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Abstract—With the emergence of new 5G radio networks,
high-accuracy positioning solutions are becoming extensively
more important for numerous 5G-enabled applications and radio
resource management tasks. In this paper, we focus on 5G
mm-wave systems, and propose a method for high-accuracy
estimation of the User Equipment (UE) position and antenna
orientation. Based on the sparsity of the mm-wave channel,
we utilize a compressive sensing approach for estimating the
departure and arrival angles as well as the time-of-arrival for
each observed radio propagation path. After this, in order to
obtain statistical descriptions of the unknown parameters, we
analytically derive a set of sampling distributions, which enable
utilization of an iterative Gibbs sampling method. As shown by
the obtained simulation results, the proposed method is able to
achieve centimeter-level positioning accuracy with degree-level
orientation accuracy, even in the absence of a line-of-sight path.

Index Terms—Positioning, Orientation estimation, 5G systems,
mm-wave, MIMO, Compressed sensing, Gibbs sampling

I. INTRODUCTION

Utilization of millimeter-wave (mm-wave) communications,
at around 30 GHz and beyond carrier frequencies, is expected
to introduce high data rate radio links in future 5G systems [1].
Besides large bandwidths, the mm-wave frequencies enable the
use of large antenna arrays with dynamic beamforming at both
transmitter and receiver side. The mm-wave channel introduces
specific sparse characteristics, which can be exploited for
channel parameter estimation via compressed sensing as
presented in [2]–[6]. Moreover, the particular mm-wave channel
properties introduce great potential for high-accuracy User
Equipment (UE) positioning, as studied in [6]–[11], where in
[9]–[11] also the UE orientation has been considered.

In this paper, we consider UE position and orientation
estimation based on a single Base Station (BS) signal, which
is one of the key features to overcome limiting factors of
the previous generation of mobile network positioning, such
as synchronization, scheduling and interference management.
By using a distributed-compressed-sensing-based approach,
we estimate the Angle-Of-Departure (AOD), Angle-Of-Arrival
(AOA) and Time-Of-Arrival (TOA) for each radio propagation
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path. The estimated AOD, AOA, and TOA are then used for
estimating the UE position, the UE orientation, and additionally
the scatterer positions for Non-Line-Of-Sight (NLOS) paths.

The proposed novel estimation approach is based on an
iterative Gibbs sampling method providing both the parameter
estimates and their non-linear likelihood distributions, which
have not yet been revealed in the existing literature before.
From analytical and system implementation perspective, the
proposed approach includes several attractive features. Firstly,
it analytically expresses the parameter distributions required in
the Gibbs sampling process in order to obtain joint non-linear
likelihood distribution of the unknown parameters. Secondly,
the proposed approach does not require a priori information
on the number of propagation paths or on the availability of
the LOS path, which supports the feasibility of the method
in a vast set of multipath scenarios. Moreover, the proposed
approach is based on a single BS signal, which alleviates
requirements for accurate network synchronization. Lastly, the
proposed approach can be straightforwardly extended to an
uplink scenario, enabling a new set of applicable use cases,
such as location-aware radio resource management. As such,
the proposed approach can be utilized in a Simultaneous
Localization and Mapping (SLAM) setting, or in various
tracking scenarios from pedestrians to vehicular navigation.

II. SYSTEM MODEL

As a baseline system we consider a Multiple-Input Multiple-
Output (MIMO) channel model with a known BS position
pTX ∈ R2 with known antenna orientation, and an unknown
UE position pRX ∈ R2 with unknown antenna orientation θ. To
enable positioning, the BS transmits a sequence of M Orthog-
onal Frequency-Division Multiplexing (OFDM) symbols on
N active subcarriers x[m,n] = [x0[m,n], ..., xNb−1[m,n]]T ,
where m and n are OFDM symbol index and the subcarrier
index, and Nb is the number of digital TX paths. It is assumed
that the channel remains constant during the transmission of M
OFDM symbols, which limits the maximum tolerable system
mobility. Based on the channel model described in [12], the
MIMO channel matrix H[n] ∈ CNR×NT for the nth subcarrier,
with NT and NR number of transmit and receive antennas, is
written as

