of the two-level crossbar 
with zero-extension capability results in 52.7 % and 46.7 % 
reduction in area and power dissipation respectively.  

TABLE II.  COMPARISON OF ACTION CROSSBAR ALTERNATIVES 

Interconnection 
Strategy 

Area (µm2) Total Power 
Dissipation (mW) 

Bit-level 804160 880  

Byte-level 1643343 992.4 

Combination of 
smaller processing 

units 

503423 656.2 

Zero-extension of 
smaller processing 

units 

379992 468.7 

 

III. REQUIRED CROSSBAR COMPLEXITY 

In this section, we analyze the actual required complexity 
for both Match and Action crossbars. 

A. Required Match Crossbar Complexity 

Typically, a search key is comprised of header fields 
whose semantics allow for the concept of matching. For 
instance, in Internet Protocol version 4 (IPv4), the destination 
address field is used to lookup into the forwarding table to 
determine the outgoing port of the packet. As another 
example, the Next Header field in Internet Protocol version 6 
(IPv6) is the match key for determining the kind of processing 
that the header following IPv6 header requires. In many 
processing scenarios, the search key is made up of multiple 
header fields placed next to each other. For instance, Protocol, 
source address and destination address from IPv4 header as 
well as source port and destination port from Transmission 
Control Protocol (TCP) header can be used together to form a 
search key for retrieving the flow-specific parameters.  

As we can see, not all the header fields have the semantics 
to be used as a search key. Therefore, use of crossbars that 
receive input from the whole entries of the PHV is 
unnecessary. Smaller crossbars could be used without 
degradation in functionality. 

B. Required Action Crossbar Complexity 

Determining the right degree of complexity for Action 
crossbars is more complicated than that of Match crossbars. In 
order to do so, various packet processing actions must be taken 
into consideration. We have considered commonly used 
protocols because protocol-independent packet processors 
should be capable of processing them for the transition to 
these devices to be feasible. We are primarily interested in the 

number of inputs to each action because the number of inputs 
determines the complexity of the required crossbar. The inputs 
are mainly header fields. However, metadata could also be the 
input. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Part of the Action crossbar in which smaller processing units can be 

combined 

At one extreme, we encountered actions which require 
only one or two inputs. A prime example of this group of 
actions is decrementing the Time to Live (TTL) field in 
Internet Protocol version 4 (IPv4) header. Fig. 3 illustrates the 
corresponding subroutine. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

void IPv4_TTL_Decrement(ipv4_packet* p)  

{  

 //TTL is located at byte offset 8 

 if(*(p + 8) == 0)   

 { 

  drop(p); 

 } 

 else 

 { 

  *(p + 8) -= 1; 

 } 

} 

Fig. 3. Source code for decrementing Time to Live in IPv4 

At the other extreme, there are actions which require 
access to the entire header. In other words, they operate on all 

64 8-bit entries 

64 8-bit entries 

96 16-bit entries 

96 16-bit entries 

64 32-bit entries 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

8 

16 

32 



the fields existing in the header. An example of such actions 
is the Internet checksum [7] used in IPv4 and Internet Control 
Message Protocol version 4 and 6. Fig. 4 illustrates the 
subroutine for calculating the checksum in IPv4.  

There are important observations to make from the 
Internet checksum calculation. It takes 16-bit words as input. 
Therefore, the programmable parser must place incoming 
header into the 16-bit entries of the PHV. Operations such as 
TTL decrement which operate on smaller input must copy the 
16-bit word containing the TTL into smaller entries of the 
PHV to perform the desired operation. Alternatively, if the 
programmable parser places the header fields into entries that 
best match the fields’ actual size, they need to be combined 
into 16-bit words for Internet checksum calculation. Being 
one’s complement sum, the additions must be performed by 
32-bit Action Units. Therefore, all the 16-bit words must be 
copied to 32-bit entries. Once all the required additions are 
performed, the lower 16-bit portion of the result will be copied 
to a 16-bit entry. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

void calculate_IPv4_checksum(ipv4_packet* p) 

{ 

 unsigned int sum = 0; 

 unsigned char IHL= *(p + 0) & 15;  

 unsigned int temp; 

 for(int i = 0; i <= IHL * 4; i = i + 2) 

 { 

         //Adding 16-bit words 

                      temp = (unsigned int)(*(p + i) * 256) 

+ (*(p + i + 1)); 

         sum += temp; 

 } 

  

              //as long as there is overflow 

               while(sum >= 65536)  

 { 

         sum = (sum & 65535) + (sum>>16); 

 } 

 sum = ~sum; 

              //disposing the value of the upper 16 bits 

 sum = sum & 65535; 

} 

Fig. 4. Source code for calculating IPv4 checksum 

Between the two extremes mentioned above, there are 
actions which require a handful of header fields. For instance, 
in order to determine which queue a packet must be sent to in 
an IPv6 router with Quality of Service (QoS) support, Traffic 
Class, Flow Label and outgoing port are required. 

