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Abstract—The F composite fading model was recently pro-
posed as an accurate and tractable statistical model for the
characterization of the simultaneous occurrence of multipath
fading and shadowing conditions encountered in realistic wire-
less communication scenarios. In the present contribution we
capitalize on the distinct properties of this composite model
to derive the achievable capacity over F composite fading
channels assuming fixed rate quality of service requirements.
To this end, novel exact and tractable analytic expressions are
derived for both the exact and the truncated channel inversion
strategies. This also enables the derivation of additional simplified
approximate and asymptotic expressions for these cases, which
provide meaningful insights on the effect of fading conditions on
the overall system performance. This is particularly useful in the
context of numerous emerging wireless applications of interest
that exhibit stringent fixed rate requirements such as vehicular
communications, body area networks and telemedicine, among
others.

I. INTRODUCTION

It is well-known that wireless transmission is subject to

multipath fading which is mainly caused by the constructive

and destructive interference between two or more versions

of the transmitted signal. Since multipath fading is typically

detrimental to the performance of wireless communications

systems, it is important to characterize and model multipath

fading channels accurately in order to understand and im-

prove their behavior and corresponding implications. In this

context, numerous fading models such as Rayleigh, Rice and

Nakagami-m have been utilized in an attempt to characterize

multipath fading, depending on the nature of the radio propa-

gation environment [1]–[4].

Based on the above, extensive analyses on the performance

of various wireless communication systems have been reported

in [5]–[14] and the references therein. Specifically, the authors

in [5]–[7] introduced the concepts of capacity analysis under

different adaptation policies and carried out an extensive analy-

sis over Rayleigh and Nakagami-m fading channels. Likewise,

the ergodic capacity over correlated Rician fading channels

and under generalized fading conditions was investigated in

[8] and [9], respectively. In the same context, comprehensive

capacity analyses over independent and correlated generalized

fading channels were performed in [10]–[12] for different

diversity receiver configurations. Also, a lower bound for the

ergodic capacity of distributed multiple input multiple output

(MIMO) systems was derived in [13], while the effective

throughput over generalized multipath fading in multiple input

single output (MISO) systems was analyzed in [14].

It is recalled that in most practical wireless scenarios, the

transmitted signal may not only undergo multipath fading,

but also simultaneous shadowing. The shadowing phenomenon

can be typically modeled with the aid of lognormal, gamma,

inverse Gaussian and, as shown recently, inverse gamma

distributions [15]–[20]. Following from this, the simultaneous

occurrence of multipath fading and shadowing can be taken

into account using any one of the composite fading models,

introduced in the open technical literature [21]–[28]. Capi-

talizing on this, the performance of digital communications

systems over composite fading channels has been analyzed

in [29]–[48]. Yet, a corresponding analysis of the channel

capacity has been only partially addressed. In addition, most



of the existing studies are either limited to an ergodic capacity

analysis for the case of independent and correlated fading

channels in conventional, relay and multi-antenna communica-

tion scenarios or to the effective capacity and channel capacity

under different adaptation policies for the case of conventional

communication scenarios. Furthermore, these analyses have

been comprehensively addressed only for the case of gamma

distributed shadowing and partially for composite models

based on lognormal or IG shadowing effects.

Motivated by this, the authors in [49] proposed the use of

the Fisher-Snedocor F distribution to describe the composite

fading conditions encountered during realistic wireless trans-

mission. This composite model is based on the key assumption

that the root mean square (rms) power of a Nakagami-m signal

is subject to variation induced by an inverse Nakagami-m
random variable (RV). It was shown in [49] that this assump-

tion renders the F fading model capable of providing a better

fit to measurement data than the widely used generalized-K
fading model. Additionally, the algebraic representation of the

F composite fading distribution is fairly tractable and simpler

than that of the generalized-K distribution, which until now

has been widely regarded as the most analytically tractable

composite fading model.

It is recalled that emerging wireless applications are char-

acterized by a high degree of versatility and heterogeneity

combined with stringent performance and quality of service

requirements. These requirements are largely concerned with

significantly high data rates as well as reduced error rates

and system outages, and latency. Another, increasingly desired

characteristic is the achievement of efficient and robust fixed

rate wireless transmission. Fixed rate requirements are highly

important in critical conventional and emerging wireless ap-

plications relating to vehicular communications as well as in

healthcare and telemedicine, where meeting specific quality

of service requirements is of paramount importance for health

and safety related factors. Therefore, designing effective and

robust fixed rate based systems is expected to provide a

meaningful solution to several critical wireless applications

of interest.