H[n] = AR[n]Γ[n]AH
T [n], where

AT[n] = [aT,n(ϕT,0), ...,aT,n(ϕT,K−1)],
(1)
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Fig. 1. An example scenario of the LOS path and 3 NLOS paths including
the AOD ϕT,k and AOA ϕR,k for each path k, where the AOAs are affected
by the unknown orientation of the UE.

and similarly for AR[n], are steering vector matrices introduc-
ing the AOD ϕR,k and AOA ϕT,k for each path k = 0, ...,K−1,
where K is the number of observable paths. Moreover,
Γ[n] = diag(γ0, ..., γK−1) is a diagonal channel coefficient
matrix whose kth diagonal element is given as

γk =
√
NTNR

hk√
ξk
e−j2πnτk/(NTs), (2)

where hk, ξk and τk are the complex channel coefficient, the
path loss coefficient and the TOA of the kth path, respectively.
Here Ts = 1/B denotes the sample duration and B is the
bandwidth of the transmitted signal. In addition, throughout
the paper we consider antenna structures based on a Uniform
Linear Array (ULA) with antenna separation of dant. Therefore,
the steering vector aT,n(ϕT,k) (and similarly for aR,n(ϕR,k)),
given in (1), can be described as

aT,n(ϕT,k)=
1√
NT

[
e−j

NT−1

2 Φ(ϕT,k), ..., ej
NT−1

2 Φ(ϕT,k)
]T

(3)

where Φ(ϕT,k) = 2πdant/λn sin (ϕT,k) is the electrical AOD
for the kth path, and λn is the wavelength of the nth subcarrier.
In Fig. 1, an example scenario with the LOS path and 3 NLOS
paths is illustrated.

Assuming that the transmitted OFDM symbols are embedded
with an appropriate length cyclic prefix (CP), there is no inter-
symbol-interference in the received signal. Hence, with ideal
sampling timing and CP removal, the received spatial sample
vector of the mth OFDM symbol and nth subcarrier, after taking
the Fast Fourier Transform (FFT), is given as

y[m,n] = H[n]F[m,n]x[m,n] + n[m,n], (4)

where n[m,n] is complex Gaussian noise and F[m,n] ∈
CNT×Nb is a beamforming matrix, known by the UE.

III. CHANNEL PARAMETER ESTIMATION

In order to harness the mm-wave channel sparsity for channel
estimation, we determine a transformation from the MIMO
channel matrix to an angular domain beamspace matrix as

Hϕ[n] = UH
R H[n]UT ∈ CNR×NT , (5)

Algorithm 1 Coarse AOD and AOA estimation
1: Initialize: s ← 0, r−1[n] ← yϕ[n], r0[n] ← ε + 1, and
ψ−1[n] = 0

2: while s < Ncoarse and ‖rs[n]‖ > ε do
3: Evaluate q̃s ← arg max

i

∑N−1
n=0

|ωH
i [n]rs−1[n]|
‖ωi[n]‖

. ωi[n] is the ith column of Ω[n]
4: Define coarse AOD and AOA estimates as:

ϕ̃T,s ← arcsin
(

λc

dantNT

(
qT,s − NT−1

2

))
and

ϕ̃R,s ← arcsin
(

λc

dantNR

(
qR,s − NR−1

2

))
. qT,s ← d q̃sNR

e − 1 and qR,s ← mod(q̃s − 1, NR)
5: Determine a new basis vector:

ψs[n]← ωq̃s [n]−
∑s−1
s̃=−1

ωH
q̃s

[n]ψs̃[n]

‖ψs̃[n]‖ ψs̃[n]
6: Update the residual vector:

rs[n]← rs−1[n]− ψH
s [n]rs−1[n]
‖ψs‖2

ψs[n]
7: Set: s← s+ 1

8: return coarse estimates of AOD ϕ̃T,s and AOA ϕ̃R,s for
K̂ = s + 1 found paths, including their corresponding
beamspace indices qT,s and qR,s

where UT and UR are chosen transformation matrices. For
example, with the considered ULA model, by spanning the
beamspace with uniformly sampled angles, UT (and similarly
UR) can be defined as

UT = [uT(ν0), ...,uT(νNT−1)] , where

uT(νl) =
[
e−j2π

NT−1

2 νl , ..., ej2π
NT−1

2 νl
]T

, and

νl = −(NT − 1)/(2NT) + l/NT.