Based on this discussion, we can come up with the 
following taxonomy of header fields: 

• Fields as they appear in the technical 
specification of a networking protocol: For 
instance, the Version field is a 4 bit field in the 
header of Internet Protocol version 6. 

• Fields in the form required for packet processing 
actions: As an example, Source and Destination 
Addresses are 32-bit fields in Internet Protocol 
version 4, but in order to calculate checksum, 
they must be broken into 16-bit fields. 

• Fields as placed in the entries of the PHV by the 
programmable parser and crossbar: The PHV in 
the PISA architecture contains entries of three 
sizes. Header fields whose size does not exactly 
match these entries have to share placeholder 
with other fields or span over more than one 
placeholder. Examples of such header fields are 
the 4-bit Internet Header Length field in Internet 
Protocol version 4 and 20-bit label field in 
Multiprotocol Label Switching. 

IV. REDUCING CROSSBAR COSTS 

As we saw in the previous section, only a fraction of fields 
existing in a header are used for forming match keys. In 
addition, not all packet processing actions require all the 
header fields. Based on this observation, the packet parser and 
crossbars in the Match-Action pipeline can be modified with 
the following goals: 

• Tailoring the header fields to the packet 
processing actions: Part of the time required for 
processing a packet is contributed to by 
transferring them to a suitable PHV entry. If we 
could limit this part of the processing, the overall 
packet processing time will be reduced. This 
specifically concerns the action crossbar in which 
smaller processing units are zero-extended. 
Using these crossbars, the actual merging of 
smaller processing units takes another cycle. 

• Reducing the complexity of crossbars by limiting 
the number of inputs: The crossbars in PISA 
allow for full interconnection, meaning that all 
entries are the input to each of the multiplexers. 
Except for tasks such as checksum calculation, 
this is rarely encountered. 

Based on the arguments above, we would like to limit the 
number of PHV entries that can be selected as the input to its 
corresponding Action unit. In other words, we can think of the 
PHV as being divided into independent segments. Inside each 
segment, the input to each entry’s Action unit can be any other 
entry within the segment. However, only few of the entries of 
other segments can be accessed. The programmable parser 
extracts incoming header fields and places them into entries of 
the PHV segments. In order to limit the communication of 
independent segments, it can place a given header field into 
more than one segment, meaning that duplicates can exist 
among the segments. Moreover, it can extract an incoming 32-
bit header such that it fills two 8-bit and one 16-bit entries in 
one PHV segment and at the same time it fills two 16-bit 
entries of another PHV segment. By doing so, the fields will 
be tailored to packet processing tasks. It should be pointed out 
that the programmable parser does this according to the 
software that is written for it. As such, it does not have any 
built-in knowledge of protocols.  

We have chosen the value of 4 as the number of 
independent segments. Alternatively, we could think that the 
number of inputs to the multiplexers is divided by four. This 
means that inside each segment, there will be 16 8-bit entries, 
24 16-bit entries and 16 32-bit entries. In addition, the match 
crossbar receives as input only a quarter of the entries present 
in the whole PHV. This is equivalent to the number of entries 
in one segment. However, the match crossbar receives an even 
number of inputs from each of the four segments.  



V. ARCHITECTURAL REQUIREMENTS 

The first item that must be modified is the packet parser. 
For each independent PHV segment, it must have a separate 
output port. We use the packet parser proposed in [8] and [9]. 
It has a program control unit as opposed to a Ternary Content 
Addressable Memory (TCAM). As a result, its area is 
considerably lower than that of the parser used in [3], [5] and 
[6]. Reduced area leaves room for further modifications. A 
high-level view of this parser is illustrated in Fig. 5. As we can 
see, there are four 8-bit, two 16-bit and one 32-bit output port. 
At any given instance in time, only a fraction of these ports 
has valid data. Data at these ports will be written to the PHV. 
The PHV is organized as a number of banks. Therefore, each 
of the aforementioned ports can write to its corresponding 
bank once it has valid data. The only required modification is 
replication of the PHV Filler component inside the parser so 
that incoming header fields can be extracted independently. 
This means increase in the width of the instruction. The 
instruction field associated with the PHV Filler is 4 bits wide. 
In the new architecture, 16 bits will be required for this 
purpose. In addition, the location of extracted fields within the 
PHV is specified by software. 20 bits are required to specify 
the location of extracted fields. In the modified parser, 48 bits 
are required in total for specifying location of extracted fields 
in the PHV.  