Motivated by the above and given the distinct properties of

the recently proposed F composite fading distribution relating

to the combined composite fading modeling accuracy and

analytical simplicity, in the present contribution we quantify

the achievable fixed rate based channel capacity over F
composite fading channels. To this end, we derive novel

exact closed-form expressions for the corresponding channel

capacity with channel inversion and fixed rate (CCIFR) and

with truncated channel inversion and fixed rate (CTIFR). These

expressions have a rather tractable analytic representation

which renders them convenient to handle both analytically

and numerically. Based on this, they are subsequently used

for the derivation of additional simple approximate expres-

sions as well as for expressions in terms of the involved

parameters. These representations are meaningful since they

provide insights on the effect of the involved parameters on

the overall system performance. Hence, they are expected to

be useful in the design and deployment of fixed rate systems

for critical communication scenarios such as vehicle-to-vehicle

communications and telemedicine.

The remainder of the paper is organized as follows: In

Section II, we focus on a redefined version of the F composite

fading model. The channel capacity with channel inversion

and fixed rate over F composite fading channels is derived

in Section III followed by the channel capacity analysis for

truncated channel inversion with fixed rate over F composite

fading channels in Section IV. Corresponding numerical results

and useful insights are given in Section V, while concluding

remarks are presented in Section VI.

II. THE F COMPOSITE FADING MODEL

Similar to the physical signal model proposed for the

Nakagami-m fading channel [50], the received signal in an F
composite fading channel is composed of separable clusters

of multipath in which the scattered waves have similar delay

times, with the delay spreads of different clusters being rela-

tively large. However, in contrast to the Nakagami-m signal,

in an F composite fading channel, the rms power of the

received signal is subject to random variation induced by

shadowing. Based on this, the received signal envelope, R,

can be expressed as

R =

√

√

√

√

m
∑

i=1

α2I2i + α2Q2
i , (1)

where m represents the number of clusters of multipath, Ii and

Qi are independent Gaussian RVs which denote the in-phase

and quadrature phase components of the multipath cluster i,
respectively, where

E[Ii] = E[Qi] = 0 (2)

and

E[I2i ] = E[Q2
i ] = σ2, (3)

with E[·] denoting statistical expectation. In (1), α is a normal-

ized inverse Nakagami-m RV where ms is the shape parameter

and E[α2] = 1, such that

fα(α) =
2(ms − 1)

ms

Γ (ms) α2ms+1
exp

(

−
ms − 1

α2

)

, (4)

where Γ(·) represents the gamma function [51, eq. (8.310.1)].

Following the approach in [49], we can obtain the corre-

sponding PDF1 of the received signal envelope, R, in an F
composite fading channel, namely

1It is worth highlighting that in the present paper, we have modified
slightly the underlying inverse Nakagami-m PDF from that used in [49] and
subsequently the PDF for the F composite fading model. While the PDF in
[49] is completely valid for physical channel characterization, it has some
limitations in its admissible parameter range when used in analyses relating
to digital communications. The redefined PDF in (5), on the other hand, is
well consolidated.



fR(r) =
2mm(ms − 1)

ms Ωmsr2m−1

B (m,ms) [mr2 + (ms − 1) Ω]
m+ms

, (5)

which is valid for ms > 1, while B(·, ·) denotes the beta

function [51, eq. (8.384.1)]. The form of the PDF in (5)

is functionally equivalent to the F distribution2. In terms

of its physical interpretation, m denotes the fading severity

whereas ms controls the amount of shadowing of the rms

signal power. Moreover, Ω = E[r2] represents the mean

power. As ms → 0, the scattered signal component undergoes

heavy shadowing; in contrast, as ms → ∞, there exists no

shadowing in the wireless channel and therefore it corresponds

to a standard Nakagami-m fading channel. Furthermore, as

m → ∞ and ms → ∞, the F composite fading model

becomes increasingly deterministic, i.e., it becomes equivalent

to an additive white Gaussian noise (AWGN) channel.