(6)

Consequently, the beamspace angle resolution for the AOD
and AOA are defined as κT = 1/NT and κR = 1/NR. Now,
based on (4) and (5), the vectorization of the received samples
over the M OFDM symbols results in

yϕ[n] = Ω[n]hϕ[n] + nϕ[n], where

Ω[n] = [Ω0,n, ...,ΩM−1,n]
T with

Ωm,n =
(
UH

T F[m,n]x[m,n]
)T ⊗UR, and

hϕ[n] = vec(Hϕ[n]),

(7)

where hϕ[n] is now a nearly sparse channel vector, and Ω[n]
is a dictionary (or sensing) matrix whose columns depend on
different combinations of channel AOD and AOA values.

Since hϕ[n] in (7) has a common support over separate
subcarriers, the channel parameter estimation is performed
based on Distributed Compressed Sensing - Simultaneous
Orthogonal Matching Pursuit (DCS-SOMP) method presented
in [13]. Considering the beamspace representation shown in
(7), the used estimation approach is described in Algorithm 1,
where the design parameters Ncoarse and ε define the maximum
number of detected paths and the path detection sensitivity,
respectively. In order to increase the estimation accuracy, we
use an iterative refinement method presented in [10], where
the beamspace resolution is iteratively increased with inbuilt



convergence stability. By first defining a desired number of
resolution increment steps Nfine, the refinement method can be
carried out for each found path, as described in Algorithm 2.

As shown in [9] and [13], the kth path TOA estimate
can be obtained by using QR-factorization of the estimated
sparse dictionary matrix, whose columns are obtained from
the Algorithm 2 as Ω̂[n] = [ω̂0[n], ..., ω̂K̂−1[n]]. Moreover,
by evaluating the QR-factorization Ω̂[n] = Q[n]R[n], the
estimated channel vector can be written as

ĥ[n] = R−1[n]
[
β̃0[n], ..., β̃K̂−1[n]

]T
,where

β̃k[n] =
ω̂Hk [n]yϕ[n]

‖ω̂k[n]‖2
.

(8)

Based on the used channel model, described in (1), the Least
Squares (LS) estimate of the kth path TOA can be obtained as

τ̂k = arg max
τk

|ζH(τk)[ĥk[0], ..., ĥk[N − 1]]T |2 with

ζ(τk) =
[
1, ..., e−j2π(N−1)τk/(NTs)

]T
,

(9)

where ĥk[n] is the kth element of ĥ[n] given in (8). Now, the
TOA estimate τ̂k can be found by searching over different
values of τk and choosing the one maximizing the function.

IV. PROPOSED POSITION AND ORIENTATION ESTIMATION

The UE position pRX and UE orientation θ are estimated by
using iterative sampling techniques based on the estimates of
AOD, AOA and TOA, obtained in Section III. If the LOS path
is detected, it is denoted with the path index k = 0. Moreover,
we convert the kth path TOA-estimate to a distance estimate
as d̂k = cτ̂k, where c is the speed of light. In the considered
approach, we also utilize the parameter estimate covariances,
which are not provided by the DCS-SOMP algorithm. Thus,
the covariance matrix Σk ∈ R3×3 for the kth path AOD, AOA
and TOA-based distance estimates is given as

Σk = J−1(η̂) + diag{σ̃2
AOD, σ̃

2
AOA, σ̃

2
d}, (10)

where η̂k = [ϕ̂T,k, ϕ̂R,k, d̂k]T is the vector of the estimated
channel parameters, and J(η̂k) is the Fisher information
matrix, whose elements are derived based on [9, Appendix
A]. In addition, the variance components σ̃2

AOD, σ̃2
AOA and σ̃2

d
incorporate the effect of an estimate offset due to the discrete
estimation space for the AOD, AOA, and TOA, respectively.

The proposed UE position and UE orientation estimation
is based on an iterative Gibbs sampling process, where each
estimated parameter is iteratively sampled by conditioning with
the currently available samples of the other parameters. Al-
though the convergence of Gibbs sampling can be occasionally
slow, as discussed in [14], it enables a straightforward sampling
implementation without extensive algorithm parameterization
by directly utilizing conditional distributions of the unknown
parameters. Next, in this section, we analytically derive
sampling distributions and provide the means for sampling of
each estimated parameter. Based on these, the overall sampling
process for estimating the unknown parameters is described

Algorithm 2 Iterative refinement of AOD and AOA estimates

1: for each found path k = 0, ..., K̂ − 1 do
2: Initialize: Set s ← 1, define beamspace estimates
ϕ̌

(0)
T,k ← νqT,k and ϕ̌

(0)
R,k ← νqR,k according to (6) and the

beamspace indices obtained in Algorithm 1. Set beamspace
resolution as κ̃(0)

T ← κT and κ̃(0)
R ← κR.

