
Public and Open HEVC Encoding Service in the Cloud

Aaro Altonen, Marko Viitanen, Joni Räsänen, Alexandre Mercat and Jarno Vanne

Tampere University

Korkeakoulunkatu 10, Tampere, 33720, Finland

 {aaro.altonen, marko.viitanen, joni.rasanen, alexandre.mercat, jarno.vanne}@tuni.fi

ABSTRACT

The ability to record vast amounts of video content requires

convenient and efficient video coding services with which users

can tackle the limited storage and transmission capacities. This

paper presents an open-source cloud service for encoding raw video

formats and transcoding compressed videos to the latest

HEVC/H.265 format. Respective commercial transcoding services

are available on the Internet but they are behind a paywall. On the

other hand, using command-line interfaces of existing open-source

software solutions requires in-depth knowledge of the coding

process to attain the best coding gain and speed. The proposed

service is available online, it is free to use without any registration,

and its easy-to-use web interface makes it feasible for non-technical

users. It is built on the FFmpeg multimedia framework whose built-

in decoders accept various input video formats that are then

compressed to HEVC with a full-fledged Kvazaar open-source

encoder.

CCS CONCEPTS

• Information systems → World Wide Web • Networks → Cloud

computing • Software and its engineering → Open source model

KEYWORDS

High Efficiency Video Coding (HEVC), Kvazaar HEVC encoder,

FFmpeg, Software as a Service (SaaS), Cloud en/transcoding

ACM Reference format:

Aaro Altonen, Marko Viitanen, Joni Räsänen, Alexandre Mercat, and Jarno

Vanne. 2019. Public and Open HEVC Encoding Service in the Cloud. In

Proceedings of ACM Multimedia Systems (MMSys’19). ACM, Amherst,

MA, USA, 4 pages. https://doi.org/10.1145/3304109.3323834

1 Introduction

High Efficiency Video Coding (HEVC/H.265) [1] is the current

state-of-the-art video coding standard. It is targeted to reduce bit

rate by 50% over the preceding MPEG AVC/H.264 standard [2] for

the same subjective visual quality [3]. Decreasing file size by half

is enticing to anyone recording, processing, or streaming video.

However, manually converting video files to HEVC is cumbersome

and tends to require profound understanding of video codecs,

making HEVC coding unfeasible for a non-technical user.

The latest cloud transcoding services bring video format conversion

to a wider public by hiding most of the technical details from the

user. The most advanced services are able to encode raw videos and

transcode a wide selection of compressed formats to a desired

output format. In general, video transcoding [4] can be

implemented by either direct digital-to-digital conversion from one

format to another to attain the fastest speed or it can be composed

of separate decoding and encoding stages. The latter solution has

gained more popularity since it is more modular and tolerant to

different input and output video formats.

Table 1 lists existing transcoder solutions classified according to

their features. The systems are compared in terms of pricing

models, availability of the source code, and encoding capabilities.

Some of the open-source encoders are completely unavailable and

so is their pricing. The most well-known closed solutions are hosted

by Amazon [5], Coconut [6], Qencode [7], and Zencoder [8].

However, these commercial services are all behind a paywall,

typically with a per-minute pricing model. There also exist a few

academic approaches. Z. H. Chang et al. [9] implemented a real-

time distributed system for streamed video transcoding, M. Chen et

al. [10] worked on parallel transcoding, and Y. Dong et al. [11]

introduced a containerized cloud transcoding service for easier

deployment. These systems are, however, not available for public

and their technical details are not reported. Therefore, they are

excluded from Table 1.

The prior-art open-source solutions include Cloud Transcode [12],

Morph [13], and Snickers [14], of which the latter two are not

maintained actively anymore. Cloud Transcode and Snickers

support only direct uploads via HTTP-link or S3. Both of them are

also tied to Amazon S3 and these services are only accessible

through an application programming interface (API). Morph is

limited to MP4 input and AVC output formats. Furthermore, they

are all lacking an easy-to-use user interface (UI).

This paper describes our Kvazaar cloud encoding service [15] for

encoding raw input videos and transcoding all popular video

formats to HEVC. Unlike all other listed solutions, our service is

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. Copyrights for third-party components of this work must

be honored. For all other uses, contact the Owner/Author.