Based on (5), the PDF of the instantaneous SNR, γ, in an

F composite fading channel can be straightforwardly deduced

using the variable transformation γ = γr2/Ω, such that

fγ(γ) =
mm(ms−1)ms γmsγm−1

B (m,ms) [mγ + (ms − 1) γ ]
m+ms

, (6)

where γ = E[γ] denotes the corresponding average SNR. To

this effect, the redefined moments,

E[γn] ,

∫

∞

0

γnfγ(γ)dγ (7)

are expressed as [52]

E[γn] =
(ms − 1)nγnΓ(m+ n)Γ(ms − n)

mnΓ(m)Γ(ms)
. (8)

Similarly, with the aid of [51, eq. (3.194.1)] the envelope

cumulative distribution function (CDF) is expressed as

FR(r) =
mm−1r2m

B(m,ms)(ms − 1)mΩm

× 2F1

(

m,m+ms,m+ 1;−
mr2

(ms − 1)Ω

)

,

(9)

where 2F1(·, ·; ·; ·) is the Gauss hypergeometric function [51,

eq. (9.111)], whereas its respective SNR CDF is readily given

by

Fγ(γ) =
mm−1γm

B(m,ms)(ms − 1)mγm

× 2F1

(

m,m+ms,m+ 1;−
mγ

(ms − 1)γ

)

.

(10)

It is noted that the above CDF expressions are valid for

arbitrary values of the fading parameters m and ms. However,

2Letting r2 = x, m = d1/2, ms = d2/2, Ω = d2/(d2 − 2) and
performing the required transformation yields the F distribution, fX(x), with
parameters d1 and d2.

an additional expression can be derived for the special case of

arbitrary values of ms and integer values of m.

Lemma 1. For γ, γ ∈ R
+, m ∈ N and ms > 1, the

outage probability under F composite fading conditions can

be expressed as

Fγ(γ) =
m−1
∑

l=0

(

m− 1

l

)

(−1)l

B(m,ms)

{

1

ms + l

−
(ms − 1)ms+lγms+l

(ms + l)(mγ + (ms − 1)γ)ms+l

}

,

(11)

where
(

·

·

)

denotes the binomial coefficient [51, eq. (1.111)].

Proof. It is recalled that the CDF of the F composite statistical

distribution is given by

Fγ(γ) =

∫ γ

0

mm(ms−1)ms γmsxm−1

B (m,ms) [mx+ (ms − 1) γ ]
m+ms

dx. (12)

By setting

u = mx+ (ms − 1)γ (13)

and after some algebraic manipulations, it follows that

Fγ(γ) =
(ms − 1)msγms

B(m,ms)

×

∫ mγ+(ms−1)γ

(ms−1)γ

(u− (ms − 1)γ)m−1

um+ms
du.

(14)

By applying the binomial theorem in [51, eq. (1.111)], one

obtains

Fγ(γ) =
(ms − 1)msγms

B(m,ms)

m−1
∑

l=0

(

m− 1

l

)

(1−ms)
lγl

×

∫ mγ+(ms−1)γ

(ms−1)γ

1

ums+l+1
du

(15)

which is valid when m ∈ N. Consequently, the above integral

can be evaluated straightforwardly. Based on this and after

some algebraic manipulations, the simplified expression for

the CDF in (11) is deduced, which completes the proof.

The derived expression in Lemma 1 is novel and has a rela-

tively simple algebraic representation. Therefore, it is useful in

cumbersome analyses relating to digital communications over

F composite fading channels, where (11) proves intractable

to lead to the derivation of useful analytic solutions.

III. CHANNEL CAPACITY WITH FIXED RATE

Most communication systems typically assume a known

channel state information (CSI) only at the receiver side.

However, in several emerging systems, CSI can be also

available at the transmitter as this allows greater flexibility and

adaptability, resulting in a more efficient and intelligent overall



system operation. A typical feature in the case of knowing CSI

at the transmitter and at the receiver is the ability to benefit

from adaptive transmit power. This is the key process of the

so called water-filling approach and in fixed rate systems. In

the former, higher power and rate levels are allocated in good

fading conditions and less power in severe fading conditions.

In the latter, the transmitter adapts the power accordingly

in order to maintain a fixed rate at the receiver [52]. These

concepts are critical in numerous emerging applications that

are characterized by stringent quality of service requirements,

such as telemedicine and vehicle to vehicle communications

[49]. Subsequently, this section is devoted to the capacity

analysis over F composite fading channels for the channel

inversion with fixed rate and for truncated channel inversion

with fixed rate.