3: while s < Nfine do
4: Quadruple the AOD beamspace resolution:

κ̃
(s)
T ← κ̃

(s−1)
T /4, and update the beamspace as

Ũ
(s)
T,k ←

[
uT(ν̃

(s)
0,k), ...,uT(ν̃

(s)
4,k)
]

with

ν̃
(s)
l,k ← ϕ̌

(s−1)
T,k − κ̃

(s−1)
T

2 + lκ̃
(s)
T

5: Repeat the step 4 for AOA beamspace matrix Ũ
(s)
R,k

6: Construct a new dictionary matrix Ω̃
(s)
k [n] based

on Ũ
(s)
T,k and Ũ

(s)
R,k as defined in (7)

7: Find new beamspace estimates for AOD and AOA:
q̃

(s)
k ← arg max

i

∑N−1
n=0

|ωH
i [n]yϕ[n]|
‖ωi[n]‖ and thus

ϕ̌
(s)
T,k ← ν̃

(s)

q̃
(s)
T,k

and ϕ̌(s)
R,k ← ν̃

(s)

q̃
(s)
R,k

where

q̃
(s)
T,k ←

⌈
q̃
(s)
k

5

⌉
−1 and q̃(s)

R,k ← mod (q̃
(s)
k −1, 5), and

ωi[n] is the ith column vector of Ω̃
(s)
k [n]

8: Set: s← s+ 1

9: Obtain AOD and AOA estimates (in radians):
ϕ̂T,k ← arcsin

(
λc

dant
ϕ̌

(s−1)
T,k

)
ϕ̂R,k ← arcsin

(
λc

dant
ϕ̌

(s−1)
R,k

)
10: return Estimates of AOD ϕ̂T,k and AOA ϕ̂R,k, and the

latest column vector ω̂k[n]← ω
q̃
(s−1)
k

[n] for each path k

in Algorithm 3, where Nsamp and Nburn-in are the number of
obtained samples and the length of burn-in period reducing
the effect of parameter initialization, which can be done based
on the geometrical properties of the system, as studied in [10].
An illustration of a sampling process outcome is shown in Fig.
2, where the system geometry is equivalent with the geometry
used in evaluating the positioning performance in Section V.

A. Sampling of Scatterer Positions

First we obtain the scatterer position sample p
(i)
SC,k for each

found NLOS path k ∈ ΘNLOS, where i is the sample index
and ΘNLOS is the set of NLOS path indices. We consider
scatterer positions of different paths independent and perform
the sampling process for each path separately. Based on the
Gibbs sampling principle, the target is to obtain a kth path
scatterer position sample p

(i)
SC,k by conditioning with the most

recent samples of the other unknown parameters: the UE
position sample p

(i−1)
RX and the UE orientation sample θ(i−1).

Thus, the ith sample of the kth path scatterer position is given
as

p
(i)
SC,k ∼ p(pSC,k|p(i−1)

RX , θ(i−1), η̂k). (11)

Sampling from the above-described conditional probability



Algorithm 3 Summarization of the sampling process

1: Initialize: i← 0, θ(0) ∼ U(−π/2, π/2), and
p

(0)
RX ∼

[
U(xmin, xmax),U(ymin, ymax)

]T
2: while i < Nsamp − 1 do
3: for each NLOS path k do
4: Take sample p

(i)
SC,k as given in section IV-A

5: Take sample p
(i)
RX as given in section IV-B

6: Take sample θ(i) as given in section IV-C
7: Discard the first i = 0, ..., Nburn-in − 1 samples
8: Compute the average of the remaining samples to obtain

the parameter estimates p̂SC,k, p̂RX and θ̂
9: return Parameter estimates p̂SC,k, p̂RX and θ̂

distribution is not directly feasible. However, based on the
Bayes’ rule, the distribution can be rewritten as

p(pSC,k|p(i−1)
RX , θ(i−1), η̂k) ∝

p(η̂k|pSC,k,p
(i−1)
RX , θ(i−1))p(pSC,k|p(i−1)

RX , θ(i−1))

= p(η̂k|pSC,k,p
(i−1)
RX , θ(i−1))p(pSC,k).