Another required modification is the resizing and 
arrangement of banks that together comprise the PHV. The 
width of the PHV is still 4 Kilobits. Only the banks comprising 
the PHV will be resized. 

The most performance-critical aspect is interconnection of 
independent segments. We must ensure that limiting the 
number of inputs to crossbars has as little effect as possible on 
the packet processing capabilities and throughput of the 
architecture. In order to maximize the savings in area and 
power dissipation, we consider the action interconnection 
scheme in which zero-extended values of smaller processing 
units will be the input to the next larger multiplexer. Under 
this organization, in each segment, there will be 16 8-bit 16-
to-1, 24 16-bit 64-to-1 and 16 32-bit 64-to-1 multiplexers. 
Both 16-bit and 32-bit 64-to-1 multiplexers have 24 inputs that 
could come from the other segments because for both of them 
the total number of inputs from their own segment is 40. These 
24 input lines could be used to pass the value of entries in other 
segments. With 24 16-bit multiplexers each having 24 inputs 
that could come from other segments, there is room for 576 
16-bit entries which is far more than the total number of 16-
bit entries in the entire PHV. Similarly, with 16 32-bit 
multiplexers each having 24 unused inputs, 384 32-bit inputs 
can be accommodated which is well above the total number of 
32-bit entries of the PHV. Each multiplexer with unused 
inputs can take an equal number of entries of matching size 
from the other segments. For instance, each of the 64-to-1 16-
bit multiplexers in a given segment could take 8 entries from 
each of the other segments to fill its 24 unused inputs. 
Alternatively, one such multiplexer could take all the 16-bit 
entries of another segment with its adjacent multiplexer taking 
all the 16-bit entries of another segment as its inputs. 

In addition, because the number of action engines matches 
the number of PHV entries, each entry has an action unit 
reserved for it and hence, it is not required to take the same 
entry as the second input to the action unit in question. 
Consequently, each multiplexer inside a segment can take one 
entry from the other segments. As each segment contains 56  

 

 

Fig. 5. High-level view of the packet parser 

entries, each segment can in total take 56 entries belonging to 
other segments. Therefore, independent segments can also 
communicate reasonably well. The only limitation is that 
when an entry residing in another segment is required, only 
certain action engines have access to it. However, once the 
value of an entry residing in another segment is written to an 
entry in the current segment, then all action units of the current 
segment have access to it. 

The deparser does not require any modification because 
the overall size of the PHV remains the same. Moreover, in 
the original architecture too, there will be PHV entries that 
contain only intermediate results that must be discarded. 

VI. EXPERIMENTAL RESULTS 

In this section, we present the costs and savings of 
modifications. Table III compares area and power of the two 
parser variants. As we can see, the increase in area is only 
3.4%. The increase in switching power is due to presence of 
more registers in the modified parser. However, as the parser 
accounts for less than 1 % of the chip area [5], this increase 
can be neglected. The savings reflected in the upcoming tables 
outperform this increase. Tables IV and V present area and 
power results of lightweight match and action crossbars 
respectively. For each one of the crossbar variations discussed 
in section II, the figures for the corresponding lightweight 
crossbar is provided. It should be noted that values in table V 
reflect area and power results of the crossbars in all four 
segments within a Match-Action stage, not only one segment. 
The area and power saving columns specify how much area 
and power has been saved for each crossbar with respect to its 
corresponding larger instance. Since for all variants, the 
number of inputs to the multiplexers in the crossbars is divided 
by four, the savings in area are all in the same range of 70 %. 
The saving in power dissipation is at least 25 % for the match 
crossbars and at least 23 % for the action crossbars. The ratio 
of crossbar areas is maintained. For instance, the word-level 
match crossbar is still the most lightweight crossbar. It is also 
worth mentioning that using lighter crossbars, the frequency 
could be scaled up more easily because there will be fewer 
levels of logic. 