A. Channel Inversion with Fixed Rate

This policy ensures a fixed data rate at the receiver by

means of inverting the channel and adapting the transmit

power accordingly. This is particularly useful in numerous

applications where a fixed rate is the core requirement. In

what follows, we derive the channel capacity with channel

inversion and fixed rate in the presence of F composite fading

conditions [5]–[7], [52].

Theorem 1. For m, γ, γ,B ∈ R
+ and ms > 1, the channel

capacity per unit bandwidth with channel inversion and fixed

rate under F composite fading conditions can be expressed

as follows:

CCIFR

B
= log2

(

1 +
(m− 1)(ms − 1) γ

mms

)

. (16)

Proof. The channel capacity with channel inversion and fixed

rate is defined as

CCIFR = B log2

(

1 +
1

∫

∞

0
fγ(γ)

γ
dγ

)

. (17)

Therefore, for the case of F composite fading conditions, we

substitute (6) into (16), yielding

CCIFR

B
= log2



1 +
B(m,ms)m

−m(ms − 1)−msγ−ms

∫

∞

0
γm−1

[mγ+(ms−1) γ ]m+ms
dγ



 .

(18)

The above integral can be obtained in closed-form using [51,

eq. (3.194.3)]. To this end, by making the necessary change

of variables and substituting in (18) one obtains

CCIFR

B
= log2

(

1 +
B(m,ms)Γ(m+ms)(ms − 1) γ

mΓ(m− 1)Γ(ms + 1)

)

,

(19)

which with the aid of the properties of the beta and gamma

functions along with some algebraic manipulations yields (16),

which completes the proof.

It is evident that (16) has a rather simple algebraic repre-

sentation. Furthermore, it is particularly insightful since it can

be expressed exactly in terms of the average SNR, namely

γ =
mms

(m− 1)(ms − 1)

(

2
CCIFR

B − 1
)

(20)

as well as in terms of the fading parameters m and ms, namely

m =
(ms − 1)γ

(ms − 1)γ −ms

(

2
CCIFR

B − 1
) (21)

and

ms =
(m− 1)γ

(m− 1)γ −m
(

2
CCIFR

B − 1
) (22)

respectively. The above expressions can provide meaningful

insight on the impact of the involved parameters on the overall

system performance. Also, they are useful in determining the

required average SNR values for target quality of service and

bandwidth requirements under different multipath fading and

shadowing conditions.

B. Truncated Channel Inversion with Fixed Rate

Channel inversion with fixed rate constitutes a low complex-

ity and effective method to achieve fixed rate communications.

However, the main drawback of this technique is the large

transmit power requirements in case of deep fades, which

are often encountered in realistic communication scenarios.

Nonetheless, this practical issue can be resolved by inverting

the channel above a fixed cut-off level, namely channel trun-

cation. In what follows, we quantify the channel capacity with

truncated channel inversion and fixed rate for the case of F
composite fading conditions.

Theorem 2. For γ, γ,B ∈ R
+, and ms > 1, the channel

capacity per unit bandwidth with truncated channel inversion

and fixed rate under F composite fading conditions can be

expressed as

CTIFR

B
= log2

(

1 +
B(m,ms)(ms + 1)mmsγms+1

0

(ms − 1)msγmsD1

)

×

(

1−
mm−1γm

thD2

B(m,ms)(ms − 1)mγm

) (23)

when m ∈ R
+, and

CTIFR

B
= log2

(

1 +
B(m,ms)

m(ms − 1)msγmsD3

)

×

(

1−

m−1
∑

l=0

(

m− 1

l

)

(−1)l

B(m,ms)

1−D4

ms + l

) (24)

when m ∈ N. The terms D1 and D2 in (23) are expressed as

D1 = 2F1

(

ms + 1,m+ms;ms + 2;
(1−ms)γ

mγ0

)

(25)



and

D2 = 2F1

(

m,m+ms; 1 +m;
mγth

(1−ms)γ

)

, (26)

whereas the D3 and D4 terms in (24) are given by

D3 =
m−2
∑

l=0

(

m− 2

l

)

(−1)l(ms + l + 1)−1(ms − 1)lγl

(mγ0 + (ms − 1)γ)ms+l+1

(27)

and

D4 =
(ms − 1)ms+l γms+l

(mγth + (ms − 1)γ)ms+l
. (28)

Proof. The channel capacity with truncated channel inversion

and fixed rate is defined as

CTIFR , B log2

(

1 +
1

∫

∞

γ0

fγ(γ)
γ

dγ

)