(12)

By assuming no a priori information, the distribution
p(pSC,k) can be considered flat. Moreover, assuming that
the channel parameter estimates are Gaussian distributed, the
normalized log-likelihood for an arbitrary scatterer position
p̆SC,k can be written as

log p(η̂k,Σk|p̆SC,k,p
(i−1)
RX , θ(i−1)) ∝

−1

2
(η̂k − η̆SC,k)TΣ−1

k (η̂k − η̆SC,k)
(13)

where η̆SC,k = [ϕ̆SC,T,k, ϕ̆SC,R,k, d̆SC,k] is a vector of the AOD,
AOA and propagation distance, given the scatterer position
p̆SC,k, whose elements are defined as

ϕ̆SC,T,k = arctan

(
p̆(SC,k),y − pTX,y

p̆(SC,k),x − pTX,x

)
ϕ̆SC,R,k = − arctan

(
p

(i−1)
RX,y − p̆(SC,k),y

p
(i−1)
RX,x − p̆(SC,k),x

)
+ θ(i−1)

d̆SC,k = ‖pTX − p̆SC,k‖+ ‖p(i−1)
RX − p̆SC,k‖

(14)

where p̆(SC,k),x, p̆(SC,k),y, pTX,x, pTX,y, p
(i−1)
RX,x and p

(i−1)
RX,y ,

denote the x coordinates and y coordinates for the given
scatterer position, known BS position, and sampled UE position,
respectively.

In order to obtain a sample of the scatterer position p
(i)
(SC,k)

from (13), we utilize the rejection sampling principle [14]. For
this, we notice that the considered log-likelihood function in
(13) is normalized so that the target set of the linear scale
likelihood function is defined as [0, 1]. Now, according to the
rejection sampling principle, we draw a candidate sample of
p

(i)
SC,k from a uniform distribution as

p
(i)
SC,k ∼

[
U(xmin, xmax) U(ymin, ymax)

]T
(15)

where the limits xmin, xmax, ymin, and ymax are defined so that
the sampling range covers the area of the likelihood distribution,
where it has substantial significance. Next, we draw a likelihood
sample ρ from the target set of the likelihood function as
ρ ∼ U(0, 1) and compare that to the likelihood as

ρ < p(η̂k|p
(i)
SC,k,p

(i−1)
RX , θ(i−1)), (16)

where the likelihood function is evaluated by substituting
p̆SC,k ← p

(i)
SC,k in (13). If the inequality holds, the current

sample is consider valid, and we move on sampling of the
next parameter in the Gibbs sampling process. Otherwise, we
re-sample ρ and pSC,k until the condition in (16) is fulfilled.

B. Sampling of UE Position

By following the Gibbs sampling principle, the UE position
sample is acquired from the conditional distribution given as

p
(i)
RX ∼ p(pRX|p(i)

SC,k, θ
(i−1), {η̂k|k ∈ Θallpaths}), (17)

where Θallpaths = {0, . . . ,K − 1} defines all path indices,
including both the possible LOS path and NLOS paths. Based
on the Bayes’ rule, and assuming no a priori information on the
UE position, the UE position sample can be obtained from the
likelihood distribution p({η̂k|k ∈ Θallpaths}|p(i)

SC,k, θ
(i−1),pRX).

Again, by considering Gaussian distributed channel parame-
ter estimates, the normalized log-likelihood function for an
arbitrary selected UE position p̆RX can be written as

log p({η̂k|k ∈ Θallpaths}|p̆RX,p
(i)
SC,k, θ

(i−1)) =

log pLOS(η̂0|p̆RX, θ
(i−1))

+log pNLOS({η̂k|k ∈ ΘNLOS}|p̆RX,p
(i)
SC,k, θ

(i−1))