MMSys '19, June 18–21, 2019, Amherst, MA, USA © 2019 Copyright is held by

the owner/author(s). ACM ISBN 978-1-4503-6297-9/19/06.5.00

https://doi.org/10.1145/3304109.3323834

MMSys’19, June, 2019, Amherst, MA, USA A. Altonen et al.

free to use, open source, and easily deployable. It offers a user-

friendly UI for uploading input and downloading output files.

This paper is organized as follows. Section 2 gives an overview of

the applied encoder software. Section 3 takes an in-depth look at

the proposed cloud encoding architecture. Section 4 describes the

entire processing flow of Kvazaar Cloud Encoder. Section 5

describes the demo setup and Section 6 concludes the paper.

2 Kvazaar HEVC Encoder

The proposed cloud encoding service is powered by the award-

winning Kvazaar open-source HEVC encoder [16], [17]. It is being

developed by Ultra Video Group at Tampere University and it is

available with the LGPL 2.1 license.

Kvazaar makes real-time 4K encoding possible with the ultrafast

setting whereas it reaches coding efficiency close to that of HEVC

reference encoder [18] with the veryslow preset. Kvazaar supports

almost all HEVC coding tools including Wavefront Parallel

Processing, Overlapped WaveFront, multithreading, deblocking

filter, Sample Adaptive Offset, sub-pixel motion estimation,

prediction unit depth limitation, bi-prediction, and rate control. The

most demanding functions are optimized using SSE4.1 and AVX2

instruction sets for x86/x64. Most of the coding tools are controlled

via the command-line interface (CLI) or with the API, if Kvazaar

library is used. Supported input format is YUV 4:2:0 and output

conforms to Main or Main 10 HEVC standard profiles.

3 Proposed Kvazaar Cloud Encoding System

The proposed system is implemented in Node.js/Javascript.

Besides Kvazaar, it utilizes many open-source software

components such as Docker [19], FFmpeg [20], PostgreSQL [21],

and Redis [22].

Figure 1 presents the system components with their main relations

and interactions. A communication between a Browser Client and

a Node.js Server is implemented with two public interfaces:

WebSocket and regular HTTP. The WebSocket is responsible for

relaying control messages from the server to the client. The media

file upload and the web UI are transferred through the HTTP.

Public API access is not provided.

The Node.js Server is composed of the five parts: 1) Controller, 2)

Parameter Parser, 3) Queue Manager, 4) Storage, and 5) Worker.

Controller interfaces the WebSocket requests and the rest of the

system. It validates the requests using the Parameter Parser and

signals the progress to the client. Controller is also responsible for

access control to the storage.

Parameter Parser validates the selected processing parameters.

Each parameter has a list of suitable values which are used in

validation. Different validation types are used, e.g., pixel formats

are validated using a string look-up table, whereas the encoding

parameter values are strings, boolean, or regular expression

patterns.

Queue Manager communicates with the Worker threads and takes

care of the task allocation in the system. The system uses Redis in-

memory key-value database to handle the message/task queue data

exchange.

Storage is the virtual component mapped to the physical hardware.

It is used to store all media and intermediate files under processing.

It also contains the PostgreSQL and Redis databases, which are

used by Controller, Worker, and Queue Manager.

Worker is the major actor in the system. It processes the video

en/transcoding tasks according to received parameters. It includes

FFmpeg and Kvazaar for media processing and PostgreSQL for

metadata storage. FFmpeg performs the initial file parsing, audio

extraction, video decoding, and muxing of the final container.

Kvazaar is used for HEVC encoding according to the given

encoding parameters. Worker keeps track of the progress of the

task, allowing cancellation of an ongoing task upon request. A

predefined number of Worker processes are spawned when starting

the server.

The whole system is wrapped inside a Docker container, which

allows dynamic deployment of the system for private use and

creates an additional layer of security against malicious actors.

The system can be used in two ways: either by using the version

hosted by the Ultra Video Group at

http://ultravideo.cs.tut.fi/cloud or downloading the provided

sources with Dockerfile and hosting it locally.

4 Processing Flow of Kvazaar Cloud Encoder

Kvazaar Cloud Encoder is designed to serve both regular and

advanced users. It provides an easy-to-use UI with default settings

but it also allows for fine-grained control over the coding process.