∫

∞

γ0

fγ(γ)dγ, (29)

which with the aid of (6) for the case of F composite fading

channels and recalling that

∫

∞

γ0

f(x)dx = 1−

∫ γ0

0

f(x)dx = 1− Pout (30)

is expressed as

CTIFR

B
= log2



1 +
B(m,ms)

∫

∞

γ0

mm(ms−1)ms γmsγm−2

[mγ+(ms−1) γ ]m+ms
dγ





×

(

1−D5

∫ γ0

0

γm−1

[mγ + (ms−1) γ ]
m+ms

dγ

)

,

(31)

where

D5 =
mm(ms−1)ms γms

B(m,ms)
. (32)

Now, recalling that

Pout , F (γth) (33)

and using (10) for the case of m ∈ R
+ along with substituting

in (31), it follows that

CTIFR

B
= log2



1 +
1

D5

∫

∞

γ0

γm−2

[mγ+(ms−1) γ ]m+ms
dγ





×

(

1−
mm−1γm

thD2

B(m,ms)(ms − 1)mγm

)

.

(34)

The integral in (34) can be expressed in closed-form with

the aid of [51, eq. (3.194.1)]. This is achieved by performing

the necessary variable transformation and after some algebraic

manipulations, which yields (23) for the case of m ∈ R
+.

Likewise, for the case of m ∈ N, we apply again Pout ,

F (γth) in (11), which upon substitution in (34), it follows that

CTIFR

B
= log2



1 +
1

D5

∫

∞

γ0

γm−2

[mγ+(ms−1) γ ]m+ms
dγ





×

(

1−
m−1
∑

l=0

(

m− 1

l

)

(−1)l

B(m,ms)

1−D4

ms + l

)

.

(35)

Therefore, by setting

u = mγ + (ms − 1)γ (36)

in (35), one obtains

CTIFR

B
= log2



1 +
mm−1

D5

∫

∞

mγ0+(ms−1)γ
(u−(ms−1)γ)m−2

um+ms
du





×

(

1−
m−1
∑

l=0

(

m− 1

l

)

(−1)l

B(m,ms)

1−D4

ms + l

)

.

(37)

To this effect, by applying the binomial theorem in [51,

eq. (1.111] in the above integral along with some algebraic

manipulations yields

CTIFR

B
= log2

(

1 +
B(m,ms)m

−1(ms − 1)−msγ−ms

∑m−2
l=0

(

m−2
l

)

(−1)l(ms − 1)lγ lD6

)

×

(

1−
m−1
∑

l=0

(

m− 1

l

)

(−1)l

B(m,ms)

1−D4

ms + l

)

,

(38)

where

D6 =

∫

∞

mγ0+(ms−1)γ

u−ms−l−2du. (39)

It is evident that the above elementary integral can be evaluated

straightforwardly; hence, equation (24) is deduced, which

completes the proof for the case of m ∈ N.

Remark 1. It is noted that the integral in (34) can be alter-

natively expressed in closed-form in terms of the incomplete

beta function [51]. As a result, the channel capacity with

truncated channel inversion and fixed rate over F composite

fading channels can be equivalently expressed as

CTIFR

B
= log2



1 +
(−1)msB(m,ms)(1−ms)γ

mB
(

(1−ms)γ
mγ0

; 1 +ms, 1−m−ms

)





×

(

1−
mm−1γm

thD2

B(m,ms)(ms − 1)mγm

)

,

(40)

which holds for m ∈ R
+.



The exact analytic expressions in Theorem 5 are tractable

both analytically and numerically. However, capitalizing on

them leads to the derivation of an even simpler and insightful

approximate expression.

Proposition 1. For γ, γ, γ0, B ∈ R
+, m ∈ N, ms > 1 and

γ >> γth, the channel capacity per unit bandwidth with

truncated channel inversion and fixed rate under F composite

fading conditions can be approximated as follows:

CTIFR

B
≈ log2

(

1 +
B(m,ms)(ms − 1)γ

m
∑m−2

l=0

(

m−2
l

) (−1)l

ms+l+1

)

. (41)

Proof. By recalling the case of m ∈ N in Theorem 5 and

assuming large average SNR values, it follows that (24) can

be accurately approximated by the simplified representation in

(42), at the top of the next page.