 

Instruction 

Memory 

Advanced 

Program 

Control 

PHV 

Filler P
H

V
 

/ 

/ 

/ 

/ 

/ 

/ 

/ 

8 

8 

8 

8 

16 

16 

32 

Incoming 

Packet 



TABLE III.  COMPARISON OF PARSER IMPLEMENTATIONS 

 Baseline Parser Parser with 
multiple outputs 

Total Area (µm2) 29900 30937 

Internal Power 
(mW) 

7.7 8.2 

Switching Power 
(mW) 

4.2 11.7 

Leakage Power 
(mW) 

4.5 4.8 

Total Power 
(mW) 

16.4 24.7 

 

TABLE IV.  AREA AND POWER DISSIPATION COMPARISON OF 

LIGHTWEIGHT MATCH CROSSBARS 

Match 
Crossbar 
Variation 

Area 
(µm2) 

Saving 
in area 

(%) 

Total 
Power 

Dissipation 
(mW) 

Saving in 
power 

dissipation 
(%) 

Bit-level 34885 72.2 93.5 32 

Byte-
level 

67499 73.7 101.8 34.7 

Word-
level 

32813 72.3 88.5 25.8 

 

TABLE V.  AREA AND POWER DISSIPATION COMPARISON OF 

LIGHTWEIGHT ACTION CROSSBARS 

Action 
crossbar 
variation 

Area 
(µm2) 

Saving 
in 

Area 
(%) 

Total 
Power 

Dissipation 
(mW) 

Saving in 
power 

dissipation 
(%) 

Bit-level 223264 72.2 598.4  32 

Byte-level 431996 73.7 651.6  34.3 

Combination 
of smaller 
processing 

units 

140260 72.1 503.2 23.3 

Zero-
extension of 

smaller 
processing 

units 

107000 71.8 360.3 23.1 

 

VII. CONCLUSION 

In this paper, we devised alternative interconnection 
schemes while maintaining the interconnection requirements. 
Based on the experimental results, we determined the most 
area- and power-efficient crossbars for the Match-Action 
pipeline. In addition, by analyzing headers and packet 
processing actions, we proposed use of smaller crossbars 
using which area will be decreased by at least 70 %. The 
savings in power dissipation are between 23 and 34 %. By 
careful placement of header fields in PHV entries, any 
possible performance degradation will be eliminated. 
Moreover, by making the compiler aware of cross-segment 
interconnection restrictions within a Match-Action stage, the 
changes proposed in this paper will be invisible to the 
programmer. 

ACKNOWLEDGMENT  

We would like to acknowledge the Finnish DELTA 
network as well as The Pekka Ahonen Fund for providing the 
partial funding for this project. 

REFERENCES 

[1] Intel FlexPipe. 
http://www.intel.com/content/dam/www/public/us/en/documents/prod
uct-briefs/ethernet-switch-fm6000-series-brief.pdf. 

[2] Cavium's XPliant™ Ethernet Switch Supports the Emerging Open 
Ecosystems https://www.cavium.com/Caviums-XPliant-Ethernet-
Switch-Supports-The-Emerging-Open-Ecosystems.html 

[3] Barefoot Networks, "The world's fastest and most programmable 
networks," [Online]. Available: 
https://barefootnetworks.com/resources/worlds-fastest-
mostprogrammable- networks 

[4] Bosshart, P., Daly, D., Gibb, G., Izzard, M., McKeown, N., Rexford, 
J., Schlesinger, C., Talayco, D., Vahdat, A., Varghese, G. & Walker, 
D. (2014). P4: Programming protocol-independent packet processors. 
ACM SIGCOMM Computer Communication Review, 44(3), 87-95. 

[5] Bosshart, P., Gibb, G., Kim, H. S., Varghese, G., McKeown, N., Izzard, 
M., Mujica, F. & Horowitz, M. (2013, August). Forwarding 
metamorphosis: Fast programmable match-action processing in 
hardware for SDN. In ACM SIGCOMM Computer Communication 
Review (Vol. 43, No. 4, pp. 99-110). ACM. 

[6] Gibb, G., Varghese, G., Horowitz, M., & McKeown, N. (2013, 
October). Design principles for packet parsers. In Architectures for 
Networking and Communications Systems (ANCS), 2013 ACM/IEEE 
Symposium on (pp. 13-24). IEEE. 

[7] Rijsinghani, A. (1994). Computation of the internet checksum via 
incremental update. 

[8] Zolfaghari, H., Rossi, D., & Nurmi, J. (2018, July). An Explicitly 
Parallel Architecture for Packet Parsing in Software Defined Networks. 
In 2018 IEEE 29th International Conference on Application-specific 
Systems, Architectures and Processors (ASAP) (pp. 1-4). IEEE. 

[9] Zolfaghari, H., Rossi, D., & Nurmi, J. (2018, October). Low-latency 
Packet Parsing in Software Defined Networks. In 2018 IEEE Nordic 
Circuits and Systems Conference (NORCAS): NORCHIP and 
International Symposium of System-on-Chip (SoC) (pp. 1-6). IEEE. 

 

 