(18)

where ΘNLOS is the set of NLOS path indices. Moreover, the
likelihood related to a possibly detected LOS path is given as

log pLOS(η̂0|p̆RX, θ
(i−1)) ∝

− 1

2
(η̂0 − η̆RX,0)TΣ−1

0 (η̂0 − η̆RX,0)
(19)

where η̆RX,0 = [ϕ̆RX,T,0, ϕ̆RX,R,0, d̆RX,0]T with

ϕ̆RX,T,0 = arctan

(
p̆RX,y − pTX,y

p̆RX,x − pTX,x

)
ϕ̆RX,R,0 = −ϕ̆RX,T,0 + θ(i−1)

d̆RX,0 = ‖pTX − p̆RX‖,

(20)

and the likelihood describing the NLOS paths is given as

log pNLOS({η̂k|k ∈ ΘNLOS}|p̆RX,p
(i)
SC,k, θ

(i−1)) ∝

− 1

2

∑
k∈ΘNLOS

(η̂
(2:3)
k − η̆RX,k)TΣ

(2:3)−1

k (η̂
(2:3)
k − η̆RX,k)

(21)

where η̂(2:3)
k denotes taking only the 2nd and 3rd vector element

from η̂k, and Σ
(2:3)
k denotes a corresponding submatrix of Σk

with only the 2nd and 3rd row and column. In addition, the
vector with the AOA and propagation distance, given the UE



position p̆RX, is defined as η̆RX,k = [ϕ̆RX,R,k, d̆RX,k]T with

ϕ̆RX,R,k = − arctan

 p̆RX,y − p
(i)
(SC,k),y

p̆RX,x − p
(i)
(SC,k),x

+ θ(i−1)

d̆RX,k = ‖pTX − p
(i)
SC,k‖+ ‖p̆RX − p

(i)
SC,k‖.

(22)

For obtaining a UE position sample from the above-described
likelihood, we use the same rejection sampling principle as
with the scatterer position sampling, and draw the UE position
sample p

(i)
RX and a separate likelihood sample ρ as

p
(i)
RX ∼

[
U(xmin, xmax)
U(ymin, ymax)

]
and ρ ∼ U(0, 1). (23)

Now, based on the rejection sampling principle, we accept the
drawn UE position sample, if

ρ < p({η̂k|k ∈ Θallpaths}|p(i)
SC,k,p

(i)
RX, θ

(i−1)), (24)

where the likelihood is calculated by substituting p̆RX ← p
(i)
RX

in (18). Otherwise, we draw new samples until (24) is fulfilled.

C. Sampling of UE Orientation
The last sampled unknown parameter is the UE orientation.

Similar to the sampling of scatterer and UE positions, the UE
orientation sample is taken from the distribution conditioned
by the most recent samples of other parameters as

θ(i) ∼ p(θ|p(i)
SC,k,p

(i)
RX, {η̂k|k ∈ Θallpaths}). (25)

By following the Bayes’ rule without any a priori information,
the UE orientation sample can be obtained from a likelihood
distribution, defined for an arbitrary UE orientation θ̆ as

log p({η̂k|k ∈ Θallpaths}|θ̆,p(i)
SC,k,p

(i)
RX) =

log pLOS(η̂0|p
(i)
RX, θ̆)

+log pNLOS({η̂k|k ∈ ΘNLOS}|p(i)
SC,k,p

(i)
RX, θ̆).

(26)

Now, the likelihood for a detected LOS path is given as

log pLOS(η̂0|p
(i)
RX, θ̆) ∝

(η̂
(2)
0 − ϕ̆θ,R,0)2

2Σ
(2)
0

(27)

where η̂(2)
k and Σ

(2)
k denote the 2nd vector element and 2nd

diagonal element of η̂k and Σk, respectively, and

ϕ̆θ,R,0 = − arctan

(
p

(i)
RX,y − pTX,y

p
(i)
RX,x − pTX,x

)
+ θ̆. (28)

Furthermore, the corresponding likelihood for detected NLOS
paths is defined as

log pNLOS({η̂k|k ∈ ΘNLOS}|p(i)
SC,k,p

(i)
RX, θ̆) ∝

−
∑

k∈ΘNLOS

(η̂
(2)
k − ϕ̆θ,R,k)2

2Σ
(2)
k

, where

ϕ̆θ,R,k = − arctan

p
(i)
RX,y − p

(i)
(SC,k),y

p
(i)
RX,x − p

(i)
(SC,k),x

+ θ̆.