To this effect and by assuming that γ >> γth, (42) reduces

to

CTIFR

B
≈ log2



1 +
B(m,ms)m

−1(ms − 1)−msγ−ms

∑m−2
l=0

(

m−2
l

) (−1)l

(ms+l+1)((ms−1)γ)ms+1





(43)

which after some algebraic manipulations yields (41), which

completes the proof.

Remark 2. It is noted that the proposed approximation is

also tight even for some cases with comparable values of γ
and γth; as a result, the use of (41) in practice is not strictly

constrained by the condition γ >> γth in Proposition 6.

It is also worth noting that (41) is rather insightful as it can

be expressed in terms of γ, namely

γ ≈
2

C
appr.
TIFR
B − 1

B(m,ms)(ms − 1)

m−2
∑

l=0

(

m− 2

l

)

(−1)lm

ms + l + 1
. (44)

As in the previous scenarios, (44) is useful for target quality

of service and bandwidth requirements as it quantifies the

required average SNR value for different multipath fading and

shadowing conditions.

IV. NUMERICAL RESULTS

In this section, we utilize the analytic results obtained in the

previous sections to quantify the achievable channel capacity

with channel inversion and fixed rate. This is realized ex-

tensively for various communication scenarios under realistic

multipath fading and shadowing conditions.

Likewise, Table I depicts the exact results for the considered

CCIRA and CTIFR along with other channel capacity measures

such as the effective capacity and the capacity with optimum

rate adaptation and with optimum power and rate adapta-

tion. This allows direct comparisons between these measures

which quantifies the similarities or differences of them in

digital transmission over same fading channels. This provides

meaningful insights that can determine the corresponding

Fig. 1: CCIFR/B in an F fading channel as a function of the

m, ms and γ parameters.

transceiver design according to different scenarios. For exam-

ple, when the results of the considered channel inversion based

measures are comparable to those of the corresponding ergodic

capacity, the necessity for CSI knowledge at the transmitter

can be alleviated, which in turn can lead to simpler design and

therefore to a complexity reduction. On the contrary, when the

differences between these measures are non-negligible, CSI

knowledge at the transmitter will be considered even at a cost

of a complexity increase.

Based on the above, the exact achievable channel capacities

are depicted for different fading conditions and average SNR

values assuming A = 2 for Ceff and γ0 = γth = 2dB

for COPRA and CTIFR. It is shown that the achievable

capacities around 0dB are comparable for all types of fading

composite fading conditions. However, as the average SNR

values increase, we notice larger performance deviations and

achievable capacity. Also, the detrimental effect of latency is

evident, as this measures exhibits lower performance compared

to the other capacity measures. This indicates that latency must

be taken into thorough consideration in the determination of

the achievable performance limits and hence, in the design

and deployment of emerging wireless communication systems

with stringent quality of service requirements.

Fig. 1 and Fig. 2 demonstrate the performance of the con-

sidered CCIFR and CTIFR, respectively, for different values of

m, ms and γ parameters of the F composite fading channels,

namely 1 < m ≤ 15, 1 < ms ≤ 15 and 0 ≤ γ ≤ 40 dB.

It is also noted that the value of γ0 for Fig. 2 was set to



Cappr.
TIFR

B
≈ log2



1 +
B(m,ms)

m(ms − 1)msγms
∑m−2

l=0

(

m−2
l

) (−1)l(ms−1)lγl

(ms+l+1)(mγth+(ms−1)γ)ms+l+1



 . (42)

TABLE I: Exact Channel Capacity with Different Adaptation Policies under F Fading Conditions.

Involved Parameters Exact Channel Capacity for A = 2.0 and γ0 = γth = 2dB

m ms γ CORA Ceff COPRA CCIFR CTIFR

1.2 1.2 0dB 0.45 0.30 0.09 0.04 0.39
3.2 1.2 0dB 0.48 0.34 0.09 0.16 0.39
3.2 4.2 0dB 0.90 0.75 0.10 0.61 0.63
6.0 6.0 0dB 0.94 0.84 0.06 0.76 0.56

1.2 1.2 10dB 1.76 1.03 0.92 0.35 1.59
3.2 1.2 10dB 1.92 1.27 0.98 1.10 1.67
3.2 4.2 10dB 3.11 2.51 2.22 2.64 2.77
6.0 6.0 10dB 3.25 2.87 2.40 2.99 3.01