4.1 Uploading and Validation

Figure 2 and 3 show the main view of the UI and the advanced

settings menu of the Kvazaar Cloud Encoder, respectively. A video

file is first selected for processing. The system accepts the main

input formats and codecs supported by FFmpeg. The format can be

raw or containerized video. The encoder options can be

automatically set using encoding levels (Figure 2), which offer a

Table 1: Comparison of existing cloud encoding services

 Free Open
Raw

Input

HEVC

Output

Amazon [5] no no yes yes

Coconut [6] no no no yes

Qencode [7] no no no yes

Zencoder [8] no no yes yes

Cloud Transcode [12] n/a yes no yes

Morph [13] n/a yes no no

Snickers [14] n/a yes no yes

Kvazaar Cloud [15] yes yes yes yes

Public and Open HEVC Encoding Service in the Cloud MMSys’19, June, 2019, Amherst, MA, USA

trade-off between encoding speed and quality. In addition, the

parameters can be adjusted manually using the advanced settings

menu (Figure 3). For a raw video, the input format, video

dimensions, and frame rate have to be specified.

The request to upload a video is validated by the server using an

uploadRequest via WebSocket to the Controller. The server then

parses the request, validates all sent options, and either approves or

rejects the file upload in uploadResponse message.

The upload starts when the request is accepted. A file is uploaded

in 5 MB chunks. If the total amount of uploaded bytes exceeds the

predefined limit, the server stops the upload and informs a client

that the file size has been exceeded. The server also extracts the

duration of the video either from the header data, or from the file

size in the case of a raw format. For the processing to continue, the

duration must be extracted successfully and the video length must

be under a predefined limit.

A client is notified about the upload completion and the request is

dispatched to a worker thread which starts processing the video. If

all worker threads are busy, the task is put into the queue and the

client is notified.

4.2 Encoding/Transcoding

In the case of a raw input, the running workers first convert the

video into YUV 4:2:0 format (if not already) and start the encoding

process immediately. Otherwise, the workers first decode the input

video file using FFmpeg after which the file is encoded using an

instance of Kvazaar. Status updates of the progress are transmitted

to the client via the WebSocket.

Cancelling an ongoing task is possible in the UI, which sends

cancelRequest via WebSocket to the Controller. The server first

validates and then cancels the request by killing the associated

process or by removing the task from the queue. It sends a

cancelResponse back to the client indicating that the response was

received and processed.

Figure 1: Overview of Kvazaar Cloud Encoder process

Figure 2: Main view of the UI

Figure 3: Advanced Kvazaar settings menu

MMSys’19, June, 2019, Amherst, MA, USA A. Altonen et al.

4.3 Muxing and Downloading

After encoding, muxing is done if an output file container is

requested. The worker muxes the video using FFmpeg and includes

the audio track of the original file in the output container.

Finally, the client is notified via the active WebSocket connection

that the video is ready for download. The service is intended for

video encoding only, so a limit of two downloads is set to prevent

intentional file sharing. The file is removed from the server after

two downloads. An interrupted download is also counted in.

5 Demonstration Setup

The demonstrator at the conference site includes a laptop that is

connected to the Internet. The proposed service is used through a

public web interface but the server is also running in the laptop for

local demonstrations. A high-level depiction of the setup is shown

in Figure 4.

A user can select an input video for the service from the laptop by

either dragging it to the upload form or selecting it manually using

the open file dialog. Using the encoding level option (Figure 2), the

user can select a trade-off between coding speed and quality. The

encoding process can also be customized by selecting parameters

manually in the advanced settings menu (Figure 3).

Pressing the Encode button triggers the client to send a validation

request to the server. If the input file is valid, the file upload is

started. A progress bar shows the upload status. When ready, the

user can change to My videos view and follow the encoding

process. User can interrupt the request anytime by clicking the

Cancel button. After the coding task is completed, the coding state

is changed to Ready. The user can then download the HEVC file

from the server by clicking the Download button and play the video

in the media player. Alternatively, the file can be deleted with the

Delete button.

During the demonstration, up to five encoding processes can be run

on the server simultaneously. Each encoding process can be

visualized with an associated flow diagram, which gives an in-

depth view of the processing steps on the server. Each flow diagram

is updated dynamically by highlighting the executed step and

annotating it with a detailed description. The CPU load and the

memory usage can also be monitored in real time and the most

demanding tasks are identified in the flow diagram(s). Furthermore,

the console prints of the backend show the info extracted from each

video as well as the input signals given by the user via the UI.