(29)
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Fig. 2. An example outcome of a Gibbs sampling process

By applying the rejection sampling principle, we take samples
of the UE orientation θ(i) and the likelihood target set as

θ(i) ∼ U(−π/2, π/2) and ρ ∼ U(0, 1). (30)

The resulting UE orientation sample is accepted, if

ρ < p({η̂k|k ∈ Θallpaths}|θ(i),p
(i)
SC,k,p

(i)
RX), (31)

where the value of the likelihood function is evaluated by
substituting θ̆ ← θ(i) in the likelihood function given in (26).
Again, if the condition in (31) is not valid, new samples are
taken based on (30) until the condition is fulfilled.

V. NUMERICAL EVALUATIONS AND ANALYSIS

For the simulations, we assume a single BS scenario, where
the BS is located at the origin pTX = [0, 0]T with a zero
antenna orientation, and the UE position at pRX = [42, 5]T (in
meters) with the antenna orientation of θ = 21 deg. With the
considered single BS scenario, the network synchronization
requirements can be alleviated, and furthermore, it is not
necessary to presume coverage from multiple BSs at the same
time, which can be challenging at the mm-wave band with
high path losses. The number of transmit antennas (in BS)
and receive antennas (in UE) are determined as NT = 32
and NR = 8, and the number of digital paths is defined as
Nb = 1. The signal transmitted by the BS consists of M = 32
OFDM symbols with Quadrature Phase Shift Keying (QPSK)
modulated subcarriers. The beamforming matrix F[m,n] is
defined so that the beam directions are uniformly distributed
from −π/2 to π/2 radians over the transmitted OFDM symbols
m = 0, ...,M−1 with joint beamforming across all subcarriers
n. Based on the 5G specifications in [15], the sampling rate
is chosen as 245.76 MHz, which corresponds to 120 kHz
subcarrier spacing with FFT-size of 2048. Moreover, by taking
into account the required minimum guardband, specified in [16],
we assume N = 64 uniformly distributed reference subcarriers
in the active band to be available for the positioning purposes.
In addition, we define the carrier frequency as fc = 38 GHz
according to the allocated 5G mm-wave band given in [16].
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Fig. 3. The average (a) position estimation error and (b) orientation estimation error of the proposed Gibbs-sampling-based approach and corresponding
reference results based on the EXIP approach (dashed lines) for the considered scenarios.

All radio paths are attenuated based on a free-space loss model
with additional 6 dB reflection or scattering losses assumed
for the NLOS paths.

The estimation of AOD and AOA is based on Nfine = 5
fine-tuning iterations, as described in Algorithm 2. After this,
the number of samples taken during the UE position and
orientation estimation, summarized in Algorithm 3, is defined
as Nsamp = 2000, where Nburn-in = 200 first samples are
discarded in order to reduce the effect of initialization. All
provided results are averaged over 1000 independent trials.

We consider three separate radio propagation scenarios: a
scenario with only the LOS path (“LOS only”), a scenario
with the LOS path and 3 NLOS paths (“LOS+3xNLOS”)
with scatterer positions pSC,0 = [23, 16]T , pSC,1 = [10, 10]T ,
and pSC,2 = [14,−21]T (in meters) as illustrated in Fig. 2,
and a scenario with the 3 NLOS paths without the LOS path
(“3xNLOS”). In addition, regarding the LOS+3xNLOS scenario,
we study two additional use case conditions, which have
substantial significance in practical implementations. In the first
one, in order to reveal the impact of NLOS path estimation on
the UE position and orientation estimation, we simply ignore
the NLOS paths and use only the LOS path in the estimation
process (“LOS+3xNLOS(NLOS ignored)”). This is different
from the LOS only scenario, as the presence of multiple
propagation paths affects the channel parameter estimation. In
the second use case condition for the LOS+3xNLOS scenario,
we assume that the LOS path is not detected as a LOS
path (“LOS+3xNLOS(LOS not detected)”) and the proposed
estimation method is forced to treat the LOS path as a NLOS
path. Thus, during the estimation process, an additional scatterer
for the LOS path is introduced and typically located close to
the line between the BS and UE.

In Fig. 3, the average UE position estimation errors and
UE orientation estimation errors are shown for the considered
scenarios over different values of SNR, which is defined as a
ratio between the total received signal power before adding the
noise and the total noise power over all utilized subcarriers.