1.2 1.2 20dB 4.27 2.39 3.48 1.92 3.32
3.2 1.2 20dB 4.62 3.25 3.84 3.64 3.74
3.2 4.2 20dB 6.22 5.27 5.53 5.74 5.74
6.0 6.0 20dB 6.40 5.89 5.72 6.14 6.14

1.2 1.2 30dB 7.41 4.17 6.72 4.85 5.75
3.2 1.2 30dB 7.84 6.10 7.16 6.85 6.85
3.2 4.2 30dB 9.52 8.47 8.85 9.04 9.04
6.0 6.0 30dB 9.70 9.17 9.04 9.44 9.44

1.2 1.2 40dB 10.71 6.11 10.04 8.12 8.64
3.2 1.2 40dB 11.15 9.31 10.48 10.16 10.16
3.2 4.2 40dB 12.84 11.77 12.17 12.36 12.36
6.0 6.0 40dB 13.02 12.49 12.36 12.76 12.76

Fig. 2: CTIFR/B in an F fading channel as a function of the

m, ms and γ parameters for γ0 = 5 dB.

5 dB. As expected, for both CCIFR and CTIFR cases, better

performance is achieved at higher m, ms and γ whereas poor

performance is observed at lower m, ms and γ. The difference

in the achievable capacity levels is significant since variations

of even greater than 30% are noticed between intense and light

composite fading conditions across all average SNR regimes.

Likewise, Fig. 3 shows the dependence of CTIFR/B on the

cutoff SNR, γ0, for two different fading conditions, i.e., intense

and moderate composite fading conditions, and five different

average SNR values, namely γ = {0, 10, 20, 30, 40} dB.

Furthermore, it is observed that when γ0 = γth, the cutoff

SNR that maximizes the spectral efficiency (γ∗

0 ) increases as

γ increases. When comparing Fig. 3(a) and Fig. 3(b), for

fixed γ, the value of γ∗

0 for the moderate composite fading

conditions was greater than that for the intense composite

fading conditions. Additionally, for γ0 < γ∗

0 , the curves in

Fig. 3(b) are relatively flat compared to that for Fig. 3(a).

This verifies that the spectral efficiency improvement provided

by truncated channel inversion (γ0 = γ∗

0 ), compared to total

channel inversion (γ0 = 0), is more significant when the

channel is subject to severe multipath fading and simultaneous

heavy shadowing i.e., intense composite fading conditions.

V. CONCLUSION

In this paper, we presented a comprehensive capacity anal-

ysis over F composite fading channels assuming channel

inversion with fixed rate. In particular, the tractability of the F
composite fading model led to the determination of the channel
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Fig. 3: CTIFR/B in an F fading channel as a function of the γ0 for different γ values for (a) intense and (b) moderate

composite fading conditions.

capacity for two distinct cases: i) channel inversion with fixed

rate; ii) truncated channel inversion with fixed rate. When

comparing these expressions with those for the generalized-

K fading channels given in [30], the F fading model exhibits

lower complexity and provides more insights on the impact of

the involved parameters on the overall system performance.

Based on this, it was shown that the corresponding channel

capacity changes considerably even at slight variations of the

average SNR and the severity of the multipath fading and

shadowing conditions. The impact of different types of F
composite fading was also investigated through comparisons

with the respective capacity for the case of a Rayleigh fading

channel. This has highlighted that different types of compos-

ite fading can have a profound effect which is beyond the

range of the fading conditions experienced in a conventional

Rayleigh fading environment. Therefore, it is verified that is

of paramount importance to ensure accurate characterization

of composite fading conditions in future communication sys-

tems in order to meet increased quality of service demands

associated with stringent power consumption and complexity

requirements. Finally, the new results and insights provided

here will be useful in the design and deployment of future

communications systems. For example when assessing tech-

nologies such as channel selection and spectrum aggregation

for use in heterogeneous networks, telemedicine and vehicular

communications, to name but a few.

ACKNOWLEDGMENT

This work was supported in part by Khalifa University

under Grant No. KU/RC1-C2PS-T2/8474000137 and Grant

No. KU/FSU-8474000122, and by the U.K. Engineering

and Physical Sciences Research Council under Grant No.

EP/L026074/1, by the Department for the Economy Northern

Ireland through Grant No. USI080.