6 Conclusions

The explosive growth of video sparks a need for efficient HEVC

compression but there are no easy-to-use and free HEVC coding

tools. This paper introduced a user-friendly Kvazaar cloud

encoding service for converting raw or obsolete video formats to

HEVC. Our proposal is built on FFmpeg and award-winning

Kvazaar encoder is utilized to take care of HEVC encoding inside

the service. The proposed service is free, easy to use, and available

as open-source for anyone to set up. It also provides in-depth

customization of the encoding process by allowing the user to select

the main encoder parameters of Kvazaar. Future objective is to

assign predefined coding parameters for specific tasks, such as 360-

degree video coding. The possibility of live streaming will also be

studied.

ACKNOWLEDGMENTS

This work was supported in part by the European Celtic-Plus

Project VIRTUOSE and the Academy of Finland (decision no.

301820). The authors would also like to thank all contributors of

the Kvazaar open-source project [16].

REFERENCES
[1] High Efficiency Video Coding, document ITU-T Rec. H.265 and ISO/IEC 23008-

2 (HEVC), ITU-T and ISO/IEC, Apr. 2013.

[2] Advanced Video Coding for Generic Audiovisual Services, document ITU-T Rec.

H.264 and ISO/IEC 14496-10 (AVC), ITU-T and ISO/IEC, Mar. 2009.

[3] J. R. Ohm, G. J. Sullivan, H. Schwarz, T. K. Tan, and T. Wiegand, “Comparison

of the coding efficiency of video coding standards—Including high efficiency

video coding (HEVC),” IEEE Trans. Circuits Syst. Video Technol., vol. 22, no.

12, pp. 1669-1684, Dec. 2012.

[4] I. Ahmad, X. Wei, Y. Sun, and Y. Q. Zhang, “Video transcoding: an overview of

various techniques and research issues,” IEEE Trans. Multimedia, vol. 7, no. 5,

pp. 793-804, Oct. 2005.

[5] Amazon Elastic Transcoder [Online]. Available:

https://aws.amazon.com/elastictranscoder/

[6] Coconut [Online]. Available: https://coconut.co/

[7] Qencode [Online]. Available: https://cloud.qencode.com/

[8] Brightcove Zencoder [Online] Available: https://zencoder.com/en/

[9] Z. H. Chang, B. F. Jong, W. J. Wong, and M. D. Wong, “Distributed video

transcoding on a heterogeneous computing platform,” in Proc. IEEE Asia Pacific

Conf. Circuits Syst., Jeju, South Korea, Oct. 2016.

[10] M. Chen, W. Chen, Z. Liu, and L. Cai, “Parallel video transcoding using Hadoop

MapReduce,” Journal of Network Computing and Applications, vol. 1, pp. 7-11,

2016.

[11] Y. Dong, X. Zhang, Y. Zhao, and L. Song, “A containerized media cloud for

video transcoding service,” in Proc. IEEE Int. Conf. Consumer Electron., Las

Vegas, NV, USA, Jan. 2018.

[12] CloudTranscode [Online]. Available:

https://github.com/bfansports/CloudTranscode

[13] G. Gao and Y. Wen. “Morph: a fast and scalable cloud transcoding system,” in

Proc. ACM Int. Conf. Multimedia, Amsterdam, The Netherlands, Oct. 2016.

DOI: https://doi.org/10.1145/2964284.2973792

[14] Snickers Video Encoder [Online]. Available:

https://github.com/snickers/snickers

[15] Kvazaar Cloud Encoder [Online]. Available:

https://github.com/ultravideo/cloud-encoder

[16] Kvazaar HEVC Encoder [Online] Available:

https://github.com/ultravideo/kvazaar

[17] M. Viitanen, A. Koivula, A. Lemmetti, A. Ylä-Outinen, J. Vanne, and T. D.

Hämäläinen, “Kvazaar: open-source HEVC/H.265 encoder,” in Proc. ACM Int.

Conf. Multimedia, Amsterdam, The Netherlands, Oct. 2016. DOI:

https://doi.org/10.1145/2964284.2973796

[18] Joint Collaborative Team on Video Coding Reference Software, HM [Online].

Available: http://hevc.hhi.fraunhofer.de/

[19] Docker [Online]. Available: https://www.docker.com/

[20] FFmpeg [Online]. Available: https://www.ffmpeg.org/

[21] PostgreSQL [Online]. Available: https://www.postgresql.org/

[22] Redis [Online]. Available: https://github.com/antirez/redis

Figure 4: High-level system setup of the demonstration