In addition, for comparison, results based on a least squares
approach with extended invariance principle (EXIP), utilized
in [9], are provided for the LOS+3xNLOS and 3xNLOS
scenarios. The EXIP approach uses an iterative Levenberg-
Marquardt algorithm (LMA), which is able to converge towards
locally optimum estimates. When the LOS path is available,
the parameter initialization in LMA is straightforward, but
otherwise, as proposed in [9], the LMA must run over up to
hundreds of different parameter initialization steps resulting
in increased in computational complexity. The initialization
of the EXIP algorithm in this paper is implemented based
on the description provided in [9]. Furthermore, whereas the
EXIP approach provides only the parameter estimates, the
proposed Gibbs sampling approach in this paper provides the
joint parameter distribution, as well as the marginal distributions
of each unknown parameter. As expected, the best positioning
performance, shown in Fig. 3, is obtained with the LOS only
scenario, since all signal power is concentrated on a single
path and the number of unknown parameters is minimized.
From the position error point of view, it seems that considering
the NLOS paths in the estimation process does not have a
significant effect on the positioning accuracy. In case that
the LOS path is not detected, the positioning error is slightly
increased compared to the case with LOS detection. However,
compared to the 3xNLOS scenario, the LOS+3xNLOS(LOS not
detected) scenario is able to introduce a distinct improvement
in the positioning accuracy. Furthermore, whereas the least-
squares-based EXIP algorithm provides similar performance
with the LOS+3xNLOS scenario, it clearly loses in accuracy
without the LOS path availability in the 3xNLOS scenario.
Due to the finite resolution of channel estimates, the position
accuracy of all scenarios has an error floor, which limits the
performance with high SNR values.

As shown in Fig. 3, the LOS+3xNLOS scenario has
a better orientation estimation accuracy compared to the
LOS+3xNLOS(NLOS ignored) scenario, which indicates that
including the NLOS paths in the estimation process im-
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(dashed lines) for the 3xNLOS scenario with separate SNR values.

proves the UE orientation estimation accuracy, especially
with low SNR values. Moreover, as the UE orientation
estimation accuracy is almost identical between the 3xNLOS
and LOS+3xNLOS(LOS not detected) scenarios, it is obvious
that the UE orientation estimation does not benefit from the
LOS path unless it is properly detected. When comparing the
orientation estimation accuracy of the proposed Gibbs sampling
approach with the EXIP approach, there is a clear improvement
for the proposed approach in the 3xNLOS scenario.

In Fig. 4, a cumulative distribution of the UE position error is
shown for the 3xNLOS scenario with two separate SNR values.
It can be seen that the proposed Gibbs sampling approach
outperforms the EXIP approach. Moreover, with SNR=0 dB the
positioning error of the proposed approach is less than 22 cm
for 95 % of the time. The corresponding cumulative error for
the UE orientation is shown in Fig. 5. Again the proposed
Gibbs sampling approach is able to improve the estimation
accuracy compared to the EXIP approach. With SNR=0 dB,
the proposed approach achieves orientation estimation accuracy
less than 0.3 deg for 95 % of the time.

VI. CONCLUSION

In this paper, we studied UE position and UE orientation
estimation in mm-wave 5G systems by considering a single
BS scenario. Based on the mm-wave channel sparsity, we
presented methods for estimating the AOD, AOA and TOA,
for a multipath scenario with and without the presence of a LOS
path. After this, we proposed using an iterative Gibbs sampling
for obtaining joint statistical descriptions of the unknown
UE position, UE orientation, and scatterer positions of each
NLOS path. For this, we analytically derived the conditional
distributions, from which each unknown parameter can be
iteratively sampled according to the Gibbs sampling principle.

The presented results show that the proposed approach is
able to reach cm-level UE positioning accuracy with less than
1 deg orientation estimation error. Based on the results, the
availability of the LOS path increased the UE position and UE
orientation estimation accuracy. By considering also the NLOS
paths, the accuracy of UE orientation estimation was further
improved. Moreover, it was shown that the proposed approach
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Fig. 5. Cumulative UE orientation estimation error of the proposed Gibbs-
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(dashed lines) for the 3xNLOS scenario with separate SNR values.

was able to perform without a separate LOS detection, and yet
to improve the position estimation accuracy compared to the
scenario with NLOS paths only.
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