REFERENCES

[1] H. B. Janes, and P. I. Wells, “Some tropospheric scatter propagation
measurements near the radio horizon,” Proc. IRE, vol. 43, no. 10, pp.
1336–1340, Oct. 1955.

[2] S. Basu et al, “250 MHz/GHz scintillation parameters in the equatorial,
polar, and auroral environments,” IEEE J. Sel. Areas Commun., vol. 5,
no. 2, pp. 102–115, Feb. 1987.

[3] S. O. Rice, “Statistical properties of a sine wave plus random noise,”
Bell Labs Tech. J., vol. 27, no. 1, pp. 109–157, Jan. 1948.

[4] R. J. C. Bultitude, S. A. Mahmoud, and W. A. Sullivan, “A comparison
of indoor radio propagation characteristics at 910 MHz and 1.75 GHz,”
IEEE J. Sel. Areas Commun., vol. 7, no. 1, pp. 20–30, Jan. 1989.

[5] A. J. Goldsmith, and P. P. Varaiya, “Capacity of fading channels with
channel side information,” IEEE Trans. Inf. Theory, vol. 43, no. 6, pp.
1986–1992, Nov. 1997.

[6] M.-S. Alouini, and A. J. Goldsmith, “Capacity of Rayleigh fading
channels under different adaptive transmission and diversity-combining
techniques,” IEEE Trans. Veh. Technol., vol. 48, no. 4, pp. 1165–1181,
Jul. 1999.

[7] ——, “Adaptive modulation over Nakagami fading channels,” Wireless

Pers. Commun., vol. 13, no. 1-2, pp. 119–143, May 2000.
[8] Q. Zhang, and D. Liu, “A simple capacity formula for correlated

diversity Rician fading channels,” IEEE Commun. Lett., vol. 6, no. 11,
pp. 481–483, Nov. 2002.

[9] D. B. da Costa, and M. D. Yacoub, “Average channel capacity for
generalized fading scenarios,” IEEE Commun. Lett., vol. 11, no. 12,
pp. 949−951, Dec. 2007.

[10] D. B. da Costa, and M. D. Yacoub, “Channel capacity for single branch
receivers operating in generalized fading scenarios,” 4th International

Symposium on Wireless Communication Systems, 2007, pp. 215−218.
[11] P. S. Bithas, and P. T. Mathiopoulos, “Capacity of correlated generalized

gamma fading with dual-branch selection diversity,” IEEE Trans. Veh.

Technol., vol. 58, no. 9, pp. 5258−5663, Sep. 2009.
[12] P. S. Bithas, G. P. Efthymoglou, and N.C. Sagias, “Spectral efficiency

of adaptive transmission and selection diversity on generalised fading
channels,” IET Commun., vol. 4, no. 17, pp. 2058−2064, Sep. 2010.

[13] M. Matthaiou, N. D. Chatzidiamantis, and G. K. Karagiannidis, “A new
lower bound on the ergodic capacity of distributed MIMO systems,”
IEEE Signal Process. Lett., vol. 18. no. 4, pp. 227−230, Apr. 2011.



[14] J. Zhang, Z. Tan, H. Wang, Q. Huang, and L. Hanzo, “The effective
throughput of MISO systems over κ−µ fading channels,” IEEE Trans.

Veh. Technol., vol. 63, no. 2, pp. 943−947, Feb. 2014.
[15] H. Hashemi, “The indoor radio propagation channel,” Proc. IEEE,

vol. 81, no. 7, pp. 943–968, Jul. 1993.
[16] J. R. Clark, and S. Karp, “Approximations for lognormally fading optical

signals,” Proc. IEEE, vol. 58, no. 12, pp. 1964–1965, Dec. 1970.
[17] A. Abdi, and M. Kaveh, “On the utility of gamma PDF in modeling

shadow fading (slow fading),” in Proc. IEEE VTC, vol. 3, May 1999,
pp. 2308–2312.

[18] A. H. Marcus, “Power sum distributions: An easier approach using the
wald distribution,” J. Am. Stat. Assoc., vol. 71, no. 353, pp. 237–238,
1976.

[19] H. G. Sandalidis, N. D. Chatzidiamantis, and G. K. Karagiannidis,
“A tractable model for turbulence and misalignment-induced fading in
optical wireless systems,” IEEE Commun. Lett., vol. 20, no. 9, pp.
1904−1907, Sep. 2016.

[20] I. Trigui, A. Laourine, S. Affes, and A. Stéphenne, “The inverse
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